1
|
Huang Z, Yuan W. Exploring genetic structures and shared sites between alcohol, cheese intake, and inflammatory bowel disease. Front Nutr 2025; 12:1468457. [PMID: 39917747 PMCID: PMC11798781 DOI: 10.3389/fnut.2025.1468457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Background An association has been observed between alcohol and cheese intake and the onset of inflammatory bowel disease (IBD), necessitating further exploration from a genetic structural perspective. Methods The present analysis was focused on the intake of alcohol and cheese in conjunction with IBD genome-wide association study (GWAS) data, with the objective of exploring genetic correlations and identifying common loci. Initially, overall genetic correlations were assessed employing two methodologies: linkage disequilibrium score regression (LDSC) and genetic covariance analyzer (GNOVA). Subsequently, local correlations were examined through the SUPERGNOVA method. A genetic overlap analysis between various traits was then conducted based on the statistical theory of conditional/conjunctional false discovery rate (cond/conjFDR). Ultimately, shared loci between the two traits were identified via conjFDR analysis and multi-trait analysis of GWAS (MTAG). Results Substantial overall correlations were noted at the genome-wide level between alcohol and cheese intake and both IBD and Crohn's disease (CD), whereas the association with ulcerative colitis (UC) was of lesser significance. In the local genetic analysis, chromosome 16 emerged as a key region implicated in the relationship between alcohol and cheese intake and IBD (including both CD and UC). The conjFDR analysis confirmed the genetic overlap between the two diseases. Furthermore, both conjFDR and MTAG analyses identified multiple shared genetic loci, with nine genes (Y_RNA, DENND1B, GCKR, KPNA7, CLN3, SLC39A8, FUT2, ERAP2, and SMAD3) being. Conclusion The present study provides genetic evidence supporting the comorbidity of alcohol and cheese intake with IBD, offering novel insights into potential strategies for the prevention and treatment of IBD through the modulation of alcohol and cheese consumption.
Collapse
Affiliation(s)
- Zhifang Huang
- Department of Anorectal Surgery, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Weichao Yuan
- Department of Anorectal Surgery, Affiliated Hospital of Jiujiang University, Jiujiang, China
| |
Collapse
|
2
|
Li Y, Qin M, Liu N, Zhang C. Organoid development and applications in gynecological cancers: the new stage of tumor treatment. J Nanobiotechnology 2025; 23:20. [PMID: 39819668 PMCID: PMC11740664 DOI: 10.1186/s12951-024-03086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/29/2024] [Indexed: 01/19/2025] Open
Abstract
Gynecologic cancers (GCs), including cervical cancer (CC), ovarian cancer (OC), endometrial cancer (EC), as well as vulvar and vaginal cancers, represent major health threats to women, with increasing incidence rates observed globally. Conventional treatments, such as surgery, radiation therapy, and chemotherapy, are often hindered by challenges such as drug resistance and recurrence, contributing to high mortality rates. Organoid technology has emerged as a transformative tool in cancer research, offering in vitro models that closely replicate the tumor cell architecture and heterogeneity of primary cancers. Tumor-derived organoids preserve the histological and molecular characteristics of the original tumors, making them invaluable for studying tumor biology, molecular pathways, and the tumor immune microenvironment. Furthermore, organoids play a crucial role in biomarker discovery, drug screening, and the development of personalized therapeutic strategies. In contrast to traditional cell lines and patient-derived xenograft (PDX) models, gynecologic cancer organoids accurately mirror the genetic mutations and specific gene expression profiles of primary tumors. This review provides an overview of recent advancements in the development of gynecologic cancer organoid models, highlighting their contributions to understanding disease mechanisms, facilitating drug discovery, and advancing precision medicine. It also addresses the potential and challenges of organoid technology, with a focus on its role in advancing personalized treatment approaches for GCs.
Collapse
Affiliation(s)
- Yang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Meiying Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
3
|
Chauhan G, Massey WJ, Veisman I, Rieder F. Anti-fibrotics in inflammatory bowel diseases: Challenges and successes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:85-106. [PMID: 39521606 DOI: 10.1016/bs.apha.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Stricture formation leading to obstruction in Crohn's disease (CD) remains one of the largest unmet needs in the field of inflammatory bowel diseases (IBD). Despite this need no selective anti-stricture drug has been approved for use in CD patients. This contrasts with other fibrotic diseases, such as in the lung, liver or kidney, where multiple drug development programs crossed the starting line and two anti-fibrotics are now being approved for pulmonary fibrosis. Strictures are composed of a mix of inflammation, excessive deposition of extracellular matrix (ECM) and smooth muscle hyperplasia, likely all ultimately being responsible for the luminal narrowing driving patient symptoms. Our understanding of the pathogenesis of stricturing CD has evolved and indicates a multifactorial process involving immune and non-immune cells and their soluble mediators. This understanding has rendered target pathways for anti-stricture drug development. Significant progress was made in creating consensus definitions and tools to enable clinical trials with two clinical development programs having been conceived to date. In this chapter, we discuss stricture pathogenesis with a focus on the pathways being tested in clinical trials, and clinical trial endpoints developed for this indication.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|
4
|
Qiu C, Zhao Z, Xu C, Yuan R, Ha Y, Tu Q, Zhang H, Mu Z, Xin Q, Tian Y, Wang A, Wang H, Shi Y. Nebulized milk exosomes loaded with siTGF-β1 ameliorate pulmonary fibrosis by inhibiting EMT pathway and enhancing collagen permeability. J Nanobiotechnology 2024; 22:434. [PMID: 39044233 PMCID: PMC11267965 DOI: 10.1186/s12951-024-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Pulmonary Fibrosis (PF) is a fatal disease in the interstitial lung associated with high mortality, morbidity, and poor prognosis. Transforming growth factor-β1 (TGF-β1) is a fibroblast-activating protein that promotes fibrous diseases. Herein, an inhalable system was first developed using milk exosomes (M-Exos) encapsulating siRNA against TGF-β1 (MsiTGF-β1), and their therapeutic potential for bleomycin (BLM)-induced PF was investigated. M-siTGF-β1 was introduced into the lungs of mice with PF through nebulization. The collagen penetration effect and lysosomal escape ability were verified in vitro. Inhaled MsiTGF-β1 notably alleviated inflammatory infiltration, attenuated extracellular matrix (ECM) deposition, and increased the survival rate of PF mice by 4.7-fold. M-siTGF-β1 protected lung tissue from BLM toxicity by efficiently delivering specific siRNA to the lungs, leading to TGF-β1 mRNA silencing and epithelial mesenchymal transition pathway inhibition. Therefore, M-siTGF-β1 offers a promising avenue for therapeutic intervention in fibrosis-related disorders.
Collapse
Affiliation(s)
- Chong Qiu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenyu Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Chenglin Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Ranran Yuan
- College of Life Science, Yantai University, Yantai, 264005, P.R. China
| | - Yuxuan Ha
- Ontario Virtual School, 4789 Yonge Street, Unit 705, Toronto, ON, M2N 0G3, Canada
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingchao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Houqian Zhang
- College of Life Science, Yantai University, Yantai, 264005, P.R. China
| | - Zhen Mu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Quanlin Xin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Yu Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Yanan Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
5
|
Xin S, Liu X, He C, Gao H, Wang B, Hua R, Gao L, Shang H, Sun F, Xu J. Inflammation accelerating intestinal fibrosis: from mechanism to clinic. Eur J Med Res 2024; 29:335. [PMID: 38890719 PMCID: PMC11184829 DOI: 10.1186/s40001-024-01932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Intestinal fibrosis is a prevalent complication of IBD that that can frequently be triggered by prolonged inflammation. Fibrosis in the gut can cause a number of issues, which continue as an ongoing challenge to healthcare systems worldwide. The primary causes of intestinal fibrosis are soluble molecules, G protein-coupled receptors, epithelial-to-mesenchymal or endothelial-to-mesenchymal transition, and the gut microbiota. Fresh perspectives coming from in vivo and in vitro experimental models demonstrate that fibrogenic pathways might be different, at least to some extent, independent of the ones that influence inflammation. Understanding the distinctive procedures of intestinal fibrogenesis should provide a realistic foundation for targeting and blocking specific fibrogenic pathways, estimating the risk of fibrotic consequences, detecting early fibrotic alterations, and eventually allowing therapy development. Here, we first summarize the inflammatory and non-inflammatory components of fibrosis, and then we elaborate on the underlying mechanism associated with multiple cytokines in fibrosis, providing the framework for future clinical practice. Following that, we discuss the relationship between modernization and disease, as well as the shortcomings of current studies. We outline fibrosis diagnosis and therapy, as well as our recommendations for the future treatment of intestinal fibrosis. We anticipate that the global review will provides a wealth of fresh knowledge and suggestions for future fibrosis clinical practice.
Collapse
Affiliation(s)
- Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Department of Clinical Laboratory, Aerospace Clinical Medical College, Aerospace Central Hospital, Beijing, 100039, China
| | - Boya Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rongxuan Hua
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lei Gao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Hongwei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing, 100069, China
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
7
|
Rieder F, Mukherjee PK, Massey WJ, Wang Y, Fiocchi C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 2024; 73:854-866. [PMID: 38233198 PMCID: PMC10997492 DOI: 10.1136/gutjnl-2023-329963] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Intestinal fibrosis resulting in stricture formation and obstruction in Crohn's disease (CD) and increased wall stiffness leading to symptoms in ulcerative colitis (UC) is among the largest unmet needs in inflammatory bowel disease (IBD). Fibrosis is caused by a multifactorial and complex process involving immune and non-immune cells, their soluble mediators and exposure to luminal contents, such as microbiota and environmental factors. To date, no antifibrotic therapy is available. Some progress has been made in creating consensus definitions and measurements to quantify stricture morphology for clinical practice and trials, but approaches to determine the degree of fibrosis within a stricture are still lacking. OBJECTIVE We herein describe the current state of stricture pathogenesis, measuring tools and clinical trial endpoints development. DESIGN Data presented and discussed in this review derive from the past and recent literature and the authors' own research and experience. RESULTS AND CONCLUSIONS Significant progress has been made in better understanding the pathogenesis of fibrosis, but additional studies and preclinical developments are needed to define specific therapeutic targets.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Pranab K Mukherjee
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Massey
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yan Wang
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Monteleone G, Laudisi F, Stolfi C. Smad7 as a positive regulator of intestinal inflammatory diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100055. [PMID: 36714553 PMCID: PMC9881044 DOI: 10.1016/j.crimmu.2023.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
In physiological conditions, the human gut contains more immune cells than the rest of the body, but no overt tissue damage occurs, because several regulatory mechanisms control the activity of such cells thus preventing excessive and detrimental responses. One such mechanism relies on the action of transforming growth factor (TGF)-β1, a cytokine that targets both epithelial cells and many immune cell types. Loss of TGF-β1 function leads to intestinal pathology in both mice and humans. For instance, disruption of TGF-β1 signaling characterizes the destructive immune-inflammatory response in patients with Crohn's disease and patients with ulcerative colitis, the major human inflammatory bowel disease (IBD) entities. In these pathologies, the defective TGF-β1-mediated anti-inflammatory response is associated with elevated intestinal levels of Smad7, an antagonist of TGF-β1 signaling. Consistently, knockdown of Smad7 restores TGF-β1 function thereby attenuating intestinal inflammation in patients with IBD as well as in mice with IBD-like colitis. Up-regulation of Smad7 and reduced TGF-β1 signaling occurs also in necrotizing enterocolitis, environmental enteropathy, refractory celiac disease, and cytomegalovirus-induced colitis. In this article, we review the available data supporting the pathogenic role of Smad7 in the gastrointestinal tract and discuss whether and how targeting Smad7 can help attenuate detrimental immuno-inflammatory responses in the gut.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Corresponding author. Dipartimento di Medicina dei Sistemi, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133, Rome, Italy.
| | | | | |
Collapse
|
9
|
Chan MKK, Chan ELY, Ji ZZ, Chan ASW, Li C, Leung KT, To KF, Tang PMK. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:316-343. [PMID: 37205317 PMCID: PMC10185444 DOI: 10.37349/etat.2023.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/09/2023] [Indexed: 05/21/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is an important pathway for promoting the pathogenesis of inflammatory diseases, including cancer. The roles of TGF-β signaling are heterogeneous and versatile in cancer development and progression, both anticancer and protumoral actions are reported. Interestingly, increasing evidence suggests that TGF-β enhances disease progression and drug resistance via immune-modulatory actions in the tumor microenvironment (TME) of solid tumors. A better understanding of its regulatory mechanisms in the TME at the molecular level can facilitate the development of precision medicine to block the protumoral actions of TGF-β in the TME. Here, the latest information about the regulatory mechanisms and translational research of TGF-β signaling in the TME for therapeutic development had been summarized.
Collapse
Affiliation(s)
- Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Emily Lok-Yiu Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Chunjie Li
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: Patrick Ming-Kuen Tang, Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
10
|
Monteleone G, Stolfi C. Smad7 Antisense Oligonucleotide in Crohn's Disease: A Re-Evaluation and Explanation for the Discordant Results of Clinical Trials. Pharmaceutics 2022; 15:pharmaceutics15010095. [PMID: 36678723 PMCID: PMC9864707 DOI: 10.3390/pharmaceutics15010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
In Crohn's disease (CD) and ulcerative colitis (UC), the major inflammatory bowel diseases (IBD) in human beings, the tissue-damaging inflammatory response is characterized by elevated levels of Suppressor of Mothers Against Decapentaplegic (Smad)7, an inhibitor of the immunosuppressive cytokine Transforming Growth Factor (TGF)-β1. Consistently, preclinical work in mouse models of IBD-like colitis showed that the knockdown of Smad7 with an antisense oligonucleotide (AS) attenuated the mucosal inflammation, thus paving the way for the development of an AS-containing pharmaceutical compound, named mongersen, for clinical use. The initial phase 1 and phase 2 studies showed that oral administration of mongersen was safe and effective in inducing clinical remission in active CD patients. However, subsequently, a large multicentered, randomized, double-blind, placebo-controlled, phase 3 trial was prematurely discontinued because of an interim analysis showing no effect of mongersen on the activity of CD. In this study we will discuss recent data showing that the majority of the batches of mongersen used in the phase 3 study were chemically different from those used in the previous clinical trials, with some of them being unable to knockdown Smad7 in cultured cells. The accumulating evidence highlights the need to maintain consistent manufacturing requirements for clinical AS, as well as the potential benefits of in vitro bioassays as a part of quality control. New clinical trials evaluating mongersen's impact on IBD using chemically homogenous batches will be needed to ascertain the therapeutic efficacy of such a drug.
Collapse
|
11
|
Schuler C, Foti F, Perren L, Mamie C, Weder B, Stokmaier M, de Vallière C, Heuchel R, Ruiz PA, Rogler G, Hausmann M. Deletion of Smad7 Ameliorates Intestinal Inflammation and Contributes to Fibrosis. Inflamm Bowel Dis 2022; 29:647-660. [PMID: 36282601 DOI: 10.1093/ibd/izac221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Patients suffering from inflammatory bowel diseases (IBDs) express increased mucosal levels of transforming growth factor (TGF)-β compared with non-IBD controls. SMAD7 negatively regulates TGF-β signaling. An earlier study aiming to target Smad7 showed a lack of clinical benefit. It remains unknown whether inhibition of SMAD7 is beneficial in specific settings of IBD. We evaluated the effect of Smad7 deficiency on inflammation, fibrogenesis, and wound healing. METHODS For the initiation of fibrosis in Smad7-/- (Smad7Δex-I) CD-1 mice, the dextran sodium sulfate-induced chronic colitis model and the heterotopic transplantation model of fibrosis were used. Wound closure of fibroblasts from Smad7-/- mice was determined using culture inserts and electric cell-substrate impedance sensing in vitro. RESULTS In dextran sodium sulfate-induced chronic colitis, Smad7 deficiency was associated with ameliorated inflammation, as evidenced by decreased clinical score, histological score, and myeloperoxidase activity. Absence of SMAD7 decreased T-cell accumulation in colonic tissue and tumor necrosis factor (TNF) mRNA expression levels. Smad7-/- mice showed a significant increase in hydroxyproline and collagen content, as well as ColIVa1 mRNA expression. Wild type mice transplanted with terminal ileum from Smad7-/- mice in the heterotopic animal model for intestinal fibrosis showed a significant increase in collagen content and protein expression of α-smooth muscle actin. CONCLUSIONS Smad7 deficiency is associated with a decrease in intestinal inflammation and an increase in fibrosis. Targeting SMAD7 constitutes a potential new treatment option for IBD; progression of disease-associated fibrosis should be considered.
Collapse
Affiliation(s)
- Cordelia Schuler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Federica Foti
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Leonie Perren
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michelle Stokmaier
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2022. [PMID: 35440774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Villablanca EJ, Selin K, Hedin CRH. Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression? Nat Rev Gastroenterol Hepatol 2022; 19:493-507. [PMID: 35440774 DOI: 10.1038/s41575-022-00604-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Almost all currently available treatments for inflammatory bowel disease (IBD) act by inhibiting inflammation, often blocking specific inflammatory molecules. However, given the infectious and neoplastic disease burden associated with chronic immunosuppressive therapy, the goal of attaining mucosal healing without immunosuppression is attractive. The absence of treatments that directly promote mucosal healing and regeneration in IBD could be linked to the lack of understanding of the underlying pathways. The range of potential strategies to achieve mucosal healing is diverse. However, the targeting of regenerative mechanisms has not yet been achieved for IBD. Stem cells provide hope as a regenerative treatment and are used in limited clinical situations. Growth factors are available for the treatment of short bowel syndrome but have not yet been applied in IBD. The therapeutic application of organoid culture and stem cell therapy to generate new intestinal tissue could provide a novel mechanism to restore barrier function in IBD. Furthermore, blocking key effectors of barrier dysfunction (such as MLCK or damage-associated molecular pattern molecules) has shown promise in experimental IBD. Here, we review the diversity of molecular targets available to directly promote mucosal healing, experimental models to identify new potential pathways and some of the anticipated potential therapies for IBD.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| | - Katja Selin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte R H Hedin
- Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden. .,Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Bai B, Li H, Han L, Mei Y, Hu C, Mei Q, Xu J, Liu X. Molecular mechanism of the TGF‑β/Smad7 signaling pathway in ulcerative colitis. Mol Med Rep 2022; 25:116. [PMID: 35137923 PMCID: PMC8855156 DOI: 10.3892/mmr.2022.12632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Aberrant TGF‑β/Smad7 signaling has been reported to be an important mechanism underlying the pathogenesis of ulcerative colitis. Therefore, the present study aimed to investigate the effects of a number of potential anti‑colitis agents on intestinal epithelial permeability and the TGF‑β/Smad7 signaling pathway in an experimental model of colitis. A mouse model of colitis was first established before anti‑TNF‑α and 5‑aminosalicyclic acid (5‑ASA) were administered intraperitoneally and orally, respectively. Myeloperoxidase (MPO) activity, histological index (HI) of the colon and the disease activity index (DAI) scores were then detected in each mouse. Transmission electron microscopy (TEM), immunohistochemical and functional tests, including Evans blue (EB) and FITC‑dextran (FD‑4) staining, were used to evaluate intestinal mucosal permeability. The expression of epithelial phenotype markers E‑cadherin, occludin, zona occludens (ZO‑1), TGF‑β and Smad7 were measured. In addition, epithelial myosin light chain kinase (MLCK) expression and activity were measured. Anti‑TNF‑α and 5‑ASA treatments was both found to effectively reduce the DAI score and HI, whilst decreasing colonic MPO activity, plasma levels of FD‑4 and EB permeation of the intestine. Furthermore, anti‑TNF‑α and 5‑ASA treatments decreased MLCK expression and activity, reduced the expression of Smad7 in the small intestine epithelium, but increased the expression of TGF‑β. In mice with colitis, TEM revealed partial epithelial injury in the ileum, where the number of intercellular tight junctions and the expression levels of E‑cadherin, ZO‑1 and occludin were decreased, all of which were alleviated by anti‑TNF‑α and 5‑ASA treatment. In conclusion, anti‑TNF‑α and 5‑ASA both exerted protective effects on intestinal epithelial permeability in an experimental mouse model of colitis. The underlying mechanism may be mediated at least in part by the increase in TGF‑β expression and/or the reduction in Smad7 expression, which can inhibit epithelial MLCK activity and in turn reduce mucosal permeability during the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Bingqing Bai
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huihui Li
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Fuyang Cancer Hospital, Fuyang, Anhui 236010, P.R. China
| | - Liang Han
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, P.R. China
| | - Yongyu Mei
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Wuhu Second People's Hospital, Wuhu, Anhui 241000, P.R. China
| | - Cui Hu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Qiao Mei
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jianming Xu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiaochang Liu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
15
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
16
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
17
|
A Pharmacological Batch of Mongersen that Downregulates Smad7 is Effective as Induction Therapy in Active Crohn's Disease: A Phase II, Open-Label Study. BioDrugs 2021; 35:325-336. [PMID: 33871807 PMCID: PMC8084825 DOI: 10.1007/s40259-021-00482-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND A recent phase III trial did not confirm the previous clinical and endoscopic improvements seen in patients with Crohn's disease (CD) receiving Mongersen, an oral Smad7 antisense oligonucleotide. Factors accounting for such a discrepancy are unknown. OBJECTIVE Our objective was to further assess whether Mongersen was effective as induction therapy in active CD and evaluate the in vitro inhibitory effect of various batches of Mongersen used in the previous and present trials on Smad7 expression. METHODS In a phase II, open-label study, 18 patients with active CD (Crohn's Disease Activity Index [CDAI] score > 220 and evidence of endoscopic lesions) received Mongersen 160 mg/day for 12 weeks. The rates of clinical remission, defined as CDAI < 150, and clinical response, defined as a CDAI score decrease ≥ 100, were evaluated at week 4, 8, and 12. The fraction of circulating CCR9-expressing leukocytes was assessed by flow cytometry. Smad7 expression was evaluated in the human colorectal cancer cell line HCT-116 transfected with different batches of Mongersen using real-time polymerase chain reaction (PCR) and Western blotting, RESULTS: The proportions of patients experiencing clinical remission were 38.9%, 55.6%, and 50.0% at week 4, 8, and 12, respectively. At the same time points, the rates of clinical response were 72.2%, 77.8%, and 77.8%, respectively. Mongersen reduced the percentages of CCR9-expressing CD45+ cells. The batch of Mongersen used in this study, but not two batches used in the phase III study, inhibited Smad7 expression in HCT-116 cells. CONCLUSIONS The present findings support the clinical benefit of Mongersen in active CD and show that various batches manufactured during the GED0301 program differ in their ability to inhibit in vitro Smad7. TRIAL REGISTRATION NUMBER NCT02685683; EudraCT 2015-001693-18.
Collapse
|
18
|
Involvement of Smad7 in Inflammatory Diseases of the Gut and Colon Cancer. Int J Mol Sci 2021; 22:ijms22083922. [PMID: 33920230 PMCID: PMC8069188 DOI: 10.3390/ijms22083922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
In physiological conditions, the human intestinal mucosa is massively infiltrated with various subsets of immune cells, the activity of which is tightly regulated by several counter-regulatory factors. One of these factors is transforming growth factor-β1 (TGF-β1), a cytokine produced by multiple cell types and targeting virtually all the intestinal mucosal cells. Binding of TGF-β1 to its receptors triggers Smad2/3 signaling, thus culminating in the attenuation/suppression of immune–inflammatory responses. In patients with Crohn’s disease and patients with ulcerative colitis, the major human inflammatory bowel diseases (IBD), and in mice with IBD-like colitis, there is defective TGF-β1/Smad signaling due to high levels of the intracellular inhibitor Smad7. Pharmacological inhibition of Smad7 restores TGF-β1 function, thereby reducing inflammatory pathways in patients with IBD and colitic mice. On the other hand, transgenic over-expression of Smad7 in T cells exacerbates colitis in various mouse models of IBD. Smad7 is also over-expressed in other inflammatory disorders of the gut, such as refractory celiac disease, necrotizing enterocolitis and cytomegalovirus-induced colitis, even though evidence is still scarce and mainly descriptive. Furthermore, Smad7 has been involved in colon carcinogenesis through complex and heterogeneous mechanisms, and Smad7 polymorphisms could influence cancer prognosis. In this article, we review the data about the expression and role of Smad7 in intestinal inflammation and cancer.
Collapse
|
19
|
Role of TGF-Beta and Smad7 in Gut Inflammation, Fibrosis and Cancer. Biomolecules 2020; 11:biom11010017. [PMID: 33375423 PMCID: PMC7823508 DOI: 10.3390/biom11010017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract contains the largest population of immune cells in the body and this is a reflection of the fact that it is continuously exposed to a myriad of dietary and bacterial antigens. Although these cells produce a variety of inflammatory cytokines that could potentially promote tissue damage, in normal conditions the mucosal immune response is tightly controlled by counter-regulatory factors, which help induce and maintain gut homeostasis and tolerance. One such factor is transforming growth factor (TGF)-β1, a cytokine produced by multiple lineages of leukocytes, stromal cells and epithelial cells, and virtually targets all the gut mucosal cell types. Indeed, studies in animals and humans have shown that defects in TGF-β1 production and/or signaling can lead to the development of immune-inflammatory pathologies, fibrosis and cancer in the gut. Here, we review and discuss the available evidence about the role of TGF-β1 and Smad7, an inhibitor of TGF-β1 activity, in gut inflammation, fibrosis and cancer with particular regard to the contribution of these two molecules in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
|
20
|
Yang B, Zhang G, Elias M, Zhu Y, Wang J. The role of cytokine and immune responses in intestinal fibrosis. J Dig Dis 2020; 21:308-314. [PMID: 32410365 DOI: 10.1111/1751-2980.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The rapidly increasing incidence of inflammatory bowel disease (IBD) in South America, eastern Europe, Asia, and Africa has resulted in a global public health challenge. Intestinal fibrosis is a common complication in patients with long-term IBD, which may develop into stenosis and subsequent obstruction. Hitherto, the origin of IBD is unclear and several factors may be involved, including genetic, immune, environmental and microbial influences. Little is known about how the recurrent inflammation in patients with IBD develops into intestinal fibrosis and currently, there is no suitable treatment to reverse intestinal fibrosis in these patients. Here, we review the role of immune components in the pathogenesis of IBD and intestinal fibrosis, including cytokine networks, host-microbiome interactions, and immune cell trafficking.
Collapse
Affiliation(s)
- Bo Yang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ge Zhang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yijun Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Marafini I, Troncone E, Salvatori S, Monteleone G. TGF-β activity restoration and phosphodiesterase 4 inhibition as therapeutic options for inflammatory bowel diseases. Pharmacol Res 2020; 155:104757. [PMID: 32194176 DOI: 10.1016/j.phrs.2020.104757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
In the last decades, the better understanding of inflammatory bowel diseases (IBD) pathogenesis has contributed to the identification of new therapeutic targets that can be modulated to induce and maintain disease remission. Monoclonal antibodies against tumor necrosis factor, interleukin (IL)-12/IL-23p40, and the integrin α4β7 and inhibitors of Janus kinase molecules are valid compounds to limit the function of molecules implicated in the control of IBD-related inflammation. However, not all patients respond to treatment with such drugs, some of them lose response over time and others develop serious side effects, such as infections or malignancies, which lead to the discontinuation of the therapy. Thus, an intensive research is ongoing with the goal to identify new targets and develop novel therapeutic options. In this context, restoration of TGF-β activity and inhibition of phosphodiesterase 4 (PD4) represent two relevant strategies. TGF-β is an immunesuppressive cytokine, whose activity is severely impaired in IBD due to the abundance of the intracellular inhibitor Smad7. Knockdown of Smad7 with a specific antisense oligonucleotide restores TGF-β signalling and dampens effector immune responses in pre-clinical studies and initial clinical trials in Crohn's disease patients, even though a recent phase 3 trial was discontinued due to an apparent inefficacy. PD4 inhibition determines the increase of intracellular levels of cyclic adenosine monophosphate, a mechanism that decreases pro-inflammatory cytokine production. A recent phase 2 study has shown that oral administration of PD4 associates with clinical benefit in patients with ulcerative colitis. In this article, we review the rationale and the available data relative to the use of these two agents in IBD.
Collapse
Affiliation(s)
- Irene Marafini
- Chair of Gastroenterology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Gastroenterology Unit, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Edoardo Troncone
- Chair of Gastroenterology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Gastroenterology Unit, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Silvia Salvatori
- Chair of Gastroenterology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Gastroenterology Unit, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Giovanni Monteleone
- Chair of Gastroenterology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Gastroenterology Unit, Fondazione Policlinico Tor Vergata, Rome, Italy.
| |
Collapse
|
22
|
Kim J, Jeon S, Kang SJ, Kim KR, Thai HBD, Lee S, Kim S, Lee YS, Ahn DR. Lung-targeted delivery of TGF-β antisense oligonucleotides to treat pulmonary fibrosis. J Control Release 2020; 322:108-121. [PMID: 32179111 DOI: 10.1016/j.jconrel.2020.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/19/2023]
Abstract
Pulmonary fibrosis is a serious respiratory disease, with limited therapeutic options. Since TGF-β is a critical factor in the fibrotic process, downregulation of this cytokine has been considered a potential approach for disease treatment. Herein, we designed a new lung-targeted delivery technology based on the complexation of polymeric antisense oligonucleotides (pASO) and dimeric human β-defensin 23 (DhBD23). Antisense oligonucleotides targeting TGF-β mRNA were polymerized by rolling circle amplification and complexed with DhBD23. After complexation with DhBD23, pASO showed improved serum stability and enhanced uptake by fibroblasts in vitro and lung-specific accumulation upon intravenous injection in vivo. The pASO/DhBD23 complex delivered into the lung downregulated target mRNA, and subsequently alleviated lung fibrosis in mice, as demonstrated by western blotting, quantitative reverse-transcriptase PCR (qRT-PCR), immunohistochemistry, and immunofluorescence imaging. Moreover, as the complex was prepared only with highly biocompatible materials such as DNA and human-derived peptides, no systemic toxicity was observed in major organs. Therefore, the pASO/DhBD23 complex is a promising gene therapy platform with lung-targeting ability to treat various pulmonary diseases, including pulmonary fibrosis, with low side effects.
Collapse
Affiliation(s)
- Junghyun Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seulgi Jeon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Ewhayeodae-gil 52, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Seong Jae Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hien Bao Dieu Thai
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seokyung Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Ewhayeodae-gil 52, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
23
|
Franzè E, Monteleone I, Laudisi F, Rizzo A, Dinallo V, Di Fusco D, Colantoni A, Ortenzi A, Giuffrida P, Di Carlo S, Sica GS, Di Sabatino A, Monteleone G. Cadherin-11 Is a Regulator of Intestinal Fibrosis. J Crohns Colitis 2020; 14:406-417. [PMID: 31504344 DOI: 10.1093/ecco-jcc/jjz147] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Although the mechanisms underlying the formation of intestinal fibrostrictures in Crohn's disease [CD] are not fully understood, activation of fibroblasts and excessive collagen deposition are supposed to contribute to the development of such complications. Here, we investigated the role of cadherin-11 [CDH-11], a fibroblast-derived protein that induces collagen production in various organs, in intestinal fibrosis. METHODS CDH-11 expression was evaluated in inflammatory [I] and fibrostricturing [FS] CD mucosal samples, ulcerative colitis [UC] mucosal samples, and ileal and colonic control samples, by real-time polymerase chain reaction, western blotting, and immunohistochemistry. CDH-11 expression was evaluated in normal and in CD intestinal fibroblasts stimulated with inflammatory/fibrogenic cytokines. FS CD fibroblasts were cultured either with a specific CDH-11 antisense oligonucleotide [AS], or activating CDH-11 fusion protein and activation of RhoA/ROCK, and TGF-β pathways and collagen production were evaluated by western blotting. Finally, we assessed the susceptibility of CDH-11-knockout [KO] mice to colitis-induced intestinal fibrosis. RESULTS CDH-11 RNA and protein expression were increased in both CD and UC as compared with controls. In CD, the greater expression of CDH-11 was seen in FS samples. Stimulation of fibroblasts with TNF-α, interleukin [IL]-6, IFN-γ, IL-13, and IL-1β enhanced CDH-11 expression. Knockdown of CDH-11 in FS CD fibroblasts impaired RhoA/ROCK/TGF-β signalling and reduced collagen synthesis, whereas activation of CDH-11 increased collagen secretion. CDH-11 KO mice were largely protected from intestinal fibrosis. CONCLUSIONS Data show that CDH-11 expression is up-regulated in inflammatory bowel disease [IBD] and suggest a role for this protein in the control of intestinal fibrosis.
Collapse
Affiliation(s)
- Eleonora Franzè
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Ivan Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angelamaria Rizzo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Paolo Giuffrida
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Sara Di Carlo
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Giuseppe S Sica
- Department of Surgery, University 'TOR VERGATA' of Rome, Rome, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| |
Collapse
|
24
|
Giuffrida P, Cococcia S, Delliponti M, Lenti MV, Di Sabatino A. Controlling Gut Inflammation by Restoring Anti-Inflammatory Pathways in Inflammatory Bowel Disease. Cells 2019; 8:E397. [PMID: 31052214 PMCID: PMC6562982 DOI: 10.3390/cells8050397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is caused by a dysregulated immune response against normal components of the intestinal microflora combined with defective functioning of anti-inflammatory pathways. Currently, all therapies approved for IBD manipulate the immune system by inhibiting pro-inflammatory mechanisms, such as tumor necrosis factor-α, gut-homing α4β7 integrin, interleukin-12/interleukin-23, and Janus kinases. However, some IBD patients are non-responders to these drugs, which are also associated with serious side effects. Thus, it has been hypothesized that therapies aimed at restoring anti-inflammatory signals, by exploiting the tolerogenic potential of cytokines (interleukin-10, transforming growth factor-β, granulocyte macrophage colony-stimulating factor), immune cells (regulatory T cells, tolerogenic dendritic cells), or mesenchymal stem cells, might offer promising results in terms of clinical efficacy with fewer side effects. In this review, we provide new insights into putative novel treatments aimed at restoring anti-inflammatory signaling pathways in IBD.
Collapse
Affiliation(s)
- Paolo Giuffrida
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Sara Cococcia
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Mariangela Delliponti
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Marco Vincenzo Lenti
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Antonio Di Sabatino
- First Department of Internal Medicine, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| |
Collapse
|
25
|
Di Fusco D, Dinallo V, Marafini I, Figliuzzi MM, Romano B, Monteleone G. Antisense Oligonucleotide: Basic Concepts and Therapeutic Application in Inflammatory Bowel Disease. Front Pharmacol 2019; 10:305. [PMID: 30983999 PMCID: PMC6450224 DOI: 10.3389/fphar.2019.00305] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Several molecular technologies aimed at regulating gene expression that have been recently developed as a strategy to combat inflammatory and neoplastic diseases. Among these, antisense technology is a specific, rapid, and potentially high-throughput approach for inhibiting gene expression through recognition of cellular RNAs. Advances in the understanding of the molecular mechanisms that drive tissue damage in different inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC), the two major inflammatory bowel diseases (IBDs) in humans, have facilitated the identification of novel druggable targets and offered interesting therapeutic perspectives for the treatment of patients. This short review provides a comprehensive understanding of the basic concepts underlying the mechanism of action of the oligonucleotide therapeutics, and summarizes the available pre-clinical and clinical data for oligonucleotide-based therapy in IBD.
Collapse
Affiliation(s)
- Davide Di Fusco
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Michele M Figliuzzi
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| |
Collapse
|
26
|
Abstract
The growing understanding of the immunopathogenesis of inflammatory bowel diseases (IBDs) has contributed to the identification of new targets whose expression/activity can be modulated for therapeutic purposes. Several approaches have been employed to develop selective pharmaceutical compounds; among these, antisense oligonucleotides (ASOs) or synthetic oligonucleotides represent a valid option for inhibiting or enhancing, respectively, the expression/function of molecules that have been implicated in the control of IBD-related inflammation. In this context, data have been accumulated for the following compounds: alicaforsen, an ASO targeting intercellular adhesion molecule-1, a transmembrane glycoprotein that regulates rolling and adhesion of leukocytes to inflamed intestine; DIMS0150 and BL-7040, two oligonucleotides that enhance Toll-like receptor-9 activity; Mongersen, an ASO that inhibits Smad7, thereby restoring transforming growth factor-β1/Smad-associated signaling; STNM01, a double-stranded RNA oligonucleotide silencing carbohydrate sulfotransferase, an enzyme involved in fibrogenic processes, and hgd40, a specific DNAzyme inhibiting expression of the transcription factor GATA3. In this article, we review the rationale and the available data relative to the use of these agents in IBD. Although pre-clinical and phase II trials in IBD support the use of oligonucleotide-based therapies for treating the pathogenic process occurring in the gut of patients with these disorders, further work is needed to establish whether and which patients can benefit from specific ASOs and identify biomarkers that could help optimize treatment.
Collapse
|
27
|
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract encompassing two main clinical entities: Crohn's disease (CD) and ulcerative colitis (UC). These disorders are characterized by various grades of tissue damage and development of local complications and extra-intestinal manifestations. The cause of IBD remains unknown but accumulating evidence indicates that both CD and UC arise in genetically predisposed individuals as a result of the action of multiple environmental factors, which ultimately trigger excessive and poorly controlled immune response against antigens of the luminal flora. Despite this realization, a full understanding of IBD pathogenesis is still out of reach and, consequently, treatment is far from optimal. However, in recent years, several pathways of intestinal damage have been delineated and the improved knowledge has contributed to the development of new therapies. Various approaches have been used to either inhibit the expression and/or function of inflammatory molecules or enhance counter-regulatory mechanisms. This review summarizes the available pre-clinical and clinical data for antisense oligonucleotides and oligonucleotide-based therapy to provide a comprehensive understanding of the rationale and mechanism of action of these compounds in IBD. Key messages Preclinical studies and clinical trials show that antisense oligonucleotide (ASO)-based therapy could be of benefit in inflammatory bowel diseases. ASOs have an excellent safety profile. Technical issues emerged from clinical trials suggest that changes in drug formulation and/or route of administration could improve ASO efficacy.
Collapse
Affiliation(s)
- Irene Marafini
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| | - Giovanni Monteleone
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| |
Collapse
|
28
|
Troncone E, Marafini I, Stolfi C, Monteleone G. Transforming Growth Factor-β1/Smad7 in Intestinal Immunity, Inflammation, and Cancer. Front Immunol 2018; 9:1407. [PMID: 29973939 PMCID: PMC6019438 DOI: 10.3389/fimmu.2018.01407] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
In physiological conditions, the activity of the intestinal immune system is tightly regulated to prevent tissue-damaging reactions directed against components of the luminal flora. Various factors contribute to maintain immune homeostasis and diminished production and/or function of such molecules trigger and/or propagate detrimental signals, which can eventually lead to chronic colitis and colon cancer. One such a molecule is transforming growth factor-β1 (TGF-β1), a cytokine produced by many inflammatory and non-inflammatory cells and targeting virtually all the intestinal mucosal cell types, with the down-stream effect of activating intracellular Smad2/3 proteins and suppressing immune reactions. In patients with inflammatory bowel diseases (IBD), there is defective TGF-β1/Smad signaling due to high Smad7, an inhibitor of TGF-β1 activity. Indeed, knockdown of Smad7 with a specific antisense oligonucleotide restores endogenous TGF-β1 activity, thereby inhibiting inflammatory pathways in patients with IBD and colitic mice. Consistently, mice over-expressing Smad7 in T cells develop severe intestinal inflammation in various experimental models. Smad7 expression is also upregulated in colon cancer cells, in which such a protein controls positively intracellular pathways that sustain neoplastic cell growth and survival. We here review the role of TGF-β1 and Smad7 in intestinal immunity, inflammation, and cancer.
Collapse
Affiliation(s)
- Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|