1
|
Farrar VS. Revisiting the specific and potentially independent role of the gonad in hormone regulation and reproductive behavior. J Exp Biol 2024; 227:jeb247686. [PMID: 39508240 DOI: 10.1242/jeb.247686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Gonadal sex steroid hormones are well-studied modulators of reproductive physiology and behavior. Recent behavioral endocrinology research has focused on how the brain dynamically responds to - and may even produce - sex steroids, but the gonadal tissues that primarily release these hormones receive much less attention as a potential mediator of behavioral variation. This Commentary revisits mechanisms by which the reproductive hypothalamic-pituitary-gonadal (HPG) axis can be modulated specifically at the gonadal level. These mechanisms include those that may allow the gonad to be regulated independently of the HPG axis, such as receptors for non-HPG hormones, neural inputs and local production of conventional 'neuropeptides'. Here, I highlight studies that examine variation in these gonadal mechanisms in diverse taxa, with an emphasis on recent transcriptomic work. I then outline how future work can establish functional roles of gonadal mechanisms in reproductive behavior and evaluate gonad responsiveness to environmental cues. When integrated with neural mechanisms, further investigation of gonadal hormone regulation can yield new insight into the control and evolution of steroid-mediated traits, including behavior.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Li L, Lin W, Wang Z, Huang R, Xia H, Li Z, Deng J, Ye T, Huang Y, Yang Y. Hormone Regulation in Testicular Development and Function. Int J Mol Sci 2024; 25:5805. [PMID: 38891991 PMCID: PMC11172568 DOI: 10.3390/ijms25115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
3
|
Nguyen V, Dolendo I, Uloko M, Hsieh TC, Patel D. Male delayed orgasm and anorgasmia: a practical guide for sexual medicine providers. Int J Impot Res 2024; 36:186-193. [PMID: 37061617 PMCID: PMC11035123 DOI: 10.1038/s41443-023-00692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Delayed orgasm (DO) is defined as increased latency of orgasm despite adequate sexual stimulation and desire. Anorgasmia (AO) is characterized as the absence of orgasm. Etiologies of DO/AO include medication-induced, psychogenic, endocrine, and genitopelvic dysesthesia. Given the multifactorial complex nature of this disorder, a thorough history and physical examination represent the most critical components of patient evaluation in the clinical setting. Treating DO/AO can be challenging due to the lack of standardized FDA-approved pharmacotherapies. There is no standardized treatment plan for DO/AO, though common treatments plans are often multidisciplinary and may include adjustment of offending medications and sex therapy. In this review, we summarize the etiology, diagnosis, and treatment of DO/AO.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Urology, University of California, San Diego, CA, USA
| | - Isabella Dolendo
- Department of Urology, University of California, San Diego, CA, USA
| | - Maria Uloko
- Department of Urology, University of California, San Diego, CA, USA
| | - Tung-Chin Hsieh
- Department of Urology, University of California, San Diego, CA, USA
| | - Darshan Patel
- Department of Urology, University of California, San Diego, CA, USA.
| |
Collapse
|
4
|
Yang L, Liu J, Yin J, Li Y, Liu J, Liu D, Wang Z, DiSanto ME, Zhang W, Zhang X. S100A4 modulates cell proliferation, apoptosis and fibrosis in the hyperplastic prostate. Int J Biochem Cell Biol 2024; 169:106551. [PMID: 38360265 DOI: 10.1016/j.biocel.2024.106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men worldwide that may result in lower urinary tract symptoms (LUTS). At present, the specific pathophysiological mechanism for BPH/LUTS LUTS remains unclear. S100 calcium binding protein A4 (S100A4), a member of the calcium binding protein family, regulates a variety of biological processes including cell proliferation, apoptosis and fibrosis. The aim of the current study was to explore and clarify the possible role of S100A4 in BPH/LUTS. The human prostate stromal cell line (WPMY-1), rat prostate epithelial cells, human prostate tissues and two BPH rat models were employed in this study. The expression and localization of S100A4 were detected by quantitative real time PCR (qRT-PCR), immunofluorescence microscopy, Western blotting and immunohistochemistry analysis. Also, S100A4 knockdown or overexpression cell models were constructed and a BPH rat model was induced with testosterone propionate (T) or phenylephrine (PE). The BPH animals were treated with Niclosamide, a S100A4 transcription inhibitor. Results demonstrated that S100A4 was mainly localized in human prostatic stroma and rat prostatic epithelium, and showed a higher expression in BPH. Knockdown of S100A4 induced cell apoptosis, cell proliferation arrest and a reduction of tissue fibrosis markers. Overexpression of S100A4 reversed the aforementioned changes. We also demonstrated that S100A4 regulated proliferation and apoptosis mainly through the ERK pathway and modulated fibrosis via Wnt/β-catenin signaling. In conclusion, our novel data demonstrate that S100A4 could play a crucial role in BPH development and may be explored as a new therapeutic target of BPH.
Collapse
Affiliation(s)
- Liang Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Yin
- Department of Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Weibing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Perisic M, Woolcock K, Hering A, Mendel H, Muttenthaler M. Oxytocin and vasopressin signaling in health and disease. Trends Biochem Sci 2024; 49:361-377. [PMID: 38418338 DOI: 10.1016/j.tibs.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Neurohypophysial peptides are ancient and evolutionarily highly conserved neuropeptides that regulate many crucial physiological functions in vertebrates and invertebrates. The human neurohypophysial oxytocin/vasopressin (OT/VP) signaling system with its four receptors has become an attractive drug target for a variety of diseases, including cancer, pain, cardiovascular indications, and neurological disorders. Despite its promise, drug development faces hurdles, including signaling complexity, selectivity and off-target concerns, translational interspecies differences, and inefficient drug delivery. In this review we dive into the complexity of the OT/VP signaling system in health and disease, provide an overview of relevant pharmacological probes, and discuss the latest trends in therapeutic lead discovery and drug development.
Collapse
Affiliation(s)
- Monika Perisic
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Katrina Woolcock
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Anke Hering
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Helen Mendel
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|
6
|
Danhof HA, Lee J, Thapa A, Britton RA, Di Rienzi SC. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. Gut Microbes 2023; 15:2256043. [PMID: 37698879 PMCID: PMC10498800 DOI: 10.1080/19490976.2023.2256043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023] Open
Abstract
Intestinal microbes impact the health of the intestine and organs distal to the gut. Limosilactobacillus reuteri is a human intestinal microbe that promotes normal gut transit, the anti-inflammatory immune system, wound healing, normal social behavior in mice, and prevents bone reabsorption. Oxytocin impacts these functions and oxytocin signaling is required for L. reuteri-mediated wound healing and social behavior; however, the events in the gut leading to oxytocin stimulation and beneficial effects are unknown. Here we report evolutionarily conserved oxytocin production in the intestinal epithelium through analysis of single-cell RNA-Seq datasets and imaging of human and mouse intestinal tissues. Moreover, human intestinal organoids produce oxytocin, demonstrating that the intestinal epithelium is sufficient to produce oxytocin. We find that L. reuteri facilitates oxytocin secretion from human intestinal tissue and human intestinal organoids. Finally, we demonstrate that stimulation of oxytocin secretion by L. reuteri is dependent on the gut hormone secretin, which is produced in enteroendocrine cells, while oxytocin itself is produced in enterocytes. Altogether, this work demonstrates that oxytocin is produced and secreted from enterocytes in the intestinal epithelium in response to secretin stimulated by L. reuteri. This work thereby identifies oxytocin as an intestinal hormone and provides mechanistic insight into avenues by which gut microbes promote host health.
Collapse
Affiliation(s)
- Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Aanchal Thapa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Badshah M, Ibrahim J, Su N, Whiley P, Whittaker M, Exintaris B. The Effects of Age on Prostatic Responses to Oxytocin and the Effects of Antagonists. Biomedicines 2023; 11:2956. [PMID: 38001957 PMCID: PMC10669827 DOI: 10.3390/biomedicines11112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is an age-related enlargement of the prostate with urethral obstruction that predominantly affects the middle-aged and older male population, resulting in disruptive lower urinary tract symptoms (LUTS), thus creating a profound impact on an individual's quality of life. The development of LUTS may be linked to overexpression of oxytocin receptors (OXTR), resulting in increased baseline myogenic tone within the prostate. Thus, it is hypothesised that targeting OXTR using oxytocin receptor antagonists (atosiban, cligosiban, and β-Mercapto-β,β-cyclopentamethylenepropionyl1, O-Me-Tyr2, Orn8]-Oxytocin (ßMßßC)), may attenuate myogenic tone within the prostate. Organ bath and immunohistochemistry techniques were conducted on prostate tissue from young and older rats. Our contractility studies demonstrated that atosiban significantly decreased the frequency of spontaneous contractions within the prostate of young rats (**** p < 0.0001), and cligosiban (* p < 0.05), and ßMßßC (**** p < 0.0001) in older rats. Additionally, immunohistochemistry findings revealed that nuclear-specific OXTR was predominantly expressed within the epithelium of the prostate of both young (*** p < 0.001) and older rats (**** p < 0.0001). In conclusion, our findings indicate that oxytocin is a key modulator of prostate contractility, and targeting OXTR is a promising avenue in the development of novel BPH drugs.
Collapse
Affiliation(s)
- Masroor Badshah
- Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia;
| | - Jibriil Ibrahim
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| | - Nguok Su
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| | - Penny Whiley
- Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia;
| | - Michael Whittaker
- Drug, Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia;
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia (N.S.)
| |
Collapse
|
8
|
Sun T, Pei S, Liu Y, Hanif Q, Xu H, Chen N, Lei C, Yue X. Whole genome sequencing of simmental cattle for SNP and CNV discovery. BMC Genomics 2023; 24:179. [PMID: 37020271 PMCID: PMC10077681 DOI: 10.1186/s12864-023-09248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUD The single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) are two major genomic variants, which play crucial roles in evolutionary and phenotypic diversity. RESULTS In this study, we performed a comprehensive analysis to explore the genetic variations (SNPs and CNVs) of high sperm motility (HSM) and poor sperm motility (PSM) Simmental bulls using the high-coverage (25×) short-read next generation sequencing and single-molecule long reads sequencing data. A total of ~ 15 million SNPs and 2,944 CNV regions (CNVRs) were detected in Simmental bulls, and a set of positive selected genes (PSGs) and CNVRs were found to be overlapped with quantitative trait loci (QTLs) involving immunity, muscle development, reproduction, etc. In addition, we detected two new variants in LEPR, which may be related to the artificial breeding to improve important economic traits. Moreover, a set of genes and pathways functionally related to male fertility were identified. Remarkably, a CNV on SPAG16 (chr2:101,427,468 - 101,429,883) was completely deleted in all poor sperm motility (PSM) bulls and half of the bulls in high sperm motility (HSM), which may play a crucial role in the bull-fertility. CONCLUSIONS In conclusion, this study provides a valuable genetic variation resource for the cattle breeding and selection programs.
Collapse
Affiliation(s)
- Ting Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shengwei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Yangkai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Quratulain Hanif
- Computational Biology Laboratory, Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Haiyue Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Ministry of Education, Lanzhou University, Lanzhou, 730020, P. R. China.
| |
Collapse
|
9
|
Szewczyk AK, Ulutas S, Aktürk T, Al-Hassany L, Börner C, Cernigliaro F, Kodounis M, Lo Cascio S, Mikolajek D, Onan D, Ragaglini C, Ratti S, Rivera-Mancilla E, Tsanoula S, Villino R, Messlinger K, Maassen Van Den Brink A, de Vries T. Prolactin and oxytocin: potential targets for migraine treatment. J Headache Pain 2023; 24:31. [PMID: 36967387 PMCID: PMC10041814 DOI: 10.1186/s10194-023-01557-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.
Collapse
Affiliation(s)
- Anna K Szewczyk
- Doctoral School, Medical University of Lublin, Lublin, Poland
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Samiye Ulutas
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Tülin Aktürk
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, LMU Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Cernigliaro
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - Michalis Kodounis
- First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - David Mikolajek
- Department of Neurology, City Hospital Ostrava, Ostrava, Czech Republic
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Ragaglini
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sofia Tsanoula
- Department of Neurology, 401 Military Hospital of Athens, Athens, Greece
| | - Rafael Villino
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Danhof HA, Lee J, Thapa A, Britton RA, Di Rienzi SC. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531917. [PMID: 36945649 PMCID: PMC10028957 DOI: 10.1101/2023.03.09.531917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Intestinal microbes impact the health of the intestine and organs distal to the gut. Limosilactobacillus reuteri is a human intestinal microbe that promotes normal gut transit 1 , the anti-inflammatory immune system 2-4 , wound healing 5-7 , normal social behavior in mice 8-10 , and prevents bone reabsorption 11-17 . Each of these functions is impacted by oxytocin 18-22 , and oxytocin signaling is required for L. reuteri- mediated wound healing 5 and social behavior 9 ; however, the initiating events in the gut that lead to oxytocin stimulation and related beneficial functions remain unknown. Here we found evolutionarily conserved oxytocin production in the intestinal epithelium through analysis of single-cell RNA-Seq datasets and imaging of human and mouse intestinal tissues. Moreover, human intestinal organoids produce oxytocin, demonstrating that the intestinal epithelium is sufficient to produce oxytocin. We subsequently found that L. reuteri facilitates oxytocin secretion directly from human intestinal tissue and human intestinal organoids. Finally, we demonstrate that stimulation of oxytocin secretion by L. reuteri is dependent on the gut hormone secretin, which is produced in enteroendocrine cells 23 , while oxytocin itself is produced in enterocytes. Altogether, this work demonstrates that oxytocin is produced and secreted from enterocytes in the intestinal epithelium in response to secretin stimulated by L. reuteri . This work thereby identifies oxytocin as an intestinal hormone and provides mechanistic insight into avenues by which gut microbes promote host health.
Collapse
Affiliation(s)
- Heather A. Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Aanchal Thapa
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Rice University, Houston, Texas, USA
| | - Robert A. Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Sara C. Di Rienzi
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
An SM, Kim MJ, Jeong JS, Kim SY, Kim DS, An BS, Kim SC. Oxytocin modulates steroidogenesis-associated genes and estradiol levels in the placenta. Syst Biol Reprod Med 2023; 69:223-233. [PMID: 36787388 DOI: 10.1080/19396368.2023.2170296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Oxytocin (OXT) plays a significant role during pregnancy, especially toward the end of pregnancy. Some studies have reported that OXT is involved in the stimulation of steroidogenesis in several organs. However, the effects of OXT on placental steroidogenesis have not yet been established. In this study, we investigated the regulation of steroid hormones and steroidogenic enzymes by OXT-associated signaling in vitro and in vivo. OXT increased the gene expression of steroidogenic enzymes, which convert pregnenolone to progesterone and dehydroepiandrosterone (DHEA) in vitro. In OXT-administered pregnant rats, pregnenolone and DHEA levels were significantly enhanced in the plasma and the expression of the enzymes synthesizing DHEA, testosterone, and estradiol (E2) was increased in placental tissues. Furthermore, OXT was found to affect placental cell differentiation, which is closely related to steroid hormone synthesis. After treatment of the pregnant rats with atosiban, an antagonist of the OXT receptor, the concentration of E2 in the plasma and the expression of E2-synthesizing enzyme were reduced. This regulation may be due to OXT-mediated differentiation, because OXT increases the expression of corticotropin-releasing hormone, which is a biomarker of placental cell differentiation. Our findings suggest that OXT contributes to maintaining pregnancy by regulating the differentiation of placental cells and steroidogenesis during pregnancy.
Collapse
Affiliation(s)
- Sung-Min An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Min Jae Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - So Young Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Da Som Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| |
Collapse
|
12
|
Bous J, Fouillen A, Orcel H, Granier S, Bron P, Mouillac B. Structures of the arginine-vasopressin and oxytocin receptor signaling complexes. VITAMINS AND HORMONES 2023; 123:67-107. [PMID: 37718002 DOI: 10.1016/bs.vh.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Arginine-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones which share a high sequence and structure homology. These are two cyclic C-terminally amidated nonapeptides with different residues at position 3 and 8. In mammals, AVP and OT exert their multiple biological functions through a specific G protein-coupled receptor family: four receptors are identified, the V1a, V1b, V2 receptors (V1aR, V1bR and V2R) and the OT receptor (OTR). The chemical structure of AVP and OT was elucidated in the early 1950s. Thanks to X-ray crystallography and cryo-electron microscopy, it took however 70 additional years to determine the three-dimensional structures of the OTR and the V2R in complex with their natural agonist ligands and with different signaling partners, G proteins and β-arrestins. Today, the comparison of the different AVP/OT receptor structures gives structural insights into their orthosteric ligand binding pocket, their molecular mechanisms of activation, and their interfaces with canonical Gs, Gq and β-arrestin proteins. It also paves the way to future rational drug design and therapeutic compound development. Indeed, agonist, antagonist, biased agonist, or pharmacological chaperone analogues of AVP and OT are promising candidates to regulate different physiological functions and treat several pathologies.
Collapse
Affiliation(s)
- Julien Bous
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aurélien Fouillen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
13
|
Smith JA, Eikenberry SA, Scott KA, Baumer-Harrison C, de Lartigue G, de Kloet AD, Krause EG. Oxytocin and cardiometabolic interoception: Knowing oneself affects ingestive and social behaviors. Appetite 2022; 175:106054. [PMID: 35447163 DOI: 10.1016/j.appet.2022.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023]
Abstract
Maintaining homeostasis while navigating one's environment involves accurately assessing and interacting with external stimuli while remaining consciously in tune with internal signals such as hunger and thirst. Both atypical social interactions and unhealthy eating patterns emerge as a result of dysregulation in factors that mediate the prioritization and attention to salient stimuli. Oxytocin is an evolutionarily conserved peptide that regulates attention to exteroceptive and interoceptive stimuli in a social environment by functioning in the brain as a modulatory neuropeptide to control social behavior, but also in the periphery as a hormone acting at oxytocin receptors (Oxtr) expressed in the heart, gut, and peripheral ganglia. Specialized sensory afferent nerve endings of Oxtr-expressing nodose ganglia cells transmit cardiometabolic signals via the Vagus nerve to integrative regions in the brain that also express Oxtr(s). These brain regions are influenced by vagal sensory pathways and coordinate with external events such as those demanding attention to social stimuli, thus the sensations related to cardiometabolic function and social interactions are influenced by oxytocin signaling. This review investigates the literature supporting the idea that oxytocin mediates the interoception of cardiovascular and gastrointestinal systems, and that the modulation of this awareness likewise influences social cognition. These concepts are then considered in relation to Autism Spectrum Disorder, exploring how atypical social behavior is comorbid with cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Justin A Smith
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Sophia A Eikenberry
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Karen A Scott
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Caitlin Baumer-Harrison
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA
| | - Annette D de Kloet
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL, USA; Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Kumagai T, Shindo S, Takeda K, Shiba H. Oxytocin suppresses CXCL10 production in TNF‐α‐stimulated human dental pulp stem cells. Cell Biol Int 2022; 46:1530-1535. [DOI: 10.1002/cbin.11860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Tomoki Kumagai
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Satoru Shindo
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Department of Oral Sciences and Translational Research, College of Dental Medicine Nova Southeastern University Fort Lauderdale Florida USA
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
15
|
Boström ADE, Andersson P, Chatzittofis A, Savard J, Rask-Andersen M, Öberg KG, Arver S, Jokinen J. HPA-axis dysregulation is not associated with accelerated epigenetic aging in patients with hypersexual disorder. Psychoneuroendocrinology 2022; 141:105765. [PMID: 35452872 DOI: 10.1016/j.psyneuen.2022.105765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypersexual disorder (HD) - a nonparaphilic sexual desire disorder with impulsivity component - was evaluated for inclusion as a diagnosis in the DSM-5 and the diagnosis compulsive sexual behavior disorder is included as an impulse control disorder in the ICD-11. Hypothalamic-pituitary-adrenal (HPA)-axis hyperactivity is believed to affect cellular senescence and has been implicated in HD. No previous study investigated HD or HPA-axis dysregulation in relation to measures of epigenetic age (EA) acceleration. METHODS This study reports on a case-control study set-up from a well-characterized cohort, contrasting EA predictors in relation to 60 HD patients and 33 healthy volunteers (HV) and 19 mixed HD/HV exhibiting dexamethasone suppression test (DST) non-suppression to 73 mixed HD/HV DST controls. The genome-wide methylation pattern was measured in whole blood from 94 subjects using the Illumina Infinium Methylation EPIC BeadChip and preprocessed according to specialized protocols suitable for epigenetic age estimation. The online DNAm Age Calculator (https://dnamage. GENETICS ucla.edu/) was implemented to retrieve various EA predictors, which were compared between the in-silico generated subgroups. RESULTS Quality control analyses indicated strong correlations between the EA measure DNA methylation GrimAge (DNAm GrimAge - the EA clock most reliably associated with mortality risk) and chronological age in all sub-groups. The study was adequately powered to detect differences of 2.5 and 3.0 years in DNAm GrimAge minus age in relation to both HD and HPA-axis dysregulation, respectively. Baseline DNAm GrimAge exceeded chronological age by 2.8 years on average across all samples. No EA acceleration marker was associated with HD or DST suppression status (p > 0.05). CONCLUSION EA acceleration markers shown to be strongly predictive of physiological dysregulation and mortality-risk, are not related to HD or DST non-suppression status (measured after 0.5 mg dexamethasone). The independency of HPA-axis dysregulation to EA acceleration does not support the biological relevance of this dosage-regimen when applied to patients with HD. These findings do not support the notion of accelerated cellular senescence in HD. Studies stratifying DST non-suppressors according to established dosage-regimens in somatic settings are needed to fully elucidate the putative contribution of HPA-axis dysregulation to EA.
Collapse
Affiliation(s)
- Adrian Desai E Boström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden; Department of Women's and Children's Health/Neuropediatrics, Karolinska Institutet, Stockholm, Sweden.
| | - Peter Andersson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden; Centre for Clinical Research Dalarna, Uppsala University, Falun, Sweden
| | - Andreas Chatzittofis
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden; Medical School, University of Cyprus, Nicosia, Cyprus
| | - Josephine Savard
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarina G Öberg
- Anova, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Arver
- Anova, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Jokinen
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
16
|
Flanagan J, Chatzittofis A, Boström ADE, Hallberg J, Öberg KG, Arver S, Jokinen J. High Plasma Oxytocin Levels in Men With Hypersexual Disorder. J Clin Endocrinol Metab 2022; 107:e1816-e1822. [PMID: 35108393 PMCID: PMC9016473 DOI: 10.1210/clinem/dgac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/23/2023]
Abstract
CONTEXT Hypersexual disorder (HD) involves excessive, persistent sexual behaviors related to various mood states and the diagnosis compulsive sexual behavior disorder is included as an impulse control disorder in the 11th revision of the International Classification of Diseases. Although the neurobiology behind the disorder is not clear, some studies suggest dysregulated hypothalamic-pituitary-adrenal axis. Oxytocin acts as counterregulatory neuroendocrine hormone to cortisol and is also involved in sexual behavior. OBJECTIVE We hypothesized that oxytocin may play a role in the pathophysiology of HD with compensatory actions to cortisol. DESIGN Longitudinal. SETTING ANOVA clinic (Karolinska University Hospital). PATIENTS OR OTHER PARTICIPANTS 64 males with HD and 38 age-matched healthy volunteers. MAIN OUTCOME MEASURES Plasma oxytocin levels, measured with radioimmunoassay; Hypersexual Disorder Screening Inventory; and Hypersexual Disorder: Current Assessment Scale for assessing hypersexual symptoms. INTERVENTIONS A patient subgroup (n = 30) completed the manual-based group-administered cognitive-behavioral therapy (CBT) program for HD, and posttreatment oxytocin levels were measured. RESULTS Hypersexual men (n = 64) exhibited significantly higher oxytocin plasma levels (mean ± SD: 31.0 ± 9.9 pM) compared with healthy volunteers (16.9 ± 3.9 pM; P < 0.001). There were significant positive correlations between oxytocin levels and the rating scales measuring hypersexual behavior. Patients who completed CBT treatment (n = 30) had a significant reduction of oxytocin plasma levels from pretreatment (30.5 ± 10.1 pM) to posttreatment (20.2 ± 8.0 pM; P < 0.001). CONCLUSIONS The results suggest that the hyperactive oxytocinergic system in hypersexual men may be a compensatory mechanism to attenuate hyperactive stress.
Collapse
Affiliation(s)
- John Flanagan
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andreas Chatzittofis
- Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Correspondence: Andreas Chatzittofis, MD, PhD, University of Cyprus, Medical School, Palaios dromos Lefkosias Lemesou No.215/6 2029 Aglantzia, Nicosia, Cyprus.
| | - Adrian Desai E Boström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Neuropaediatric Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Hallberg
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Görts Öberg
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Arver
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jussi Jokinen
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå,Sweden
- Department of Clinical Neuroscience/Psychiatry, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Adamczewska D, Słowikowska-Hilczer J, Walczak-Jędrzejowska R. The Fate of Leydig Cells in Men with Spermatogenic Failure. Life (Basel) 2022; 12:570. [PMID: 35455061 PMCID: PMC9028943 DOI: 10.3390/life12040570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
The steroidogenic cells in the testicle, Leydig cells, located in the interstitial compartment, play a vital role in male reproductive tract development, maintenance of proper spermatogenesis, and overall male reproductive function. Therefore, their dysfunction can lead to all sorts of testicular pathologies. Spermatogenesis failure, manifested as azoospermia, is often associated with defective Leydig cell activity. Spermatogenic failure is the most severe form of male infertility, caused by disorders of the testicular parenchyma or testicular hormone imbalance. This review covers current progress in knowledge on Leydig cells origin, structure, and function, and focuses on recent advances in understanding how Leydig cells contribute to the impairment of spermatogenesis.
Collapse
Affiliation(s)
| | | | - Renata Walczak-Jędrzejowska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, 92-213 Lodz, Poland; (D.A.); (J.S.-H.)
| |
Collapse
|
18
|
Tiptanavattana N, Pakdeesanaeha T, Thongsima T, Techarungchaikul S, Tharasanit T. Expression of oxytocin receptors and oxytocin assisted electroejaculation in the domestic cat (Felis catus). Reprod Domest Anim 2022; 57:489-497. [PMID: 35044000 DOI: 10.1111/rda.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Oxytocin is a peptide hormone that mainly functions to control the contractility of smooth muscles and sex related steroidogenesis in male reproductive tracts. However, specific information concerning this hormone in controlling the reproductive organs of cats is limited. This study aimed to investigate the expression of oxytocin receptors (OTRs) and their signal mediator via prostacyclin synthase (PTGIS) in reproductive structures following oxytocin assisted electroejaculation. In Experiment 1, the testis, cauda epididymis and vas deferens from five cats were examined by immunohistochemistry and quantitative polymerase chain reaction in order to study the responses of OTR and PTGIS mRNA to oxytocin injection. Experiment 2 examined the effect of oxytocin administration prior to electroejaculation on ejaculate characteristics and sperm quality in terms of motility, viability and fertilising ability. Immunohistochemistry revealed the expression of OTRs in Leydig's, peritubular myoid cells and some spermatogenic cells. The expression was found in the epithelium and smooth muscle of the epididymis and vas deferens. After oxytocin administration, the OTR mRNA was upregulated in the epididymis (p > 0.05) and vas deferens (p = 0.01). The expression level of PTGIS mRNA increased in the response to oxytocin treatment only for the vas deferens (p > 0.05). Oxytocin treatment before electroejaculation resulted in an approximately two-fold increase in sperm concentration and total sperm output/ejaculate, while this intervention did not significantly affect ejaculate volume, sperm quality or fertilising ability. This study concluded that the oxytocin cascade is locally present in the reproductive structures and plays a role in promoting sperm delivery during electroejaculation in cats.
Collapse
Affiliation(s)
- Narong Tiptanavattana
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Thitida Pakdeesanaeha
- Division of Obstetrics, Gynaecology and Reproduction, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitiporn Thongsima
- Division of Obstetrics, Gynaecology and Reproduction, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirichai Techarungchaikul
- Division of Obstetrics, Gynaecology and Reproduction, Small Animal Teaching Hospital, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Veterinary Clinical Stem Cells and Bioengineering Research Unit, Chulalongkorn University
| |
Collapse
|
19
|
Kor A, Djalovski A, Potenza MN, Zagoory-Sharon O, Feldman R. Alterations in oxytocin and vasopressin in men with problematic pornography use: The role of empathy. J Behav Addict 2022; 11:116-127. [PMID: 35040806 PMCID: PMC9109630 DOI: 10.1556/2006.2021.00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Addictive behaviors share clinical, genetic, neurobiological and phenomenological parallels with substance addictions. Despite the prevalence of compulsive sexual behaviors, particularly problematic pornography use (PPU), how neuroendocrine systems relate to PPU is not well understood. Preclinical studies demonstrate alterations in oxytocin and arginine vasopressin (AVP) function in animal models of addiction, but no human study has tested their involvement in PPU. METHOD Participants included 122 males; 69 reported PPU, and 53 were demographically-matched participants without PPU. Plasma oxytocin and AVP levels and oxytocin-to-AVP balance were measured at baseline. Salivary oxytocin was assessed at baseline and in response to four videos depicting neutral/positive social encounters. Participants reported on empathy and psychiatric symptoms. RESULTS Baseline plasma AVP levels were elevated in men with PPU, and the ratio of oxytocin-to-vasopressin suggested AVP dominance. Men with PPU reacted with greater oxytocin increases to presentation of neutral/positive social stimuli. Decreased empathic tendencies were found in men with PPU, and this reduced empathy mediated links between oxytocin and pornography-related hypersexuality. Structural equation modeling revealed three independent paths to pornography-related hypersexuality; two direct paths via increased AVP and higher psychiatric symptoms and one indirect path from oxytocin to pornography-related hypersexuality mediated by diminished empathy. CONCLUSIONS Findings are among the first to implicate neuropeptides sustaining mammalian attachment in the pathophysiology of pornography-related hypersexuality and describe a neurobiological mechanism by which oxytocin-AVP systems and psychiatric symptomatology may operate to reduce empathy and lead to pornography-related hypersexuality.
Collapse
Affiliation(s)
- Ariel Kor
- Interdisciplinary Center, Herzlia, Israel
| | - Amir Djalovski
- Center for Developmental Social Neuroscience, Interdisciplinary Center, Herzlia, Israel
| | - Marc N. Potenza
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Connecticut Mental Health Center, New Haven, CT, USA,Connecticut Council on Problem Gambling, Wethersfield, CT, USA,Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Orna Zagoory-Sharon
- Center for Developmental Social Neuroscience, Interdisciplinary Center, Herzlia, Israel
| | - Ruth Feldman
- Interdisciplinary Center, Herzlia, Israel,Center for Developmental Social Neuroscience, Interdisciplinary Center, Herzlia, Israel,Child Study Center, Yale University School of Medicine, New Haven, CT, USA,Corresponding author. E-mail:
| |
Collapse
|
20
|
Neurochemical and Hormonal Contributors to Compulsive Sexual Behavior Disorder. CURRENT ADDICTION REPORTS 2022. [DOI: 10.1007/s40429-021-00403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Purpose of Review
Compulsive sexual behavior disorder has been recently included in the 11th revision of the International Classification of Diseases (ICD-11), and the possible contribution of neurochemical and hormonal factors have been reported. However, relatively little is known concerning the neurobiology underlying this disorder. The aim of this article is to review and discuss published findings in the area.
Recent Findings
Evidence suggests that the neuroendocrine systems are involved in the pathophysiology of compulsive sexual behavior. The hypothalamus-pituitary adrenal axis, the hypothalamus-pituitary–gonadal axis, and the oxytocinergic system have been implicated.
Summary
Further studies are needed to elucidate the exact involvement of neuroendocrine and hormonal systems in compulsive sexual behavior disorder. Prospective longitudinal studies are particularly needed, especially those considering co-occurring psychiatric disorders and obtaining hormonal assessments in experimental circumstances with appropriate control groups.
Collapse
|
21
|
Abstract
Oxytocin and oxytocin receptors are synthesized in the periphery where paracrine/autocrine actions have been described alongside endocrine actions effected by central release of oxytocin from the posterior pituitary. In the female reproductive system, classical actions of uterine contraction and milk ejection from mammary glands are accompanied by actions in the ovaries where roles in steroidogenesis, follicle recruitment and ovulation have been described. Steroidogenesis, contractile activity, and gamete health are similarly affected by oxytocin in the male reproductive tract. In the cardiovascular system, a local oxytocinergic system appears to play an important cardio-protective role. This role is likely associated with emerging evidence that peripheral oxytocin is an important hormone in the endocrinology of glucose homeostasis due to its actions in adipose, the pancreas, and the largely ignored oxytocinergic systems of the adrenal glands and liver. Gene polymorphisms are shown to be associated with a number of reported traits, not least factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
22
|
Abstract
The oxytocin receptor plays a significant role in peripheral regulation of parturition and lactation. Given this important role, multiple drug discovery programs have been conducted to develop agonists and antagonists for peripheral activity. The role of the oxytocin receptor in the central nervous system is also significant, promoting social interaction, trust, and empathy in humans. As such, molecules that can access the central nervous system and target the oxytocin receptor are of significant interest. Due to the role of the oxytocin receptor in regulating social function and psychological well-being, agonists of this receptor have considerable promise for the treatment of numerous neuropsychiatric conditions. The poor pharmacokinetic properties and blood-brain barrier penetration of peptide-based molecules means nonpeptide compounds have more commonly been the focus for central nervous system activity. This chapter aims to summarize the current standing of peptide and nonpeptide drug discovery for antagonists and agonists of the oxytocin receptor and focusses on centrally active nonpeptidic agonists.
Collapse
|
23
|
Wisdom KS, Bhat IA, Pathan MA, I. CT, Kumar P, Babu P. G, Walke P, Nayak SK, Sharma R. Teleost Nonapeptides, Isotocin and Vasotocin Administration Released the Milt by Abdominal Massage in Male Catfish, Clarias magur. Front Endocrinol (Lausanne) 2022; 13:899463. [PMID: 35846286 PMCID: PMC9280678 DOI: 10.3389/fendo.2022.899463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the present work the nonapeptides i.e., isotocin and vasotocin alone or in a combination were tested in C. magur to evaluate their effect on stripping by abdominal massage. Also, we used chitosan-carbon nanotube nanocomposites to conjugate the nonapetides isotocin (abbreviated as COOH-SWCNTCSPeP) and isotocin and vasotocin (COOH-SWCNTCSPePs) with the aim of sustaining the effect for a longer duration. The conjugation of nonapeptides with nanocomposites was confirmed by Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Two experiments were conducted to study the effect of naked (without nanoparticles) and conjugated nonapeptides on the milt release by stripping. Both the experiments consisted of eight treatments which included four naked groups two nanoconjugated groups and two controls. Both naked and nonconjugated formulations were successful in stripping the male catfish. The mRNA expression of selected reproductive genes was analysed to decipher the effect of nanopeptides at the molecular level. Nonapeptide treatment either naked or nanoconjugated, resulted in the upregulation of the transcript level of genes. Histological analysis revealed the concentration of spermatozoa was more in peptide injected groups than in the controls. The synergistic effects of nonapeptides and Ovatide had a positive impact on GSI. Thus, the present formulations were successful in stripping the male catfish to obtain the milt with significant reproductive success. Even though the naked groups perform better but the number of males required to fertilize the eggs in nanoconjuagted groups was smaller making it worth using for the delivery of nonapeptides.
Collapse
Affiliation(s)
- K. S. Wisdom
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Irfan Ahmad Bhat
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Mujahidkhan A. Pathan
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Chanu T. I.
- Department of Aquaculture, ICAR-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Pravesh Kumar
- Department of Aquaculture, College of Fisheries, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - Gireesh Babu P.
- Animal Biotechnology, ICAR-National Research Centre on Meat Chengicherla, Boduppal Post Hyderabad, India
| | - Pravin Walke
- National Center for Nanoscience and Nanotechnology, University of Mumbai, Mumbai, India
| | - Sunil Kumar Nayak
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Indian Council of Agricultural Research (ICAR)-Central Institute of Fisheries Education Mumbai, Mumbai, India
- *Correspondence: Rupam Sharma,
| |
Collapse
|
24
|
Hedia M, El-Shalofy A. Oxytocin improves testicular blood flow without enhancing the steroidogenic activity in Baladi goats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2022. [DOI: 10.4103/2305-0500.356841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Jang M, Jung T, Kang M, Kim J, Noh J. Oxytocin-induced anxiogenic behavior in juvenile male rats. Anim Cells Syst (Seoul) 2021; 25:369-376. [PMID: 35059136 PMCID: PMC8765244 DOI: 10.1080/19768354.2021.1995485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Oxytocin (OT) is considered beneficial to mental health owing to its anxiolytic, prosocial, and anti-stress effects; however, the adverse effects of OT have been controversial, such as its potentially anxiogenic actions. Although OT influences drug abuse and reciprocally affects vulnerability to drug use, the relationship between OT’s anxiogenic working and nicotine preference intake has not been clearly defined. To clarify this issue, the effect of acute peripheral administration of OT on anxiety and nicotine preference was investigated in juvenile male rats. Anxiogenic behaviors were noticeably increased in OT-administrated rats, with an increase in serum corticosterone levels. Moreover, increased anxiety-like behaviors and corticosterone levels were observed in the OT analog carbetocin-injected rats. In the nicotine preference test, the rats’ aversive responses to initial nicotine choice and preference were not significantly different between saline-injected and OT-injected rats. However, when administered with OT, there was a significant negative correlation between anxiety-like behavior and low-dose nicotine consumption. Collectively, these results provide evidence that acute OT exposure could induce anxiogenic behavior with corticosterone augmentation, contributing to the attenuation of nicotine preference. This suggests that both aspects of OT, as well as their benefits and drawbacks, should be considered.
Collapse
Affiliation(s)
- Minji Jang
- Department of Science Education, Dankook University, Yongin-si, Republic of Korea
| | - Taesub Jung
- Department of Science Education, Dankook University, Yongin-si, Republic of Korea
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Miseon Kang
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jihyun Noh
- Department of Science Education, Dankook University, Yongin-si, Republic of Korea
| |
Collapse
|
26
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
27
|
Padilla L, López-Arjona M, Martinez-Subiela S, Rodriguez-Martinez H, Roca J, Barranco I. Oxytocin in pig seminal plasma is positively related with in vivo fertility of inseminated sows. J Anim Sci Biotechnol 2021; 12:101. [PMID: 34511116 PMCID: PMC8436503 DOI: 10.1186/s40104-021-00620-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Identification of relevant in vivo biomarkers for fertility remains a challenge for the livestock industry. Concentrations of the small peptide hormone oxytocin (OXT), involved in male reproductive function and present in the seminal plasma (SP) of several species could be a robust one. This study characterized concentrations of SP-OXT in ejaculates from boars used in artificial insemination (AI) programs aiming to evaluate its relationship with sperm quality variables and in vivo fertility of their liquid-stored AI-semen. Seminal OXT concentrations (ng/mL) were measured in 169 ejaculates from 61 boars of the Duroc, Pietrain, Landrace and Large White breeds using a direct competitive immunoassay test based on AlphaLISA® technology. Ejaculate (ejaculate volume, sperm concentration, total sperm count) and sperm parameters (motility, viability, intracellular generation of reactive oxygen species, plasma membrane fluidity) were assessed at 0 h and 72 h in AI-semen samples stored at 17 °C. In vivo fertility included only 18 Large White and Landrace boars whose AI-semen was used to inseminated > 100 sows and evaluated both farrowing rate and litter size of 3,167 sows. RESULTS The results showed that SP-OXT differed between boars and between ejaculates within boar (P < 0.05) but not between breeds (Duroc, Pietrain, Landrace and Large White). Ejaculates with higher SP-OXT concentration/mL (hierarchically grouped; P < 0.001) had larger volume and came from younger boars (P < 0.05). Ejaculates of boars showing positive farrowing rate deviation exhibited higher (P < 0.05) SP-OXT concentration/mL than those with negative farrowing rate deviation. CONCLUSION The SP concentrations of OXT are boar, ejaculate and age dependent, and positively related with ejaculate volume and farrowing rates of liquid-stored semen AI-doses.
Collapse
Affiliation(s)
- Lorena Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, E-30100, Murcia, Spain
| | - Marina López-Arjona
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, E-30100, Murcia, Spain
| | - Silvia Martinez-Subiela
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, E-30100, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, E-30100, Murcia, Spain.
| | - Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, IT-40064 Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
28
|
Paiva L, Lozic M, Allchorne A, Grinevich V, Ludwig M. Identification of peripheral oxytocin-expressing cells using systemically applied cell-type specific adeno-associated viral vector. J Neuroendocrinol 2021; 33:e12970. [PMID: 33851744 DOI: 10.1111/jne.12970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Oxytocin is primarily synthesised in the brain and is widely known for its role in lactation and parturition after being released into the blood from the posterior pituitary gland. Nevertheless, peripheral tissues have also been reported to express oxytocin. Using systemic injection of a recombinant adeno-associated virus vector, we investigated the expression of the green fluorescent protein Venus under the control of the oxytocin promoter in the gastrointestinal tract, pancreas and testes of adult rats. Here, we confirm that the vector infects oxytocin neurones of the enteric nervous system in ganglia of the myenteric and submucosal plexuses. Venus was detected in 25%-60% of the ganglia in the myenteric and submucosal plexuses identified by co-staining with the neuronal marker PGP9.5. Oxytocin expression was also detected in the islets of Langerhans in the pancreas and the Leydig cells of the testes. Our data illustrate that peripheral administration of the viral vector represents a powerful method for selectively labelling oxytocin-producing cells outside the brain.
Collapse
Affiliation(s)
- Luis Paiva
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Maja Lozic
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew Allchorne
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University Heidelberg, Mannheim, Germany
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Immunology, Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
29
|
Jung Y, Yoon M. Oxytocin receptor expression in stallion testes and epididymides. Domest Anim Endocrinol 2021; 74:106562. [PMID: 33038836 DOI: 10.1016/j.domaniend.2020.106562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022]
Abstract
Endocrine, paracrine, and autocrine factors orchestrate the development and physiology of the stallion reproductive system. Oxytocin (OXT) is one of the critical endocrine, paracrine, and autocrine factors for the male reproductive system. Previous studies have investigated OXT receptor (OXTR) expression in testes and epididymides, including humans, marmosets, macaques, swine, and sheep. This study aimed to explore (1) OXTR localization in the testes and epididymides and (2) the seasonal modification of OXTR expression in the testes. Adult stallion testis and epididymis samples were prepared using routine castration procedures. Reverse-transcription PCR was performed to detect the presence of OXTR messenger RNA (mRNA) in the testes. Western blot procedure was performed to confirm the cross-reactivity of OXTR antibody to horse OXTR. Immunohistochemistry was performed to detect OXTR protein expression in the testes and epididymides. Oxytocin receptor mRNA was detected in the stallion testes. The OXTR protein band was observed at 55 kDa. Interestingly, the relative intensity of the OXTR protein band varied between nonbreeding and breeding season. The OXTR protein level in the testes collected during the breeding season was higher than that during the nonbreeding season. Oxytocin receptor localization was observed in the cytoplasm of Type A spermatogonia and spermatid. Oxytocin receptor protein expression was also observed in the cytoplasmic area of Leydig cells and the membrane of the seminiferous tubules. The cytoplasm of principal and basal cells in the caput, corpus, and cauda was also immunolabeled with OXTR antibody. In conclusion, based on the expression of OXTR in tissues of testes and epididymides, OXT-OXTR system may be a critical factor for stallion testicular and epididymal function. In addition, according to the seasonal alteration of intensity, the OXT-OXTR system may be associated with seasonal changes in the reproductive system in stallions.
Collapse
Affiliation(s)
- Y Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - M Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Horse, Companion and Wild Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea.
| |
Collapse
|
30
|
Stadler B, Whittaker MR, Exintaris B, Middendorff R. Oxytocin in the Male Reproductive Tract; The Therapeutic Potential of Oxytocin-Agonists and-Antagonists. Front Endocrinol (Lausanne) 2020; 11:565731. [PMID: 33193084 PMCID: PMC7642622 DOI: 10.3389/fendo.2020.565731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, the role of oxytocin and oxytocin-like agents (acting via the oxytocin receptor and belonging to the oxytocin-family) in the male reproductive tract is considered. Previous research (dating back over 60 years) is revised and connected with recently found aspects of the role oxytocin plays in male reproductive health. The local expression of oxytocin and its receptor in the male reproductive tract of different species is summarized. Colocalization and possible crosstalk to other agents and receptors and their resulting effects are discussed. The role of the newly reported oxytocin focused signaling pathways in the male reproductive tract, other than mediating contractility, is critically examined. The structure and effect of the most promising oxytocin-agonists and -antagonists are reviewed for their potential in treating male disorders with origins in the male reproductive tract such as prostate diseases and ejaculatory disorders.
Collapse
Affiliation(s)
- Beatrix Stadler
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Michael R. Whittaker
- Drug Discovery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, VIC, Australia
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
31
|
Dalmazzo A, Losano JDA, Angrimani DSR, Pereira IVA, Goissis MD, Francischini MCP, Lopes E, Minazaki CK, Blank MH, Cogliati B, Pereira RJG, Barnabe VH, Nichi M. Immunolocalisation and expression of oxytocin receptors and sex hormone-binding globulin in the testis and epididymis of dogs: correlation with sperm function. Reprod Fertil Dev 2020; 31:1434-1443. [PMID: 31046900 DOI: 10.1071/rd18452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 02/25/2019] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to confirm gene and protein expression of oxytocin receptor (OTR) and sex hormone-binding globulin (SHBG) in the testis and epididymis of dogs, correlating these data with sperm quality and production and testosterone concentrations. Positive correlations were found between OTR and SHBG expression in both the testis and epididymis. Testicular OTR expression was positively associated with plasma membrane and acrosome integrity in canine spermatozoa, whereas SHBG expression in the testis was positively correlated with various sperm characteristics, such as sperm concentration, total and progressive motility, plasma membrane integrity and acrosome integrity. Testicular expression of both OTR and SHBG was negatively correlated with low sperm mitochondrial activity. In the epididymis, SHBG expression was only positively correlated with plasma membrane integrity. Analysis of protein expression revealed that testicular OTR was positively correlated with testosterone concentrations and negatively correlated with the absence of sperm mitochondrial activity. In addition, SHBG expression in the testes was associated with epididymis SHBG expression and morphologically normal cells. Immunohistochemical (IHC) analysis revealed the presence of both OTR and SHBG in testicular smooth muscles and Leydig cells. However, in the epididymis, OTR was only located in smooth muscle cells, whereas neither IHC nor western blotting detected SHBG. Together, the results of this study suggest that OTR and SHBG play key roles in spermatogenesis and sperm maturation, being essential for male reproductive success.
Collapse
Affiliation(s)
- Andressa Dalmazzo
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - João D A Losano
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Daniel S R Angrimani
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Isabel V A Pereira
- Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Marcelo D Goissis
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Maria C P Francischini
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Everton Lopes
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | | | - Marcel H Blank
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Bruno Cogliati
- Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Ricardo J G Pereira
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Valquiria H Barnabe
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Marcilio Nichi
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil; and Corresponding author.
| |
Collapse
|
32
|
Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc Natl Acad Sci U S A 2020; 117:26822-26832. [PMID: 33033227 DOI: 10.1073/pnas.2016905117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.
Collapse
|
33
|
Gao DD, Wang LL, Xu JW, Qiu ZE, Zhu YX, Zhang YL, Zhou WL. Cellular mechanism underlying oxytocin-stimulated Cl - secretion in rat cauda epididymal epithelium. Am J Physiol Cell Physiol 2020; 319:C630-C640. [PMID: 32726160 DOI: 10.1152/ajpcell.00397.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The neurohypophyseal hormone oxytocin (OT) plays critical roles in lactation and parturition, while its function in male reproduction system is largely unknown. This study aims to investigate the effect of OT on regulating transepithelial ion transport in rat cauda epididymal epithelium. With the use of RT-PCR, Western blot, and immunohistochemical analysis, we found that OT receptor (OTR) was expressed and localized at the basal membrane of rat cauda epididymal epithelium. The short-circuit current (Isc) measurement showed that basolateral application of OT to the primary cultured rat cauda epididymal epithelial cells elicited an increase in Isc, which was abrogated by pretreating the epithelial cells with CFTRinh-172, a blocker of cystic fibrosis transmembrane conductance regulator (CFTR). Pretreatment with the prostaglandin H synthase inhibitors indomethacin and piroxicam, or the nonselective antagonists of prostaglandin E2 (PGE2) receptor EP2 or EP4, AH-6809, and AH-23848, significantly attenuated OT-stimulated Isc response. Furthermore, the generation of PGE2 was measured using enzyme-linked immunosorbent assay, demonstrating that OT induced a substantial increase in PGE2 release from primary cultured rat cauda epididymal epithelial cells. In conclusion, activation of OTR by OT triggered PGE2 release, resulting in CFTR-dependent Cl- secretion through paracrine/autocrine pathways in rat cauda epididymal epithelium.
Collapse
Affiliation(s)
- Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Sport and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, China
| | - Long-Long Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
López-Arjona M, Padilla L, Roca J, Cerón JJ, Martínez-Subiela S. Ejaculate Collection Influences the Salivary Oxytocin Concentrations in Breeding Male Pigs. Animals (Basel) 2020; 10:ani10081268. [PMID: 32722376 PMCID: PMC7460095 DOI: 10.3390/ani10081268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This study aimed to evaluate how the process of ejaculate collection affects oxytocin concentrations in saliva of boars used in artificial insemination. Saliva samples of 33 boars were collected the day before ejaculate collection, during the ejaculation time, and two hours after ejaculate collection. Free oxytocin and oxytocin linked to proteins were quantified in these saliva samples. Oxytocin concentrations during the ejaculation time were higher than the day before with oxytocin linked to proteins showing higher differences. In addition, younger boars, boars with higher libido intensity and boars of the Pietrain breed showed higher values of oxytocin in saliva during ejaculation than the day before. This study demonstrated that ejaculation influences the salivary oxytocin concentrations boars. Abstract The objective of the present study was to evaluate the possible changes of oxytocin concentrations in saliva during and after ejaculate collection in breeding boars usually used in artificial insemination programs. Saliva samples of 33 boars were collected the day before ejaculate collection (DB), during the ejaculation time (T0) and two hours after ejaculate collection (T2). Free oxytocin and oxytocin linked to proteins concentrations were measured by two methods previously developed and validated for saliva of pigs. Younger boars, boars with higher libido intensity and boars of the Pietrain breed showed higher values of oxytocin in saliva during ejaculation than the day before. In addition, boars with higher libido showed higher concentrations two hours after ejaculate collection than during the day before. These changes were of higher magnitude and significance when oxytocin linked to proteins was measured. In conclusion, this study demonstrated for the first time that ejaculation influences the salivary oxytocin concentrations in breeding boars, although this influence varies according to age, libido and breed.
Collapse
Affiliation(s)
- Marina López-Arjona
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain; (M.L.-A.); (S.M.-S.)
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain; (L.P.); (J.R.)
- IMIB-Arrixaca, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, 30100 Murcia, Spain; (L.P.); (J.R.)
- IMIB-Arrixaca, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, 30100 Murcia, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain; (M.L.-A.); (S.M.-S.)
- Correspondence: ; Tel.: +34-868884722
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Campus de Espinardo s/n, 30100 Espinardo, Murcia, Spain; (M.L.-A.); (S.M.-S.)
| |
Collapse
|
35
|
Agarwal D, Gireesh-Babu P, Pavan-Kumar A, Koringa P, Joshi CG, Chaudhari A. Transcriptome analysis of Clarias magur brain and gonads suggests neuro-endocrine inhibition of milt release from captive GnRH-induced males. Genomics 2020; 112:4041-4052. [PMID: 32650102 DOI: 10.1016/j.ygeno.2020.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 10/24/2022]
Abstract
Transcriptome analysis of Clarias magur brain and gonads at preparatory, mature, 6 and 16 h post-GnRH injection (hpi) stages yielded 9.5 GB data with 39,738 contigs. Sequences of 45 reproductive genes were identified for the first time in C. magur along with unique and differentially expressed genes. The expression of 20 genes was validated by qRT-PCR. Upregulation of Cyp11A1, Cyp17A1 and FTZF1 genes in the 16hpi testis accompanied by the 17β-HSD3 expression indicates testosterone (T) synthesis in response to LH surge, while reduced expression of CYP11B1 suggests a high T: 11-KT ratio. It is evident by the gene expression analysis that the inhibitory neurotransmitter GABA, altered T: 11-KT, increased testicular bile acids, and oxytocin-like neuropeptide in the male brain, appear to be involved in arresting the pulsatile motion of testicular smooth muscles. The work generates important leads for an effective induced breeding strategy for silurid catfish.
Collapse
Affiliation(s)
- Deepak Agarwal
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - P Gireesh-Babu
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - A Pavan-Kumar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Prakash Koringa
- Animal Biotechnology Department, Anand Agricultural University, Anand, India
| | - C G Joshi
- Animal Biotechnology Department, Anand Agricultural University, Anand, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India.
| |
Collapse
|
36
|
Heinrich A, DeFalco T. Essential roles of interstitial cells in testicular development and function. Andrology 2020; 8:903-914. [PMID: 31444950 PMCID: PMC7036326 DOI: 10.1111/andr.12703] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Testicular architecture and sperm production are supported by a complex network of communication between various cell types. These signals ensure fertility by: regulating spermatogonial stem/progenitor cells; promoting steroidogenesis; and driving male-specific differentiation of the gonad. Sertoli cells have long been assumed to be the major cellular player in testis organogenesis and spermatogenesis. However, cells in the interstitial compartment, such as Leydig, vascular, immune, and peritubular cells, also play prominent roles in the testis but are less well understood. OBJECTIVES Here, we aim to outline our current knowledge of the cellular and molecular mechanisms by which interstitial cell types contribute to spermatogenesis and testicular development, and how these diverse constituents of the testis play essential roles in ensuring male sexual differentiation and fertility. METHODS We surveyed scientific literature and summarized findings in the field that address how interstitial cells interact with other interstitial cell populations and seminiferous tubules (i.e., Sertoli and germ cells) to support spermatogenesis, male-specific differentiation, and testicular function. These studies focused on 4 major cell types: Leydig cells, vascular cells, immune cells, and peritubular cells. RESULTS AND DISCUSSION A growing number of studies have demonstrated that interstitial cells play a wide range of functions in the fetal and adult testis. Leydig cells, through secretion of hormones and growth factors, are responsible for steroidogenesis and progression of spermatogenesis. Vascular, immune, and peritubular cells, apart from their traditionally acknowledged physiological roles, have a broader importance than previously appreciated and are emerging as essential players in stem/progenitor cell biology. CONCLUSION Interstitial cells take part in complex signaling interactions with both interstitial and tubular cell populations, which are required for several biological processes, such as steroidogenesis, Sertoli cell function, spermatogenesis, and immune regulation. These various processes are essential for testicular function and demonstrate how interstitial cells are indispensable for male fertility.
Collapse
Affiliation(s)
- Anna Heinrich
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7045, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Suite E-870, Cincinnati, OH, 45267, USA
| |
Collapse
|
37
|
Yuan Z, Wang Y, Yu W, Xie W, Zhang Z, Wang J, Zhang H, Han Y, Weng Q. Seasonal expressions of oxytocin and oxytocin receptor in the epididymides in the wild ground squirrels (Citellus Dauricus Brandt). Gen Comp Endocrinol 2020; 289:113391. [PMID: 31917151 DOI: 10.1016/j.ygcen.2020.113391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/02/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to detect the seasonal expressions of oxytocin (OT), oxytocin receptor (OTR), extracellular signal-regulated kinase1 and 2 (ERK1/2) and phospho-ERK1/2 (pERK1/2) in the epididymis of the wild ground squirrels (Citellus Dauricus Brandt) during the breeding season and non-breeding season. Histological results showed that size, weight, cell number and lumen diameter of epididymis underwent acute seasonal changes, which were all peaked in the breeding season. Immunohistochemical results suggested that strong staining of OT, OTR, ERK1/2, and pERK1/2 were observed in the epithelial layer in the whole epididymis, along with intense OT and OTR signal in smooth muscle cell (Smc) in caudal epididymis in the breeding season. The protein expression levels of OTR, ERK1/2, and pERK1/2 in the epididymis were higher in the breeding season than those of the non-breeding season. Besides, hormone assay revealed that there was no significant serum concentration of OT in these two periods, while epididymal concentration showed higher value in the breeding season. In summary, the identified localization and local concentration of OT in the epididymis in the wild ground squirrel suggested that epididymis may assume as a source of OT, and OT could act via OTR to activate ERK1/2 signaling to regulate seasonal epididymal functions.
Collapse
Affiliation(s)
- Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuhan Wang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenyang Yu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junjie Wang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Harricharran T, Ogunwobi OO. Oxytocin and oxytocin receptor alterations, decreased survival, and increased chemoresistance in patients with pancreatic cancer. Hepatobiliary Pancreat Dis Int 2020; 19:175-180. [PMID: 31919036 PMCID: PMC7265130 DOI: 10.1016/j.hbpd.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 12/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Oxytocin (OXT) and its receptor (OXTR) is associated with cancer. The present study was to investigate the correlation between the genetic expression alterations of OXT and OXTR and the outcomes in patients with pancreatic cancer (PC). METHODS Information regarding OXT and OXTR genetic alterations and changes in gene expression were retrieved from the Cancer Genome Atlas (TCGA) databases and analyzed using the cBioPortal online tool. We assessed the correlation of overall survival and disease/progression-free months to either OXT or OXTR genetic alterations and changes in gene expression using Kaplan-Meier and Cox regression analyses. Quantitative PCR (qPCR) was conducted to assess the mRNA expression levels of OXT and OXTR in human PC cell lines. RESULTS Five percent of PC cases showed mRNA upregulation in the OXT gene. These PC cases also showed genetic alterations and changes in gene expression of OXTR. The median months of survival and disease-free survival were lower for PC cases with genetic alterations and changes in gene expression in the OXT and OXTR genes as compared to those without such alterations. qPCR data showed that OXT and OXTR mRNA expression were 1-fold and 10-fold higher, respectively in PANC-1 cell lines as compared to L3.6pl cell lines in direct negative correlation with responsiveness to gemcitabine. CONCLUSIONS These data suggest that OXT and OXTR may potentially be important in PC progression, chemoresistance, and patient survival, and potentially could have prognostic and therapeutic implications in a subset of PC patients.
Collapse
Affiliation(s)
- Trisheena Harricharran
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, USA; Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, USA
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA; The Graduate Center Departments of Biology and Biochemistry, The City University of New York, New York, NY 10016, USA; Hunter College Center for Cancer Health Disparities Research (CCHDR), New York, NY 10065, USA; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
39
|
A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology 2019; 152:90-101. [DOI: 10.1016/j.neuropharm.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
|
40
|
Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, He Q, He Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci 2019; 76:2681-2695. [PMID: 30980107 PMCID: PMC11105226 DOI: 10.1007/s00018-019-03101-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
Spermatogenesis is fundamental to the establishment and maintenance of male reproduction, whereas its abnormality results in male infertility. Somatic cells, including Leydig cells, myoid cells, and Sertoli cells, constitute the microenvironment or the niche of testis, which is essential for regulating normal spermatogenesis. Leydig cells are an important component of the testicular stroma, while peritubular myoid cells are one of the major cell types of seminiferous tubules. Here we addressed the roles and mechanisms of Leydig cells and myoid cells in the regulation of spermatogenesis. Specifically, we summarized the biological features of Leydig cells and peritubular myoid cells, and we introduced the process of testosterone production and its major regulation. We also discussed other hormones, cytokines, growth factors, transcription factors and receptors associated with Leydig cells and myoid cells in mediating spermatogenesis. Furthermore, we highlighted the issues that are worthy of further studies in the regulation of spermatogenesis by Leydig cells and peritubular myoid cells. This review would provide novel insights into molecular mechanisms of the somatic cells in controlling spermatogenesis, and it could offer new targets for developing therapeutic approaches of male infertility.
Collapse
Affiliation(s)
- Rui Zhou
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jingrouzi Wu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bang Liu
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yiqun Jiang
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Chen
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jian Li
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Quanyuan He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zuping He
- Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
41
|
Liu Q, Xie W, Xiao Y, Gao F, Gao Q, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of oxytocin and oxytocin receptor in epididymis of the male muskrat (Ondatra zibethicus). Theriogenology 2019; 124:24-31. [DOI: 10.1016/j.theriogenology.2018.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 01/09/2023]
|
42
|
Kolukcu E, Kilic S, Parlaktas BS, Erdemir F, Unsal V, Atılgan D, Uluocak N. The effects of oxytocin on penile tissues in experimental priapism model in rats. Int Urol Nephrol 2018; 51:231-238. [PMID: 30515737 DOI: 10.1007/s11255-018-2046-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/24/2018] [Indexed: 01/29/2023]
Abstract
PURPOSE This study aimed to demonstrate the effects of oxytocin on penile tissues in ischemia-reperfusion injury developed after priapism. METHODS Forty Wistar Albino strain male rats were divided into four groups. The control group (n = 10) was not intervened. In Group 2, a rat model of priapism was constructed and maintained for 1 h. In Group 3, reperfusion was ensured for 30 min following priapism. Rats in Group 4 rats were given oxytocin 30 min before the induction of reperfusion following priapism. All rats were penectomized, and adequate amounts of blood sample were drawn. Inflammation, vasocongestion, desquamation, and edema in penile tissue were scored between 0 and 3 points (0: normal, 1: mild, 2: moderate, 3: severe) to evaluate the severity of tissue damage. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and the levels of malondialdehyde (MDA), and nitric oxide (NO) in blood samples were determined spectrophotometrically. RESULTS In histopathological examination, statistically significant positive changes were detected in vasocongestion, inflammation, desquamation, and edema scores in Group 4 than in Group 2 and Group 3 (p < 0.001). Biochemical test results revealed that NO levels were significantly lower in Group 4 than in Group 3 (p < 0.001). Serum GSH-Px activities in Group 4 significantly increased when compared with the other groups 2 and 3 (p = 0.002, p = 0.001, respectively). There was no statistical difference among the groups regarding SOD activities and MDA levels (p > 0.05). CONCLUSIONS Oxytocin protected against priapism-induced ischemia-reperfusion injury developed in cavernosal tissue as observed based on histopathological and biochemical evidence. Although this is an experimental study, oxytocin can be thought as an alternative drug in the treatment of priapism.
Collapse
Affiliation(s)
- Engin Kolukcu
- Department of Urology, Tokat State Hospital, Tokat, Turkey.
| | - Sahin Kilic
- Department of Urology, Fethiye State Hospital, Fethiye, Mugla, Turkey
| | - Bekir Suha Parlaktas
- Department of Urology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Fikret Erdemir
- Department of Urology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Velid Unsal
- Mardin Artuklu University High School of Health and Central Research Laboratory, Mardin, Turkey
| | - Dogan Atılgan
- Department of Urology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Nihat Uluocak
- Department of Urology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
43
|
Lerman B, Harricharran T, Ogunwobi OO. Oxytocin and cancer: An emerging link. World J Clin Oncol 2018; 9:74-82. [PMID: 30254962 PMCID: PMC6153127 DOI: 10.5306/wjco.v9.i5.74] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
The neuropeptide hormone oxytocin, which is released from the posterior pituitary gland, is involved in a number of physiological processes. Understanding of its effects is gradually increasing due to new research in this area. While mostly recognized as a reproductive system hormone, oxytocin also regulates other organ systems such as the brain and cardiovascular system. Recently, research has focused on unraveling its involvement in cancer, and emerging evidence suggests a potential role for oxytocin as a cancer biomarker. This review summarizes observations linking oxytocin and cancer, with a special emphasis on prostate cancer, where it may promote cell proliferation. Research suggests that oxytocin effects may depend on cell type, concentration of the hormone, its interactions with other hormones in the microenvironment, and the precise localization of its receptor on the cell membrane. Future research is needed to further elucidate the involvement of oxytocin in cancer, and whether it could be a clinical cancer biomarker or therapeutic target.
Collapse
Affiliation(s)
- Ben Lerman
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, United States
| | - Trisheena Harricharran
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, United States
- the Graduate Center Departments of Biology and Biochemistry, the City University of New York, New York, NY 10016, United States
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY 10065, United States
- the Graduate Center Departments of Biology and Biochemistry, the City University of New York, New York, NY 10016, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, United States
| |
Collapse
|
44
|
Sarakul M, Elzo MA, Koonawootrittriron S, Suwanasopee T, Jattawa D, Laodim T. Characterization of biological pathways associated with semen traits in the Thai multibreed dairy population. Anim Reprod Sci 2018; 197:324-334. [PMID: 30213568 DOI: 10.1016/j.anireprosci.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
The objective of this research was to characterize biological pathways associated with semen volume (VOL), number of sperm (NS), and sperm motility (MOT) of dairy bulls in the Thai multibreed dairy population. Phenotypes for VOL (n = 13,535), NS (n = 12,773), and MOT (n = 12,660) came from 131 bulls of the Dairy Farming Promotion Organization of Thailand. Genotypic data consisted of 76,519 imputed and actual single nucleotide polymorphisms (SNP) from 72 animals. The SNP variances for VOL, NS, and MOT were estimated using a three-trait genomic-polygenic repeatability model. Fixed effects were contemporary group, ejaculate order, age of bull, ambient temperature, and heterosis. Random effects were animal additive genetic, permanent environmental, and residual. Individual SNP explaining at least 0.001% of the total genetic variance for each trait were selected to identify associated genes in the NCBI database (UMD Bos taurus 3.1 assembly) using the R package Map2NCBI. A set of 1,999 NCBI genes associated with all three semen traits was utilized for the pathway analysis conducted with the ClueGO plugin of Cytoscape using information from the Kyoto Encyclopedia of Genes and Genomes database. The pathway analysis revealed seven significant biological pathways involving 127 genes that explained 1.04% of the genetic variance for VOL, NS, and MOT. These genes were known to affect cell structure, motility, migration, proliferation, differentiation, survival, apoptosis, signal transduction, oxytocin release, calcium channel, neural development, and immune system functions related to sperm morphology and physiology during spermatogenesis.
Collapse
Affiliation(s)
- Mattaneeya Sarakul
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611-0910, USA
| | | | | | - Danai Jattawa
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thawee Laodim
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
45
|
Xu H, Fu S, Chen Q, Gu M, Zhou J, Liu C, Chen Y, Wang Z. The function of oxytocin: a potential biomarker for prostate cancer diagnosis and promoter of prostate cancer. Oncotarget 2018; 8:31215-31226. [PMID: 28415720 PMCID: PMC5458202 DOI: 10.18632/oncotarget.16107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To measure the level of oxytocin in serum and prostate cancer (PCa) tissue and study its effect on the proliferation of PCa cells. RESULTS Oxytocin level in serum was significantly increased in PCa patients compared with the no-carcinoma individuals. Additionally, the levels of oxytocin and its receptor were also elevated in the PCa tissue. However, no significant difference existed among the PCa of various Gleason grades. Western blot analysis confirmed the previous results and revealed an increased expression level of APPL1. MATERIALS AND METHODS The level of oxytocin in serum was measured by ELISA analysis. The expression of oxytocin and its receptor in prostate was analyzed by immunohistochemistry. The proliferation and apoptosis of PCa cells were assessed by the Cell Counting Kit 8 (CCK8) assay, cell cycle analysis and caspase3 activity analysis, respectively. Western blot analysis was used for the detection of PCNA, Caspase3 and APPL1 protein levels. CONCLUSIONS Serum and prostatic oxytocin levels are increased in the PCa subjects. Serum oxytocin level may be a biomarker for PCa in the future. Oxytocin increases PCa growth and APPL1 expression.
Collapse
Affiliation(s)
- Huan Xu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Shi Fu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Qi Chen
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Meng Gu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Juan Zhou
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Chong Liu
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yanbo Chen
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai 9th People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
46
|
Administration of cloprostenol and oxytocin before electroejaculation in goat bucks reduces the needed amount of electrical stimulation without affecting seminal quality. Theriogenology 2018; 107:1-5. [DOI: 10.1016/j.theriogenology.2017.10.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022]
|
47
|
Anjum S, Anuradha A, Krishna A. A possible direct action of oxytocin on spermatogenesis and steroidogenesis in pre-pubertal mouse. Andrologia 2018; 50:e12958. [PMID: 29363158 DOI: 10.1111/and.12958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2017] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to evaluate the effects of in vivo and in vitro treatments of oxytocin (OT) on the testis of pre-pubertal mice. The OT treatment produced significant changes in the spermatogenic and steroidogenic activity by increasing expression of OT-receptor in the testis of pre-pubertal mice. Treatment with OT showed increased proliferation of germ cells as indicated by increased number of spermatocytes and round spermatids. Dose-dependent increase in expression of PCNA, Bcl-2 and AR proteins was observed in the testis of OT-treated mice as compared with the control and further supports the role of OT in germ cell proliferation and survival. The pre-pubertal mice treated with increasing dose of OT showed significant increase in testosterone synthesis due to dose-dependent stimulatory effects on 3β-HSD activity and increased expression of STAR, LH-receptor (LH-R) and gonadotrophin-releasing hormone receptor (GnRH-R) proteins in the testis. The in vitro study has confirmed in vivo finding showing direct action of OT on testicular steroidogenesis. Thus, OT stimulates testicular spermatogenesis and steroidogenesis by directly acting on testis in mice.
Collapse
Affiliation(s)
- S Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - A Anuradha
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | - A Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
48
|
Li Z, Xiao H, Wang K, Zheng Y, Chen P, Wang X, DiSanto ME, Zhang X. Upregulation of Oxytocin Receptor in the Hyperplastic Prostate. Front Endocrinol (Lausanne) 2018; 9:403. [PMID: 30123183 PMCID: PMC6085439 DOI: 10.3389/fendo.2018.00403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Background: The etiology of benign prostatic hyperplasia (BPH) is complex, both age and androgen are thought to be important. However, the failure of androgen blockade treatments suggests other paracrine/autocrine factors involved in BPH. Oxytocin was found to have a paracrine/autocrine role in prostate in recent years. The influence of BPH on prostatic oxytocin receptor (OTR) expression has never been studied. Material and methods: A testosterone-estradiol induced rat model of BPH was employed and human hyperplastic prostate specimens were harvested. Expressions of OTR, α1-adrenoreceptor subtypes and nitric oxide synthase isoforms were determined via real-time RT-PCR. OTR was further analyzed with Western-Blotting and histological examination. Subsequently, rat epithelial cells, human stromal cells and epithelial cells were cultured in vitro and treated with gradient concentrations of OT from 1 to 5 days. Cell proliferation was tested by Cell Counting Kit-8 and Flow Cytometry. Results: The rat BPH model was validated with significant increased prostate weight. H-E stain revealed a different histopathology between human and rat BPH. Masson's trichrome staining demonstrated that smooth muscle (SM) cells, epithelium cells and collagen fibers were simultaneously augmented in this rat BPH model and human BPH samples. OTR mainly localized in epithelium in rat prostate whereas it mainly localized in stroma in human prostate. OTR gene was upregulated 3.3-fold in rat BPH and 3.0-fold in human BPH, along with increased expression of 2.0-fold α1aARs and 3.0-fold eNOS for rat BPH and 5.0-fold α1aARs for human BPH. The expression of OTR protein was upregulated 1.4-fold in rat BPH and 3.9-fold in human BPH, respectively. Increased concentrations of exogenous OT can accelerate proliferation of rat epithelial cells and human stromal cells but has no impact on human epithelial cells in vitro. Flow Cytometry showed oxytocin could significantly increase G2/M period cell number. Conclusions: Our novel data demonstrates a significant and previously undocumented upregulation of OTR in both rat and human BPH. Moreover, exogenous OT accelerates proliferation of rat prostate epithelial cells and human prostate stromal cells. It is suggested OTR is involved in the development of BPH and OT regulatory system could be a potential new target for the BPH treatment.
Collapse
Affiliation(s)
- Zhuo Li
- Zhongnan Hospital of Wuhan University, Wuhan, China
- Shenzhen Key Laboratory for Endogenous Infection, Department of Urology, Shenzhen Sixth People's Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - He Xiao
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kebing Wang
- Shenzhen Key Laboratory for Endogenous Infection, Department of Urology, Shenzhen Sixth People's Hospital, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Yuelan Zheng
- Department of General Surgery, Children's Hospital of Shenzhen, Shenzhen, China
| | - Ping Chen
- Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Michael E. DiSanto
- Departments of Biomedical Sciences, Surgery of Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Xinhua Zhang
- Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xinhua Zhang
| |
Collapse
|
49
|
Kumar A, Raut S, Balasinor NH. Endocrine regulation of sperm release. Reprod Fertil Dev 2018; 30:1595-1603. [DOI: 10.1071/rd18057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/02/2018] [Indexed: 01/11/2023] Open
Abstract
Spermiation (sperm release) is the culmination of a spermatid’s journey in the seminiferous epithelium. After a long association with the Sertoli cell, spermatids have to finally ‘let go’ of the support from Sertoli cells in order to be transported to the epididymis. Spermiation is a multistep process characterised by removal of excess spermatid cytoplasm, recycling of junctional adhesion molecules by endocytosis, extensive cytoskeletal remodelling and final spermatid disengagement. Successful execution of all these events requires coordinated regulation by endocrine and paracrine factors. This review focuses on the endocrine regulation of spermiation. With the aim of delineating how hormones control the various aspects of spermiation, this review provides an analysis of recent advances in research on the hormonal control of molecules associated with the spermiation machinery. Because spermiation is one of the most sensitive phases of spermatogenesis to variations in hormone levels, understanding their molecular control is imperative to advance our knowledge of the nuances of spermatogenesis and male fertility.
Collapse
|
50
|
Zhang F, Liu Q, Wang Z, Xie W, Sheng X, Zhang H, Yuan Z, Han Y, Weng Q. Seasonal Expression of Oxytocin and Oxytocin Receptor in the Scented Gland of Male Muskrat (Ondatra zibethicus). Sci Rep 2017; 7:16627. [PMID: 29192229 PMCID: PMC5709462 DOI: 10.1038/s41598-017-16973-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/20/2017] [Indexed: 11/08/2022] Open
Abstract
Oxytocin (OT) can modulate multiple physiological functions via binding to the widely distributed oxytocin receptor (OTR). In this study, we investigated the seasonal expressions of OT, OTR and extracellular signal regulated kinase (ERK1/2) signaling pathway components in the scented gland of muskrat during the breeding and non-breeding seasons. Histologically, glandular cells, interstitial cells and excretory tubules were identified in the breeding season scented glands, whereas epithelial cells were sparse in the non-breeding season. Immunohistochemical results showed that OTR was present in epithelial cells and interstitial cells while OT, pERK1/2, ERK1/2 and c-fos were expressed in epithelial cells and glandular cells. The protein and mRNA expressions of OTR, OT and c-fos were significantly higher in the scented gland in the breeding season than in the non-breeding season. Importantly, the levels of OT in scented glands and serum were measured by hormone assays, and their concentrations were both significantly higher in the breeding season than in the non-breeding season. Moreover, bioinformatics analysis showed that the predicted targets of the differentially expressed microRNAs might include the genes encoding OTR, ERK1/2 and c-fos. These findings suggested that OT may regulate the function of muskrat scented glands by the locally expressed receptors.
Collapse
Affiliation(s)
- Fengwei Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Qian Liu
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Ziyi Wang
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Wenqian Xie
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Xia Sheng
- Department of Biosciences, University of Oslo, 0316, Oslo, Norway
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China
| | - Yingying Han
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|