1
|
Ma R, Zhao X, Zhao J, Yi Y, Jian S, Ma X, Su Z. PrG protects postovulatory oocytes aging in mice through the putrescine pathway. Biochem Biophys Res Commun 2024; 733:150350. [PMID: 39053107 DOI: 10.1016/j.bbrc.2024.150350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Postovulatory aging of oocytes involves a series of deleterious molecular and cellular changes, which adversely affect oocyte maturation, fertilization, and early embryonic development. Petunidin-3-O-(6-O-pcoumaroyl)-rutinoside-5-O-glucoside (PrG), the main active ingredient of anthocyanin, exerts antioxidant effects. This study investigated whether PrG supplementation could delay postovulatory oocyte aging by alleviating oxidative stress. Our results showed that PrG supplementation decreased the number of abnormal morphology oocytes and improved the oxidative stress of aged oocytes by facilitating the reduction of the reactive oxygen species, the increase in glutathione content, and the recovery of expression of antioxidant-related gene expression. In addition, PrG treatment recovered mitochondrial dysfunction, including mitochondrial distribution, mitochondrial membrane potential and adenosine triphosphate in aged oocytes. PrG-treated oocytes returned to normal levels of cytoplasmic and mitochondrial calcium. Notably, PrG inhibited early apoptosis in aged oocytes. RNA-seq and qRT-PCR results revealed that PrG ameliorated oxidative stress injury in postovulatory aging oocytes of mice via the putrescine pathway. In conclusion, in vitro PrG supplementation is a potential therapy for delaying postovulatory oocyte aging.
Collapse
Affiliation(s)
- Ronghua Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, 810016, China; Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Xi Zhao
- Department of Animal Science, College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jing Zhao
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, 810016, China; Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Yi Yi
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Shengyan Jian
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Xueman Ma
- Department of Traditional Chinese Medicine, Qinghai University Medical College, Xining, 810001, China
| | - Zhanhai Su
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, Xining, 810016, China; Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China.
| |
Collapse
|
2
|
Wetten PA, Klinsky OG, Michaut MA. Dithiothreitol prevents the spontaneous release of cortical granules in in vitro aged mouse oocytes by protecting regulatory proteins of cortical granules exocytosis and thickening the cortical actin cytoskeleton. Theriogenology 2024; 229:53-65. [PMID: 39163803 DOI: 10.1016/j.theriogenology.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
In assisted fertility protocols, in vitro culture conditions mimic physiological conditions to preserve gametes in the best conditions. After collection, oocytes are maintained in a culture medium inside the incubator until in vitro fertilization (IVF) is performed. This time outside natural and physiological conditions exposes oocytes to an oxidative stress that renders in vitro aging. It has been described that in vitro aging produces a spontaneous cortical granule (CG) release decreasing the fertilization rate of oocytes. Nevertheless, this undesirable phenomenon has not been investigated, let alone prevented. In this work, we characterized the spontaneous CG secretion in in vitro aged oocytes. Using immunofluorescence indirect, quantification, and functional assays, we showed that the expression of regulatory proteins of CG exocytosis was affected. Our results demonstrated that in vitro oocyte aging by 4 and 8 h altered the expression and localization of alpha-SNAP and reduced the expression of NSF and Complexin. These alterations were prevented by supplementing culture medium with dithiothreitol (DTT), which in addition to having a protective effect on those proteins, also had an unexpected effect on the actin cytoskeleton. Indeed, DTT addition thickened the cortical layer of fibrillar actin. Both DTT effects, together, prevented the spontaneous secretion of CG and recovered the IVF rate in in vitro aged oocytes. We propose the use of DTT in culture media to avoid the spontaneous CG secretion and to improve the success rate of IVF protocols in in vitro aged oocytes.
Collapse
Affiliation(s)
- Paula Alida Wetten
- Laboratorio de Biología Reproductiva y Molecular (LaBRYM), Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Omar Guillermo Klinsky
- Laboratorio de Biología Reproductiva y Molecular (LaBRYM), Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Marcela Alejandra Michaut
- Laboratorio de Biología Reproductiva y Molecular (LaBRYM), Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
3
|
Li T, Wang Y, Yu Y, Pei W, Fu L, Jin D, Qiao J. The NAD + precursor nicotinamide riboside protects against postovulatory aging in vitro. J Assist Reprod Genet 2024:10.1007/s10815-024-03263-x. [PMID: 39460833 DOI: 10.1007/s10815-024-03263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
PURPOSE Postovulatory aging (POA) of oocytes is clinically significant as it mirrors the degeneration observed in maternally aged oocytes, leading to substantial impairments in oocyte quality and the success rates of artificial reproductive technology (ART). The molecular alterations associated with POA, such as the degeneration of the first polar body, an increase in perivitelline space, reactive oxygen species (ROS) accumulation, energy depletion, and chromosomal and DNA damage, underscore the urgency of finding interventions to mitigate these effects. This study aims to identify whether nicotinamide riboside (NR) can prevent POA during the process of in vitro culture and raise the success rates of ART. METHOD Taking advantage of an in vitro postovulatory oocyte aging model, we examined the morphological integrity and NAD+ levels of ovulated mouse MII oocytes after 24 h of culturing. Following in vitro fertilization, we assessed the embryonic developmental potential of oocytes affected by POA. Using immunofluorescence and confocal microscopy, we measured the levels of ROS, mitochondrial function, and γH2AX. We also evaluated spindle assembly and chromosome alignment. Additionally, we detected the distribution of cortical granules to assess the metabolic and quality changes in POA oocytes with the supplementation of NR. To further our analysis, quantitative real-time PCR was conducted to measure the mRNA expression levels of antioxidant enzymes Sod1 and Gpx1 in the oocytes. RESULTS With 200 μM NR supplementation during in vitro culture for 24 h, the oocytes from POA demonstrated reduced signs of aging-related decline in oocyte quality, including reduced ROS accumulation, improved mitochondrial function, and corrected mis-localization of cortical granules. This improvement in oocyte quality is likely due to the inhibition of oxidative stress via the NAD+/SIRT1 signaling pathway, which also helped to restore normal spindle assembly and chromosome alignment, as well as reduce the elevated levels of γH2AX, thereby potentially enhancing the embryonic development potential. CONCLUSION Current research provides evidence that NR is an efficient and safe natural component that prevents the process of POA and is thus a potential ideal antiaging drug for raising the success rates of ART in clinical practice.
Collapse
Affiliation(s)
- Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, 100050, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Yibo Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Wendi Pei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Dan Jin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Strategic Support Force Medical Center, Beijing, 100101, China.
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
4
|
Bai J, Zhang Y, Li N, Cui Z, Zhang H, Liu Y, Miao Y, Sun S, Xiong B. Supplementation of spermidine enhances the quality of postovulatory aged porcine oocytes. Cell Commun Signal 2024; 22:499. [PMID: 39407270 PMCID: PMC11481709 DOI: 10.1186/s12964-024-01881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Spermidine (SPD) is an intermediate compound in the polyamine metabolism which takes critical part in a variety of cellular processes. In particular, it has been reported to exert anti-aging effects, suppress the age-related diseases, and extend lifespan across species. However, whether it has the favorable influence on the quality of postovulatory aged oocytes remains elusive. METHODS Immunostaining and fluorescence intensity measurement were used to evaluate the effects of postovulatory aging and SPD supplementation on the oocyte fragmentation, spindle/chromosome structure, actin polymerization, dynamics of cortical granules (CGs) and ovastacin, mitochondrial distribution and function, as well as autophagy levels. In addition, in vitro sperm binding assay and in vitro fertilization (IVF) experiment were applied to assess the impacts of postovulatory aging and SPD supplementation on the sperm binding ability and fertilization capacity of oocytes. RESULTS Here, we showed that supplementation of SPD during postovulatory aging could relieve the deterioration of porcine oocytes. Specifically, we found that postovulatory aging impaired the oocyte quality by damaging the morphological integrity of oocytes, maintenance of spindle/chromosome structure, and dynamics of actin cytoskeleton. Postovulatory aging also weakened the sperm binding ability and fertilization capacity of oocytes by compromising the distribution pattern of CGs and their content ovastacin. Notably, supplementation of SPD attenuated these defects in postovulatory aged porcine oocytes via strengthening mitochondrial function, eliminating excessive reactive oxygen species (ROS), inhibiting apoptosis, and enhancing autophagy levels. CONCLUSION Altogether, our findings demonstrate that SPD supplementation is a feasible approach to ameliorate the quality of postovulatory aged oocytes, which can be potentially applied to the human assisted reproductive technology (ART) and in vitro production of animal embryos.
Collapse
Affiliation(s)
- Jie Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Na Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaokang Cui
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hanwen Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiting Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaochen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Predheepan D, Salian SR, Uppangala S, Kalthur G, Kovačič B, Adiga SK. Advanced maternal age affects their frozen-thawed embryo susceptibility to high oxygen environment. Sci Rep 2024; 14:23008. [PMID: 39362929 PMCID: PMC11450011 DOI: 10.1038/s41598-024-73894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Preimplantation embryos can experience stress from laboratory interventions and a sub-optimal culture environment. Though research has demonstrated advanced maternal age impairs oocyte quality, the response of embryos derived from such oocytes to vitrification-thawing and culture in a high oxygen (O2) environment in the assisted reproductive technology laboratory is unknown. Therefore, in this study, embryos produced by in vitro fertilization (IVF) using oocytes from two- and eight-month-old Swiss albino mice were vitrified and thawed during their 6-8 cell stage. and cultured at low oxygen (5%) tension (LOT) and high oxygen (20%) tension (HOT). Embryo development, apoptosis, inner cell mass (ICM) outgrowth proliferation ability in vitro and pluripotency were assessed. Embryos from advanced maternal age cultured at HOT showed reduced fertilizing ability (p < 0.05), poor survival post-thawing (p < 0.05), and increased apoptosis (p < 0.01) in comparison to sibling embryos cultured at LOT. Importantly, the extended culture of vitrified-thawed embryos from advanced maternal age led to a significant (p < 0.001) reduction in complete ICM outgrowth formation at HOT in comparison to the LOT environment. The findings of this study suggest that HOT is detrimental to embryos from advanced maternal age, and importantly, vitrified-thawed embryos are more susceptible to stress, which could have negative implications, especially during the peri-implantation developmental period.
Collapse
Affiliation(s)
- Dhakshanya Predheepan
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sujith Raj Salian
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
6
|
Cho RY, Aseka MM, Toso KNFD, Passos AW, Kulak Junior J, Amaral VFD, Araujo Júnior E. Summer versus winter: the impact of the seasons on oocyte quality in in vitro fertilization cycles. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240408. [PMID: 39292085 DOI: 10.1590/1806-9282.20240408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE The aim of this study was to determine the effects of seasons (winter vs. summer) on oocyte quality in infertile women undergoing ovulation induction for in vitro fertilization. METHODS This retrospective cross-sectional study assessed 155 cycles of in vitro fertilization-induced ovulation in women, with 71 and 84 cycles occurring in the summer and winter, respectively. Oocytes were evaluated for quality, with 788 and 713 assessed during summer and winter, and classified according to Nikiforov's categories: (a) category I, good quality; (b) category 2, medium quality; and (c) category 3, low quality. RESULTS Thickened zona pellucida (p<0.001), increased perivitelline space (p<0.001), oocyte shape abnormalities (p=0.01), and the presence of refractile bodies (p<0.0001) were more frequent in the summer cycles, whereas cytoplasmic granularity (p<0.001) was more frequent in the winter cycles. In winter, we observed a higher frequency of category 3 (p<0.001) and category 2 (p<0.001) oocytes and a lower frequency of category 1 (p<0.001) oocytes. CONCLUSION Oocyte dysmorphisms were found in 70-80% of cases and were more common in winter. The main features include a thickened zona pellucida, enlarged perivitelline space, irregular shape, and cytoplasmic granularity. This implies better-quality oocytes in the summer than in the winter. However, retrospective studies have limitations due to data collection biases and potential confounding variables such as diet and exercise. Future research is needed to confirm these findings and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Regis Yukio Cho
- Universidade Federal do Paraná, Department of Obstetrics and Gynecology - Curitiba (PR), Brazil
| | - Mariana Mitiko Aseka
- Universidade Federal do Paraná, Department of Obstetrics and Gynecology - Curitiba (PR), Brazil
| | | | - Arthur William Passos
- Universidade Federal do Paraná, Department of Obstetrics and Gynecology - Curitiba (PR), Brazil
| | - Jaime Kulak Junior
- Universidade Federal do Paraná, Department of Obstetrics and Gynecology - Curitiba (PR), Brazil
| | | | - Edward Araujo Júnior
- Universidade Federal de São Paulo, Paulista School of Medicine, Department of Obstetrics - São Paulo (SP), Brazil
- Universidade Municipal de São Caetano do Sul, Discipline of Woman Health - São Caetano do Sul (SP), Brazil
| |
Collapse
|
7
|
Wang H, Huang Z, Shen X, Lee Y, Song X, Shu C, Wu LH, Pakkiri LS, Lim PL, Zhang X, Drum CL, Zhu J, Li R. Rejuvenation of aged oocyte through exposure to young follicular microenvironment. NATURE AGING 2024; 4:1194-1210. [PMID: 39251866 DOI: 10.1038/s43587-024-00697-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Reproductive aging is a major cause of fertility decline, attributed to decreased oocyte quantity and developmental potential. A possible cause is aging of the surrounding follicular somatic cells that support oocyte growth and development by providing nutrients and regulatory factors. Here, by creating chimeric follicles, whereby an oocyte from one follicle was transplanted into and cultured within another follicle whose native oocyte was removed, we show that young oocytes cultured in aged follicles exhibited impeded meiotic maturation and developmental potential, whereas aged oocytes cultured within young follicles were significantly improved in rates of maturation, blastocyst formation and live birth after in vitro fertilization and embryo implantation. This rejuvenation of aged oocytes was associated with enhanced interaction with somatic cells, transcriptomic and metabolomic remodeling, improved mitochondrial function and higher fidelity of meiotic chromosome segregation. These findings provide the basis for a future follicular somatic cell-based therapy to treat female infertility.
Collapse
Affiliation(s)
- HaiYang Wang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| | - Zhongwei Huang
- NUS Bia Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xingyu Shen
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - XinJie Song
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Chang Shu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Lik Hang Wu
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Leroy Sivappiragasam Pakkiri
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Poh Leong Lim
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xi Zhang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chester Lee Drum
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Lee SE, Lee HB, Yoon JW, Park HJ, Kim SH, Han DH, Lim ES, Kim EY, Park SP. Rapamycin treatment during prolonged in vitro maturation enhances the developmental competence of immature porcine oocytes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:905-919. [PMID: 39398303 PMCID: PMC11466741 DOI: 10.5187/jast.2023.e101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2024]
Abstract
Porcine oocytes undergo in vitro maturation (IVM) for 42-44 h. During this period, most oocytes proceed to metaphase and then to pro-metaphase if the nucleus has sufficiently matured. Forty-four hours is sufficient for oocyte nuclear maturation but not for full maturation of the oocyte cytoplasm. This study investigated the influences of extension of the IVM duration with rapamycin treatment on molecular maturation factors. The phospho-p44/42 mitogen-activated protein kinase (MAPK) level was enhanced in comparison with the total p44/42 MAPK level after 52 h of IVM. Oocytes were treated with and without 10 μM rapamycin (10 R and 0 R, respectively) and examined after 52 h of IVM, whereas control oocytes were examined after 44 h of IVM. Phospho-p44/42 MAPK activity was upregulated the 10 R and 0 R oocytes than in control oocytes. The expression levels of maternal genes were highest in 10 R oocytes and were higher in 0 R oocytes than in control oocytes. Reactive oxygen species (ROS) activity was dramatically increased in 0 R oocytes but was similar in 10 R and control oocytes. The 10 R group exhibited an increased embryo development rate, a higher total cell number per blastocyst, and decreased DNA fragmentation. The mRNA level of development-related (POU5F1 and NANOG) mRNA, oocyte-apoptotic (BCL2L1) genes were highest in 10 R blastocysts. These results suggest that prolonged IVM duration with rapamycin treatment represses ROS production and increases expression of molecular maturation factors. Therefore, this is a good strategy to enhance the developmental capacity in porcine oocytes.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Subtropical Livestock Research Institute,
National Institute of Animal Science, RDA, Jeju 63242,
Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Faculty of Biotechnology, College of
Applied Life Sciences, Jeju National University, Jeju 63243,
Korea
- Mirae Cell Bio, Seoul 04795,
Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National
University, Jeju 63243, Korea
- Mirae Cell Bio, Seoul 04795,
Korea
- Department of Bio Medical Informatic,
College of Applied Life Sciences, Jeju National University,
Jeju 63242, Korea
| |
Collapse
|
9
|
Ma W, Zhao X, Wang Q, Wu X, Yang T, Chen Y, Zhu Y, Wang X. SCM-198 ameliorates the quality of postovulatory and maternally aged oocytes by reducing oxidative stress. J Ovarian Res 2024; 17:178. [PMID: 39217393 PMCID: PMC11365136 DOI: 10.1186/s13048-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Oocyte aging is a key constraint on oocyte quality, leading to fertilization failure and abnormal embryonic development. In addition, it is likely to generate unfavorable assisted reproductive technology (ART) outcomes. SCM-198, a synthetic form of leonurine, was found to rescue the rate of oocyte fragmentation caused by postovulatory aging. Therefore, the aim of this study was to conduct a more in-depth investigation of SCM-198 by exploring its relationship with aged oocytes after ovulation or maternal aging and clarifying whether it affects cell quality. The results indicate that, compared to the postovulatory aged group, the 50 µM SCM-198 group significantly improved sperm-egg binding and increased fertilization of aged oocytes, restoring the spindle apparatus/chromosome structure, cortical granule distribution, and ovastacin and Juno protein distribution. The 50 µM SCM-198 group showed significantly normal mitochondrial distribution, low levels of reactive oxygen species (ROS), and a small quantity of early oocyte apoptosis compared to the postovulatory aged group. Above all, in vivo supplementation with SCM-198 effectively eliminated excess ROS and reduced the spindle/chromosome structural defects in aged mouse oocytes. In summary, these findings indicate that SCM-198 inhibits excessive oxidative stress in oocytes and alters oocyte quality both in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Xi Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Qingxin Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Tingting Yang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yuqi Chen
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China.
| | - Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Zheng B, Hu X, Hu Y, Dong S, Xiao X, Qi H, Wang Y, Wang W, Wang Z. Type III adenylyl cyclase is essential for follicular development in female mice and their reproductive lifespan. iScience 2024; 27:110293. [PMID: 39050703 PMCID: PMC11267094 DOI: 10.1016/j.isci.2024.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Premature ovarian failure (POF) is a complex and heterogeneous disease that causes infertility and subfertility. However, the molecular mechanism of POF has not been fully elucidated. Here, we show that the loss of adenylyl cyclase III (Adcy3) in female mice leads to POF and a shortened reproductive lifespan. We found that Adcy3 is abundantly expressed in mouse oocytes. Adcy3 knockout mice exhibited the excessive activation of primordial follicles, progressive follicle loss, follicular atresia, and ultimately POF. Mechanistically, we found that mitochondrial oxidative stress in oocytes significantly increased with age in Adcy3-deficient mice and was accompanied by oocyte apoptosis and defective folliculogenesis. In contrast, compared with wild-type female mice, humanized ADCY3 knock-in female mice exhibited improved fertility with age. Collectively, these results reveal that the previously unrecognized Adcy3 signaling pathway is tightly linked to female ovarian aging, providing potential pharmaceutical targets for preventing and treating POF.
Collapse
Affiliation(s)
- Baofang Zheng
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Xiaoyu Hu
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yuanhui Hu
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Sheng Dong
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Xin Xiao
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Haoming Qi
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Yongdi Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Weina Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
| | - Zhenshan Wang
- School of Life Sciences, Institute of Life Science, Hebei University, Baoding 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| |
Collapse
|
11
|
Li M, Zhang N, Huang J, Li Q, Li J, Li R, Liu P, Qiao J. Obstetrical and neonatal outcomes after vitrified-warmed blastocyst transfer in day 1 rescue intracytoplasmic sperm injection cycles: a retrospective cohort study. J Assist Reprod Genet 2024; 41:1825-1833. [PMID: 38709401 PMCID: PMC11263326 DOI: 10.1007/s10815-024-03126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Fertilization failure often occurs in conventional IVF cycles, and day 1 rescue ICSI is frequently recommended. In this study, the effect of rescue ICSI on obstetrical and neonatal outcomes after a single blastocyst transfer in vitrified-warmed cycles is evaluated. METHODS This cohort study was a retrospective analysis of 703 vitrified-warmed single blastocyst transfers and 219 singletons in the r-ICSI group compared with 11,611 vitrified-warmed single blastocyst transfers in the IVF/ICSI and 4472 singletons in the IVF/ICSI group, respectively, and patients just undergoing their first IVF treatments were included in this study. Pregnancy rate (PR), live birth rate (LBR), and singleton birthweight were the primary outcome measures. Multiple linear regression analysis and logistic regression analysis were performed to evaluate the possible relationship between obstetrical and neonatal outcomes and fertilization method (including IVF, ICSI, and r-ICSI) after adjusting for other potential confounding factors. RESULTS PR and the LBR were lower in the r-ICSI group compared with the IVF/ ICSI group. Singletons from the r-ICSI group had a higher Z-score and the proportion of large for gestational age (LGA) newborns was greater compared with singletons from the IVF/ICSI group. CONCLUSION The results of the study indicated that a 31% LBR after r-ICSI is acceptable for vitrified-warmed blastocyst transfer, but the safety of transfer is a concern because of the lower PR and LBR compared with IVF/ICSI. The safety of r-ICSI newborns is also a concern because of the significantly higher birthweight and the proportion of LGA in r-ICSI group newborns compared with the IVF/ICSI group.
Collapse
Affiliation(s)
- Ming Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medical, Peking University Third Hospital, Haidian District, No. 49 North Huayuan Road, Beijing, 10091, China.
- Key Laboratory of Assisted Reproduction Peking University, Ministry of Education, Beijing, 10091, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 10091, China.
| | - Nan Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medical, Peking University Third Hospital, Haidian District, No. 49 North Huayuan Road, Beijing, 10091, China
- Key Laboratory of Assisted Reproduction Peking University, Ministry of Education, Beijing, 10091, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 10091, China
| | - Jin Huang
- Department of Obstetrics and Gynecology, Center for Reproductive Medical, Peking University Third Hospital, Haidian District, No. 49 North Huayuan Road, Beijing, 10091, China
- Key Laboratory of Assisted Reproduction Peking University, Ministry of Education, Beijing, 10091, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 10091, China
| | - Qin Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medical, Peking University Third Hospital, Haidian District, No. 49 North Huayuan Road, Beijing, 10091, China
- Key Laboratory of Assisted Reproduction Peking University, Ministry of Education, Beijing, 10091, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing, 100191, China
- Department of Maternal and Child Health, School of Public Health, Peking University, Beijing, 10091, China
| | - JunSheng Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medical, Peking University Third Hospital, Haidian District, No. 49 North Huayuan Road, Beijing, 10091, China
- Key Laboratory of Assisted Reproduction Peking University, Ministry of Education, Beijing, 10091, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 10091, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medical, Peking University Third Hospital, Haidian District, No. 49 North Huayuan Road, Beijing, 10091, China
- Key Laboratory of Assisted Reproduction Peking University, Ministry of Education, Beijing, 10091, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 10091, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medical, Peking University Third Hospital, Haidian District, No. 49 North Huayuan Road, Beijing, 10091, China.
- Key Laboratory of Assisted Reproduction Peking University, Ministry of Education, Beijing, 10091, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 10091, China.
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medical, Peking University Third Hospital, Haidian District, No. 49 North Huayuan Road, Beijing, 10091, China
- Key Laboratory of Assisted Reproduction Peking University, Ministry of Education, Beijing, 10091, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproduction Technology, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 10091, China
| |
Collapse
|
12
|
Kurumizaka M, Yao T, Tokoro M, Fukunaga N, Asada Y, Yamagata K. Effect of ovarian stimulation on developmental speed of preimplantation embryo in a mouse model. J Reprod Dev 2024; 70:160-168. [PMID: 38494726 PMCID: PMC11153123 DOI: 10.1262/jrd.2023-089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Ovarian stimulation protocols are widely used to collect oocytes in assisted reproductive technologies (ARTs). Although the influence of ovarian stimulation on embryo quality has been described, this issue remains controversial. Here, we analyzed the influence of ovarian stimulation on developmental speed and chromosome segregation using live cell imaging. Female mice at the proestrus stage were separated by the appearance of the vagina as the non-stimulation (-) group, and other mice were administered pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) as the stimulation (+) groups. The cumulus-oocyte complexes from both groups were inseminated with sperm suspensions from the same male mice. Fertilization rates and developmental capacities were examined, and the developmental speed and frequency of chromosome segregation errors were measured by live-cell imaging using a Histone H2B-mCherry probe. The number of fertilized oocytes obtained was 1.4-fold more frequent in the stimulation (+) group. The developmental rate and chromosome stability did not differ between the groups. Image analysis showed that the mean speed of development in the stimulation (+) group was slightly higher than that in the non-stimulation (-) group. This increase in speed seemed to arise from the slight shortening of the 2- and 4-cell stages and third division lengths and consequent synchronization of cleavage timing in each embryo, not from the emergence of an extremely rapidly developing subpopulation of embryos. In conclusion, ovarian stimulation does not necessarily affect embryo quality but rather increases the chances of obtaining high-quality oocytes in mice.
Collapse
Affiliation(s)
- Mayuko Kurumizaka
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Present: Reproductive Medical Center, Yokohama City University Medical Center, Kanagawa 232-0024, Japan
| | - Tatsuma Yao
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan
- Present: Faculty of Biology-Oriented Science and Technology (BOST), KINDAI University, Wakayama 649-6493, Japan
| | - Mikiko Tokoro
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Aichi 486-0931, Japan
- Present: Faculty of Biology-Oriented Science and Technology (BOST), KINDAI University, Wakayama 649-6493, Japan
| | - Noritaka Fukunaga
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Aichi 486-0931, Japan
| | - Yoshimasa Asada
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Aichi 486-0931, Japan
| | - Kazuo Yamagata
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Present: Faculty of Biology-Oriented Science and Technology (BOST), KINDAI University, Wakayama 649-6493, Japan
| |
Collapse
|
13
|
Zhang D, Ji L, Yang Y, Weng J, Ma Y, Liu L, Ma W. Ceria Nanoparticle Systems Alleviate Degenerative Changes in Mouse Postovulatory Aging Oocytes by Reducing Oxidative Stress and Improving Mitochondrial Functions. ACS NANO 2024; 18:13618-13634. [PMID: 38739841 DOI: 10.1021/acsnano.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Postovulatory aging oocytes usually feature diminished potential for fertilization and poor embryonic development due to enhanced oxidative damage to the subcellular organelles and macromolecules, which stands as a formidable obstacle in assisted reproductive technologies (ART). Here, we developed lipoic acid (LA) and polyethylene glycol (PEG)-modified CeO2 nanoparticles (LA-PEG-CeNPs) with biocompatibility, enzyme-like autocatalytic activity, and free radical scavenging capacity. We further investigated the LA-PEG-CeNPs effect in mouse postovulatory oocytes during in vitro aging. The results showed that LA-PEG-CeNPs dramatically reduced the accumulation of ROS in aging oocytes, improving mitochondrial dysfunction; they also down-regulated the pro-apoptotic activity by rectifying cellular caspase-3, cleaved caspase-3, and Bcl-2 levels. Consistently, this nanoenzyme prominently alleviated the proportion of abnormalities in spindle structure, chromosome alignment, microtubule stability, and filamentous actin (F-actin) distribution in aging oocytes, furthermore decreased oocyte fragmentation, and improved its ability of fertilization and development to blastocyst. Taken together, our finding suggests that LA-PEG-CeNPs can alleviate oxidative stress damage on oocyte quality during postovulatory aging, implying their potential value for clinical practice in assisted reproduction.
Collapse
Affiliation(s)
- Danmei Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Lingcun Ji
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yiran Yang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yanmin Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Tokmakov AA, Teranishi R, Sato KI. Spontaneous Overactivation of Xenopus Frog Eggs Triggers Necrotic Cell Death. Int J Mol Sci 2024; 25:5321. [PMID: 38791359 PMCID: PMC11121189 DOI: 10.3390/ijms25105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The excessive activation of frog eggs, referred to as overactivation, can be initiated by strong oxidative stress, leading to expedited calcium-dependent non-apoptotic cell death. Overactivation also occurs spontaneously, albeit at a low frequency, in natural populations of spawned frog eggs. Currently, the cytological and biochemical events of the spontaneous process have not been characterized. In the present study, we demonstrate that the spontaneous overactivation of Xenopus frog eggs, similarly to oxidative stress- and mechanical stress-induced overactivation, is characterized by the fast and irreversible contraction of the egg's cortical layer, an increase in egg size, the depletion of intracellular ATP, a drastic increase in the intracellular ADP/ATP ratio, and the degradation of M phase-specific cyclin B2. These events manifest in eggs in the absence of caspase activation within one hour of triggering overactivation. Importantly, substantial amounts of ATP and ADP leak from the overactivated eggs, indicating that plasma membrane integrity is compromised in these cells. The rupture of the plasma membrane and acute depletion of intracellular ATP explicitly define necrotic cell death. Finally, we report that egg overactivation can occur in the frog's genital tract. Our data suggest that mechanical stress may be a key factor promoting egg overactivation during oviposition in frogs.
Collapse
Affiliation(s)
- Alexander A. Tokmakov
- Institute of Advanced Technology, Faculty of Biology-Oriented Science and Technology, KinDai University, 930 Nishimitani, Kinokawa City 649-6493, Japan
| | - Ryuga Teranishi
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan;
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan;
| |
Collapse
|
15
|
Liang Z, Lv J, Liang T, Que W, Ji X, Zhang Q, Chen H, Wei L, Li Y. Association Between Anti-Müllerian Hormone and Early Spontaneous Abortion in Assisted Reproduction Treatment: A Case-Control Study Integrated with Biological Evidence. Reprod Sci 2024; 31:1373-1384. [PMID: 38228975 DOI: 10.1007/s43032-023-01442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024]
Abstract
Early spontaneous abortion (ESA) is a common adverse pregnancy outcome mainly attributed to embryo chromosomal abnormalities. However, as a quantitative marker, whether the anti-Müllerian hormone (AMH) can reflect oocyte quality is still controversial. By integrating biological evidence and adjusting many cofounders, this study aimed to clarify the controversies about the association between AMH and ESA caused by embryo aneuploidy during assisted reproductive technology (ART) treatment. We strictly preselected 988 patients receiving first ART treatment for analyzing clinical data, while 55 of them acquired chorionic villi karyotype results. In addition, 373 biopsied embryos from 126 patients receiving preimplantation genetic diagnosis (PGT) were tracked to compare embryo karyotypes. Univariate and multiple factor regressions were applied to analyze the risk factors leading to ESA. As covariates unadjusted, AMH (odds ratio 0.87, 95% CI 0.82-0.93) was the significant variable contributing to ESA. However, AMH played no significant role in the following regression models after age was adjusted. Also, AMH had no significant association with ESA in most age-adjusted subgroups, except in the male factors engaged subgroup. Additionally, compared to the patients with euploid chorionic villi karyotypes, those with aneuploid karyotypes were older and acquired fewer oocytes, yet their AMH levels were not significantly different. Furthermore, the embryo aneuploidy was independent of AMH while associated with maternal age, retrieved oocyte number, and embryo quality. This study suggested that AMH was unassociated with the ESA caused by embryo aneuploidy in ART therapy. As a critical cofounder, age remains the variable closely related to ESA.
Collapse
Affiliation(s)
- Zhenjie Liang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiezhong Lv
- Laboratory of Prenatal Diagnosis, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Senen University, Guangzhou, Guangdong, China
| | - Ting Liang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenqing Que
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaohui Ji
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qingxue Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lina Wei
- Division of Histology and Embryology, International Joint Laboratory for Embryonic, Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, Guangdong, China.
| | - Yi Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Nakagata N, Nakao S, Mikoda N, Yamaga K, Takeo T. Time elapsed between ovulation and insemination determines the quality of fertilized rat oocytes. J Reprod Dev 2024; 70:123-130. [PMID: 38403585 PMCID: PMC11017092 DOI: 10.1262/jrd.2023-067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Genetically modified rats are valuable models in human disease research. We recently developed an improved system for rat sperm cryopreservation and in vitro fertilization (IVF) that facilitates the efficient production and preservation of genetically modified rats. In the IVF procedure performed using frozen-thawed rat sperm, the IVF schedule is fixed to ensure timely hormone administration and oocyte collection. To enhance the flexibility of the IVF schedule, possible periods of postovulated rat oocytes with normal fertility and developmental abilities should be determined. Therefore, in this study, we examined the fertilization and developmental ability of incubated oocytes 1-13 h after oocyte collection at 9:00 AM. The fertilization rate decreased 7 h after oocyte collection, and abnormally fertilized oocytes appeared 10 h after oocyte collection. The developmental rate also decreased 7 h after oocyte collection; however, live pups were obtained from oocytes 12 h after oocyte collection. In summary, ovulated rat oocytes exhibited a high developmental ability after IVF for up to 4 h after oocyte collection.
Collapse
Affiliation(s)
- Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuyuki Mikoda
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Kyudo Co., Ltd., Saga 841-0075, Japan
| | - Katsuma Yamaga
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
17
|
Armijo-Sánchez A, Benítez Castillo N, García-Vidal E, Luna Chadid M, Salvador Ballada C, Valls Ricart G, Torres Pellens V. Treatment With a Patented 3.6:1 Myo-Inositol to D-chiro-Inositol Ratio, Antioxidants, Vitamins and Minerals Food Supplement in Women With a History of Assisted Reproductive Technique (ART) Failures: A Series of Case Reports. CLINICAL MEDICINE INSIGHTS-CASE REPORTS 2024; 17:11795476241242265. [PMID: 38559382 PMCID: PMC10981332 DOI: 10.1177/11795476241242265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Infertility affects 15% of couples in reproductive age worldwide. In women in particular, infertility can be caused by various abnormalities, with polycystic ovary syndrome (PCOS) being the most common. Currently, there are many assisted reproductive techniques (ART) available to combat the burden of infertility. However, positive results are not guaranteed. The administration of inositol has been shown to increase positive reproductive outcomes in women undergoing ART. Here we present a series of clinical cases in which women with a history of infertility and previously failed ART, supplemented with a specific 3.6:1 MYO:DCI ratio, antioxidants, vitamins, and minerals for a period of 1 to 3 months before undergoing in vitro fertilization (IVF). In this series of case reports, we provide preliminary evidence that supplementation with a specific 3.6:1 MYO to DCI ratio, as well as antioxidants, vitamins, and minerals may contribute positively to female fertility in women undergoing IVF, with a history of primary or secondary infertility and previously failed ART.
Collapse
Affiliation(s)
| | - N. Benítez Castillo
- Hospital Universitario Materno Infantil de Canarias, Las Palmas de Gran Canaria, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Wu T, Wu Y, Yan J, Zhang J, Wang S. Microfluidic chip as a promising evaluation method in assisted reproduction: A systematic review. Bioeng Transl Med 2024; 9:e10625. [PMID: 38435817 PMCID: PMC10905557 DOI: 10.1002/btm2.10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The aim of assisted reproductive technology (ART) is to select the high-quality sperm, oocytes, and embryos, and finally achieve a successful pregnancy. However, functional evaluation is hindered by intra- and inter-operator variability. Microfluidic chips emerge as the one of the most powerful tools to analyze biological samples for reduced size, precise control, and flexible extension. Herein, a systematic search was conducted in PubMed, Scopus, Web of Science, ScienceDirect, and IEEE Xplore databases until March 2023. We displayed and prospected all detection strategies based on microfluidics in the ART field. After full-text screening, 71 studies were identified as eligible for inclusion. The percentages of human and mouse studies equaled with 31.5%. The prominent country in terms of publication number was the USA (n = 13). Polydimethylsiloxane (n = 49) and soft lithography (n = 28) were the most commonly used material and fabrication method, respectively. All articles were classified into three types: sperm (n = 38), oocytes (n = 20), and embryos (n = 13). The assessment contents included motility, counting, mechanics, permeability, impedance, secretion, oxygen consumption, and metabolism. Collectively, the microfluidic chip technology facilitates more efficient, accurate, and objective evaluation in ART. It can even be combined with artificial intelligence to assist the daily activities of embryologists. More well-designed clinical studies and affordable integrated microfluidic chips are needed to validate the safety, efficacy, and reproducibility. Trial registration: The protocol was registered in the Open Science Frame REGISTRIES (identification: osf.io/6rv4a).
Collapse
Affiliation(s)
- Tong Wu
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yangyang Wu
- College of Animal Science and TechnologySichuan Agricultural UniversityYa'anSichuanChina
| | - Jinfeng Yan
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
| | - Jinjin Zhang
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of EducationTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Obstetrics and GynecologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
19
|
Raad G, Tanios J, Serdarogullari M, Bazzi M, Mourad Y, Azoury J, Yarkiner Z, Liperis G, Fakih F, Fakih C. Mature oocyte dysmorphisms may be associated with progesterone levels, mitochondrial DNA content, and vitality in luteal granulosa cells. J Assist Reprod Genet 2024; 41:795-813. [PMID: 38363455 PMCID: PMC10957819 DOI: 10.1007/s10815-024-03053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSE To identify whether follicular environment parameters are associated with mature oocyte quality, embryological and clinical outcomes. METHODS This retrospective study examined 303 mature oocytes from 51 infertile women undergoing ICSI cycles between May 2018 and June 2021. Exclusion criteria consisted of advanced maternal age (> 36 years old), premature ovarian failure, obesity in women, or use of frozen gametes. Luteal granulosa cells (LGCs) were analyzed for mitochondrial DNA/genomic (g) DNA ratio and vitality. The relationships between hormone levels in the follicular fluid and oocyte features were assessed. Quantitative morphometric measurements of mature oocytes were assessed, and the association of LGC parameters and oocyte features on live birth rate after single embryo transfer was examined. RESULTS Results indicated an inverse correlation between the mtDNA/gDNA ratio of LGCs and the size of polar body I (PBI). A 4.0% decrease in PBI size was observed with each one-unit increase in the ratio (p = 0.04). Furthermore, a 1% increase in LGC vitality was linked to a 1.3% decrease in fragmented PBI (p = 0.03), and a 1 ng/mL increase in progesterone levels was associated with a 0.1% rise in oocytes with small inclusions (p = 0.015). Associations were drawn among LGC characteristics, perivitelline space (PVS) debris, cytoplasmic inclusions, PBI integrity, and progesterone levels. Certain dysmorphisms in mature oocytes were associated with embryo morphokinetics; however, live birth rates were not associated with follicular parameters and oocyte quality characteristics. CONCLUSION Follicular markers may be associated with mature oocyte quality features.
Collapse
Affiliation(s)
- Georges Raad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
| | | | - Munevver Serdarogullari
- Department of Histology and Embryology, Faculty of Medicine, Cyprus International University, Northern Cyprus Via Mersin 10, Mersin, Turkey
| | - Marwa Bazzi
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Youmna Mourad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Joseph Azoury
- Azoury IVF Clinic, ObGyn and Infertility, Beirut, Lebanon
| | - Zalihe Yarkiner
- Faculty of Arts and Sciences-Department of Basic Sciences and Humanities, Cyprus International University, Northern Cyprus Via Mersin 10, Mersin, Turkey
| | - Georgios Liperis
- Westmead Fertility Centre, Institute of Reproductive Medicine, University of Sydney, Westmead, NSW, Australia.
| | - Fadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Chadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| |
Collapse
|
20
|
Singh AK, Mohanty A, Kumar SL, Kumari A, Beniwal R, Kumar Etikuppam A, Birajdar P, Mohd A, Prasada Rao HBD. Diminished NAD+ levels and activation of retrotransposons promote postovulatory aged oocyte (POAO) death. Cell Death Discov 2024; 10:104. [PMID: 38418811 PMCID: PMC10902361 DOI: 10.1038/s41420-024-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Death is the fate of postovulatory aged or unfertilized oocytes (POAO) in many animals. However, precise molecular mechanisms are yet to be discovered. Here, we demonstrate that increased amounts of reactive oxygen species (ROS), calcium ion (Ca+2) channels, and retrotransposon activity induce apoptosis, which in turn causes POAO death. Notably, suppression of ROS, Ca+2 channels, and retrotransposons delayed POAO death. Further, we found that the histone H4K12 and K16 acetylation increased via downregulation of NAD+ and NAD+ -dependent histone deacetylase SIRT3. Furthermore, adding NMN, sodium pyruvate, or CD38 inhibition delayed the death of postovulatory aged oocytes. Finally, we demonstrate the conservation of retrotransposon-induced DNA damage-dependent POAO death in higher-order vertebrates. Our findings suggest that POAO mortality is caused by cyclic cascade metabolic interactions in which low NAD+ levels increase histone acetylation by inhibiting histone deacetylases, resulting in an increase in retrotransposons, ROS, and Ca+2 channel activity and thus contributing to DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Ajay K Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Department of Ophthalmology, University of Rochester, Rochester, NY, 14620, USA
| | - Aradhana Mohanty
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - S Lava Kumar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Anjali Kumari
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Rohit Beniwal
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Ajith Kumar Etikuppam
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Pravin Birajdar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - Athar Mohd
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
- Graduate studies, Regional Centre for Biotechnology, Faridabad, 121 001, India
| | - H B D Prasada Rao
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India.
| |
Collapse
|
21
|
Liu K, Zhang L, Xu X, Xiao L, Wen J, Zhang H, Zhao S, Qiao D, Bai J, Liu Y. The Antioxidant Salidroside Ameliorates the Quality of Postovulatory Aged Oocyte and Embryo Development in Mice. Antioxidants (Basel) 2024; 13:248. [PMID: 38397846 PMCID: PMC10886307 DOI: 10.3390/antiox13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Postovulatory aging is known to impair the oocyte quality and embryo development due to oxidative stress in many different animal models, which reduces the success rate or pregnancy rate in human assisted reproductive technology (ART) and livestock timed artificial insemination (TAI), respectively. Salidroside (SAL), a phenylpropanoid glycoside, has been shown to exert antioxidant and antitumor effects. This study aimed to investigate whether SAL supplementation could delay the postovulatory oocyte aging process by alleviating oxidative stress. Here, we show that SAL supplementation decreases the malformation rate and recovers mitochondrial dysfunction including mitochondrial distribution, mitochondrial membrane potential (ΔΨ) and ATP content in aged oocytes. In addition, SAL treatment alleviates postovulatory aging-caused oxidative stress such as higher reactive oxygen species (ROS) level, lower glutathione (GSH) content and a reduced expression of antioxidant-related genes. Moreover, the cytoplasmic calcium ([Ca2+]c) and mitochondrial calcium ([Ca2+]mt) of SAL-treated oocytes return to normal levels. Notably, SAL suppresses the aging-induced DNA damage, early apoptosis and improves spindle assembly in aged oocytes, ultimately elevating the embryo developmental rates and embryo quality. Finally, the RNA-seq and confirmatory experience showed that SAL promotes protective autophagy in aged oocytes by activating the MAPK pathway. Taken together, our research suggests that supplementing SAL is an effective and feasible method for preventing postovulatory aging and preserving the oocyte quality, which potentially contributes to improving the successful rate of ART or TAI.
Collapse
Affiliation(s)
- Kexiong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Luyao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China;
| | - Xiaoling Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Linli Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Junhui Wen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Hanbing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Shuxin Zhao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Dongliang Qiao
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Jiahua Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (K.L.)
| |
Collapse
|
22
|
Fluks M, Collier R, Walewska A, Bruce AW, Ajduk A. How great thou ART: biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies. Front Cell Dev Biol 2024; 12:1342905. [PMID: 38425501 PMCID: PMC10902081 DOI: 10.3389/fcell.2024.1342905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Assisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development. Hence, a comprehensive grasp of the biomechanical attributes characterizing healthy oocytes and embryos is essential for selecting those with higher developmental potential. Various noninvasive techniques have emerged as valuable tools for assessing biomechanical properties without disturbing the oocyte or embryo physiological state, including morphokinetics, analysis of cytoplasmic movement velocity, or quantification of cortical tension and elasticity using microaspiration. By shedding light on the cytoskeletal processes involved in chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion, underlying oogenesis, and embryonic development, this review explores the significance of embryo biomechanics in ART and its potential implications for improving clinical IVF outcomes, offering valuable insights and research directions to enhance oocyte and embryo selection procedures.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Rebecca Collier
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Agnieszka Walewska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alexander W. Bruce
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Brown AM, McCarthy HE. The Effect of CoQ10 supplementation on ART treatment and oocyte quality in older women. HUM FERTIL 2023; 26:1544-1552. [PMID: 37102567 DOI: 10.1080/14647273.2023.2194554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/17/2023] [Indexed: 04/28/2023]
Abstract
A significant problem associated with assisted reproductive technologies (ART) is recurrent treatment failure which can be attributed to the age-associated decline in oocyte quality. Co-enzyme Q10 (CoQ10) is an antioxidant and essential component of the mitochondrial electron transport chain. It is reported that de novo CoQ10 production declines with ageing and coincides with age-related decline in fertility, leading to CoQ10 supplementation being advocated to enhance response to ovarian stimulation and improve oocyte quality. CoQ10 supplementation was found to improve fertilization rates, embryo maturation rates and embryo quality when used before and during in vitro fertilization (IVF) and in vitro maturation (IVM) treatment in women aged 31 and over. Regarding oocyte quality, CoQ10 was able to reduce high rates of chromosomal abnormalities and oocyte fragmentation, as well as improve mitochondrial function. Proposed mechanisms of CoQ10 function include restoration of reactive oxygen species imbalance, preventing DNA damage and oocyte apoptosis, as well as restoration of Krebs cycle downregulation from ageing. In this literature review, we provide an overview of the use of CoQ10 in improving the success of IVF and IVM in older women, and additionally assess the impact of CoQ10 on oocyte quality and discuss potential mechanisms of action by CoQ10 on the oocyte.
Collapse
Affiliation(s)
- Alexandria M Brown
- Cardiff University School of Biosciences, Cardiff University, Cardiff, UK
| | - Helen E McCarthy
- Cardiff University School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
24
|
Li C, Zhu L, Liu JX, Guo J, Xie J, Shi CM, Sun QY, Huang GN, Li JY. Cordycepin delays postovulatory aging of oocytes through inhibition of maternal mRNAs degradation via DCP1A polyadenylation suppression. Cell Mol Life Sci 2023; 80:372. [PMID: 38001238 PMCID: PMC10674002 DOI: 10.1007/s00018-023-05030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Postovulatory aging leads to the decline in oocyte quality and subsequent impairment of embryonic development, thereby reducing the success rate of assisted reproductive technology (ART). Potential preventative strategies preventing oocytes from aging and the associated underlying mechanisms warrant investigation. In this study, we identified that cordycepin, a natural nucleoside analogue, promoted the quality of oocytes aging in vitro, as indicated by reduced oocyte fragmentation, improved spindle/chromosomes morphology and mitochondrial function, as well as increased embryonic developmental competence. Proteomic and RNA sequencing analyses revealed that cordycepin inhibited the degradation of several crucial maternal proteins and mRNAs caused by aging. Strikingly, cordycepin was found to suppress the elevation of DCP1A protein by inhibiting polyadenylation during postovulatory aging, consequently impeding the decapping of maternal mRNAs. In humans, the increased degradation of DCP1A and total mRNA during postovulatory aging was also inhibited by cordycepin. Collectively, our findings demonstrate that cordycepin prevents postovulatory aging of mammalian oocytes by inhibition of maternal mRNAs degradation via suppressing polyadenylation of DCP1A mRNA, thereby promoting oocyte developmental competence.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jun-Xia Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chun-Meng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guo-Ning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Jing-Yu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
25
|
Yin YJ, Zhang YH, Wang Y, Jiang H, Zhang JB, Liang S, Yuan B. Ferulic acid ameliorates the quality of in vitro-aged bovine oocytes by suppressing oxidative stress and apoptosis. Aging (Albany NY) 2023; 15:12497-12512. [PMID: 37944258 PMCID: PMC10683616 DOI: 10.18632/aging.205193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
Ferulic acid (FA) is a well-known natural antioxidant that scavenges oxygen free radicals and alleviates oxidative stress. This study investigated the chemopreventive potential of FA against bovine oocyte quality decline during in vitro aging. The results showed that 5 μM FA supplementation decreased the abnormality rate of in vitro-aged bovine oocytes. In addition, FA supplementation effectively improved antioxidant capacity by removing excessive ROS and maintaining intracellular GSH levels and antioxidant enzyme activity. The mitochondrial activity, mitochondrial membrane potential and intracellular ATP levels in aged bovine oocytes were obviously enhanced by FA supplementation. Furthermore, FA supplementation reduced in vitro aging-induced DNA damage and maintained DNA stability in bovine oocytes. Moreover, sperm binding assay showed the number of sperm that bound to the zona pellucida on aged bovine oocytes was significantly higher in the FA supplemented group than in the Aged group. Therefore, FA is beneficial for maintaining in vitro-aged bovine oocyte quality and could become a potential antioxidant for preventing bovine oocyte in vitro aging during in vitro maturation.
Collapse
Affiliation(s)
- Yi-Jing Yin
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yong-Hong Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Yu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Hao Jiang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| | - Bao Yuan
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
26
|
Zhang Y, Bai J, Cui Z, Li Y, Gao Q, Miao Y, Xiong B. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging. NATURE AGING 2023; 3:1372-1386. [PMID: 37845508 DOI: 10.1038/s43587-023-00498-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/30/2023] [Indexed: 10/18/2023]
Abstract
Advanced age is a primary risk factor for female infertility due to reduced ovarian reserve and declining oocyte quality. However, as an important contributing factor, the role of metabolic regulation during reproductive aging is poorly understood. Here, we applied untargeted metabolomics to identify spermidine as a critical metabolite in ovaries to protect oocytes against aging. In particular, we found that the spermidine level was reduced in ovaries of aged mice and that supplementation with spermidine promoted follicle development, oocyte maturation, early embryonic development and female fertility of aged mice. By microtranscriptomic analysis, we further discovered that spermidine-induced recovery of oocyte quality was mediated by enhancement of mitophagy activity and mitochondrial function in aged mice, and this mechanism of action was conserved in porcine oocytes under oxidative stress. Altogether, our findings suggest that spermidine supplementation could represent a therapeutic strategy to ameliorate oocyte quality and reproductive outcome in cis-gender women and other persons trying to conceive at an advanced age. Future work is needed to test whether this approach can be safely and effectively translated to humans.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jie Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qian Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
27
|
Li L, Han Q, Chen Y, Zhang M, Wang L, An X, Zhang S, Zhai Y, Dai X, Tang B, Li Z, Xie G. β-nicotinamide mononucleotide rescues the quality of aged oocyte and improves subsequent embryo development in pigs. PLoS One 2023; 18:e0291640. [PMID: 37796824 PMCID: PMC10553265 DOI: 10.1371/journal.pone.0291640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/02/2023] [Indexed: 10/07/2023] Open
Abstract
Oocyte senescence alters the shape and function, thereby weakening the fertilization potential. Nicotinamide mononucleotide (NMN) reverses age-related dysfunctions in various organs. Studies had shown long-term administration of NMN reduced the physiological decline associated in aged mice and reversed the aging of the ovaries. However, the protective effect of NMN on aged porcine oocytes is still unclear. In this study, we investigated the effects of NMN on aging porcine oocytes and subsequent embryonic development. We established a model of senescence of porcine oocytes after ovulation by extending the culture time in vitro. NMN supplementation significantly reduced reactive oxygen species (ROS) levels in senescence oocytes and increased the mRNA levels of antioxidant genes SOD1 and Cat. The mitochondrial membrane potential of aged oocytes treated with NMN was increased compared with that of untreated oocytes. In addition, the mRNA level of apoptosis-related gene Bax was significantly decreased in senescence oocytes treated with NMN, while the mRNA level of anti-apoptosis-related gene BCL-2 was significantly increased. Furthermore, NMN supplementation enhanced the subsequent development ability of senescent oocytes during in vitro aging. Compared with untreated senescent oocytes, the blastocyst formation rate and pluripotent genes of senescent oocytes treated with NMN were significantly increased. Taken together, these results suggest that NMN is beneficial for delaying the aging process in porcine oocytes.
Collapse
Affiliation(s)
- Leyi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Qinghe Han
- Radiology Department, The second hospital of Jilin University, Changchun, 130041, P. R. China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Meng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Yanhui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Bo Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, 130021, Jilin, China
| | - Guanghong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
28
|
Wang M, Sun Y, Yuan D, Yue S, Yang Z. Follicular fluid derived exosomal miR-4449 regulates cell proliferation and oxidative stress by targeting KEAP1 in human granulosa cell lines KGN and COV434. Exp Cell Res 2023; 430:113735. [PMID: 37517590 DOI: 10.1016/j.yexcr.2023.113735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) is characterized by ovulatory dysfunction, hyperandrogenism, and polycystic ovary morphology, affecting more and more women of reproductive age. Our study aimed to explore the molecular mechanism and effect of exosomal miR-4449 on granulosa cells (GCs). Two immortalized human ovarian granulosa cells (KGN and COV434 cells) were used for in vitro functional studies. Our study found that follicular fluid (FF) derived exosomal miR-4449 was significantly decreased in women with PCOS compared with the control patients. And exosomal miR-4449 could alleviate GCs oxidative stress (OS) and promote GCs proliferation, while the opposite trend was observed after inhibiting the expression of miR-4449. In addition, we demonstrated that Kelch-like ECH-associated protein 1(KEAP1) was a direct target of miR-4449 through dual-luciferase reporter assay, and the expression patterns of KEAP1 and miR-4449 in PCOS FF-derived exosomes were exactly opposite. In addition, KEAP1/NRF2 signaling pathway may play an important role in GCs proliferation and OS. Our results demonstrated that the decreased FF-derived exosomal miR-4449 expression in PCOS might aggravate the OS of GCs and inhibit GCs proliferation via KEAP1/NRF2 signaling pathway. Exosomal miR-4449 might be a potential biomarker for the diagnosis of PCOS. Our study contributes to a new understanding of the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yixuan Sun
- Department of Gynecology and Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Dong Yuan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Song Yue
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhu Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
29
|
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: A molecular cell perspective. WIREs Mech Dis 2023; 15:e1613. [PMID: 37248206 DOI: 10.1002/wsbm.1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
30
|
Khan SA, Reed L, Schoolcraft WB, Yuan Y, Krisher RL. Control of mitochondrial integrity influences oocyte quality during reproductive aging. Mol Hum Reprod 2023; 29:gaad028. [PMID: 37594790 DOI: 10.1093/molehr/gaad028] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
Reduced quality in oocytes from women of advanced maternal age (AMA) is associated with dysfunctional mitochondria. The objective of this study was to investigate the mechanisms controlling mitochondrial quality during maternal aging in mouse and human oocytes. We first evaluated the expression of proteins involved in the mitochondrial unfolded protein response (UPRmt) and mitophagy in in vivo matured metaphase II (MII) oocytes collected from young and aged mice. Expression of UPRmt proteins, HSPD1 and LONP1, and mitophagy proteins, total-PRKN and phosphorylated-PRKN, was significantly decreased in aged compared to young oocytes. Treatment of aged oocytes during in vitro maturation with the mitochondrially targeted antioxidant mitoquinone (MQ) specifically restored total-PRKN and phosphorylated-PRKN expression to levels seen in young oocytes. We next investigated whether maturing young oocytes under a high-oxygen environment would mimic the effects observed in oocytes from aged females. Phosphorylated-PRKN expression in oxidatively stressed young oocytes was reduced compared to that in oocytes matured under normal oxygen levels, and the mitochondrial DNA (mtDNA) copy number was increased. Treating oxidatively challenged young oocytes with MQ restored the phosphorylated-PRKN expression and mtDNA copy numbers. Treatment of oxidatively challenged oocytes with MQ also increased the co-localization of mitochondria and lysosomes, suggesting increased mitophagy. These data correlated with the developmental potential of the oocytes, as blastocyst development and hatching of oxidatively stressed oocytes were reduced, while treatment with MQ resulted in a significant increase in blastocyst development and hatching, and in the percentage of inner cell mass. Consistent with our results in mice, MII oocytes from women of AMA exhibited a significant decrease in phosphorylated-PKRN and total-PRKN compared to those of young women. Our findings suggest that the protein machinery to control the health of the mitochondria via UPRmt and mitophagy may be compromised in oocytes from aged females, which may result in inefficient clearance of dysfunctional mitochondria and reduced oocyte quality.
Collapse
Affiliation(s)
- Shaihla A Khan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Genus plc, DeForest, WI, USA
| | - Laura Reed
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - Rebecca L Krisher
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Genus plc, DeForest, WI, USA
| |
Collapse
|
31
|
Wasserzug-Pash P, Klutstein M. Epigenetic aging in oocytes. Aging (Albany NY) 2023; 15:7334-7335. [PMID: 37552096 PMCID: PMC10457075 DOI: 10.18632/aging.204976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/24/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Peera Wasserzug-Pash
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
32
|
Ye M, Shan Y, Lu B, Luo H, Li B, Zhang Y, Wang Z, Guo Y, Ouyang L, Gu J, Xiong Z, Zhang T. Creating a semi-opened micro-cavity ovary through sacrificial microspheres as an in vitro model for discovering the potential effect of ovarian toxic agents. Bioact Mater 2023; 26:216-230. [PMID: 36936809 PMCID: PMC10017366 DOI: 10.1016/j.bioactmat.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023] Open
Abstract
The bio-engineered ovary is an essential technology for treating female infertility. Especially the development of relevant in vitro models could be a critical step in a drug study. Herein, we develop a semi-opened culturing system (SOCS) strategy that maintains a 3D structure of follicles during the culture. Based on the SOCS, we further developed micro-cavity ovary (MCO) with mouse follicles by the microsphere-templated technique, where sacrificial gelatin microspheres were mixed with photo-crosslinkable gelatin methacryloyl (GelMA) to engineer a micro-cavity niche for follicle growth. The semi-opened MCO could support the follicle growing to the antral stage, secreting hormones, and ovulating cumulus-oocyte complex out of the MCO without extra manipulation. The MCO-ovulated oocyte exhibits a highly similar transcriptome to the in vivo counterpart (correlation of 0.97) and can be fertilized. Moreover, we found that a high ROS level could affect the cumulus expansion, which may result in anovulation disorder. The damage could be rescued by melatonin, but the end of cumulus expansion was 3h earlier than anticipation, validating that MCO has the potential for investigating ovarian toxic agents in vitro. We provide a novel approach for building an in vitro ovarian model to recapitulate ovarian functions and test chemical toxicity, suggesting it has the potential for clinical research in the future.
Collapse
Affiliation(s)
- Min Ye
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yiran Shan
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Bingchuan Lu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Hao Luo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Binhan Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Zixuan Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Yuzhi Guo
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Liliang Ouyang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
- Corresponding author. Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China
- Biomanufacturing and Engineering Living Systems, Innovation International Talents Base (111 Base), Beijing, 100084, China
- Corresponding author. Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Wang S, Wu X, Wang H, Song S, Hu Y, Guo Y, Chang S, Cheng Y, Zeng S. Role of FBXL5 in redox homeostasis and spindle assembly during oocyte maturation in mice. FASEB J 2023; 37:e23080. [PMID: 37462473 DOI: 10.1096/fj.202300244rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
As an E3 ubiquitin ligase, F-box and leucine-rich repeat protein 5 (FBXL5) participates in diverse biologic processes. However, the role of Fbxl5 in mouse oocyte meiotic maturation has not yet been fully elucidated. The present study revealed that mouse oocytes depleted of Fbxl5 were unable to complete meiosis, as Fbxl5 silencing led to oocyte meiotic failure with reduced rates of GVBD and polar body extrusion. In addition, Fbxl5 depletion induced aberrant mitochondrial dynamics as we noted the overproduction of reactive oxygen species (ROS) and the accumulation of phosphorylated γH2AX with Fbxl5 knockdown. We also found that Fbxl5-KD led to the abnormal accumulation of CITED2 proteins in mouse oocytes. Our in vitro ubiquitination assay showed that FBXL5 interacted with CITED2 and that it mediated the degradation of CITED2 protein through the ubiquitination-proteasome pathway. Collectively, our data revealed critical functions of FBXL5 in redox hemostasis and spindle assembly during mouse oocyte maturation.
Collapse
Affiliation(s)
- Shiwei Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Han Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Song
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuling Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siyu Chang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuanweilu Cheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Qu J, Luo Y, Qin L, Guo J, Zhu L, Li C, Xie J, Shi C, Huang G, Li J. Near-infrared fluorophore IR-61 delays postovulatory aging of mouse oocytes through suppressing oxidative stress mediated by mitochondrial protection. FASEB J 2023; 37:e23045. [PMID: 37342892 DOI: 10.1096/fj.202300066rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Postovulatory aging can trigger deterioration of oocyte quality and subsequent embryonic development, and thus reduce the success rates of assisted reproductive technology (ART). The molecular mechanisms underlying postovulatory aging, and preventative strategies, remain to be explored. The near-infrared fluorophore IR-61, a novel heptamethine cyanine dye, has the potential for mitochondrial targeting and cell protection. In this study, we found that IR-61 accumulated in oocyte mitochondria and reduced the postovulatory aging-induced decline in mitochondrial function, including mitochondrial distribution, membrane potential, mtDNA number, ATP levels, and mitochondrial ultrastructure. In addition, IR-61 rescued postovulatory aging-caused oocyte fragmentation, defects in spindle structure, and embryonic developmental potential. RNA sequencing analysis indicated that the postovulatory aging-induced oxidative stress pathway might be inhibited by IR-61. We then confirmed that IR-61 decreased the levels of reactive oxygen species and MitoSOX, and increased GSH content in aged oocytes. Collectively, the results indicate that IR-61 may prevent postovulatory aging by rescuing oocyte quality, promoting successful rate in ART procedure.
Collapse
Affiliation(s)
- Jiadan Qu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yunyao Luo
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lifeng Qin
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
35
|
Barragán M, Cornet-Bartolomé D, Molina N, Vassena R. The expression levels of NOS2, HMOX1, and VEGFC in cumulus cells are markers of oocyte maturation and fertilization rate. Mol Reprod Dev 2023; 90:369-377. [PMID: 37486100 DOI: 10.1002/mrd.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/30/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Throughout the reproductive life of women, cumulus cells (CC) protect the dormant oocyte from damage, act as sensors of the follicular microenvironment, and act as a gatekeeper for oocyte developmental potential. One such mechanism relies on the hypoxia-tolerance response, which, with age, decreases systematically, including in the ovary. We aimed to evaluate the association between gene expression related to hypoxia and aging in CC and reproductive results in in vitro fertilization cycles. We recruited 94 women undergoing controlled ovarian stimulation. Total RNA was extracted from pooled CCs collected after oocyte pick-up (OPU) and reverse-transcribed to complementary DNA using random hexamers to test 14 genes related to hypoxia response via HIF1α activation, oxidative stress, and angiogenic responses. The expression of CLU, NOS2, and TXNIP had a positive correlation with age (rs = 0.25, rs = 0.24, and rs = 0.35, respectively). Additionally, NOS2 and HMOX1 expression correlated positively with the retrieval of immature oocytes (rs = 0.22 and rs = 0.40, respectively). Moreover, VEGFC levels decreased overall with increasing fertilization rate, independently of age (rs = -0.29). We found that the fertilization potential of a cohort of oocytes is related to the ability of CC to respond to oxidative stress and hypoxia with age, pointing at NOS2, HMOX1, and VEGFC expression as markers for oocyte maturation and fertilization success.
Collapse
Affiliation(s)
- Montserrat Barragán
- EUGIN Group, Research and Development, Parc Científic de Barcelona, Barcelona, Spain
| | - David Cornet-Bartolomé
- EUGIN Group, Research and Development, Parc Científic de Barcelona, Barcelona, Spain
- Department of Genetics, Microbiology and Statistic, CIBERER, IBUB, IRSJD, Universitat de Barcelona, Barcelona, Spain
| | - Natalia Molina
- EUGIN Group, Research and Development, Parc Científic de Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rita Vassena
- EUGIN Group, Research and Development, Parc Científic de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Bora G, Önel T, Yıldırım E, Yaba A. Circadian regulation of mTORC1 signaling via Per2 dependent mechanism disrupts folliculogenesis and oocyte maturation in female mice. J Mol Histol 2023:10.1007/s10735-023-10126-9. [PMID: 37162693 DOI: 10.1007/s10735-023-10126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
mTOR (mammalian target of Rapamycin) is an important signaling pathway involved in several crucial ovarian functions including folliculogenesis and oocyte maturation. The circadian rhythm regulates multiple physiological processes and PER2 is one of the core circadian rhythm components. mTOR is regulated by the circadian clock and in turn, the rhythmic mTOR activities strengthen the clock function. Our current study aims to investigate a possible interconnection between the circadian clock and the mTORC1 signaling pathway in folliculogenesis and oocyte maturation. Here we demonstrate that the circadian system regulates mTORC1 signaling via Per2 dependent mechanism in the mouse ovary. To investigate the effect of constant light on ovarian and oocyte morphology, animals were housed 12:12 h L:D group in standard lightening conditions and the 12:12 h L:L group in constant light for one week. Food intake and body weight changes were measured. Ovarian morphology, follicle counting, and oocyte aging were evaluated. Afterward, western blot for mTOR, p-mTOR, p70S6K, p-p70S6K, PER2, and Caspase-3 protein levels was performed. The study demonstrated that circadian rhythm disruption caused an alteration in their food intake and decrease in primordial follicle numbers and an increase in the number of atretic follicles. It caused an increase in oxidative stress and a decrease in ZP3 expression in oocytes. Decreased protein levels of mTOR, p-mTOR, p70S6K, and PER2 were shown. The results showed that the circadian clock regulates mTORC1 through PER2 dependent mechanism and that decreased mTORC1 activity can contribute to premature aging of mouse ovary. In conclusion, these results suggest that the circadian clock may control ovarian aging by regulating mTOR signaling pathway through Per2 expression.
Collapse
Affiliation(s)
- Gizem Bora
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, 34755, İstanbul, Turkey
| | - Tuğçe Önel
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, 34755, İstanbul, Turkey
| | - Ecem Yıldırım
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, 34755, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, 34755, İstanbul, Turkey.
| |
Collapse
|
37
|
Wang H, Xu J, Li H, Chen W, Zeng X, Sun Y, Yang Q. Alpha-ketoglutarate supplementation ameliorates ovarian reserve and oocyte quality decline with aging in mice. Mol Cell Endocrinol 2023; 571:111935. [PMID: 37098377 DOI: 10.1016/j.mce.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023]
Abstract
Assisted reproductive technology is widely accepted as an effective treatment to improve female fertility, but the decline of aging oocyte quality remains an important factor in the decrease of female fecundity. However, the effective strategies for improving oocyte aging are still not well understood. In the study, we demonstrated that ROS content and abnormal spindle proportion were increased and mitochondrial membrane potential was decreased in aging oocytes. However, supplementation of α-ketoglutarate (α-KG), an immediate metabolite in the tricarboxylic acid cycle (TCA), for 4 months to aging mice, significantly increased the ovarian reserve showed by more follicle numbers observed. In addition, the oocyte quality was significantly improved, as demonstrated by reduced fragmentation rate and decreased reactive oxygen species (ROS) levels, in addition to a lower rate of abnormal spindle assembly, thereby improving the mitochondrial membrane potential. Consistent with the in vivo data, α-KG administration also improved the post-ovulated aging oocyte quality and early embryonic development by improving mitochondrial functions and reducing ROS accumulation and abnormal spindle assembly. Our data revealed that α-KG supplementation might be an effective strategy to improve the quality of aging oocytes in vivo or in vitro.
Collapse
Affiliation(s)
- Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianmin Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Province Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
38
|
Akera T. Tubulin post-translational modifications in meiosis. Semin Cell Dev Biol 2023; 137:38-45. [PMID: 34836784 PMCID: PMC9124733 DOI: 10.1016/j.semcdb.2021.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022]
Abstract
Haploid gametes are produced from diploid parents through meiosis, a process inherent to all sexually reproducing eukaryotes. Faithful chromosome segregation in meiosis is essential for reproductive success, although it is less clear how the meiotic spindle achieves this compared to the mitotic spindle. It is becoming increasingly clear that tubulin post-translational modifications (PTMs) play critical roles in regulating microtubule functions in many biological processes, and meiosis is no exception. Here, I review recent advances in the understanding of tubulin PTMs in meiotic spindles, especially focusing on their roles in spindle integrity, oocyte aging, and non-Mendelian transmission.
Collapse
Affiliation(s)
- Takashi Akera
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda 20892, MD, USA.
| |
Collapse
|
39
|
Palay P, Fathi D, Fathi R. Oocyte quality evaluation: a review of engineering approaches toward clinical challenges. Biol Reprod 2023; 108:393-407. [PMID: 36495197 DOI: 10.1093/biolre/ioac219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Although assisted reproductive technology has been very successful for the treatment of infertility, its steps are still dependent on direct human opinion. An important step of assisted reproductive treatments in lab for women is choosing an oocyte that has a better quality. This step would predict which oocyte has developmental competence leading to healthy baby. Observation of the oocyte morphological quality indicators under microscope by an embryologist is the most common evaluation method of oocyte quality. Such subjective method which relies on embryologist's experience may vary and leads to misdiagnosis. An alternative solution to eliminate human misjudging in traditional methods and overcome the limitations of them is always using engineering-based procedure. In this review article, we deeply study and categorize engineering-based methods applied for the evaluation of oocyte quality. Then, the challenges in laboratories and clinics settings move forward with translational medicine perspective in mind for all those methods which had been studied were discussed. Finally, a standardized process was presented, which may help improving and focusing the research in this field. Moreover, effective suggestion techniques were introduced that are expected they would be complementary methods to accelerate future researches. The aim of this review was to create a new prospect with the engineering approaches to evaluate oocyte quality and we hope this would help infertile couples to get a baby.
Collapse
Affiliation(s)
- Peyman Palay
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Davood Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
40
|
Zhang YY, Yang W, Zhang Y, Hu Z, Chen Y, Ma Y, Yang A, Shi Z, Zhou H, Ren P, Shi L, Jin J, Rong Y, Tong X, Zhang YL, Zhang S. HucMSC-EVs Facilitate In Vitro Development of Maternally Aged Preantral Follicles and Oocytes. Stem Cell Rev Rep 2023:10.1007/s12015-022-10495-w. [PMID: 36862330 PMCID: PMC10366269 DOI: 10.1007/s12015-022-10495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 03/03/2023]
Abstract
Follicle developmental capacity and oocyte quality decline with advanced maternal age. Extracellular vesicles from human umbilical cord mesenchymal stem cells (HucMSC-EVs) act as a potential therapeutic product in the treatment of age-related ovarian dysfunction. In vitro culture (IVC) of preantral follicles is a useful method for understanding the mechanism of follicle development and is a promising means for improving female fertility. However, whether HucMSC-EVs have beneficial effects on aged follicle development during IVC has not yet been reported. Our research demonstrated that follicular development with single-addition withdrawal of HucMSC-EVs was better than that with continuous treatment with HucMSC-EVs. HucMSC-EVs facilitated the survival and growth of follicles, promoted the proliferation of granulosa cells (GCs), and improved the steroid hormone secretion of GCs during IVC of aged follicles. Both GCs and oocytes could uptake HucMSC-EVs. Moreover, we observed elevated cellular transcription in GCs and oocytes after treatment with HucMSC-EVs. The RNA sequencing (RNA-seq) results further validated that the differentially expressed genes are related to the promotion of GC proliferation, cell communication, and oocyte spindle organization. Additionally, the aged oocytes displayed a higher maturation rate, presented less aberrant spindle morphology, and expressed a higher level of the antioxidant protein Sirtuin 1 (SIRT1) after treatment with HucMSC-EVs. Our findings suggested that HucMSC-EVs can improve the growth and quality of aged follicles and oocytes in vitro through the regulation of gene transcription, which provides evidence for HucMSC-EVs as potential therapeutic reagents to restore female fertility with advanced age.
Collapse
Affiliation(s)
- Ying-Yi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Zhanhong Hu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yingyan Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Anran Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yan Rong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
41
|
Feitosa WB, Morris PL. Post-ovulatory aging is associated with altered patterns for small ubiquitin-like modifier (SUMO) proteins and SUMO-specific proteases. FASEB J 2023; 37:e22816. [PMID: 36826436 DOI: 10.1096/fj.202200622r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Mammalian oocytes are ovulated arrested at metaphase of the second meiotic division. If they are not fertilized within a short period, the oocyte undergoes several progressive morphological, structural, and molecular changes during a process called oocyte aging. Herein, we focused on those functional events associated with proper cytoskeleton organization and those that correlate with spindle displacement and chromosome misalignment or scatter. Post-translational modifications by Small Ubiquitin-like Modifier (SUMO) proteins are involved in spindle organization and here we demonstrate that the SUMO pathway is involved in spindle morphology changes and chromosome movements during oocyte aging. SUMO-2/3 as well as the SUMO-specific proteases SENP-2 localization are affected by postovulatory aging in vitro. Consistent with these findings, UBC9 decreases during oocyte aging while differential ubiquitination patterns also correlate with in vitro oocyte aging. These results are consistent with postovulatory aging-related alterations in the posttranslational modifications of the spindle apparatus by SUMO and its SENP proteases. These findings are suggestive that such age-related changes in SUMOylation and the deSUMOylation of key target proteins in the spindle apparatus and kinetochore may be involved with spindle and chromosome alignment defects during mammalian oocyte postovulatory aging. Such findings may have implications for ART-related human oocyte aging in vitro regarding the activities of the SUMO pathway and fertilization success.
Collapse
Affiliation(s)
| | - Patricia L Morris
- Center for Biomedical Research, Population Council, New York, New York, USA.,The Rockefeller University, New York, New York, USA
| |
Collapse
|
42
|
Wen X, Yang Q, Sun D, Jiang ZY, Wang T, Liu HR, Han Z, Wang L, Liang CG. Cumulus Cells Accelerate Postovulatory Oocyte Aging through IL1-IL1R1 Interaction in Mice. Int J Mol Sci 2023; 24:ijms24043530. [PMID: 36834943 PMCID: PMC9959314 DOI: 10.3390/ijms24043530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The oocytes of female mammals will undergo aging after ovulation, also known as postovulatory oocyte aging (POA). Until now, the mechanisms of POA have not been fully understood. Although studies have shown that cumulus cells accelerate POA over time, the exact relationship between the two is still unclear. In the study, by employing the methods of mouse cumulus cells and oocytes transcriptome sequencing and experimental verification, we revealed the unique characteristics of cumulus cells and oocytes through ligand-receptor interactions. The results indicate that cumulus cells activated NF-κB signaling in oocytes through the IL1-IL1R1 interaction. Furthermore, it promoted mitochondrial dysfunction, excessive ROS accumulation, and increased early apoptosis, ultimately leading to a decline in the oocyte quality and the appearance of POA. Our results indicate that cumulus cells have a role in accelerating POA, and this result lays a foundation for an in-depth understanding of the molecular mechanism of POA. Moreover, it provides clues for exploring the relationship between cumulus cells and oocytes.
Collapse
|
43
|
Gao L, Li S, Yue Y, Long G. Maternal age at childbirth and the risk of attention-deficit/hyperactivity disorder and learning disability in offspring. Front Public Health 2023; 11:923133. [PMID: 36817892 PMCID: PMC9931903 DOI: 10.3389/fpubh.2023.923133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background Studies have shown that young maternal age at childbirth can increase the risk of attention-deficit/hyperactivity disorder (ADHD) in offspring, but a study of the U.S. population has not been reported. Moreover, there is no reported research on young and advanced maternal age at childbirth and whether it can contribute to the risk of learning disability (LD) in offspring. Methods This study evaluated the association between young and advanced maternal age at childbirth and offspring risk of ADHD and LD in the U.S. population. Using data from 8,098 participants included in the National Health and Nutrition Examination Survey (NHANES) conducted in 1999-2004, we analyzed the association between maternal age at childbirth and ADHD and LD risk in offspring. Odds ratios (ORs) and 95% confidence intervals (CIs) for maternal age at childbirth in association with ADHD and LD risk in offspring were estimated using multivariate logistic regression models after adjustment for age, sex, race, body mass index (BMI), poverty income ratio, smoking status during pregnancy, and NHANES cycle. Restricted cubic spline (RCS) models were used to evaluate potential non-linear relationships. Sensitivity analyses were performed to ensure the reliability of the results. Results Among all participants, the offspring of subjects with a maternal age at childbirth of 18-24 years had an increased risk of ADHD (OR = 1.34, 95% CI: 1.01, 1.79) and LD (OR = 1.36, 95% CI: 1.06, 1.79) or either ADHD or LD (OR = 1.48, 95% CI: 1.20, 1.81). Additionally, compared with subjects with a maternal age at childbirth of 25-29 years, subjects with a maternal age at childbirth of 35-39 years had lower odds of having offspring with ADHD (OR = 0.60, 95% CI: 0.36, 1.00) and higher odds of having offspring with LD (OR = 1.34, 95% CI: 1.01, 1.78). The relationship between maternal age at childbirth and LD risk presented a U-shaped curve. Conclusions These results provide epidemiological evidence showing that young and advanced maternal age at childbirth are associated with ADHD and LD risk.
Collapse
|
44
|
Azari-Dolatabad N, Benedetti C, Velez DA, Montoro AF, Sadeghi H, Residiwati G, Leroy JLMR, Van Soom A, Pascottini OB. Oocyte developmental capacity is influenced by intrinsic ovarian factors in a bovine model for individual embryo production. Anim Reprod Sci 2023; 249:107185. [PMID: 36610102 DOI: 10.1016/j.anireprosci.2022.107185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The ovary and its hormones may have major effects on the in vitro developmental capacity of the oocytes it contains. We related intrinsic ovarian factors namely the presence of corpus luteum (CL) and/or dominant follicle (>8 mm) and the follicular count to cumulus expansion (CE), embryo development, and blastocyst quality in a bovine model. Cumulus-oocyte-complexes (COCs) were aspirated from follicles between 4 and 8 mm in diameter. In vitro embryo production was performed in a fully individual production system. The follicular fluid from which COCs were collected was pooled (per ovary) to evaluate the estrogen, progesterone, and insulin-like growth factor-1 (IGF-1) concentrations. Cumulus oocyte complexes collected from ovaries without a CL presented a greater CE than COCs derived from ovaries bearing CL. The absence of ovarian structures increased the blastocyst rate when compared to oocytes derived from ovaries with a CL, a dominant follicle, or both. Blastocysts derived from ovaries without a dominant follicle presented higher total cell numbers and a lower proportion of apoptosis than blastocysts derived from ovaries containing a dominant follicle. Cumulus oocyte complexes collected from ovaries with high follicular count resulted in higher cleavage than from ovaries with low follicular count, but the blastocyst rate was similar between groups. Ovaries bearing a CL had greater progesterone and IGF-1 follicular fluid concentrations in neighboring follicles than ovaries without a CL. Selection for bovine ovaries without CL or dominant follicle can have positive effects on CE, embryo development, and blastocyst quality in an individual embryo production system set-up.
Collapse
Affiliation(s)
- Nima Azari-Dolatabad
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium.
| | - Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daniel Angel Velez
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Research Group in Animal Sciences - INCA-CES, School of Veterinary Medicine and Animal Production, Universidad CES, Medellin, Colombia
| | - Andrea Fernandez Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hafez Sadeghi
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gretania Residiwati
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jo L M R Leroy
- Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Department of Veterinary Sciences, Gamete Research Center, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
45
|
Gao M, Chen M, Chen Q, Zhu S, Wang H, Yang W, Wang X, Wang Q, Gu L. Integration of parallel metabolomics and transcriptomics reveals metabolic patterns in porcine oocytes during maturation. Front Endocrinol (Lausanne) 2023; 14:1131256. [PMID: 36817597 PMCID: PMC9929430 DOI: 10.3389/fendo.2023.1131256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Well-controlled metabolism is the prerequisite for optimal oocyte development. To date, numerous studies have focused mainly on the utilization of exogenous substrates by oocytes, whereas the underlying mechanism of intrinsic regulation during meiotic maturation is less characterized. Herein, we performed an integrated analysis of parallel metabolomics and transcriptomics by isolating porcine oocytes at three time points, cooperatively depicting the global picture of the metabolic patterns during maturation. In particular, we identified the novel metabolic features during porcine oocyte meiosis, such as the fall in bile acids, the active one-carbon metabolism and a progressive decline in nucleotide metabolism. Collectively, the current study not only provides a comprehensive multiple omics data resource, but also may facilitate the discovery of molecular biomarkers that could be used to predict and improve oocyte quality.
Collapse
Affiliation(s)
- Ming Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuzhen Chen
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hengjie Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Weizheng Yang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| |
Collapse
|
46
|
Kim YH, Lee SY, Kim EY, Kim KH, Koong MK, Lee KA. The Antioxidant Auraptene Improves Aged Oocyte Quality and Embryo Development in Mice. Antioxidants (Basel) 2022; 12:antiox12010087. [PMID: 36670949 PMCID: PMC9854793 DOI: 10.3390/antiox12010087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Decrease in quality of postovulatory aged oocytes occurs due to oxidative stress and leads to low fertilization and development competence. It is one of the main causes that exerting detrimental effect on the success rate in assisted reproductive technology (ART). Auraptene (AUR), a citrus coumarin, has been reported to possess an antioxidant effects in other tissues. In this study, we aimed to confirm the potential of AUR to delay the oocyte aging process by alleviating oxidative stress. Superovulated mouse oocytes in metaphase of second meiosis (MII) were exposed to 0, 1 or 10 μM AUR for 12 h of in vitro aging. AUR addition to the culture medium recovered abnormal spindle and chromosome morphology and mitigated mitochondrial distribution and mitochondrial membrane potential (ΔΨ) in aged oocytes. AUR-treated aged oocytes also showed suppressed oxidative stress, with lower reactive oxygen species (ROS) levels, higher glutathione (GSH) levels and increased expression of several genes involved in antioxidation. Furthermore, AUR significantly elevated the fertilization and embryo developmental rates. Oocytes aged with 1 μM AUR exhibited morphokinetics that were very similar to those of the control group. Altogether, these data allowed us to conclude that AUR improved the quality of aged oocytes and suggest AUR as an effective clinical supplement candidate to prevent postovulatory aging.
Collapse
Affiliation(s)
- Yun-Hee Kim
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-ro 335, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Su-Yeon Lee
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-ro 335, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Eun-Young Kim
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-ro 335, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Kyeoung-Hwa Kim
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-ro 335, Bundang-gu, Seongnam-si 13488, Republic of Korea
| | - Mi-Kyoung Koong
- CHA Fertility Center Daegu Station, Dalgubeol-daero 2095, Jung-gu, Daegu 41936, Republic of Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, Institute of Reproductive Medicine, College of Life Science, CHA University, Pangyo-ro 335, Bundang-gu, Seongnam-si 13488, Republic of Korea
- Correspondence: ; Tel.: +82-31-881-7135
| |
Collapse
|
47
|
Gao M, Qiu Y, Cao T, Li D, Wang J, Jiao Y, Chen Z, Huang J. Insufficient HtrA2 causes meiotic defects in aging germinal vesicle oocytes. Reprod Biol Endocrinol 2022; 20:173. [PMID: 36539842 PMCID: PMC9764539 DOI: 10.1186/s12958-022-01048-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND High-temperature requirement protease A2 (HtrA2/Omi) is a mitochondrial chaperone that is highly conserved from bacteria to humans. It plays an important role in mitochondrial homeostasis and apoptosis. In this study, we investigated the role of HtrA2 in mouse oocyte maturation. METHODS The role of HtrA2 in mouse oocyte maturation was investigated by employing knockdown (KD) or overexpression (OE) of HtrA2 in young or old germinal vesicle (GV) oocytes. We employed immunoblotting, immunostaining, fluorescent intensity quantification to test the HtrA2 knockdown on the GV oocyte maturation progression, spindle assembly checkpoint, mitochondrial distribution, spindle organization, chromosome alignment, actin polymerization, DNA damage and chromosome numbers and acetylated tubulin levels. RESULTS We observed a significant reduction in HtrA2 protein levels in aging germinal vesicle (GV) oocytes. Young oocytes with low levels of HtrA2 due to siRNA knockdown were unable to complete meiosis and were partially blocked at metaphase I (MI). They also displayed significantly more BubR1 on kinetochores, indicating that the spindle assembly checkpoint was triggered at MI. Extrusion of the first polar body (Pb1) was significantly less frequent and oocytes with large polar bodies were observed when HtrA2 was depleted. In addition, HtrA2 knockdown induced meiotic spindle/chromosome disorganization, leading to aneuploidy at metaphase II (MII), possibly due to the elevated level of acetylated tubulin. Importantly, overexpression of HtrA2 partially rescued spindle/chromosome disorganization and reduced the rate of aneuploidy in aging GV oocytes. CONCLUSIONS Collectively, our data suggest that HtrA2 is a key regulator of oocyte maturation, and its deficiency with age appears to contribute to reproduction failure in females.
Collapse
Affiliation(s)
- Min Gao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 51000, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanling Qiu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dungao Li
- The Reproduction Medicine Center of Hui Zhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jingwen Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yiren Jiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiyun Chen
- The Reproduction Medicine Center of Hui Zhou Municipal Central Hospital, Huizhou, 516001, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 51000, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
48
|
Wyse BA, Fuchs Weizman N, Montbriand J, Kharonsky R, Antes R, Abramov R, Madjunkova S, Librach CL. Personalization of IVF-ICSI workflow based on patient characteristics improves IVF laboratory outcomes and embryo ploidy by PGT-A. J Ovarian Res 2022; 15:124. [PMID: 36457002 PMCID: PMC9714092 DOI: 10.1186/s13048-022-01061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Intracytoplasmic sperm injection (ICSI) has become a common method of fertilization in assisted reproduction worldwide. However, there are still gaps in knowledge of the ideal IVF-ICSI workflow including the optimal duration of time between induction of final oocyte maturation, oocyte denudation and ICSI. The aim of this study was to examine outcomes following different workflow protocols in IVF-ICSI procedures in blastocysts that have undergone undisturbed incubation and preimplantation genetic testing for aneuploidy (PGT-A) prior to transfer. METHODS Retrospective secondary analysis of 113 patients (179 IVF cycles, 713 embryos), all of whom have gone through IVF-ICSI and PGT-A using undisturbed culture. Predictive test variables were the length of time from: trigger to OPU, OPU to denudation, and denudation to ICSI. Outcome metrics assessed were: maturation, fertilization, blastulation and euploid rates. Generalized Estimated Equations Linear Model was used to examine the relationship between key elements of a given cycle and continuous outcomes and LOESS curves were used to determine the effect over time. RESULTS In a paired multi-regression analysis, where each patient served as its own control, delaying OPU in patients with unexplained infertility improved both maturation and blastulation rates (b = 29.7, p < 0.0001 and b = 9.1, p = 0.06, respectively). Longer incubation with cumulus cells (CCs) significantly correlated with improved ploidy rates among patients under 37, as well as among patients with unexplained infertility (r = 0.22 and 0.29, respectively), which was also evident in a multiple regression analysis (b = 6.73, p < 0.05), and in a paired analysis (b = 6.0, p < 0.05). Conversely, among patients with a leading infertility diagnosis of male factor, longer incubation of the denuded oocyte prior to ICSI resulted in a significantly higher euploid rate (b = 15.658, p < 0.0001). CONCLUSIONS In this study we have demonstrated that different IVF-ICSI workflows affect patients differently, depending on their primary infertility diagnosis. Thus, ideally, the IVF-ICSI workflow should be tailored to the individual patient based on the primary infertility diagnosis. This study contributes to our understanding surrounding the impact of IVF laboratory procedures and highlights the importance of not only tracking "classic" IVF outcomes (maturation, fertilization, blastulation rates), but highlights the importance that these procedures have on the ploidy of the embryo.
Collapse
Affiliation(s)
| | - Noga Fuchs Weizman
- grid.490031.fCReATe Fertility Centre, Toronto, ON Canada ,grid.413449.f0000 0001 0518 6922Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Janice Montbriand
- grid.413104.30000 0000 9743 1587Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Rima Kharonsky
- grid.490031.fCReATe Fertility Centre, Toronto, ON Canada
| | - Ran Antes
- grid.490031.fCReATe Fertility Centre, Toronto, ON Canada
| | - Rina Abramov
- grid.490031.fCReATe Fertility Centre, Toronto, ON Canada
| | | | - Clifford L. Librach
- grid.490031.fCReATe Fertility Centre, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Physiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
49
|
Rahmawati P, Wiweko B, Boediono A. Mitochondrial DNA copy number in cumulus granulosa cells as a predictor for embryo morphokinetics and chromosome status. Syst Biol Reprod Med 2022; 69:101-111. [PMID: 36426586 DOI: 10.1080/19396368.2022.2145248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While morphokinetic evaluation of embryos has become the most commonly used technique in IVF to select embryos for transfer, studies have demonstrated that mitochondrial DNA (mtDNA) copy number is correlated with embryo viability and transfer outcomes. Correspondingly, this cohort study aims to evaluate the association between the mtDNA copy number in cumulus granulosa cells (CGCs) with embryo morphokinetic parameters and chromosomal status. Real-time PCR was employed to measure the mtDNA copy number of the 129 CGCs in samples obtained from 30 patients undergoing the IVF-IMSI program at Morula IVF Jakarta between July and October 2020. Bivariate and multiple analyses were utilized to determine its relationship with embryo morphokinetics, blastocyst yield, and chromosomal status. According to the analysis, there was a significant correlation between the mtDNA copy number and the blastocyst status after adjusting for the maternal age and sperm morphology (coefficient 0.832, p value = 0.032, RR value 2.299). Moreover, a significant link was observed between mtDNA copy number in CGC and early embryo developmental phase M1 (t2-t8), using the equation of M1 is 5.702-0.271 mtDNA copy number of CGCs + 0.017 maternal age + 0.013 sperm motility -0.115 sperm morphology (p value = 0.032). However, no correlation was found between the mtDNA copy number in CGCs with the other morphokinetic parameters (M2: tC-tEB, M3: t2-tEB, DC, RC, MN with p > 0.05), or the chromosomal status of the embryos (euploid: 139.44 ± 133.12, aneuploid: 142.40 ± 111.30, p = 0.806). In conclusion, our study suggests that mtDNA copy number in CGCs can serve as a useful biomarker for blastocyst status and early embryo developmental phase but not for chromosomal status.
Collapse
Affiliation(s)
- Pitra Rahmawati
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Morula IVF Jakarta, IVF Center, Jakarta, Indonesia
| | - Budi Wiweko
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Human Reproductive, Infertility and Family Planning Research Center, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Arief Boediono
- Morula IVF Jakarta, IVF Center, Jakarta, Indonesia
- Department of Anatomy, Physiology and Pharmacology, IPB University, Bogor, Indonesia
| |
Collapse
|
50
|
Hoshino Y, Uchida T. Prolyl Isomerase, Pin1, Controls Meiotic Progression in Mouse Oocytes. Cells 2022; 11:cells11233772. [PMID: 36497033 PMCID: PMC9739419 DOI: 10.3390/cells11233772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During meiotic maturation, accurate progression of meiosis is ensured by multiple protein kinases and by signal transduction pathways they are involved in. However, the mechanisms regulating the functions of phosphorylated proteins are unclear. Herein, we investigated the role of Pin1, a peptidyl-prolyl cis-trans isomerase family member that regulates protein functions by altering the structure of the peptide bond of proline in phosphorylated proteins in meiosis. First, we analyzed changes in the expression of Pin1 during meiotic maturation and found that although its levels were constant, its localization was dynamic in different stages of meiosis. Furthermore, we confirmed that the spindle rotates near the cortex when Pin1 is inhibited by juglone during meiotic maturation, resulting in an error in the extrusion of the first polar body. In Pin1-/- mice, frequent polar body extrusion errors were observed in ovulation, providing insights into the mechanism underlying the errors in the extrusion of the polar body. Although multiple factors and mechanisms might be involved, Pin1 functions in meiosis progression via actin- and microtubule-associated phosphorylated protein targets. Our results show that functional regulation of Pin1 is indispensable in oocyte production and should be considered while developing oocyte culture technologies for reproductive medicine and animal breeding.
Collapse
Affiliation(s)
- Yumi Hoshino
- Laboratory of Animal Reproduction, Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima 739-8528, Japan
- Laboratory of Reproductive Biology, Faculty of Science, Japan Women’s University, Tokyo 112-8681, Japan
- Correspondence:
| | - Takafumi Uchida
- Laboratory of Molecular Enzymology, Department of Molecular Cell Science, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555, Japan
| |
Collapse
|