1
|
Zheng Y, Zha X, Zhang B, Elsabagh M, Wang H, Wang M, Zhang H. The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome†. Biol Reprod 2024; 111:292-311. [PMID: 38678504 DOI: 10.1093/biolre/ioae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
The endoplasmic reticulum is a complex and dynamic organelle that initiates unfolded protein response and endoplasmic reticulum stress in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia and intrauterine growth retardation are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between endoplasmic reticulum stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signaling pathways while excessive endoplasmic reticulum stress triggers downstream apoptotic signaling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of preeclampsia and intrauterine growth retardation. In addition, this review will elucidate the molecular mechanisms of endoplasmic reticulum stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in preeclampsia and intrauterine growth retardation development. This research seeks to the interplay between endoplasmic reticulum stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.
Collapse
Affiliation(s)
- Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
2
|
Park S, Hunter ES. Modeling the human placenta: in vitro applications in developmental and reproductive toxicology. Crit Rev Toxicol 2024; 54:431-464. [PMID: 39016688 DOI: 10.1080/10408444.2023.2295349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 07/18/2024]
Abstract
During its temporary tenure, the placenta has extensive and specialized functions that are critical for pre- and post-natal development. The consequences of chemical exposure in utero can have profound effects on the structure and function of pregnancy-associated tissues and the life-long health of the birthing person and their offspring. However, the toxicological importance and critical functions of the placenta to embryonic and fetal development and maturation have been understudied. This narrative will review early placental development in humans and highlight some in vitro models currently in use that are or can be applied to better understand placental processes underlying developmental toxicity due to in utero environmental exposures.
Collapse
Affiliation(s)
- Sarah Park
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| | - Edward Sidney Hunter
- Center for Computational Toxicology and Exposure, ORD, US EPA, Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
4
|
Chen Y, Ye X, Zhong Y, Kang X, Tang Y, Zhu H, Pang C, Ning S, Liang S, Zhang F, Li C, Li J, Gu C, Cheng Y, Kuang Z, Qiu J, Jin J, Luo H, Fu M, Hui HX, Li L, Ruan D, Liu P, Chen X, Sun L, Ai S, Gao X. SP6 controls human cytotrophoblast fate decisions and trophoblast stem cell establishment by targeting MSX2 regulatory elements. Dev Cell 2024; 59:1506-1522.e11. [PMID: 38582082 DOI: 10.1016/j.devcel.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.
Collapse
Affiliation(s)
- Yanglin Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianhua Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yanqing Tang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haoyun Zhu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Changmiao Pang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaoqiang Ning
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqing Liang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feifan Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengtao Gu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Zhanpeng Kuang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyang Qiu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haisi Luo
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingyu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510515, China
| | - Degong Ruan
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xuefei Gao
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China; Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Yang L, Leynes C, Pawelka A, Lorenzo I, Chou A, Lee B, Heaney JD. Machine learning in time-lapse imaging to differentiate embryos from young vs old mice†. Biol Reprod 2024; 110:1115-1124. [PMID: 38685607 PMCID: PMC11180621 DOI: 10.1093/biolre/ioae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Time-lapse microscopy for embryos is a non-invasive technology used to characterize early embryo development. This study employs time-lapse microscopy and machine learning to elucidate changes in embryonic growth kinetics with maternal aging. We analyzed morphokinetic parameters of embryos from young and aged C57BL6/NJ mice via continuous imaging. Our findings show that aged embryos accelerated through cleavage stages (from 5-cells) to morula compared to younger counterparts, with no significant differences observed in later stages of blastulation. Unsupervised machine learning identified two distinct clusters comprising of embryos from aged or young donors. Moreover, in supervised learning, the extreme gradient boosting algorithm successfully predicted the age-related phenotype with 0.78 accuracy, 0.81 precision, and 0.83 recall following hyperparameter tuning. These results highlight two main scientific insights: maternal aging affects embryonic development pace, and artificial intelligence can differentiate between embryos from aged and young maternal mice by a non-invasive approach. Thus, machine learning can be used to identify morphokinetics phenotypes for further studies. This study has potential for future applications in selecting human embryos for embryo transfer, without or in complement with preimplantation genetic testing.
Collapse
Affiliation(s)
- Liubin Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Division of Reproductive Endocrinology and Infertility, Division of Reproductive Sciences, Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Carolina Leynes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ashley Pawelka
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew Chou
- Pain Research, Informatics, Multi-morbidities, and Education (PRIME) Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Liu Z, Wang C, Tang Y, Zhang X, Pei J, Liu H, Yu Y, Gu W. ENO1 promotes trophoblast invasion regulated by E2F8 in recurrent miscarriage. FASEB J 2024; 38:e23631. [PMID: 38661062 DOI: 10.1096/fj.202302032rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Recurrent miscarriage (RM) is related to the dysfunction of extravillous trophoblast cells (EVTs), but the comprehensive mechanisms remain largely unexplored. We analyzed single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing and microarray datasets obtained from Gene Expression Omnibus (GEO) database to explore the hub genes in the mechanisms of RM. We identified 1724 differentially expressed genes (DEGs) in EVTs from the RM, and they were all expressed along the trajectory of EVTs. These DEGs were associated with hypoxia and glucose metabolism. Single-cell Regulatory Network Inference and Clustering (SCENIC) analysis revealed that E2F transcription factor (E2F) 8 (E2F8) was a key transcription factor for these DEGs. And the expression of ENO1 can be positively regulated by E2F8 via RNA sequencing analysis. Subsequently, we performed immunofluorescence assay (IF), plasmid transfection, western blotting, chromatin immunoprecipitation (ChIP), real-time quantitative polymerase chain reaction (qRT-PCR), and transwell assays for validation experiments. We found that the expression of alpha-Enolase 1 (ENO1) was lower in the placentas of RM. Importantly, E2F8 can transcriptionally regulate the expression of ENO1 to promote the invasion of trophoblast cells by inhibiting secreted frizzled-related protein 1/4 (SFRP1/4) to activate Wnt signaling pathway. Our results suggest that ENO1 can promote trophoblast invasion via an E2F8-dependent manner, highlighting a potential novel target for the physiological mechanisms of RM.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Chengjie Wang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yao Tang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoyue Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiangnan Pei
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Haiyan Liu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yi Yu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Weirong Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Lee BK, Salamah J, Cheeran E, Adu-Gyamfi EA. Dynamic and distinct histone modifications facilitate human trophoblast lineage differentiation. Sci Rep 2024; 14:4505. [PMID: 38402275 PMCID: PMC10894295 DOI: 10.1038/s41598-024-55189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 02/26/2024] Open
Abstract
The placenta serves as an essential organ for fetal growth throughout pregnancy. Histone modification is a crucial regulatory mechanism involved in numerous biological processes and development. Nevertheless, there remains a significant gap in our understanding regarding the epigenetic regulations that influence trophoblast lineage differentiation, a fundamental aspect of placental development. Here, through comprehensive mapping of H3K4me3, H3K27me3, H3K9me3, and H3K27ac loci during the differentiation of trophoblast stem cells (TSCs) into syncytiotrophoblasts (STs) and extravillous trophoblasts (EVTs), we reveal dynamic reconfiguration in H3K4me3 and H3K27ac patterns that establish an epigenetic landscape conducive to proper trophoblast lineage differentiation. We observe that broad H3K4me3 domains are associated with trophoblast lineage-specific gene expression. Unlike embryonic stem cells, TSCs lack robust bivalent domains. Notably, the repression of ST- and EVT-active genes in TSCs is primarily attributed to the weak H3K4me3 signal rather than bivalent domains. We also unveil the inactivation of TSC enhancers precedes the activation of ST enhancers during ST formation. Our results provide a comprehensive global map of diverse histone modifications, elucidating the dynamic histone modifications during trophoblast lineage differentiation.
Collapse
Affiliation(s)
- Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Elisha Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| |
Collapse
|
8
|
Yokouchi-Konishi T, Liu Y, Feng L. Progesterone receptor membrane component 2 is critical for human placental extravillous trophoblast invasion. Biol Reprod 2023; 109:759-771. [PMID: 37665239 DOI: 10.1093/biolre/ioad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Proper extravillous trophoblast invasion is essential for normal placentation and pregnancy. However, the molecular mechanisms by which cytotrophoblasts differentiate into extravillous trophoblast are unclear. We discovered that in the first-trimester placenta, progesterone receptor membrane component 2 was highly expressed in syncytiotrophoblast but significantly lower in extravillous trophoblast and cytotrophoblasts, indicating a divergent role for progesterone receptor membrane component 2 in trophoblast functions. We aim to examine the role of progesterone receptor membrane component 2 in extravillous trophoblasts invasion mediated by both intracellular and extracellular signals. Progesterone receptor membrane component 2 knockdown and overexpression cells were established in HTR8/SVneo cells, a first-trimester extravillous trophoblast-derived cell model, by transfection with small-interfering RNA or progesterone receptor membrane component 2 plasmids, respectively. Progesterone receptor membrane component 2 knockdown led to cellular morphological changes , enhanced trophoblast proliferation,invasion, and promoted tube formation. These effects were mediated by the activation of hypoxia-inducible factor 1alpha and an increased expression of vascular endothelial growth factor A. The culture supernatant collected from progesterone receptor membrane component 2 knockdown cells did not significantly affect extravillous trophoblast invasion compared to the controls, indicating that extracellular signaling did not robustly regulate extravillous trophoblast invasion in this study. In conclusion, attenuation of progesterone receptor membrane component 2 plays a role in placentation by promoting cell proliferation, invasion, and angiogenesis in extravillous trophoblasts via activation of hypoxia-inducible factor 1 alpha signaling. We thus identified a new function of progesterone receptor membrane component 2 and provide insights on understanding the mechanisms of trophoblast invasion.
Collapse
Affiliation(s)
- Tae Yokouchi-Konishi
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Yu L, Logsdon D, Pinzon-Arteaga CA, Duan J, Ezashi T, Wei Y, Ribeiro Orsi AE, Oura S, Liu L, Wang L, Liu K, Ding X, Zhan L, Zhang J, Nahar A, Stobbe C, Katz-Jaffe M, Schoolcraft WB, Tan T, Hon GC, Yuan Y, Wu J. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell 2023; 30:1246-1261.e9. [PMID: 37683605 DOI: 10.1016/j.stem.2023.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/07/2023] [Accepted: 08/03/2023] [Indexed: 09/10/2023]
Abstract
Recent advances in human blastoids have opened new avenues for modeling early human development and implantation. One limitation of our first protocol for human blastoid generation was relatively low efficiency. We now report an optimized protocol for the efficient generation of large quantities of high-fidelity human blastoids from naive pluripotent stem cells. This enabled proteomics analysis that identified phosphosite-specific signatures potentially involved in the derivation and/or maintenance of the signaling states in human blastoids. Additionally, we uncovered endometrial stromal effects in promoting trophoblast cell survival, proliferation, and syncytialization during co-culture with blastoids and blastocysts. Side-by-side single-cell RNA sequencing revealed similarities and differences in transcriptome profiles between pre-implantation blastoids and blastocysts, as well as post-implantation cultures, and uncovered a population resembling early migratory trophoblasts during co-culture with endometrial stromal cells. Our optimized protocol will facilitate broader use of human blastoids as an accessible, perturbable, scalable, and tractable model for human blastocysts.
Collapse
Affiliation(s)
- Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Deirdre Logsdon
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jialei Duan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Toshihiko Ezashi
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China, Agricultural University, Beijing, 100193, China
| | - Ana Elisa Ribeiro Orsi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, São Paulo, Brazil
| | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Liu
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA; Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Linfeng Zhan
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Yunan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Junfei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China, Agricultural University, Beijing, 100193, China
| | - Asrafun Nahar
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Caitlen Stobbe
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | - Mandy Katz-Jaffe
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA
| | | | - Tao Tan
- State Key Laboratory of Primate Biomedical Research Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; Yunan Key Laboratory of Primate Biomedical Research, Kunming 650500, Yunnan, China
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO 80124, USA.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Jiao B, Wang Y, Li S, Lu J, Liu J, Xia J, Li Y, Xu J, Tian X, Qi B. Dissecting human placental cells heterogeneity in preeclampsia and gestational diabetes using single-cell sequencing. Mol Immunol 2023; 161:104-118. [PMID: 37572508 DOI: 10.1016/j.molimm.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 08/14/2023]
Abstract
Preeclampsia (PE) and gestational diabetes mellitus (GDM) are pregnancy-specific complications, which affect maternal health and fetal outcomes. Currently, clinical and pathological studies have shown that placenta homeostasis is affected by these two maternal diseases. In this study, we aimed to gain insight into the heterogeneous changes in cell types in placental tissue-isolated from cesarean section by single-cell sequencing, including those patients diagnosed with PE (n = 5), GDM (n = 5) and healthy control (n = 5). A total of 96,048 cells (PE: 31,672; GDM: 25,294; control: 39,082) were identified in six cell types, dominated by trophoblast cells and immune cells. In addition, trophoblast cells were divided into four subtypes, including cytotrophoblast cells (CTBs), villous cytotrophoblasts (VCTs), syncytiotrophoblast (STB), and extravillous trophoblasts (EVTs). Immune cells are divided into lymphocytes and macrophages, of which macrophages have 3 subtypes (decidual macrophages, Hofbauer cells and macrophages), and lymphocytes have 4 subtypes (BloodNK, T cells, plasma cells, and decidual natural killer cells). Meanwhile, we also proved the orderly differentiation sequence of CTB into VCT, then STB and EVT. By pair-wise analysis of the expression and enrichment of differentially expressed genes in trophoblast cells between PE, GDM and control, it was found that these cells were involved in immune, nutrient transfer, hormone and oxidative stress pathways. In addition, T cells and macrophages play an immune defense role in both PE and GDM. The proportion of CTB and EVT cells in placental tissue was confirmed by flow cytometry. Taken together, our results suggested that the human placenta is a dynamic heterogenous organ dominated by trophoblast and immune cells, which perform their respective roles and interact with other cells in the environment to maintain normal placental function.
Collapse
Affiliation(s)
- Bo Jiao
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Yan Wang
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Shenghua Li
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Jianan Lu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Jian Liu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Ji Xia
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Yisha Li
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Juanjuan Xu
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China
| | - Xiujuan Tian
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China.
| | - Bangruo Qi
- Sanya Women and Children's Hospital Managed by Shanghai Children' s Medical Center, Sanya, China.
| |
Collapse
|
11
|
Lawless L, Qin Y, Xie L, Zhang K. Trophoblast Differentiation: Mechanisms and Implications for Pregnancy Complications. Nutrients 2023; 15:3564. [PMID: 37630754 PMCID: PMC10459728 DOI: 10.3390/nu15163564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Placental development is a tightly controlled event, in which cell expansion from the trophectoderm occurs in a spatiotemporal manner. Proper trophoblast differentiation is crucial to the vitality of this gestational organ. Obstructions to its development can lead to pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm birth, posing severe health risks to both the mother and offspring. Currently, the only known treatment strategy for these complications is delivery, making it an important area of research. The aim of this review was to summarize the known information on the development and mechanistic regulation of trophoblast differentiation and highlight the similarities in these processes between the human and mouse placenta. Additionally, the known biomarkers for each cell type were compiled to aid in the analysis of sequencing technologies.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Yushu Qin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Vitillo L, Anjum F, Hewitt Z, Stavish D, Laing O, Baker D, Barbaric I, Coffey P. The isochromosome 20q abnormality of pluripotent cells interrupts germ layer differentiation. Stem Cell Reports 2023; 18:782-797. [PMID: 36801002 PMCID: PMC10031278 DOI: 10.1016/j.stemcr.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Chromosome 20 abnormalities are some of the most frequent genomic changes acquired by human pluripotent stem cell (hPSC) cultures worldwide. Yet their effects on differentiation remain largely unexplored. We investigated a recurrent abnormality also found on amniocentesis, the isochromosome 20q (iso20q), during a clinical retinal pigment epithelium differentiation. Here we show that the iso20q abnormality interrupts spontaneous embryonic lineage specification. Isogenic lines revealed that under conditions that promote the spontaneous differentiation of wild-type hPSCs, the iso20q variants fail to differentiate into primitive germ layers and to downregulate pluripotency networks, resulting in apoptosis. Instead, iso20q cells are highly biased for extra-embryonic/amnion differentiation following inhibition of DNMT3B methylation or BMP2 treatment. Finally, directed differentiation protocols can overcome the iso20q block. Our findings reveal in iso20q a chromosomal abnormality that impairs the developmental competency of hPSCs toward germ layers but not amnion, which models embryonic developmental bottlenecks in the presence of aberrations.
Collapse
Affiliation(s)
- Loriana Vitillo
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, EC1V 9EL London, UK.
| | - Fabiha Anjum
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, EC1V 9EL London, UK
| | - Zoe Hewitt
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Dylan Stavish
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Owen Laing
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Duncan Baker
- Sheffield Diagnostic Genetic Services, Sheffield Children's Hospital, Sheffield, UK
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biosciences, University of Sheffield, S10 2TN Sheffield, UK
| | - Pete Coffey
- Rescue, Repair and Regeneration, Institute of Ophthalmology, University College London, EC1V 9EL London, UK; Centre for Stem Cell Biology and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
13
|
Faral-Tello P, Pagotto R, Bollati-Fogolín M, Francia ME. Modeling the human placental barrier to understand Toxoplasma gondii´s vertical transmission. Front Cell Infect Microbiol 2023; 13:1130901. [PMID: 36968102 PMCID: PMC10034043 DOI: 10.3389/fcimb.2023.1130901] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Toxoplasma gondii is a ubiquitous apicomplexan parasite that can infect virtually any warm-blooded animal. Acquired infection during pregnancy and the placental breach, is at the core of the most devastating consequences of toxoplasmosis. T. gondii can severely impact the pregnancy’s outcome causing miscarriages, stillbirths, premature births, babies with hydrocephalus, microcephaly or intellectual disability, and other later onset neurological, ophthalmological or auditory diseases. To tackle T. gondii’s vertical transmission, it is important to understand the mechanisms underlying host-parasite interactions at the maternal-fetal interface. Nonetheless, the complexity of the human placenta and the ethical concerns associated with its study, have narrowed the modeling of parasite vertical transmission to animal models, encompassing several unavoidable experimental limitations. Some of these difficulties have been overcome by the development of different human cell lines and a variety of primary cultures obtained from human placentas. These cellular models, though extremely valuable, have limited ability to recreate what happens in vivo. During the last decades, the development of new biomaterials and the increase in stem cell knowledge have led to the generation of more physiologically relevant in vitro models. These cell cultures incorporate new dimensions and cellular diversity, emerging as promising tools for unraveling the poorly understood T. gondii´s infection mechanisms during pregnancy. Herein, we review the state of the art of 2D and 3D cultures to approach the biology of T. gondii pertaining to vertical transmission, highlighting the challenges and experimental opportunities of these up-and-coming experimental platforms.
Collapse
Affiliation(s)
- Paula Faral-Tello
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Maria E. Francia,
| |
Collapse
|
14
|
Tripathy S, Das SK. Strategies for organ preservation: Current prospective and challenges. Cell Biol Int 2023; 47:520-538. [PMID: 36626269 DOI: 10.1002/cbin.11984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023]
Abstract
In current therapeutic approaches, transplantation of organs provides the best available treatment for a myriad of end-stage organ failures. However, shortage of organ donors, lacunae in preservation methods, and lack of a suitable match are the major constraints in advocating this life-sustaining therapy. There has been continuous progress in the strategies for organ preservation since its inception. Current strategies for organ preservation are based on the University of Wisconsin (UW) solution using the machine perfusion technique, which allows successful preservation of intra-abdominal organs (kidney and liver) but not intra-thoracic organs (lungs and heart). However, novel concepts with a wide range of adapted preservation technologies that can increase the shelf life of retrieved organs are still under investigation. The therapeutic interventions of in vitro-cultured stem cells could provide novel strategies for replacement of nonfunctional cells of damaged organs with that of functional ones. This review describes existing strategies, highlights recent advances, discusses challenges and innovative approaches for effective organ preservation, and describes application of stem cells to restore the functional activity of damaged organs for future clinical practices.
Collapse
Affiliation(s)
- Seema Tripathy
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneshwar, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
15
|
Liang L, Chen Y, Wu C, Cao Z, Xia L, Meng J, He L, Yang C, Wang Z. MicroRNAs: key regulators of the trophoblast function in pregnancy disorders. J Assist Reprod Genet 2023; 40:3-17. [PMID: 36508034 PMCID: PMC9742672 DOI: 10.1007/s10815-022-02677-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.
Collapse
Affiliation(s)
- Lingli Liang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Yanjun Chen
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Chunyan Wu
- grid.412017.10000 0001 0266 8918Department of Cardiovascular, The Third Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zitong Cao
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Linzhen Xia
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Jun Meng
- grid.461579.8Department of Function, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Lu He
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Chunfen Yang
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zuo Wang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| |
Collapse
|
16
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
17
|
Ruan D, Ye ZW, Yuan S, Li Z, Zhang W, Ong CP, Tang K, Ka Ki Tam TT, Guo J, Xuan Y, Huang Y, Zhang Q, Lee CL, Lu L, Chiu PCN, Yeung WSB, Liu F, Jin DY, Liu P. Human early syncytiotrophoblasts are highly susceptible to SARS-CoV-2 infection. Cell Rep Med 2022; 3:100849. [PMID: 36495872 PMCID: PMC9671691 DOI: 10.1016/j.xcrm.2022.100849] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Direct in vivo investigation of human placenta trophoblast's susceptibility to SARS-CoV-2 is challenging. Here we report that human trophoblast stem cells (hTSCs) and their derivatives are susceptible to SARS-CoV-2 infection, which reveals heterogeneity in hTSC cultures. Early syncytiotrophoblasts (eSTBs) generated from hTSCs have enriched transcriptomic features of peri-implantation trophoblasts, express high levels of angiotensin-converting enzyme 2 (ACE2), and are productively infected by SARS-CoV-2 and its Delta and Omicron variants to produce virions. Antiviral drugs suppress SARS-CoV-2 replication in eSTBs and antagonize the virus-induced blockage of STB maturation. Although less susceptible to SARS-CoV-2 infection, trophoblast organoids originating from hTSCs show detectable viral replication reminiscent of the uncommon placental infection. These findings implicate possible risk of COVID-19 infection in peri-implantation embryos, which may go unnoticed. Stem cell-derived human trophoblasts such as eSTBs can potentially provide unlimited amounts of normal and genome-edited cells and facilitate coronavirus research and antiviral discovery.
Collapse
Affiliation(s)
- Degong Ruan
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zi-Wei Ye
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhuoxuan Li
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Weiyu Zhang
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Chon Phin Ong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Timothy Theodore Ka Ki Tam
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jilong Guo
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yiyi Xuan
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yunying Huang
- Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qingqing Zhang
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - William S B Yeung
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fang Liu
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Foshan Stomatology Hospital, School of Medicine, Foshan University, No. 5 Hebing Road, Foshan, Guangdong Province, China.
| | - Dong-Yan Jin
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Pentao Liu
- Centre for Translational Stem Cell Biology, The University of Hong Kong, Hong Kong Special Administrative Region, China; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Stem Cell & Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
18
|
Zheng Y, Pan J, Xia C, Chen H, Zhou H, Ju W, Wegiel J, Myatt L, Roberts JM, Guo X, Zhong N. Characterization of placental and decidual cell development in early pregnancy loss by single-cell RNA sequencing. Cell Biosci 2022; 12:168. [PMID: 36209198 PMCID: PMC9548121 DOI: 10.1186/s13578-022-00904-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background Early pregnancy loss (EPL) presents as sporadic or recurrent miscarriage during the first trimester. In addition to chromosomal defects, EPL may result from impairment of the placental-decidual interface at early gestational age due to gene-environmental interactions. Methods To better understand the pathogenesis associated with this impairment, cell development in chorionic villi and decidua of different forms of EPL (sporadic or recurrent) was investigated with single-cell RNA sequencing and compared to that of normal first-trimester tissue. Results Unique gene expression signatures were obtained for the different forms of EPL and for normal tissue and the composition of placental and decidual cell clusters in each form was established. In particular, the involvement of macrophages in the EPL phenotypes was identified revealing an immunoactive state. Conclusion Differential gene expression and unique marker genes among cell clusters from chorionic villi and decidua of miscarried and normal pregnancies, may lead to identification of biomarker for EPL. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00904-5.
Collapse
Affiliation(s)
- Yuhua Zheng
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Jing Pan
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Chenglai Xia
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Haiying Chen
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Huadong Zhou
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Weina Ju
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Jerzy Wegiel
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Leslie Myatt
- grid.5288.70000 0000 9758 5690Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA
| | - James M. Roberts
- grid.5288.70000 0000 9758 5690Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239 USA ,grid.460217.60000 0004 0387 4432Department of Obstetrics, Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research University of Pittsburgh, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213 USA
| | - Xiaoling Guo
- Maternity and Child Healthcare Hospital, Foshan Women and Children, 11 W. Renmin Lu, Foshan, 528000 China
| | - Nanbert Zhong
- grid.420001.70000 0000 9813 9625New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| |
Collapse
|
19
|
Liu D, Chen Y, Ren Y, Yuan P, Wang N, Liu Q, Yang C, Yan Z, Yang M, Wang J, Lian Y, Yan J, Zhai F, Nie Y, Zhu X, Chen Y, Li R, Chang HM, Leung PCK, Qiao J, Yan L. Primary specification of blastocyst trophectoderm by scRNA-seq: New insights into embryo implantation. SCIENCE ADVANCES 2022; 8:eabj3725. [PMID: 35947672 PMCID: PMC9365277 DOI: 10.1126/sciadv.abj3725] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/27/2022] [Indexed: 06/03/2023]
Abstract
Mechanisms of implantation such as determination of the attachment pole, fetal-maternal communication, and underlying causes of implantation failure are largely unexplored. Here, we performed single-cell RNA sequencing on peri-implantation embryos from both humans and mice to explore trophectoderm (TE) development and embryo-endometrium cross-talk. We found that the transcriptomes of polar and mural TE diverged after embryos hatched from the zona pellucida in both species, with polar TE being more mature than mural TE. The implantation poles show similarities in cell cycle activities, as well as in expression of genes critical for implantation and placentation. Embryos that either fail to attach in vitro or fail to implant in vivo show abnormalities in pathways related to energy production, protein metabolism, and 18S ribosomal RNA m6A methylation. These findings uncover the gene expression characteristics of humans and mice TE differentiation during the peri-implantation period and provide new insights into embryo implantation.
Collapse
Affiliation(s)
- Dandan Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Yidong Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Peng Yuan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Nan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
| | - Qiang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Cen Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Zhiqiang Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Ming Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jing Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Ying Lian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Fan Zhai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Yanli Nie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Xiaohui Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Yuan Chen
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Hsun-Ming Chang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Peter C. K. Leung
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China
- Beijing Advanced Innovation Center for Genomics, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| |
Collapse
|
20
|
James JL, Lissaman A, Nursalim YNS, Chamley LW. Modelling human placental villous development: designing cultures that reflect anatomy. Cell Mol Life Sci 2022; 79:384. [PMID: 35753002 PMCID: PMC9234034 DOI: 10.1007/s00018-022-04407-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
Abstract
The use of in vitro tools to study trophoblast differentiation and function is essential to improve understanding of normal and abnormal placental development. The relative accessibility of human placentae enables the use of primary trophoblasts and placental explants in a range of in vitro systems. Recent advances in stem cell models, three-dimensional organoid cultures, and organ-on-a-chip systems have further shed light on the complex microenvironment and cell-cell crosstalk involved in placental development. However, understanding each model's strengths and limitations, and which in vivo aspects of human placentation in vitro data acquired does, or does not, accurately reflect, is key to interpret findings appropriately. To help researchers use and design anatomically accurate culture models, this review both outlines our current understanding of placental development, and critically considers the range of established and emerging culture models used to study this, with a focus on those derived from primary tissue.
Collapse
Affiliation(s)
- Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Abbey Lissaman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Isolation of Decidual Macrophages and Hofbauer Cells from Term Placenta-Comparison of the Expression of CD163 and CD80. Int J Mol Sci 2022; 23:ijms23116113. [PMID: 35682791 PMCID: PMC9181726 DOI: 10.3390/ijms23116113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Placental immune cells are playing a very important role in a successful placentation and the prevention of pregnancy complications. Macrophages dominate in number and relevance in the maternal and the fetal part of the placenta. The evidence on the polarization state of fetal and maternal macrophages involved in both, healthy and pregnancy-associated diseases, is limited. There is no representative isolation method for the direct comparison of maternal and fetal macrophages so far. (2) Material and Methods: For the isolation of decidual macrophages and Hofbauer cells from term placenta, fresh tissue was mechanically dissected and digested with trypsin and collagenase A. Afterwards cell enrichment was increased by a Percoll gradient. CD68 is represented as pan-macrophage marker, the surface markers CD80 and CD163 were further investigated. (3) Results: The established method revealed a high cell yield and purity of the isolated macrophages and enabled the comparison between decidual macrophages and Hofbauer cells. No significant difference was observed in the percentage of single CD163+ cells in the distinct macrophage populations, by using FACS and immunofluorescence staining. A slight increase of CD80+ cells could be found in the decidual macrophages. Considering the percentage of CD80+CD163− and CD80−CD163+ cells we could not find differences. Interestingly we found an increased number of double positive cells (CD80+CD163+) in the decidual macrophage population in comparison to Hofbauer cells. (4) Conclusion: In this study we demonstrate that our established isolation method enables the investigation of decidual macrophages and Hofbauer cells in the placenta. It represents a promising method for direct cell comparison, enzyme independently, and unaffected by magnetic beads, to understand the functional subsets of placental macrophages and to identify therapeutic targets of pregnancy associated diseases.
Collapse
|
22
|
Lai R, Ji L, Zhang X, Xu Y, Zhong Y, Chen L, Hu H, Wang L. Stanniocalcin2 inhibits the epithelial-mesenchymal transition and invasion of trophoblasts via activation of autophagy under high-glucose conditions. Mol Cell Endocrinol 2022; 547:111598. [PMID: 35157929 DOI: 10.1016/j.mce.2022.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Maternal pregnancy hyperglycemia is often accompanied by placental dysfunction. During placental development, epithelial-mesenchymal transition (EMT) contributes to the transformation of relatively noninvasive trophoblasts into highly invasive extravillous trophoblasts (EVTs). However, the specific role of EMT in placentas under hyperglycemia environments remains relatively unexplored. Stanniocalcin2 (STC2) regulates EMT in many cancers. In this study, we first demonstrated that STC2 expression was upregulated in GDM placenta. We found that STC2 activated autophagy and suppressed EMT in high-glucose-treated EVTs and was associated with a lack of invasiveness. Specifically, STC2 inhibited the interactions between p62/SQSTM1 (p62) and EMT transcription factors to promote the degradation of Twist1 and Snail via a proteasome-dependent pathway. Furthermore, the PI3K/AKT/AMPK signaling pathway was involved in the regulation of autophagy and EMT by STC2. Taken together, our results reveal that STC2 may serve as a potential prognostic biomarker in GDM and sheds light on the regulatory mechanisms of trophoblast invasion.
Collapse
Affiliation(s)
- Rujie Lai
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lulu Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoli Zhang
- Department of Ultrasound Imaging, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yating Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yu Zhong
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liying Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hanyang Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Lin Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
23
|
Choudhury J, Pandey D, Chaturvedi PK, Gupta S. Epigenetic regulation of epithelial to mesenchymal transition: a trophoblast perspective. Mol Hum Reprod 2022; 28:6572349. [PMID: 35451485 DOI: 10.1093/molehr/gaac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Indexed: 11/12/2022] Open
Abstract
Epigenetic changes alter expression of genes at both pre- and post-transcriptional levels without changing their DNA sequence. Accumulating evidence suggests that such changes can modify cellular behaviour and characteristics required during development and in response to various extracellular stimuli. Trophoblast cells develop from the outermost trophectoderm layer of the blastocyst and undergo many phenotypic changes as the placenta develops. One such phenotypic change is differentiation of the epithelial natured cytotrophoblasts into the mesenchymal natured extravillous trophoblasts. The extravillous trophoblasts are primarily responsible for invading into the maternal decidua and thus establishing connection with the maternal spiral arteries. Any dysregulation of this process can have adverse effects on the pregnancy outcome. Hence, tight regulation of this epithelial-mesenchymal transition is critical for successful pregnancy. This review summarizes the recent research on the epigenetic regulation of the epithelial-mesenchymal transition occurring in the trophoblast cells during placental development. The functional significance of chemical modifications of DNA and histone, which regulate transcription, as well as non-coding RNAs, which control gene expression post-transcriptionally, is discussed in relation to trophoblast biology.
Collapse
Affiliation(s)
- Jaganmoy Choudhury
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Pradeep Kumar Chaturvedi
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi-, 110029, India
| |
Collapse
|
24
|
Huang Q, Niu Y, Song L, Huang J, Wang C, Ma T. Does LIN28B gene dysregulation make women more likely to abort? REPRODUCTION AND FERTILITY 2022; 2:211-220. [PMID: 35118391 PMCID: PMC8801024 DOI: 10.1530/raf-21-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
Background LIN28B plays an important role in early embryonic development, but its role in villous trophoblast implantation and differentiation remains unknown. This study aims to verify the role of LIN28B in trophoblastic villous tissue and cells from women with URSA (unexplained recurrent spontaneous abortion) and artificial termination of pregnancy (negative control, NC). Methods The LIN28B gene and its protein expression level were detected with real-time quantitative PCR, Western immunoblotting analysis, and immunocytochemistry. The gene was also overexpressed in chorionic villous cell lines (HTR-8/SVneo and BeWo) to examine its effect on trophoblast function. Results The expression of LIN28B mRNA and protein of URSA villi was lower than that in the NC group. At the cellular level, overexpression of LIN28B enhanced cellular migration, and invasion, and inhibited apoptosis. LIN28B may inhibit apoptosis by promoting Akt phosphorylation and by inhibiting Bad phosphorylation and Bcl-2 expression. In addition, LIN28B inhibited cell fusion and reduced cellular syncytia. Conclusions LIN28B can inhibit cell invasion and migration in vitro and promote apoptosis and fusion. The low expression of LIN28B in URSA villous trophoblast cells may be one of the causes of abortion. The role of LIN28B in villous trophoblasts needs further study. Lay summary Propagation of offspring is of great significance to the continuation of the human race. However, continuous pregnancy is more difficult for some women, especially women who have multiple miscarriages. One important contributor is the cessation of development caused by genetic factors of the embryo, but there are still many unknown reasons. We investigated the LIN28B gene which is a possible pathogenic factor in the placenta. We collected 25 cases of abortion in the experimental group (unexplained recurrent abortion group) and 25 in the control group (artificial termination of pregnancy group): on average at 7–8 weeks of pregnancy. We tested the function of lin28b in these samples and verified its function in cell lines. LIN28B plays an important role in maintaining early pregnancy by promoting the invasion of villous cells, inhibiting apoptosis and fusion, and the reduction of LIN28B expression may lead to the occurrence of early miscarriage.
Collapse
Affiliation(s)
- QiaoYao Huang
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - YanRu Niu
- Laboratory of Minimally Invasive Orthopaedics. Guangdong Medical University, Zhanjiang, Guangdong, China
| | - LiJun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - JinZhi Huang
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chenxi Wang
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - TianZhong Ma
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
25
|
Meister S, Kellner I, Beyer S, Corradini S, Schulz C, Rogenhofer N, Keilmann L, Kolben TM, Mahner S, Kessler M, Jeschke U, Kolben T. Epigenetic changes occur in placentas of spontaneous and recurrent miscarriages. J Reprod Immunol 2021; 149:103466. [PMID: 34929495 DOI: 10.1016/j.jri.2021.103466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/18/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND In contrast to genetic abnormalities which are well known to be responsible for around 50 % of human miscarriages, there is very few data about epigenetic alterations in spontaneous and recurrent miscarriages (SM, RM). The aim of this study was to analyze the histone modification marks H3K9ac and H3K4me3 in SM and RM. METHODS The abundance of histone modifications H3K4me3/H3K9ac was analyzed by western blot in frozen abortion material of SM and RM compared to a control group of legal pregnancy terminations. Further, to characterize placental tissue cells expressing H3K4me3/H3K9ac immunohistochemistry (IHC) and immunofluorescence was performed in 20 SM, 19 RM and 26 controls. RESULTS The western blot data showed a tendency to an overall reduction of H3K4me3/H3K9ac, in the placental tissue of particularly SM. Further we differentiated between syncytiotrophoblast, cytotrophoblast and decidual cells and found a significant decrease of H3K4me3 in SM in cytotrophoblast cells and syncytial stroma. In RM H3K4me3 was downregulated exclusively in the syncytiotrophoblast. H3K9ac was reduced in SM and RM in all evaluated compartments, except from the syncytiotrophoblast. CONCLUSION Our study showed an overall reduced histone modification of H3K4me3 and H3K9ac in the placental tissue of SM. Concerning RM, particularly the reduction of H3K9ac was detected in the placental tissue, indicating that RM group has distinct profile in epigenetic regulation. Whether these histone modifications are part of a possible pathophysiologic cascade during SM and RM or are merely indicating a defective placentation, cannot be concluded from this study.
Collapse
Affiliation(s)
- Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.
| | - Isabel Kellner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Nina Rogenhofer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lucia Keilmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa Maria Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Gynecology and Obstetrics, University Hospital Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
26
|
Jia R, Gao Y, Guo S, Li S, Zhou L, Gou C, Huang Y, Fan M, Chen Y. Super Enhancer Profiles Identify Key Cell Identity Genes During Differentiation From Embryonic Stem Cells to Trophoblast Stem Cells Super Enhencers in Trophoblast Differentiation. Front Genet 2021; 12:762529. [PMID: 34712273 PMCID: PMC8546299 DOI: 10.3389/fgene.2021.762529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Trophoblast stem cells (TSCs) are derived from blastocysts and the extra-embryonic ectoderm (ExE) of post-implantation embryos and play a significant role in fetal development, but the roles that TSCs play in the earlier status of fetal diseases need further exploration. Super enhancers (SEs) are dense clusters of stitched enhancers that control cell identity determination and disease development and may participate in TSC differentiation. We identified key cell identity genes regulated by TSC-SEs via integrated analysis of H3K27ac and H3K4me1 chromatin immunoprecipitation sequencing (ChIP-seq), RNA-sequencing (RNA-seq) and ATAC-sequencing (ATAC-seq) data. The identified key TSC identity genes regulated by SEs, such as epidermal growth factor receptor (EGFR), integrin β5 (ITGB5) and Paxillin (Pxn), were significantly upregulated during TSC differentiation, and the transcription network mediated by TSC-SEs enriched in terms like focal adhesion and actin cytoskeleton regulation related to differentiation of TSCs. Additionally, the increased chromatin accessibility of the key cell identity genes verified by ATAC-seq further demonstrated the regulatory effect of TSC-SEs on TSC lineage commitment. Our results illustrated the significant roles of the TSC-SE-regulated network in TSC differentiation, and identified key TSC identity genes EGFR, ITGB5 and Pxn, providing novel insight into TSC differentiation and lays the foundation for future studies on embryo implantation and related diseases.
Collapse
Affiliation(s)
- Rongpu Jia
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu Gao
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song Guo
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Si Li
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liangji Zhou
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chenyu Gou
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yijuan Huang
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meiqiong Fan
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuanqiu Chen
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Peng L, Chelariu-Raicu A, Ye Y, Ma Z, Yang H, Ishikawa-Ankerhold H, Rahmeh M, Mahner S, Jeschke U, von Schönfeldt V. Prostaglandin E2 Receptor 4 (EP4) Affects Trophoblast Functions via Activating the cAMP-PKA-pCREB Signaling Pathway at the Maternal-Fetal Interface in Unexplained Recurrent Miscarriage. Int J Mol Sci 2021; 22:ijms22179134. [PMID: 34502044 PMCID: PMC8430623 DOI: 10.3390/ijms22179134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Implantation consists of a complex process based on coordinated crosstalk between the endometrium and trophoblast. Furthermore, it is known that the microenvironment of this fetal–maternal interface plays an important role in the development of extravillous trophoblast cells. This is mainly due to the fact that tissues mediate embryonic signaling biologicals, among other molecules, prostaglandins. Prostaglandins influence tissue through several cell processes including differentiation, proliferation, and promotion of maternal immune tolerance. The aim of this study is to investigate the potential pathological mechanism of the prostaglandin E2 receptor 4 (EP4) in modulating extravillous trophoblast cells (EVTs) in unexplained recurrent marriage (uRM). Our results indicated that the expression of EP4 in EVTs was decreased in women experiencing uRM. Furthermore, silencing of EP4 showed an inhibition of the proliferation and induced apoptosis in vitro. In addition, our results demonstrated reductions in β- human chorionic gonadotropin (hCG), progesterone, and interleukin (IL)-6, which is likely a result from the activation of the cyclic adenosine monophosphate (cAMP)- cAMP-dependent protein kinase A (PKA)-phosphorylating CREB (pCREB) pathway. Our data might provide insight into the mechanisms of EP4 linked to trophoblast function. These findings help build a more comprehensive understanding of the effects of EP4 on the trophoblast at the fetal–maternal interface in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Lin Peng
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany; (L.P.); (A.C.-R.); (Z.M.); (H.Y.); (M.R.); (S.M.)
- Chongqing Key Laboratory of Human Embryo Engineering, Chongqing Reproductive and Genetics Institute, Chongqing Health Center for Women and Children, No. 64 Jin Tang Street, Yu Zhong District, Chongqing 400013, China
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany; (L.P.); (A.C.-R.); (Z.M.); (H.Y.); (M.R.); (S.M.)
| | - Yao Ye
- Department of Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Kongjiang Rd. 1665, Shanghai 200092, China;
| | - Zhi Ma
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany; (L.P.); (A.C.-R.); (Z.M.); (H.Y.); (M.R.); (S.M.)
| | - Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany; (L.P.); (A.C.-R.); (Z.M.); (H.Y.); (M.R.); (S.M.)
| | - Hellen Ishikawa-Ankerhold
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, 81377 Munich, Germany;
| | - Martina Rahmeh
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany; (L.P.); (A.C.-R.); (Z.M.); (H.Y.); (M.R.); (S.M.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany; (L.P.); (A.C.-R.); (Z.M.); (H.Y.); (M.R.); (S.M.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany; (L.P.); (A.C.-R.); (Z.M.); (H.Y.); (M.R.); (S.M.)
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
- Correspondence:
| | - Viktoria von Schönfeldt
- Center of Gynecological Endocrinology and Reproductive Medicine, Department of Gynecology and Obstetrics, Ludwig-Maximilians University of Munich, Marchioninistr. 15, 81377 Munich, Germany;
| |
Collapse
|
28
|
Adu-Gyamfi EA, Ding YB, Wang YX. Regulation of placentation by the transforming growth factor beta superfamily†. Biol Reprod 2021; 102:18-26. [PMID: 31566220 DOI: 10.1093/biolre/ioz186] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/18/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, there is increased expression of some cytokines at the fetal-maternal interface; and the clarification of their roles in trophoblast-endometrium interactions is crucial to understanding the mechanism of placentation. This review addresses the up-to-date reported mechanisms by which the members of the transforming growth factor beta superfamily regulate trophoblast proliferation, differentiation, and invasion of the decidua, which are the main phases of placentation. The available information shows that these cytokines regulate placentation in somehow a synergistic and an antagonistic manner; and that dysregulation of their levels can lead to aberrant placentation. Nevertheless, prospective studies are needed to reconcile some conflicting reports; and identify some unknown mediators involved in the actions of these cytokines before their detailed mechanistic regulation of human placentation could be fully characterized. The TGF beta superfamily are expressed in the placenta, and regulate the process of placentation through the activation of several signaling pathways.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
29
|
Adu-Gyamfi EA, Wang YX, Ding YB. The interplay between thyroid hormones and the placenta: a comprehensive review†. Biol Reprod 2021; 102:8-17. [PMID: 31494673 DOI: 10.1093/biolre/ioz182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/21/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormones (THs) regulate a number of metabolic processes during pregnancy. After implantation, the placenta forms and enhances embryonic growth and development. Dysregulated maternal THs signaling has been observed in malplacentation-mediated pregnancy complications such as preeclampsia, miscarriage, and intrauterine growth restriction (IUGR), but the molecular mechanisms involved in this association have not been fully characterized. In this review, we have discussed THs signaling and its roles in trophoblast proliferation, trophoblast differentiation, trophoblast invasion of the decidua, and decidual angiogenesis. We have also explored the relationship between specific pregnancy complications and placental THs transporters, deiodinases, and THs receptors. In addition, we have examined the effects of specific endocrine disruptors on placental THs signaling. The available evidence indicates that THs signaling is involved in the formation and functioning of the placenta and serves as the basis for understanding the pathogenesis and pathophysiology of dysthyroidism-associated pregnancy complications such as preeclampsia, miscarriage, and IUGR.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
30
|
Chen X, Guo DY, Yin TL, Yang J. Non-Coding RNAs Regulate Placental Trophoblast Function and Participate in Recurrent Abortion. Front Pharmacol 2021; 12:646521. [PMID: 33967782 PMCID: PMC8100504 DOI: 10.3389/fphar.2021.646521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Recurrent spontaneous abortion (RSA) is a serious pregnancy complication with an increasing clinical incidence. The various causes of recurrent abortion are complicated. Developments in genetics, immunology, and cell biology have identified important roles of non-coding RNAs (ncRNAs) in the occurrence and progress of recurrent abortion. NcRNAs can affect the growth, migration, and invasion of placental trophoblasts by regulating cell processes such as the cell cycle, apoptosis, and epithelial-mesenchymal transformation. Therefore, their abnormal expression might lead to the occurrence and development of RSA. NcRNAs include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), ribosomal RNA (rRNA), transfer, RNA (tRNA), circular RNA (cRNA), and Piwi-interacting RNA (piRNA). In this review, we discuss recent research that focused on the function and mechanism of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNA) in regulating placental trophoblasts. The use of ncRNAs as potential diagnostic and predictive biomarkers in RSA is also discussed to provide future research insights.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Duan-Ying Guo
- Department of Gynecology, Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Tai-Lang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
31
|
Ojosnegros S, Seriola A, Godeau AL, Veiga A. Embryo implantation in the laboratory: an update on current techniques. Hum Reprod Update 2021; 27:501-530. [PMID: 33410481 DOI: 10.1093/humupd/dmaa054] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed.The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.
Collapse
Affiliation(s)
- Samuel Ojosnegros
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Seriola
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Amélie L Godeau
- Bioengineering in Reproductive Health, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anna Veiga
- B arcelona Stem Cell Bank, Regenerative Medicine Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, Barcelona, Spain.,Reproductive Medicine Service, Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
32
|
Silini AR, Di Pietro R, Lang-Olip I, Alviano F, Banerjee A, Basile M, Borutinskaite V, Eissner G, Gellhaus A, Giebel B, Huang YC, Janev A, Kreft ME, Kupper N, Abadía-Molina AC, Olivares EG, Pandolfi A, Papait A, Pozzobon M, Ruiz-Ruiz C, Soritau O, Susman S, Szukiewicz D, Weidinger A, Wolbank S, Huppertz B, Parolini O. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front Bioeng Biotechnol 2020; 8:610544. [PMID: 33392174 PMCID: PMC7773933 DOI: 10.3389/fbioe.2020.610544] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.
Collapse
Affiliation(s)
- Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ana Clara Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G. Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Assunta Pandolfi
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Vascular and Stem Cell Biology, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, CAST (Center for Advanced Studies and Technology, ex CeSI-MeT), Chieti, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
33
|
Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr Physiol 2020; 11:1315-1349. [PMID: 33295016 PMCID: PMC7959189 DOI: 10.1002/cphy.c200008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE), a hypertensive disorder, occurs in 3% to 8% of pregnancies in the United States and affects over 200,000 women and newborns per year. The United States has seen a 25% increase in the incidence of PE, largely owing to increases in risk factors, including obesity and cardiovascular disease. Although the etiology of PE is not clear, it is believed that impaired spiral artery remodeling of the placenta reduces perfusion, leading to placental ischemia. Subsequently, the ischemic placenta releases antiangiogenic and pro-inflammatory factors, such as cytokines, reactive oxygen species, and the angiotensin II type 1 receptor autoantibody (AT1-AA), among others, into the maternal circulation. These factors cause widespread endothelial activation, upregulation of the endothelin system, and vasoconstriction. In turn, these changes affect the function of multiple organ systems including the kidneys, brain, liver, and heart. Despite extensive research into the pathophysiology of PE, the only treatment option remains early delivery of the baby and importantly, the placenta. While premature delivery is effective in ameliorating immediate risk to the mother, mounting evidence suggests that PE increases risk of cardiovascular disease later in life for both mother and baby. Notably, these women are at increased risk of hypertension, heart disease, and stroke, while offspring are at risk of obesity, hypertension, and neurological disease, among other complications, later in life. This article aims to discuss the current understanding of the diagnosis and pathophysiology of PE, as well as associated organ damage, maternal and fetal outcomes, and potential therapeutic avenues. © 2021 American Physiological Society. Compr Physiol 11:1315-1349, 2021.
Collapse
Affiliation(s)
- Bhavisha A. Bakrania
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Frank T. Spradley
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Heather A. Drummond
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babbette LaMarca
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael J. Ryan
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Joey P. Granger
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
34
|
Guo L, Gu F, Xu Y, Zhou C. Increased copy number of syncytin-1 in the trophectoderm is associated with implantation of the blastocyst. PeerJ 2020; 8:e10368. [PMID: 33240670 PMCID: PMC7678462 DOI: 10.7717/peerj.10368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background A key step in embryo implantation is the adhesion to and invasion of the endometrium by the blastocyst trophectoderm. The envelope proteins of HERV-W and -FRD (human endogenous retrovirus-W and -FRD), syncytin-1 and syncytin-2, are mainly distributed in the placenta, and play important roles in the development of the placenta. The placenta originates from the trophectoderm of the blastocyst. It is unclear whether the envelope proteins of HERV-W and -FRD have an effect on the development of the trophectoderm and whether they have any association with the implantation of the blastocyst. Methods The whole-genome amplification products of the human blastocyst trophectoderm were used to measure the copy number of syncytin-1 and syncytin-2 using real time qPCR. In addition, clinical data associated with the outcome of pregnancies was collected, and included age, body mass index (BMI), basic follicle stimulating hormone(bFSH), rate of primary infertility and oligo-astheno-teratospermia, the thickness of the endometrium on the day of endometrial transformation, the levels of estrogen and progestin on the transfer day, the days and the morphological scores of the blastocysts. The expression of mRNA and the copy numbers of syncytin-1 and syncytin-2 in H1 stem cells, and in differentiated H1 cells, induced by BMP4, were measured using real time qPCR. Results The relative copy number of syncytin-1 in the pregnant group (median: 424%, quartile: 232%-463%, p < 0.05) was significantly higher than in the non-pregnant group (median: 100%, quartile: 81%-163%). There was a correlation (r s = 0.681, p < 0.001) between the copy number of syncytin-1 and blastocyst implantation after embryo transfer. As the stem cells differentiated, the expression of NANOG mRNA decreased, and the expression of caudal type homeobox 2(CDX2) and β-human chorionic gonadotropin (β-hCG) mRNAs increased. Compared to the undifferentiated cells, the relative expression of the syncytin-1 mRNA was 1.63 (quartile: 0.59-6.37, p > 0.05), 3.36 (quartile: 0.85-14.80, p > 0.05), 10.85 (quartile: 3.39-24.46, p < 0.05) and 67.81 (quartile: 54.07-85.48, p < 0.05) on day 1, 3, 5 and 7, respectively, after the differentiation. The relative expression of syncytin-2 was 5.34 (quartile: 4.50-10.30), 7.90 (quartile: 2.46-14.01), 57.44 (quartile: 38.35-103.87) and 344.76 (quartile: 267.72-440.10) on day 1, 3, 5 and 7, respectively, after the differentiation (p < 0.05). The copy number of syncytin-1 increased significantly during differentiation. Conclusion Preceding the transfer of frozen embryos, the increased copy number of syncytin-1 in the blastocyst trophectoderm was associated with good outcomes of pregnancies.
Collapse
Affiliation(s)
- Luyan Guo
- Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Fang Gu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yan Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Canquan Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Schmidt JK, Keding LT, Block LN, Wiepz GJ, Koenig MR, Meyer MG, Dusek BM, Kroner KM, Bertogliat MJ, Kallio AR, Mean KD, Golos TG. Placenta-derived macaque trophoblast stem cells: differentiation to syncytiotrophoblasts and extravillous trophoblasts reveals phenotypic reprogramming. Sci Rep 2020; 10:19159. [PMID: 33154556 PMCID: PMC7644694 DOI: 10.1038/s41598-020-76313-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSCs) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first and second trimester placental villous cytotrophoblasts followed by culture in TSC medium to maintain cellular proliferation. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was > 4000-fold higher in ST culture media compared to TSC media. The secretion of chorionic gonadotropin by TSC-derived ST reflects a reprogramming of macaque TSCs to an earlier pregnancy phenotype. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and the macaque placental nonclassical MHC class I molecule, Mamu-AG. Extravillous trophoblasts (EVTs) were derived that express macaque EVT markers Mamu-AG and CD56, and also secrete high levels of MMP2. Our analyses of macaque TSCs suggests that these cells represent a proliferative, self-renewing population capable of differentiating to STs and EVTs in vitro thereby establishing an experimental model of primate placentation.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Logan T Keding
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregory J Wiepz
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Meyer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany M Dusek
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kamryn M Kroner
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Mario J Bertogliat
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Avery R Kallio
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine D Mean
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
36
|
Eikmans M, van der Zwan A, Claas FHJ, van der Hoorn ML, Heidt S. Got your mother in a whirl: The role of maternal T cells and myeloid cells in pregnancy. HLA 2020; 96:561-579. [PMID: 32841539 DOI: 10.1111/tan.14055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
Appropriate development of the placenta is required for healthy pregnancy to occur. After implantation of the fertilized blastocyst, fetal trophoblasts invade the endometrium and myometrium of the mother's uterus to establish placentation. In this process, fetal trophoblasts encounter maternal immune cells. In this review, we focus on the role of maternal T cells and myeloid cells (macrophages, dendritic cells) in pregnancy and their interaction with trophoblasts. To retain immunologic tolerization, trophoblasts evade immune recognition by T cells and produce factors that modulate their phenotype and function. On top of that, the local environment at the maternal-fetal interface favors expansion of regulatory T cells. Macrophages and dendritic cells are essential in maintaining a healthy pregnancy. They produce soluble factors and act as antigen-presenting cells, thereby interacting with T cells. Herein, M2 macrophages, immature dendritic cells, CD4+ Th2 cells, and regulatory T cells represent an axis that maintains a local immune tolerant environment. We consider outstanding issues concerning these cell types and their pathways, which need to be addressed in future investigations. Data from recent single-cell sequencing experiments of the placental bed, to study heterogeneity of maternal immune cells and to predict cell-cell interactions, are discussed. Novel ways for long-term culturing of primary trophoblasts allow for cell-cell interaction studies in a functional way. Future directions should include study of the functionality of currently known and newly identified decidual immune cell subsets in healthy and complicated pregnancies, and their interaction with and modulation by trophoblast cells.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anita van der Zwan
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans H J Claas
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
37
|
Arumugasaamy N, Rock KD, Kuo CY, Bale TL, Fisher JP. Microphysiological systems of the placental barrier. Adv Drug Deliv Rev 2020; 161-162:161-175. [PMID: 32858104 DOI: 10.1016/j.addr.2020.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Methods to evaluate maternal-fetal transport across the placental barrier have generally involved clinical observations after-the-fact, ex vivo perfused placenta studies, or in vitro Transwell assays. Given the ethical and technical limitations in these approaches, and the drive to understand fetal development through the lens of transport-induced injury, such as with the examples of thalidomide and Zika Virus, efforts to develop novel approaches to study these phenomena have expanded in recent years. Notably, within the past 10 years, placental barrier models have been developed using hydrogel, bioreactor, organ-on-a-chip, and bioprinting approaches. In this review, we discuss the biology of the placental barrier and endeavors to recapitulate this barrier in vitro using these approaches. We also provide analysis of current limitations to drug discovery in this context, and end with a future outlook.
Collapse
|
38
|
Resto Irizarry AM, Nasr Esfahani S, Fu J. Bioengineered pluripotent stem cell models: new approaches to explore early human embryo development. Curr Opin Biotechnol 2020; 66:52-58. [PMID: 32673946 DOI: 10.1016/j.copbio.2020.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Human development is a complex process in which environmental signals and factors encoded by the genome interact to engender cell fate changes and self-organization that drive the progressive formation of the human body. Herein, we discuss engineered biomimetic platforms with controllable environments that are being used to develop human pluripotent stem cell (hPSC)-based embryo models (or embryoids) that recapitulate a wide range of early human embryonic developmental events. Coupled with genome editing tools, single-cell analysis, and computational models, they can be used to parse the spatiotemporal dynamics that lead to differentiation, patterning, and growth in early human development. Furthermore, we discuss ongoing efforts in human extraembryonic lineage derivation and what can be learned from mouse embryoid models that have used both embryonic and extraembryonic stem cells. Finally, we discuss promising bioengineering tools for the generation of more controllable systems and the need for validation of findings from hPSC-based embryoid models.
Collapse
Affiliation(s)
| | - Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Toyooka Y. Trophoblast lineage specification in the mammalian preimplantation embryo. Reprod Med Biol 2020; 19:209-221. [PMID: 32684820 PMCID: PMC7360972 DOI: 10.1002/rmb2.12333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The establishment of the trophectoderm (TE) and the inner cell mass (ICM) is the first cell lineage segregation that occurs in mammalian preimplantation development. TE will contribute to the placenta while ICM cells give rise to the epiblast (EPI) and primitive endoderm (PrE). There are two historical models for TE/ICM segregation: the positional (inside-outside) model and the polarity model, but both models alone cannot explain the mechanism of TE/ICM segregation. METHODS This article discusses a current possible model based on recent studies including the finding through live-cell imaging of the expression patterns of caudal type homeobox 2 (Cdx2), a key transcription factor of TE differentiation in the mouse embryo. RESULTS It was observed that a part of outer Cdx2-expressing blastomeres was internalized at the around 20- to 30-cell stage, downregulates Cdx2, ceases TE differentiation, and participates in ICM lineages. CONCLUSION The early blastomere, which starts differentiation toward the TE cell fate, still has plasticity and can change its fate. Differentiation potency of all blastomeres until approximately the 32-cell stage is presumably not irreversibly restricted even if they show heterogeneity in their epigenetic modifications or gene expression patterns.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| |
Collapse
|
40
|
Matsumoto S, Porter CJ, Ogasawara N, Iwatani C, Tsuchiya H, Seita Y, Chang YW, Okamoto I, Saitou M, Ema M, Perkins TJ, Stanford WL, Tanaka S. Establishment of macaque trophoblast stem cell lines derived from cynomolgus monkey blastocysts. Sci Rep 2020; 10:6827. [PMID: 32321940 PMCID: PMC7176671 DOI: 10.1038/s41598-020-63602-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
The placenta forms a maternal-fetal junction that supports many physiological functions such as the supply of nutrition and exchange of gases and wastes. Establishing an in vitro culture model of human and non-human primate trophoblast stem/progenitor cells is important for investigating the process of early placental development and trophoblast differentiation. In this study, we have established five trophoblast stem cell (TSC) lines from cynomolgus monkey blastocysts, named macTSC #1-5. Fibroblast growth factor 4 (FGF4) enhanced proliferation of macTSCs, while other exogenous factors were not required to maintain their undifferentiated state. macTSCs showed a trophoblastic gene expression profile and trophoblast-like DNA methylation status and also exhibited differentiation capacity towards invasive trophoblast cells and multinucleated syncytia. In a xenogeneic chimera assay, these stem cells contributed to trophectoderm (TE) development in the chimeric blastocysts. macTSC are the first primate trophoblast cell lines whose proliferation is promoted by FGF4. These cell lines provide a valuable in vitro culture model to analyze the similarities and differences in placental development between human and non-human primates.
Collapse
Affiliation(s)
- Shoma Matsumoto
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan
| | | | - Naomi Ogasawara
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan
| | - Chizuru Iwatani
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Hideaki Tsuchiya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Yu-Wei Chang
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Japan Science and Technology (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto, 606-8507, Japan
| | - Masatsugu Ema
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | | | - William L Stanford
- The Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Satoshi Tanaka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan.
| |
Collapse
|
41
|
Adu-Gyamfi EA, Fondjo LA, Owiredu WKBA, Czika A, Nelson W, Lamptey J, Wang YX, Ding YB. The role of adiponectin in placentation and preeclampsia. Cell Biochem Funct 2019; 38:106-117. [PMID: 31746004 DOI: 10.1002/cbf.3458] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
Abstract
Preeclampsia is not fully understood; and few biomarkers, therapeutic targets, and therapeutic agents for its management have been identified. Original investigative findings suggest that abnormal placentation triggers preeclampsia and leads to hypertension, proteinuria, endothelial dysfunction, and inflammation, which are characteristics of the disease. Because of the regulatory roles that it plays in several metabolic processes, adiponectin has become a cytokine of interest in metabolic medicine. In this review, we have discussed the role of adiponectin in trophoblast proliferation, trophoblast differentiation, trophoblast invasion of the decidua, and decidual angiogenesis, which are the major phases of placentation. Also, we have highlighted the physiological profile of adiponectin in the course of normal pregnancy. Moreover, we have discussed the involvement of adiponectin in hypertension, endothelial dysfunction, inflammation, and proteinuria. Furthermore, we have summarized the reported relationship between the maternal serum adiponectin level and preeclampsia. The available evidence indicates that adiponectin level physiologically falls as pregnancy advances, regulates placentation, and exhibits protective effects against the symptoms of preeclampsia and that while hyperadiponectinemia is evident in normal-weight preeclamptic women, hypoadiponectinemia is evident in overweight and obese preeclamptic women. Therefore, the clinical use of adiponectin as a biomarker, therapeutic target, or therapeutic agent against the disease looks promising and should be considered.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Linda Ahenkorah Fondjo
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - William K B A Owiredu
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - Armin Czika
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - William Nelson
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jones Lamptey
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
42
|
Tsuchida N, Kojima J, Fukuda A, Oda M, Kawasaki T, Ito H, Kuji N, Isaka K, Nishi H, Umezawa A, Akutsu H. Transcriptomic features of trophoblast lineage cells derived from human induced pluripotent stem cells treated with BMP 4. Placenta 2019; 89:20-32. [PMID: 31675487 DOI: 10.1016/j.placenta.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/31/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Early development of the human placenta remains poorly understood due to the lack of proper model systems. Previous reports have demonstrated that human induced pluripotent stem cells (hiPSCs) treated with bone morphogenetic protein 4 (BMP4) can differentiate into extraembryonic tissues as useful models of the early stage of trophoblast (TB) differentiation. In our previous study, we optimized the culture conditions of hiPSC-derived TB lineages, but the differentiated cells were heterogeneous. METHODS In order to characterize the hiPSC-derived TB lineage cells, four types of hiPSCs were treated with 50 ng/mL of BMP4 for 10 days. Subsequently, cells that were positive for the pan-TB marker keratin 7(KRT7) were purified from the differentiated cells using flow cytometry and identified with a DNA microarray. RESULTS Comparisons of our microarray data with the human transcriptome in a previous large-scale analysis showed that the gene expression patterns of KRT7+ cells were similar to the placenta. In total, 259 upregulated genes were commonly expressed in all four KRT7+ groups, including well-known TB markers. Among these upregulated genes, several with poorly investigated expression patterns and functions were confirmed as expressed in the primary placenta. While only XAGE2 and KCNQ2 were expressed in TB layers, XAGE2 was expressed throughout pregnancy and KCNQ2 was expressed only in cytotrophoblasts of the first trimester placenta. CONCLUSION BMP4-treated KRT7+ cells were in the course of the human placental development. In addition, this approach allowed the identification of new genes that might be involved in placentation. However, further studies are needed to confirm their functions.
Collapse
Affiliation(s)
- Nanae Tsuchida
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan; Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Junya Kojima
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Atsushi Fukuda
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroe Ito
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Naoaki Kuji
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Keiichi Isaka
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku, Tokyo, 160-0023, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
43
|
Frontier Progress in the Establishment of Trophoblast Stem Cell and the Identification of New Cell Subtypes at the Maternal-Fetal Interface. MATERNAL-FETAL MEDICINE 2019. [DOI: 10.1097/fm9.0000000000000023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
44
|
Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2019; 21:27-43. [PMID: 31534202 DOI: 10.1038/s41576-019-0169-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.
Collapse
Affiliation(s)
- Myriam Hemberger
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| | - Courtney W Hanna
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Wendy Dean
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada. .,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
45
|
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 2019; 76:3479-3496. [PMID: 31049600 PMCID: PMC6697717 DOI: 10.1007/s00018-019-03104-6] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, preeclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing self-renewing human trophoblast stem cells and 3-dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.
Collapse
Affiliation(s)
- Martin Knöfler
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria.
| | - Sandra Haider
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Leila Saleh
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Jürgen Pollheimer
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Teena K J B Gamage
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
High Proliferative Placenta-Derived Multipotent Cells Express Cytokeratin 7 at Low Level. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2098749. [PMID: 31392209 PMCID: PMC6662495 DOI: 10.1155/2019/2098749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/30/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to investigate the immunophenotypes and gene expression profile of high proliferative placenta-derived multipotent cells (PDMCs) population at different stages of culture. We demonstrated that the colonies resulting from single cells were either positive or negative for CK7, whereas only PDMC clones with weak CK7 expression (CK7low-clones) were highly proliferative. Interestingly, vimentin positive (Vim+) placental stromal mesenchymal cells did not express CK7 in situ, but double CK7+Vim+ cells detection in tissue explants and explants outgrowth indicated CK7 inducible expression in vitro. PCNA presence in CK7+Vim+ cells during placental explants culturing confirmed belonging of these cells to proliferative subpopulation. Transcription factors CDX2 and EOMES were expressed in both CK7low-clones and subset of stromal mesenchymal cells of first-trimester placental tissue in situ. Meanwhile, CK7low -clones and stromal mesenchymal cells of full-term placental tissue in situ expressed ERG heterogeneously. SPP1, COL2A1, and PPARG2 mesodermal-related genes expression by CK7low-clones additionally confirms their mesenchymal origin. Inherent stem cell-related gene expression (IFTM3, POU5F1, and VASA) in CK7low-clones might indicate their enrichment for progenitors. Finally, in CK7low-clones we observed expression of such trophoblast-associated genes as CGB types I and II, fusogenic ERVW-1, GCM1, and GATA3. Thus, our results indicate that PDMCs acquired the representative immunophenotype signature under culture conditions.
Collapse
|
47
|
Gamage TKJB, Schierding W, Hurley D, Tsai P, Ludgate JL, Bhoothpur C, Chamley LW, Weeks RJ, Macaulay EC, James JL. The role of DNA methylation in human trophoblast differentiation. Epigenetics 2018; 13:1154-1173. [PMID: 30475094 DOI: 10.1080/15592294.2018.1549462] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The placenta is a vital fetal exchange organ connecting mother and baby. Specialised placental epithelial cells, called trophoblasts, are essential for adequate placental function. Trophoblasts transform the maternal vasculature to allow efficient blood flow to the placenta and facilitate adequate nutrient uptake. Placental development is in part regulated by epigenetic mechanisms. However, our understanding of how DNA methylation contributes to human trophoblast differentiation is limited. To better understand how genome-wide methylation differences affect trophoblast differentiation, reduced representation bisulfite sequencing (RRBS) was conducted on four matched sets of trophoblasts; side-population trophoblasts (a candidate human trophoblast stem cell population), cytotrophoblasts (an intermediate progenitor population), and extravillous trophoblasts (EVT, a terminally differentiated population) each isolated from the same first trimester placenta. Each trophoblast population had a distinct methylome. In line with their close differentiation relationship, the methylation profile of side-population trophoblasts was most similar to cytotrophoblasts, whilst EVT had the most distinct methylome. In comparison to mature trophoblast populations, side-population trophoblasts exhibited differential methylation of genes and miRNAs involved in cell cycle regulation, differentiation, and regulation of pluripotency. A combined methylomic and transcriptomic approach was taken to better understand cytotrophoblast differentiation to EVT. This revealed methylation of 41 genes involved in epithelial to mesenchymal transition and metastatic cancer pathways, which likely contributes to the acquisition of an invasive EVT phenotype. However, the methylation status of a gene did not always predict gene expression. Therefore, while CpG methylation plays a role in trophoblast differentiation, it is likely not the only regulatory mechanism involved in this process.
Collapse
Affiliation(s)
- Teena K J B Gamage
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| | - William Schierding
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| | - Daniel Hurley
- b Systems Biology Laboratory, Melbourne School of Engineering , University of Melbourne , Melbourne , Australia
| | - Peter Tsai
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| | - Jackie L Ludgate
- c Department of Pathology, Dunedin School of Medicine , University of Otago , Dunedin , New Zealand
| | | | - Lawrence W Chamley
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| | - Robert J Weeks
- c Department of Pathology, Dunedin School of Medicine , University of Otago , Dunedin , New Zealand
| | - Erin C Macaulay
- c Department of Pathology, Dunedin School of Medicine , University of Otago , Dunedin , New Zealand
| | - Joanna L James
- a Department of Obstetrics and Gynaecology , The University of Auckland , Auckland , New Zealand
| |
Collapse
|
48
|
Luz AL, Tokar EJ. Pluripotent Stem Cells in Developmental Toxicity Testing: A Review of Methodological Advances. Toxicol Sci 2018; 165:31-39. [PMID: 30169765 PMCID: PMC6111785 DOI: 10.1093/toxsci/kfy174] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Millions of children are born each year with a birth defect. Many of these defects are caused by environmental factors, although the underlying etiology is often unknown. In vivo mammalian models are frequently used to determine if a chemical poses a risk to the developing fetus. However, there are over 80 000 chemicals registered for use in the United States, many of which have undergone little safety testing, necessitating the need for higher-throughput methods to assess developmental toxicity. Pluripotent stem cells (PSCs) are an ideal in vitro model to investigate developmental toxicity as they possess the capacity to differentiate into nearly any cell type in the human body. Indeed, a burst of research has occurred in the field of stem cell toxicology over the past decade, which has resulted in numerous methodological advances that utilize both mouse and human PSCs, as well as cutting-edge technology in the fields of metabolomics, transcriptomics, transgenics, and high-throughput imaging. Here, we review the wide array of approaches used to detect developmental toxicants, suggest areas for further research, and highlight critical aspects of stem cell biology that should be considered when utilizing PSCs in developmental toxicity testing.
Collapse
Affiliation(s)
- Anthony L Luz
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
49
|
Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M, Kaindl U, Ellinger A, Burkard TR, Fiala C, Pollheimer J, Mendjan S, Latos PA, Knöfler M. Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Reports 2018; 11:537-551. [PMID: 30078556 PMCID: PMC6092984 DOI: 10.1016/j.stemcr.2018.07.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 01/14/2023] Open
Abstract
Defective placentation is the underlying cause of various pregnancy complications, such as severe intrauterine growth restriction and preeclampsia. However, studies on human placental development are hampered by the lack of a self-renewing in vitro model that would recapitulate formation of trophoblast progenitors and differentiated subtypes, syncytiotrophoblast (STB) and invasive extravillous trophoblast (EVT), in a 3D orientation. Hence, we established long-term expanding organoid cultures from purified first-trimester cytotrophoblasts (CTBs). Molecular analyses revealed that the CTB organoid cultures (CTB-ORGs) express markers of trophoblast stemness and proliferation and are highly similar to primary CTBs at the level of global gene expression. Whereas CTB-ORGs spontaneously generated STBs, withdrawal of factors for self-renewal induced trophoblast outgrowth, expressing the EVT progenitor marker NOTCH1, and provoked formation of adjacent, distally located HLA-G+ EVTs. In summary, we established human CTB-ORGs that grow and differentiate under defined culture conditions, allowing future human placental disease modeling. Derivation of cytotrophoblast organoids from human placenta Long-term expansion of trophoblast organoids in a chemically defined medium Formation of the extravillous trophoblast lineage under defined culture conditions
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Viktoria Kunihs
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Ulrich Kaindl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Adolf Ellinger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria.
| |
Collapse
|
50
|
Liu Y, Fan X, Wang R, Lu X, Dang YL, Wang H, Lin HY, Zhu C, Ge H, Cross JC, Wang H. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res 2018; 28:819-832. [PMID: 30042384 PMCID: PMC6082907 DOI: 10.1038/s41422-018-0066-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
The placenta is crucial for a successful pregnancy and the health of both the fetus and the pregnant woman. However, how the human trophoblast lineage is regulated, including the categorization of the placental cell subtypes is poorly understood. Here we performed single-cell RNA sequencing (RNA-seq) on sorted placental cells from first- and second-trimester human placentas. New subtypes of cells of the known cytotrophoblast cells (CTBs), extravillous trophoblast cells (EVTs), Hofbauer cells, and mesenchymal stromal cells were identified and cell-type-specific gene signatures were defined. Functionally, this study revealed many previously unknown functions of the human placenta. Notably, 102 polypeptide hormone genes were found to be expressed by various subtypes of placental cells, which suggests a complex and significant role of these hormones in regulating fetal growth and adaptations of maternal physiology to pregnancy. These results document human placental trophoblast differentiation at single-cell resolution and thus advance our understanding of human placentation during the early stage of pregnancy.
Collapse
Affiliation(s)
- Yawei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoying Fan
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - Rui Wang
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan-Li Dang
- Department of Obstetrics and Gynecology, The 306th Hospital of PLA, 100101, Beijing, China
| | - Huiying Wang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, 100038, Beijing, China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hao Ge
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - James C Cross
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|