1
|
Waybright SA, Dillon ME. Soilscapes of Mortality Risk Suggest a Goldilocks Effect for Overwintering Ectotherms. Am Nat 2025; 205:E16-E33. [PMID: 39718789 DOI: 10.1086/733183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractChanging climates are driving population declines in diverse animals worldwide. Winter conditions may play an important role in these declines but are often overlooked. Animals must not only survive winter but also preserve body condition, a key determinant of growing season success. We hypothesized that ectotherms overwintering in soil face a trade-off between risks of cold damage (including freezing) near the surface and elevated energy use at deeper depths. To test this hypothesis, we developed landscapes of mortality risk across depth for overwintering bumble bee queens. These critical pollinators are in decline in part because of climate change, but little is known about how climate affects overwintering mortality. We developed a mechanistic modeling approach combining measurements of freezing points and the temperature dependence of metabolic rates with soil temperatures from across the United States to estimate mortality risk across depth under historic conditions and under several climate change scenarios. Under current conditions, overwintering queens face a Goldilocks effect: temperatures can be too cold at shallow depths because of substantial freezing risk but too hot at deep depths where they risk prematurely exhausting lipid stores. Models suggest that increases in mean temperatures and in seasonal and daily temperature variation will increase risk of overwinter mortality. Better predictions of effects of changing climate on dormant ectotherms require more measurements of physiological responses to temperature during dormancy across diverse taxa.
Collapse
|
2
|
Reed WJ, Westmoreland AJ, Suding KN, Doak DF, Bowman WD, Emery NC. Temporal variability and predictability predict alpine plant community composition and distribution patterns. Ecology 2024:e4450. [PMID: 39460672 DOI: 10.1002/ecy.4450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 10/28/2024]
Abstract
One of the most reliable features of natural systems is that they change through time. Theory predicts that temporally fluctuating conditions shape community composition, species distribution patterns, and life history variation, yet features of temporal variability are rarely incorporated into studies of species-environment associations. In this study, we evaluated how two components of temporal environmental variation-variability and predictability-impact plant community composition and species distribution patterns in the alpine tundra of the Southern Rocky Mountains in Colorado (USA). Using the Sensor Network Array at the Niwot Ridge Long-Term Ecological Research site, we used in situ, high-resolution temporal measurements of soil moisture and temperature from 13 locations ("nodes") distributed throughout an alpine catchment to characterize the annual mean, variability, and predictability in these variables in each of four consecutive years. We combined these data with annual vegetation surveys at each node to evaluate whether variability over short (within-day) and seasonal (2- to 4-month) timescales could predict patterns in plant community composition, species distributions, and species abundances better than models that considered average annual conditions alone. We found that metrics for variability and predictability in soil moisture and soil temperature, at both daily and seasonal timescales, improved our ability to explain spatial variation in alpine plant community composition. Daily variability in soil moisture and temperature, along with seasonal predictability in soil moisture, was particularly important in predicting community composition and species occurrences. These results indicate that the magnitude and patterns of fluctuations in soil moisture and temperature are important predictors of community composition and plant distribution patterns in alpine plant communities. More broadly, these results highlight that components of temporal change provide important niche axes that can partition species with different growth and life history strategies along environmental gradients in heterogeneous landscapes.
Collapse
Affiliation(s)
- William J Reed
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Aaron J Westmoreland
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Daniel F Doak
- Department of Environmental Studies, University of Colorado, Boulder, Colorado, USA
| | - William D Bowman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
3
|
Brown S, Rivard GR, Gibson G, Currie S. Warming, stochastic diel thermal fluctuations affect physiological performance and gill plasticity in an amphibious mangrove fish. J Exp Biol 2024; 227:jeb246726. [PMID: 38904077 DOI: 10.1242/jeb.246726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Natural temperature variation in many marine ecosystems is stochastic and unpredictable, and climate change models indicate that this thermal irregularity is likely to increase. Temperature acclimation may be more challenging when conditions are highly variable and stochastic, and there is a need for empirical physiological data in these thermal environments. Using the hermaphroditic, amphibious mangrove rivulus (Kryptolebias marmoratus), we hypothesized that compared with regular, warming diel thermal fluctuations, stochastic warm fluctuations would negatively affect physiological performance. To test this, we acclimated fish to: (1) non-stochastic and (2) stochastic thermal fluctuations with a similar thermal load (27-35°C), and (3) a stable/consistent control temperature at the low end of the cycle (27°C). We determined that fecundity was reduced in both cycles, with reproduction ceasing in stochastic thermal environments. Fish acclimated to non-stochastic thermal cycles had growth rates lower than those of control fish. Exposure to warm, fluctuating cycles did not affect emersion temperature, and only regular diel cycles modestly increased critical thermal tolerance. We predicted that warm diel cycling temperatures would increase gill surface area. Notably, fish acclimated to either thermal cycle had a reduced gill surface area and increased intralamellar cell mass when compared with control fish. This decreased gill surface area with warming contrasts with what is observed for exclusively aquatic fish and suggests a preparatory gill response for emersion in these amphibious fish. Collectively, our data reveal the importance of considering stochastic thermal variability when studying the effects of temperature on fishes.
Collapse
Affiliation(s)
- Sarah Brown
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| | - Gabrielle R Rivard
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
- Department of Biological Sciences, University of New Brunswick Saint John, New Brunswick, E2L 4L5, Canada
| | - Glenys Gibson
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| | - Suzanne Currie
- Department of Biology, Acadia University, Nova Scotia, B4P 2R6, Canada
| |
Collapse
|
4
|
Kazenel MR, Wright KW, Griswold T, Whitney KD, Rudgers JA. Heat and desiccation tolerances predict bee abundance under climate change. Nature 2024; 628:342-348. [PMID: 38538790 DOI: 10.1038/s41586-024-07241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
Climate change could pose an urgent threat to pollinators, with critical ecological and economic consequences. However, for most insect pollinator species, we lack the long-term data and mechanistic evidence that are necessary to identify climate-driven declines and predict future trends. Here we document 16 years of abundance patterns for a hyper-diverse bee assemblage1 in a warming and drying region2, link bee declines with experimentally determined heat and desiccation tolerances, and use climate sensitivity models to project bee communities into the future. Aridity strongly predicted bee abundance for 71% of 665 bee populations (species × ecosystem combinations). Bee taxa that best tolerated heat and desiccation increased the most over time. Models forecasted declines for 46% of species and predicted more homogeneous communities dominated by drought-tolerant taxa, even while total bee abundance may remain unchanged. Such community reordering could reduce pollination services, because diverse bee assemblages typically maximize pollination for plant communities3. Larger-bodied bees also dominated under intermediate to high aridity, identifying body size as a valuable trait for understanding how climate-driven shifts in bee communities influence pollination4. We provide evidence that climate change directly threatens bee diversity, indicating that bee conservation efforts should account for the stress of aridity on bee physiology.
Collapse
Affiliation(s)
- Melanie R Kazenel
- Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| | - Karen W Wright
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Washington State Department of Agriculture, Yakima, WA, USA
| | - Terry Griswold
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
5
|
Fung T, Pande J, Shnerb NM, O'Dwyer JP, Chisholm RA. Processes governing species richness in communities exposed to temporal environmental stochasticity: A review and synthesis of modelling approaches. Math Biosci 2024; 369:109131. [PMID: 38113973 DOI: 10.1016/j.mbs.2023.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Research into the processes governing species richness has often assumed that the environment is fixed, whereas realistic environments are often characterised by random fluctuations over time. This temporal environmental stochasticity (TES) changes the demographic rates of species populations, with cascading effects on community dynamics and species richness. Theoretical and applied studies have used process-based mathematical models to determine how TES affects species richness, but under a variety of frameworks. Here, we critically review such studies to synthesise their findings and draw general conclusions. We first provide a broad mathematical framework encompassing the different ways in which TES has been modelled. We then review studies that have analysed models with TES under the assumption of negligible interspecific interactions, such that a community is conceptualised as the sum of independent species populations. These analyses have highlighted how TES can reduce species richness by increasing the frequency at which a species becomes rare and therefore prone to extinction. Next, we review studies that have relaxed the assumption of negligible interspecific interactions. To simplify the corresponding models and make them analytically tractable, such studies have used mean-field theory to derive fixed parameters representing the typical strength of interspecific interactions under TES. The resulting analyses have highlighted community-level effects that determine how TES affects species richness, for species that compete for a common limiting resource. With short temporal correlations of environmental conditions, a non-linear averaging effect of interspecific competition strength over time gives an increase in species richness. In contrast, with long temporal correlations of environmental conditions, strong selection favouring the fittest species between changes in environmental conditions results in a decrease in species richness. We compare such results with those from invasion analysis, which examines invasion growth rates (IGRs) instead of species richness directly. Qualitative differences sometimes arise because the IGR is the expected growth rate of a species when it is rare, which does not capture the variation around this mean or the probability of the species becoming rare. Our review elucidates key processes that have been found to mediate the negative and positive effects of TES on species richness, and by doing so highlights key areas for future research.
Collapse
Affiliation(s)
- Tak Fung
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Jayant Pande
- Department of Physical and Natural Sciences, FLAME University, Pune, Maharashtra 412115, India
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - James P O'Dwyer
- Department of Plant Biology, School of Integrative Biology, University of Illinois, 505, South Goodwin Avenue, Urbana, IL 61801, United States
| | - Ryan A Chisholm
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
6
|
Fleming JM, Marshall KE, Coverley AJ, Sheldon KS. Diurnal temperature variation impacts energetics but not reproductive effort across seasons in a temperate dung beetle. Ecology 2024; 105:e4232. [PMID: 38290131 DOI: 10.1002/ecy.4232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/11/2023] [Accepted: 10/23/2023] [Indexed: 02/01/2024]
Abstract
Temperature varies on multiple timescales and ectotherms must adjust to these changes to survive. These adjustments may lead to energetic trade-offs between self-maintenance and reproductive investment. However, we know little about how diurnal and seasonal temperature changes impact energy allocation. Here we used a combination of empirical data and modeling of both thermoregulatory behaviors and body temperature to examine potential energetic trade-offs in the dung beetle Onthophagus taurus. Beginning in March 2020, universities and laboratories were officially closed due to the COVID-19 pandemic. We thus performed experiments at a private residence near Knoxville, Tennessee, USA, leveraging the heating, ventilation and air conditioning of the home to manipulate temperature and compare beetle responses to stable indoor temperatures versus variable outdoor temperatures. We collected O. taurus beetles in the early-, mid-, and late-breeding seasons to examine energetics and reproductive output in relation to diurnal and seasonal temperature fluctuations. We recorded the mass of field fresh beetles before and after a 24-h fast and used the resulting change in mass as a proxy for energetic costs of self-maintenance across seasons. To understand the impacts of diurnal fluctuations on energy allocation, we held beetles either indoors or outdoors for 14-day acclimation trials, fed them cow dung, and recorded mass change and reproductive output. Utilizing biophysical models, we integrated individual-level biophysical characteristics, microhabitat-specific performance, respirometry data, and thermoregulatory behaviors to predict temperature-induced changes to the allocation of energy toward survival and reproduction. During 24 h of outdoor fasting, we found that beetles experiencing reduced temperature variation lost more mass than those experiencing greater temperature variation, and this was not affected by season. By contrast, during the 14-day acclimation trials, we found that beetles experiencing reduced temperature variation (i.e., indoors) gained more mass than those experiencing greater temperature variation (i.e., outdoors). This effect may have been driven by shifts in the metabolism of the beetles during acclimation to increased temperature variation. Despite the negative relationship between temperature variation and energetic reserves, the only significant predictor of reproductive output was mean temperature. Taken together, we find that diurnal temperature fluctuations are important for driving energetics, but not reproductive output.
Collapse
Affiliation(s)
- J Morgan Fleming
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander J Coverley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kimberly S Sheldon
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Burggren WW, Mendez-Sanchez JF. "Bet hedging" against climate change in developing and adult animals: roles for stochastic gene expression, phenotypic plasticity, epigenetic inheritance and adaptation. Front Physiol 2023; 14:1245875. [PMID: 37869716 PMCID: PMC10588650 DOI: 10.3389/fphys.2023.1245875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change. While potentially effective at staving off environmental challenges, such adaptations typically occur very slowly and incrementally over evolutionary time. Consequently, adaptation through natural selection is in most instances regarded as too slow to aid survival in rapidly changing environments, especially when considering the stochastic nature of extreme weather events associated with climate change. Alternative mechanisms operating in a much shorter time frame than adaptation involve the rapid creation of alternate phenotypes within a life cycle or a few generations. Stochastic gene expression creates multiple phenotypes from the same genotype even in the absence of environmental cues. In contrast, other mechanisms for phenotype change that are externally driven by environmental clues include well-understood developmental phenotypic plasticity (variation, flexibility), which can enable rapid, within-generation changes. Increasingly appreciated are epigenetic influences during development leading to rapid phenotypic changes that can also immediately be very widespread throughout a population, rather than confined to a few individuals as in the case of favorable gene mutations. Such epigenetically-induced phenotypic plasticity can arise rapidly in response to stressors within a generation or across a few generations and just as rapidly be "sunsetted" when the stressor dissipates, providing some capability to withstand environmental stressors emerging from climate change. Importantly, survival mechanisms resulting from adaptations and developmental phenotypic plasticity are not necessarily mutually exclusive, allowing for classic "bet hedging". Thus, the appearance of multiple phenotypes within a single population provides for a phenotype potentially optimal for some future environment. This enhances survival during stochastic extreme weather events associated with climate change. Finally, we end with recommendations for future physiological experiments, recommending in particular that experiments investigating phenotypic flexibility adopt more realistic protocols that reflect the stochastic nature of weather.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Jose Fernando Mendez-Sanchez
- Laboratorio de Ecofisiología Animal, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
8
|
Walter JA, Reuman DC, Hall KR, Shugart HH, Shoemaker LG. Seasonality in Environment and Population Processes Alters Population Spatial Synchrony. Am Nat 2023; 202:399-412. [PMID: 37792915 DOI: 10.1086/725804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractPopulation spatial synchrony-the tendency for temporal population fluctuations to be correlated across locations-is common and important to metapopulation stability and persistence. One common cause of spatial synchrony, termed the Moran effect, occurs when populations respond to environmental fluctuations, such as weather, that are correlated over space. Although the degree of spatial synchrony in environmental fluctuations can differ between seasons and different population processes occur in different seasons, the impact on population spatial synchrony is uncertain because prior work has largely assumed that the spatial synchrony of environmental fluctuations and their effect on populations are consistent over annual sampling intervals. We used theoretical models to examine how seasonality in population processes and the spatial synchrony of environmental drivers affect population spatial synchrony. We found that population spatial synchrony can depend not only on the spatial synchrony of environmental drivers but also on the degree to which environmental fluctuations are correlated across seasons, locally, and across space. Moreover, measurements of synchrony from "snapshot" population censuses may not accurately reflect synchrony during other parts of the year. Together, these results show that neglecting seasonality in environmental conditions and population processes is consequential for understanding population spatial synchrony and its driving mechanisms.
Collapse
|
9
|
Bieg C, Gellner G, McCann KS. Stability of consumer-resource interactions in periodic environments. Proc Biol Sci 2023; 290:20231636. [PMID: 37752846 PMCID: PMC10523078 DOI: 10.1098/rspb.2023.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Periodic fluctuations in abiotic conditions are ubiquitous across a range of temporal scales and regulate the structure and function of ecosystems through dynamic biotic responses that are adapted to these external forces. Research has suggested that certain environmental signatures may play a crucial role in the maintenance of biodiversity and the stability of food webs, while others argue that coupled oscillators ought to promote chaos. As such, numerous uncertainties remain regarding the intersection of temporal environmental patterns and biological responses, and we lack a general understanding of the implications for food web stability. Alarmingly, global change is altering the nature of both environmental rhythms and biological rates. Here, we develop a general theory for how continuous periodic variation in productivity, across temporal scales, influences the stability of consumer-resource interactions: a fundamental building block of food webs. Our results suggest that consumer-resource dynamics under environmental forcing are highly complex and depend on asymmetries in both the speed of forcing relative to underlying dynamics and in local stability properties. These asymmetries allow for environmentally driven stabilization under fast forcing, relative to underlying dynamics, as well as extremely complex and unstable dynamics at slower periodicities. Our results also suggest that changes in naturally occurring periodicities from climate change may lead to precipitous shifts in dynamics and stability.
Collapse
Affiliation(s)
- Carling Bieg
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
- Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Gabriel Gellner
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Kevin S. McCann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
10
|
Padilla P, Herrel A, Denoël M. May future climate change promote the invasion of the marsh frog? An integrative thermo-physiological study. Oecologia 2023:10.1007/s00442-023-05402-0. [PMID: 37351628 DOI: 10.1007/s00442-023-05402-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Climate change and invasive species are two major drivers of biodiversity loss and their interaction may lead to unprecedented further loss. Invasive ectotherms can be expected to tolerate temperature variation because of a broad thermal tolerance and may even benefit from warmer temperatures in their new ranges that better match their thermal preference. Multi-trait studies provide a valuable approach to elucidate the influence of temperature on the invasion process and offer insights into how climatic factors may facilitate or hinder the spread of invasive ectotherms. We here used marsh frogs, Pelophylax ridibundus, a species that is invading large areas of Western Europe but whose invasive potential has been underestimated. We measured the maximal and minimal temperatures to sustain physical activity, the preferred temperature, and the thermal dependence of their stamina and jumping performance in relation to the environmental temperatures observed in their invasive range. Our results showed that marsh frogs can withstand body temperatures that cover 100% of the annual temperature variation in the pond they live in and 77% of the observed current annual air temperature variation. Their preferred body temperature and performance optima were higher than the average temperature in their pond and the average air temperature experienced under the shade. These data suggest that invasive marsh frogs may benefit from a warmer climate. Broad thermal tolerances, combined with high thermal preferences and traits maximised at high temperatures, may allow this species to expand their activity period and colonise underexploited shaded habitat, thereby promoting their invasion success.
Collapse
Affiliation(s)
- Pablo Padilla
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium.
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France.
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
- Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Mathieu Denoël
- Laboratory of Ecology and Conservation of Amphibians (LECA), Freshwater and Oceanic science Unit of reSearch (FOCUS), University of Liège, Liège, Belgium
| |
Collapse
|
11
|
von Schmalensee L. How to generate accurate continuous thermal regimes from sparse but regular temperature measurements. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Loke von Schmalensee
- Department of Zoology Stockholm University Stockholm Sweden
- Bolin Centre for Climate Research Stockholm University Stockholm Sweden
| |
Collapse
|
12
|
Anderson RO, Goulet CT, Chapple DG. Acclimation of thermal physiology to new basking regimes in a widespread Australian skink. J Therm Biol 2023; 113:103530. [PMID: 37055133 DOI: 10.1016/j.jtherbio.2023.103530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
Changes in thermal environments are a challenge for many ectotherms, as they would have to acclimate their physiology to new thermal environments to maintain high-levels of performance. Time spent basking is key for many ectothermic animals to keep their body temperature within optimal thermal ranges. However, little is known about the impact of changes in basking time on the thermal physiology of ectothermic animals. We investigated how different basking regimes (low intensity vs high intensity) affected key thermal physiological traits of a widespread Australian skink (Lampropholis delicata). We quantified thermal performance curves and thermal preferences of skinks subjected to low and high intensity basking regimes over a 12-week period. We found that skinks acclimated their thermal performance breadth in both basking regimes, with the skinks from the low-intensity basking regime showing narrower performance breadths. Although maximum velocity and optimum temperatures increased after the acclimation period, these traits did not differ between basking regimes. Similarly, no variation was detected for thermal preference. These results provide insight into mechanisms that allow these skinks to successfully overcome environmental constraints in the field. Acclimation of thermal performance curves seems to be key for widespread species to colonise new environments, and can buffer ectothermic animals in novel climatic scenarios.
Collapse
|
13
|
Gremer JR. Looking to the past to understand the future: linking evolutionary modes of response with functional and life history traits in variable environments. THE NEW PHYTOLOGIST 2023; 237:751-757. [PMID: 36349401 DOI: 10.1111/nph.18605] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In a variable world, plants must have strategies to deal with environmental conditions as they change. Understanding these strategies is critical since climate change not only affects mean conditions but also affects variability and predictability of those conditions. Doing so requires identifying how functional and life history traits interact throughout the life cycle to drive responses, as well as exploring how past variability will shape future responses. Here, I highlight relevant life history theory for predicting strategies in relation to the nature of environmental variability, relate theory to empirical studies integrating functional and life history traits to understand responses, and identify key areas for future research that will facilitate the application of this understanding toward predicting responses to climate change.
Collapse
Affiliation(s)
- Jennifer R Gremer
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
- Center for Population Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
14
|
Lima AS, de Figueredo AC, Floreste FR, Garcia Neto PG, Gomes FR, Titon SCM. Temperature Extreme Events Decrease Endocrine and Immune Reactive Scope in Bullfrogs (Lithobates catesbeianus). Integr Comp Biol 2022; 62:1671-1682. [PMID: 35771987 DOI: 10.1093/icb/icac105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Currently, effects of increased atmospheric temperature, in the context of ongoing climate change, have been investigated in multiple organisms and levels of biological organization. While there has been a focus on the impacts of increased mean temperature, an emergent and equally important point is the consequences of recurrent exposure to extreme temperature events, simulating heat waves. This study investigated the effects of serial exposure to high temperatures on immune and endocrine variables before and after exposure to an acute secondary stressor in bullfrogs (Lithobates catesbeianus). Adult males were divided into three groups and subjected to three thermal regimes: control (c; constant 22°C); experimental 1 (E1; kept at 22°C and exposed to 4 days of 30°C every 16 days); and experimental 2 (E2; kept at 22°C and exposed to 4 days of 30°C every 6 days). Blood samples were collected on the last day of key extreme heat events. Two weeks after the last extreme heat event, animals were subjected to restraint stress (1 h) and sampled again. Blood samples were used to determine neutrophil: lymphocyte ratio, plasma bacterial killing ability, as well as, corticosterone and plasma testosterone levels. Overall, we found exposure to extreme heat events did not affect immune and endocrine variables over time. Meanwhile, the previous exposure to extreme heat events modulated the responsiveness to restraint. The amplitude of increased corticosterone plasma levels and neutrophil: lymphocyte ratio in response to restraint decreased with the number of previous exposures to extreme heat events. These results suggest that exposure to extreme climatic events has hidden effects on bullfrog's stress response, expressed as diminished reactive scope to a novel stressor. This represents a highly deleterious facet of climate change since diminished responsiveness prevents proper coping with wildlife challenges.
Collapse
Affiliation(s)
- Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Aymam Cobo de Figueredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Patrício Getúlio Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
15
|
Comparative transcriptome analysis of Liriomyza trifolii (Burgess) and Liriomyza sativae (Blanchard) (Diptera: Agromyzidae) in response to rapid cold hardening. PLoS One 2022; 17:e0279254. [PMID: 36520873 PMCID: PMC9754249 DOI: 10.1371/journal.pone.0279254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The ability of insets to react efficiently to fluctuation in temperature is crucial for them to survive in variable surroundings. Rapid cold hardening (RCH) is a process that increase cold tolerance in most insect species. The molecular mechanisms of RCH remain largely unknown, and whether it is associated with transcriptional changes is unclear. In this study, we compared the transcriptomes of Liriomyza trifolii and L. sativae exposed to RCH to investigate the transcript abundance due to RCH in both species. RNA-seq revealed 93,166 assembled unigenes, and 34,303 of these were annotated in the L. trifolii and L. sativae transcriptome libraries. After a 4-h treatment at 1°C (RCH) compared with control, 268 and 606 unigenes were differentially expressed in L. trifolii and L. sativae, respectively. When comparing pupae exposed to 2h cold shock directly with pupae went through 4h acclimation prior to 2h cold shock, 60 and 399 unigenes were differentially expressed in L trifolii and L sativae, respectively. Genes that were commonly expressed in both L. trifolii and L. sativae, included cytochrome P450, cuticular protein, glucose dehydrogenase, solute carrier family 22 and cationic amino acid transporter. Additionally, several pathways including galactose metabolism and peroxisome were significantly enriched during RCH. Our results show that the transcriptional response is correlated with RCH in the pupal stage of the two Liriomyza species, but more transcriptional changes were identified in L sativae than in L. trifolii.
Collapse
|
16
|
Salois SL, Gouhier TC, Helmuth B, Choi F, Seabra R, Lima FP. Coastal upwelling generates cryptic temperature refugia. Sci Rep 2022; 12:19313. [PMID: 36369260 PMCID: PMC9652353 DOI: 10.1038/s41598-022-23717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as 'no', 'weak' or 'strong' upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling. This suggests upwelling generates temporal thermal refugia that can promote organismal performance by both supplying colder water that mitigates thermal stress during hot Summer months and ensuring high levels of fine-scale variation in temperature that reduce the duration of thermal extremes. Additionally, pairwise correlograms based on the Pearson-product moment correlation coefficient and wavelet coherence revealed scale dependent trends in temperature fluctuations across space, with a rapid decay in strong upwelling sites at monthly and weekly timescales. This suggests upwelling also generates spatial thermal refugia that can 'rescue' populations from unfavorable conditions at local and regional scales. Overall, this study highlights the importance of identifying cryptic spatiotemporal refugia that emerge from fine-scale environmental variation to map potential patterns of organismal performance in a rapidly changing world.
Collapse
Affiliation(s)
- Sarah L Salois
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA.
- School for Marine Science and Technology, University of Massachusetts Dartmouth, 836 South Rodney French Blvd, New Bedford, MA, 02744, USA.
| | - Tarik C Gouhier
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | - Brian Helmuth
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | - Francis Choi
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, MA, 01908, USA
| | - Rui Seabra
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Fernando P Lima
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
17
|
The point of no return for species facing heatwaves. Nature 2022; 611:39-40. [DOI: 10.1038/d41586-022-03365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Beet CR, Hogg ID, Cary SC, McDonald IR, Sinclair BJ. The Resilience of Polar Collembola (Springtails) in a Changing Climate. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100046. [PMID: 36683955 PMCID: PMC9846479 DOI: 10.1016/j.cris.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Assessing the resilience of polar biota to climate change is essential for predicting the effects of changing environmental conditions for ecosystems. Collembola are abundant in terrestrial polar ecosystems and are integral to food-webs and soil nutrient cycling. Using available literature, we consider resistance (genetic diversity; behavioural avoidance and physiological tolerances; biotic interactions) and recovery potential for polar Collembola. Polar Collembola have high levels of genetic diversity, considerable capacity for behavioural avoidance, wide thermal tolerance ranges, physiological plasticity, generalist-opportunistic feeding habits and broad ecological niches. The biggest threats to the ongoing resistance of polar Collembola are increasing levels of dispersal (gene flow), increased mean and extreme temperatures, drought, changing biotic interactions, and the arrival and spread of invasive species. If resistance capacities are insufficient, numerous studies have highlighted that while some species can recover from disturbances quickly, complete community-level recovery is exceedingly slow. Species dwelling deeper in the soil profile may be less able to resist climate change and may not recover in ecologically realistic timescales given the current rate of climate change. Ultimately, diverse communities are more likely to have species or populations that are able to resist or recover from disturbances. While much of the Arctic has comparatively high levels of diversity and phenotypic plasticity; areas of Antarctica have extremely low levels of diversity and are potentially much more vulnerable to climate change.
Collapse
Affiliation(s)
- Clare R. Beet
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian D. Hogg
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, Nunavut, Canada
| | - S. Craig Cary
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua - School of Science, Te Whare Wānanga o Waikato - University of Waikato, Hamilton, New Zealand
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Brent J. Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
19
|
Turriago JL, Tejedo M, Hoyos JM, Bernal MH. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:746-759. [PMID: 35674344 DOI: 10.1002/jez.2632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/09/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Current climate change is generating accelerated increase in extreme heat events and organismal plastic adjustments in upper thermal tolerances, (critical thermal maximum -CTmax ) are recognized as the quicker mitigating mechanisms. However, current research casts doubt on the actual mitigating role of thermal acclimation to face heat impacts, due to its low magnitude and weak environmental signal. Here, we examined these drawbacks by first estimating maximum extent of thermal acclimation by examining known sources of variation affecting CTmax expression, such as daily thermal fluctuation and heating rates. Second, we examined whether the magnitude and pattern of CTmax plasticity is dependent of the thermal environment by comparing the acclimation responses of six species of tropical amphibian tadpoles inhabiting thermally contrasting open and shade habitats and, finally, estimating their warming tolerances (WT = CTmax - maximum temperatures) as estimator of heating risk. We found that plastic CTmax responses are improved in tadpoles exposed to fluctuating daily regimens. Slow heating rates implying longer duration assays determined a contrasting pattern in CTmax plastic expression, depending on species environment. Shade habitat species suffer a decline in CTmax whereas open habitat tadpoles greatly increase it, suggesting an adaptive differential ability of hot exposed species to quick hardening adjustments. Open habitat tadpoles although overall acclimate more than shade habitat species, cannot capitalize this beneficial increase in CTmax, because the maximum ambient temperatures are very close to their critical limits, and this increase may not be large enough to reduce acute heat stress under the ongoing global warming.
Collapse
Affiliation(s)
- Jorge L Turriago
- Department of Biology, Grupo de Herpetología, Eco-Fisiología & Etología, Universidad del Tolima, Tolima, Colombia
- Programa de Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Julio M Hoyos
- Department of Biology, Grupo UNESIS, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel H Bernal
- Department of Biology, Grupo de Herpetología, Eco-Fisiología & Etología, Universidad del Tolima, Tolima, Colombia
| |
Collapse
|
20
|
Nancollas SJ, Todgham AE. The influence of stochastic temperature fluctuations in shaping the physiological performance of the California mussel, Mytilus californianus. J Exp Biol 2022; 225:276100. [PMID: 35749162 DOI: 10.1242/jeb.243729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/20/2022] [Indexed: 11/20/2022]
Abstract
Climate change is forecasted to increase temperature variability and stochasticity. Most of our understanding of thermal physiology of intertidal organisms has come from laboratory experiments that acclimate organisms to submerged conditions and steady-state increases in temperatures. For organisms experiencing the ebb and flow of tides with unpredictable low tide aerial temperatures, the reliability of reported tolerances and thus predicted responses to climate change requires incorporation of environmental complexity into empirical studies. Using the mussel Mytilus californianus, our study examined how stochasticity of the thermal regime influences physiological performance. Mussels were acclimated to either submerged conditions or a tidal cycle that included either predictable, unpredictable or no thermal stress during daytime low tide. Physiological performance was measured through anaerobic metabolism, energy stores and cellular stress mechanisms just before low tide, and cardiac responses during a thermal ramp. Both air exposure and stochasticity of temperature change were important in determining thermal performance. Glycogen content was highest in the mussels from the unpredictable treatment, but there was no difference in the expression of heat shock proteins between thermal treatments, suggesting that mussels prioritise energy reserves to deal with unpredictable low tide conditions. Mussels exposed to fluctuating thermal regimes had lower gill anaerobic metabolism, which could reflect increased metabolic capacity. Our results suggest that while thermal magnitude plays an important role in shaping physiological performance, other key elements of the intertidal environment complexity such as stochasticity, thermal variability, and thermal history are also important considerations for determining how species will respond to climate warming.
Collapse
Affiliation(s)
- Sarah J Nancollas
- Department of Animal Science, University of California Davis, Davis, CA USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA USA
| |
Collapse
|
21
|
Chen YY, Rubenstein DR, Shen SF. Cooperation and Lateral Forces: Moving Beyond Bottom-Up and Top-Down Drivers of Animal Population Dynamics. Front Psychol 2022; 13:768773. [PMID: 35185719 PMCID: PMC8847757 DOI: 10.3389/fpsyg.2022.768773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Biologists have long known that animal population dynamics are regulated by a combination of bottom-up (resource availability) and top-down forces (predation). Yet, economists have argued that human population dynamics can also be influenced by intraspecific cooperation. Despite awareness of the role of interspecific cooperation (mutualism) in influencing resource availability and animal population dynamics, the role of intraspecific cooperation (sociality) under different environmental conditions has rarely been considered. Here we examine the role of what we call "lateral forces" that act within populations and interact with external top-down and bottom-up forces in influencing population dynamics using an individual-based model linking environmental quality, intraspecific cooperation, and population size. We find that the proportion of cooperators is higher when the environment is poor and population sizes are greatest under intermediate resources levels due to the contrasting effects of resource availability on behavior and population size. We also show that social populations are more resilient to environmental change than non-social ones because the benefits of intraspecific cooperation can outweigh the effects of constrained resource availability. Our study elucidates the complex relationship between environmental harshness, cooperation, and population dynamics, which is important for understanding the ecological consequences of cooperation.
Collapse
Affiliation(s)
- Ying-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Center for Integrative Animal Behavior, Columbia University, New York, NY, United States
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Denny MW, Dowd WW. Physiological Consequences of Oceanic Environmental Variation: Life from a Pelagic Organism's Perspective. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:25-48. [PMID: 34314598 DOI: 10.1146/annurev-marine-040221-115454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To better understand life in the sea, marine scientists must first quantify how individual organisms experience their environment, and then describe how organismal performance depends on that experience. In this review, we first explore marine environmental variation from the perspective of pelagic organisms, the most abundant life forms in the ocean. Generation time, the ability to move relative to the surrounding water (even slowly), and the presence of environmental gradients at all spatial scales play dominant roles in determining the variation experienced by individuals, but this variation remains difficult to quantify. We then use this insight to critically examine current understanding of the environmental physiology of pelagic marine organisms. Physiologists have begun to grapple with the complexity presented by environmental variation, and promising frameworks exist for predicting and/or interpreting the consequences for physiological performance. However, new technology needs to be developed and much difficult empirical work remains, especially in quantifying response times to environmental variation and the interactions among multiple covarying factors. We call on the field of global-change biology to undertake these important challenges.
Collapse
Affiliation(s)
- Mark W Denny
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| | - W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
23
|
Iqbal J, Zhang XX, Chang YW, Du YZ. Differential Response of Leafminer Flies Liriomyza trifolii (Burgess) and Liriomyza sativae (Blanchard) to Rapid Cold Hardening. INSECTS 2021; 12:insects12111041. [PMID: 34821841 PMCID: PMC8625278 DOI: 10.3390/insects12111041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Liriomyza trifolii (Burgess) and L. sativae (Blanchard) are closely-related, polyphagous leafminers that occur worldwide and presumably compete with each other. In this study, we evaluated the response of pupae and adults from both species to acute (2 h) cold exposures. The results were used to identify the lethal temperature for 80% of the population (LT80) for each species. In a separate set of experiments, insects were cooled to one of six nonlethal temperatures (0–5 °C) for 4 h and then cooled to the LT80 for 2 h to evaluate their rapid cold hardening (RCH) response. L. trifolii exhibited stronger cold tolerance than L. sativae; furthermore, the supercooling point of L. trifolii was significantly lower than that of L. sativae. RCH was induced in pupae of both species at a range of low temperatures (0–5 °C), and L. sativae pupae showed a more robust RCH response (e.g., lower supercooling pointand more durable RCH) than L. trifolii pupae. Our results indicate that subtle differences in RCH and basal cold tolerance impact the competitiveness of the two leafminers. Abstract Rapid cold hardening (RCH) is a rapid and critical adaption of insects to sudden temperature changes but is often overlooked or underestimated as a component of survival. Thus, interspecific comparisons of RCH are needed to predict how phenotypes will adapt to temperature variability. RCH not only enhances cold survival but also protects against non-lethal cold injury by preserving essential functions such as locomotion, reproduction, and energy balance. This study investigated the difference in basal cold tolerance and RCH capacity of L. trifolii and L. sativae. In both species, the cold tolerance of pupae was significantly enhanced after short-term exposure to moderately cold temperatures. The effect of RCH last for 4 h in L. sativae but only 2 h in L. trifolii. Interestingly, L. trifolii adults had a RCH response but L. sativae adults failed to acclimate. Short-term acclimation also lowered the supercooling point significantly in the pupae of both species. Based on these results, we propose a hypothesis that these differences will eventually affect their competition in the context of climate change. This study also provides the basis for future metabolomic and transcriptomic studies that may ultimately uncover the underlying mechanisms of RCH and interspecific competition between L. trifolii and L. sativae.
Collapse
Affiliation(s)
- Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (J.I.); (X.-X.Z.); (Y.-W.C.)
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (J.I.); (X.-X.Z.); (Y.-W.C.)
| | - Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (J.I.); (X.-X.Z.); (Y.-W.C.)
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (J.I.); (X.-X.Z.); (Y.-W.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
24
|
Liu M, Rubenstein DR, Cheong SA, Shen SF. Antagonistic effects of long- and short-term environmental variation on species coexistence. Proc Biol Sci 2021; 288:20211491. [PMID: 34493074 PMCID: PMC8424298 DOI: 10.1098/rspb.2021.1491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022] Open
Abstract
Assessing the impact of environmental fluctuations on species coexistence is critical for understanding biodiversity loss and the ecological impacts of climate change. Yet determining how properties like the intensity, frequency or duration of environmental fluctuations influence species coexistence remains challenging, presumably because previous studies have focused on indefinite coexistence. Here, we model the impact of environmental fluctuations at different temporal scales on species coexistence over a finite time period by employing the concepts of time-windowed averaging and performance curves to incorporate temporal niche differences within a stochastic Lotka-Volterra model. We discover that short- and long-term environmental variability has contrasting effects on transient species coexistence, such that short-term variation favours species coexistence, whereas long-term variation promotes competitive exclusion. This dichotomy occurs because small samples (e.g. environmental changes over long time periods) are more likely to show large deviations from the expected mean and are more difficult to predict than large samples (e.g. environmental changes over short time periods), as described in the central limit theorem. Consequently, we show that the complex set of relationships among environmental fluctuations and species coexistence found in previous studies can all be synthesized within a general framework by explicitly considering both long- and short-term environmental variation.
Collapse
Affiliation(s)
- Ming Liu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
- Center for Integrative Animal Behavior, Columbia University, New York, NY 10027, USA
| | - Siew Ann Cheong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
25
|
Säterberg T, McCann K. Detecting alternative attractors in ecosystem dynamics. Commun Biol 2021; 4:975. [PMID: 34404903 PMCID: PMC8370982 DOI: 10.1038/s42003-021-02471-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022] Open
Abstract
Dynamical systems theory suggests that ecosystems may exhibit alternative dynamical attractors. Such alternative attractors, as for example equilibria and cycles, have been found in the dynamics of experimental systems. Yet, for natural systems, where multiple biotic and abiotic factors simultaneously affect population dynamics, it is more challenging to distinguish alternative dynamical behaviors. Although recent research exemplifies that some natural systems can exhibit alternative states, a robust methodology for testing whether these constitute distinct dynamical attractors is currently lacking. Here, using attractor reconstruction techniques we develop such a test. Applications of the methodology to simulated, experimental and natural time series data, reveal that alternative dynamical behaviors are hard to distinguish if population dynamics are governed by purely stochastic processes. However, if population dynamics are brought about also by mechanisms internal to the system, alternative attractors can readily be detected. Since many natural populations display evidence of such internally driven dynamics, our approach offers a method for empirically testing whether ecosystems exhibit alternative dynamical attractors.
Collapse
Affiliation(s)
- Torbjörn Säterberg
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Öregrund, Sweden.
| | - Kevin McCann
- Department of Integrative Biology, University of Guelp, Guelph, ON, Canada
| |
Collapse
|
26
|
Osland MJ, Stevens PW, Lamont MM, Brusca RC, Hart KM, Waddle JH, Langtimm CA, Williams CM, Keim BD, Terando AJ, Reyier EA, Marshall KE, Loik ME, Boucek RE, Lewis AB, Seminoff JA. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. GLOBAL CHANGE BIOLOGY 2021; 27:3009-3034. [PMID: 33605004 DOI: 10.1111/gcb.15563] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Tropicalization is a term used to describe the transformation of temperate ecosystems by poleward-moving tropical organisms in response to warming temperatures. In North America, decreases in the frequency and intensity of extreme winter cold events are expected to allow the poleward range expansion of many cold-sensitive tropical organisms, sometimes at the expense of temperate organisms. Although ecologists have long noted the critical ecological role of winter cold temperature extremes in tropical-temperate transition zones, the ecological effects of extreme cold events have been understudied, and the influence of warming winter temperatures has too often been left out of climate change vulnerability assessments. Here, we examine the influence of extreme cold events on the northward range limits of a diverse group of tropical organisms, including terrestrial plants, coastal wetland plants, coastal fishes, sea turtles, terrestrial reptiles, amphibians, manatees, and insects. For these organisms, extreme cold events can lead to major physiological damage or landscape-scale mass mortality. Conversely, the absence of extreme cold events can foster population growth, range expansion, and ecological regime shifts. We discuss the effects of warming winters on species and ecosystems in tropical-temperate transition zones. In the 21st century, climate change-induced decreases in the frequency and intensity of extreme cold events are expected to facilitate the poleward range expansion of many tropical species. Our review highlights critical knowledge gaps for advancing understanding of the ecological implications of the tropicalization of temperate ecosystems in North America.
Collapse
Affiliation(s)
| | - Philip W Stevens
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA
| | | | | | | | | | | | | | - Barry D Keim
- Louisiana State University, Baton Rouge, LA, USA
| | | | - Eric A Reyier
- Herndon Solutions Group, LLC, NASA Environmental and Medical Contract, Mail Code: NEM-022, Kennedy Space Center, FL, USA
| | | | | | | | | | | |
Collapse
|
27
|
Himmel NJ, Letcher JM, Sakurai A, Gray TR, Benson MN, Donaldson KJ, Cox DN. Identification of a neural basis for cold acclimation in Drosophila larvae. iScience 2021; 24:102657. [PMID: 34151240 PMCID: PMC8192725 DOI: 10.1016/j.isci.2021.102657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/05/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Low temperatures can be fatal to insects, but many species have evolved the ability to cold acclimate, thereby increasing their cold tolerance. It has been previously shown that Drosophila melanogaster larvae perform cold-evoked behaviors under the control of noxious cold-sensing neurons (nociceptors), but it is unknown how the nervous system might participate in cold tolerance. Herein, we describe cold-nociceptive behavior among 11 drosophilid species; we find that the predominant cold-evoked larval response is a head-to-tail contraction behavior, which is likely inherited from a common ancestor, but is unlikely to be protective. We therefore tested the hypothesis that cold nociception functions to protect larvae by triggering cold acclimation. We found that Drosophila melanogaster Class III nociceptors are sensitized by and critical to cold acclimation and that cold acclimation can be optogenetically evoked, sans cold. Collectively, these findings demonstrate that cold nociception constitutes a peripheral neural basis for Drosophila larval cold acclimation.
Collapse
Affiliation(s)
- Nathaniel J Himmel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Jamin M Letcher
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Thomas R Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.,Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Maggie N Benson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Kevin J Donaldson
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
28
|
Buckley LB, Schoville SD, Williams CM. Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. J Exp Biol 2021; 224:224/Suppl_1/jeb228031. [DOI: 10.1242/jeb.228031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin, Madison, WI 53715-1218, USA
| | - Caroline M. Williams
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
29
|
Abstract
Temperature is an important environmental factor governing the ability of organisms to grow, survive and reproduce. Thermal performance curves (TPCs), with some caveats, are useful for charting the relationship between body temperature and some measure of performance in ectotherms, and provide a standardized set of characteristics for interspecific comparisons. Endotherms, however, have a more complicated relationship with environmental temperature, as endothermy leads to a decoupling of body temperature from external temperature through use of metabolic heat production, large changes in insulation and variable rates of evaporative heat loss. This has impeded our ability to model endothermic performance in relation to environmental temperature as well as to readily compare performance between species. In this Commentary, we compare the strengths and weaknesses of potential TPC analogues (including other useful proxies for linking performance to temperature) in endotherms and suggest several ways forward in the comparative ecophysiology of endotherms. Our goal is to provide a common language with which ecologists and physiologists can evaluate the effects of temperature on performance. Key directions for improving our understanding of endotherm thermoregulatory physiology include a comparative approach to the study of the level and precision of body temperature, measuring performance directly over a range of body temperatures and building comprehensive mechanistic models of endotherm responses to environmental temperatures. We believe the answer to the question posed in the title could be 'yes', but only if 'performance' is well defined and understood in relation to body temperature variation, and the costs and benefits of endothermy are specifically modelled.
Collapse
Affiliation(s)
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
30
|
Bonino MF, Cruz FB, Perotti MG. Does temperature at local scale explain thermal biology patterns of temperate tadpoles? J Therm Biol 2020; 94:102744. [PMID: 33292985 DOI: 10.1016/j.jtherbio.2020.102744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
Most of the literature on temperature-organism interactions rely on mean temperature (mostly air), disregarding the real complexity of this variable. There is a growing consensus about the importance of considering the temperature fluctuations as a mechanism improving organism's performance. Tadpoles are small body size ectotherm organisms that behave isothermally with their environment. As such, are good models for studying their thermal biology relative to their immediate environment. We studied six anuran tadpole species in North Patagonia, Alsodes gargola, Hylorina sylvatica, Batrachyla taeniata, Pleurodema thaul, P. bufoninum and Rhinella spinulosa, distributed in a West-East altitudinal cline with different environments and thermal conditions. We evaluated the relationship between thermal descriptors at a local scale and the thermal biology patterns of these temperate tadpoles. We estimated thermal tolerance limits and thermal sensitivity of locomotion of each species. The different aquatic environments showed important differences in local thermal conditions, associated with observed differences in the thermal traits in these tadpoles. Species exposed to lower temperature fluctuations and lower environmental mean temperatures showed lower swimming optimal temperatures and narrower thermal tolerance ranges. We found greater variability in the upper than in the lower critical limits in these Patagonian anuran tadpoles. Minimum critical temperatures were close to freezing temperature, possibly in detriment of their tolerance to high temperatures. Overall, our results suggest that these species are adapted to low temperatures. Finally, warming tolerances and predicted thermal safety margins, show that none of the studied species appear to be under thermal stress that may compromise their survival at the present time or in the near future, under a moderate climate change scenario.
Collapse
Affiliation(s)
- Marcelo Fabián Bonino
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250 (8400), Bariloche, Río Negro, Argentina.
| | - Félix Benjamín Cruz
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250 (8400), Bariloche, Río Negro, Argentina
| | - María Gabriela Perotti
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250 (8400), Bariloche, Río Negro, Argentina
| |
Collapse
|
31
|
Birrell JH, Shah AA, Hotaling S, Giersch JJ, Williamson CE, Jacobsen D, Woods HA. Insects in high-elevation streams: Life in extreme environments imperiled by climate change. GLOBAL CHANGE BIOLOGY 2020; 26:6667-6684. [PMID: 32931053 DOI: 10.1111/gcb.15356] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Climate change is altering conditions in high-elevation streams worldwide, with largely unknown effects on resident communities of aquatic insects. Here, we review the challenges of climate change for high-elevation aquatic insects and how they may respond, focusing on current gaps in knowledge. Understanding current effects and predicting future impacts will depend on progress in three areas. First, we need better descriptions of the multivariate physical challenges and interactions among challenges in high-elevation streams, which include low but rising temperatures, low oxygen supply and increasing oxygen demand, high and rising exposure to ultraviolet radiation, low ionic strength, and variable but shifting flow regimes. These factors are often studied in isolation even though they covary in nature and interact in space and time. Second, we need a better mechanistic understanding of how physical conditions in streams drive the performance of individual insects. Environment-performance links are mediated by physiology and behavior, which are poorly known in high-elevation taxa. Third, we need to define the scope and importance of potential responses across levels of biological organization. Short-term responses are defined by the tolerances of individuals, their capacities to perform adequately across a range of conditions, and behaviors used to exploit local, fine-scale variation in abiotic factors. Longer term responses to climate change, however, may include individual plasticity and evolution of populations. Whether high-elevation aquatic insects can mitigate climatic risks via these pathways is largely unknown.
Collapse
Affiliation(s)
- Jackson H Birrell
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Alisha A Shah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - J Joseph Giersch
- U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT, USA
| | | | - Dean Jacobsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
32
|
Bernhardt JR, O'Connor MI, Sunday JM, Gonzalez A. Life in fluctuating environments. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190454. [PMID: 33131443 PMCID: PMC7662201 DOI: 10.1098/rstb.2019.0454] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Variability in the environment defines the structure and dynamics of all living systems, from organisms to ecosystems. Species have evolved traits and strategies that allow them to detect, exploit and predict the changing environment. These traits allow organisms to maintain steady internal conditions required for physiological functioning through feedback mechanisms that allow internal conditions to remain at or near a set-point despite a fluctuating environment. In addition to feedback, many organisms have evolved feedforward processes, which allow them to adjust in anticipation of an expected future state of the environment. Here we provide a framework describing how feedback and feedforward mechanisms operating within organisms can generate effects across scales of organization, and how they allow living systems to persist in fluctuating environments. Daily, seasonal and multi-year cycles provide cues that organisms use to anticipate changes in physiologically relevant environmental conditions. Using feedforward mechanisms, organisms can exploit correlations in environmental variables to prepare for anticipated future changes. Strategies to obtain, store and act on information about the conditional nature of future events are advantageous and are evidenced in widespread phenotypes such as circadian clocks, social behaviour, diapause and migrations. Humans are altering the ways in which the environment fluctuates, causing correlations between environmental variables to become decoupled, decreasing the reliability of cues. Human-induced environmental change is also altering sensory environments and the ability of organisms to detect cues. Recognizing that living systems combine feedback and feedforward processes is essential to understanding their responses to current and future regimes of environmental fluctuations. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
Collapse
Affiliation(s)
- Joey R Bernhardt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, Canada V6T 1Z4
| | - Jennifer M Sunday
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| |
Collapse
|
33
|
Žák J, Reichard M. Fluctuating temperatures extend median lifespan, improve reproduction and reduce growth in turquoise killifish. Exp Gerontol 2020; 140:111073. [PMID: 32858146 DOI: 10.1016/j.exger.2020.111073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
In natural populations, individuals experience daily fluctuations in environmental conditions that synchronise endogenous biorhythms. Artificial alterations of environmental fluctuations can have negative consequences for life history traits, including lifespan. In laboratory studies of aging, the role of fluctuating temperature is usually overlooked and we know little of how thermal fluctuation modulates senescence in vertebrates. In this longitudinal study we followed individually-housed turquoise killifish, Nothobranchius furzeri, from two thermal regimes; ecologically relevant diel fluctuations (20 °C - 35 °C) and stable temperature (27.5 °C), and compared their survival, growth and reproduction. Fish experiencing fluctuating temperatures had a longer median lifespan but reached smaller asymptotic body size. Within-treatment variation indicated that extended lifespan in fluctuating temperatures was not causally linked to decreased growth rate or smaller body size, but occurred solely due to the effect of thermal fluctuations. Male body size was positively associated with lifespan in stable temperatures but this relationship was disrupted in fluctuating thermal regimes. Females exposed to fluctuating temperatures effectively compensated egg production for their smaller size. Thus, there was no difference in absolute fecundity between thermal regimes and body-size corrected fecundity was higher in females in fluctuating temperatures. Overall, despite a brief exposure to sub-optimal thermal conditions during fluctuations, fluctuating temperature had a positive effect on survival and reproduction. These results suggest that the expression of life history traits and their associations under stable temperatures are a poor representation of the relationships obtained from ecologically relevant thermal fluctuations.
Collapse
Affiliation(s)
- Jakub Žák
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czechia; Department of Zoology, Faculty of Science, Charles University, Prague, Viničná 7, 128 00, Czechia
| | - Martin Reichard
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65 Brno, Czechia; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia.
| |
Collapse
|
34
|
Dausmann KH, Levesque DL, Wein J, Nowack J. Ambient Temperature Cycles Affect Daily Torpor and Hibernation Patterns in Malagasy Tenrecs. Front Physiol 2020; 11:522. [PMID: 32547412 PMCID: PMC7270353 DOI: 10.3389/fphys.2020.00522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
Hibernation and daily torpor (heterothermy) allow endotherms to cope with demanding environmental conditions. The depth and duration of torpor bouts vary considerably between tropical and temperate climates, and tropical hibernators manage to cope with a wider spectrum of ambient temperature (Ta) regimes during heterothermy. As cycles in Ta can have profound effects on activity and torpor patterns as well as energy expenditure, we examined how these characteristics are affected by daily fluctuating versus constant Ta in a tropical hibernator, the lesser hedgehog tenrec (Echinops telfairi). Throughout the study, regardless of season, the tenrecs became torpid every day. In summer, E. telfairi used daily fluctuations in Ta to passively rewarm from daily torpor, which led to synchrony in the activity phases and torpor bouts between individuals and generally decreased energy expenditure. In contrast, animals housed at constant Ta showed considerable variation in timing and they had to invest more energy through endogenous heat production. During the hibernation season (winter) E. telfairi hibernated for several months in constant, as well as in fluctuating Ta and, as in summer, under fluctuating Ta arousals were much more uniform and showed less variation in timing compared to constant temperature regimes. The timing of torpor is not only important for its effective use, but synchronization of activity patterns could also be essential for social interactions, and successful foraging bouts. Our results highlight that Ta cycles can be an effective zeitgeber for activity and thermoregulatory rhythms throughout the year and that consideration should be given to the choice of temperature regime when studying heterothermy under laboratory conditions.
Collapse
Affiliation(s)
- Kathrin H Dausmann
- Functional Ecology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Danielle L Levesque
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Jens Wein
- Functional Ecology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
35
|
Wang Y, Stoks R, Sentis A, Tüzün N. Support for the climatic variability hypothesis depends on the type of thermal plasticity: lessons from predation rates. OIKOS 2020. [DOI: 10.1111/oik.07181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ying‐Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Debériotstraat 32 BE‐3000 Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Debériotstraat 32 BE‐3000 Leuven Belgium
| | - Arnaud Sentis
- INRAE, Univ. of Aix Marseille, UMR RECOVER Aix‐en‐Provence France
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Debériotstraat 32 BE‐3000 Leuven Belgium
| |
Collapse
|
36
|
Ferguson LV, Sinclair BJ. Thermal Variability and Plasticity Drive the Outcome of a Host-Pathogen Interaction. Am Nat 2020; 195:603-615. [DOI: 10.1086/707545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Teets NM, Gantz JD, Kawarasaki Y. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. ACTA ACUST UNITED AC 2020; 223:223/3/jeb203448. [PMID: 32051174 DOI: 10.1242/jeb.203448] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rapid cold hardening (RCH) is a type of phenotypic plasticity that allows ectotherms to quickly enhance cold tolerance in response to brief chilling (lasting minutes to hours). In this Review, we summarize the current state of knowledge of this important phenotype and provide new directions for research. As one of the fastest adaptive responses to temperature known, RCH allows ectotherms to cope with sudden cold snaps and to optimize their performance during diurnal cooling cycles. RCH and similar phenotypes have been observed across a diversity of ectotherms, including crustaceans, terrestrial arthropods, amphibians, reptiles, and fish. In addition to its well-defined role in enhancing survival to extreme cold, RCH also protects against nonlethal cold injury by preserving essential functions following cold stress, such as locomotion, reproduction, and energy balance. The capacity for RCH varies across species and across genotypes of the same species, indicating that RCH can be shaped by selection and is likely favored in thermally variable environments. Mechanistically, RCH is distinct from other rapid stress responses in that it typically does not involve synthesis of new gene products; rather, the existing cellular machinery regulates RCH through post-translational signaling mechanisms. However, the protective mechanisms that enhance cold hardiness are largely unknown. We provide evidence that RCH can be induced by multiple triggers in addition to low temperature, and that rapidly induced tolerance and cross-tolerance to a variety of environmental stressors may be a general feature of stress responses that requires further investigation.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - J D Gantz
- Biology Department, Hendrix College, Conway, AK 72032, USA
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| |
Collapse
|
38
|
Stahlschmidt ZR, Chu I, Koh C. When do looks matter? Effects of mate quality and environmental variability on lifetime reproduction. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-019-2790-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Teets NM, Dalrymple EG, Hillis MH, Gantz JD, Spacht DE, Lee RE, Denlinger DL. Changes in Energy Reserves and Gene Expression Elicited by Freezing and Supercooling in the Antarctic Midge, Belgica antarctica. INSECTS 2019; 11:insects11010018. [PMID: 31878219 PMCID: PMC7022800 DOI: 10.3390/insects11010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 11/16/2022]
Abstract
Freeze-tolerance, or the ability to survive internal ice formation, is relatively rare among insects. Larvae of the Antarctic midge Belgica antarctica are freeze-tolerant year-round, but in dry environments, the larvae can remain supercooled (i.e., unfrozen) at subzero temperatures. In previous work with summer-acclimatized larvae, we showed that freezing is considerably more stressful than remaining supercooled. Here, these findings are extended by comparing survival, tissue damage, energetic costs, and stress gene expression in larvae that have undergone an artificial winter acclimation regime and are either frozen or supercooled at −5 °C. In contrast to summer larvae, winter larvae survive at −5 °C equally well for up to 14 days, whether frozen or supercooled, and there is no tissue damage at these conditions. In subsequent experiments, we measured energy stores and stress gene expression following cold exposure at −5 °C for either 24 h or 14 days, with and without a 12 h recovery period. We observed slight energetic costs to freezing, as frozen larvae tended to have lower glycogen stores across all groups. In addition, the abundance of two heat shock protein transcripts, hsp60 and hsp90, tended to be higher in frozen larvae, indicating higher levels of protein damage following freezing. Together, these results indicate a slight cost to being frozen relative to remaining supercooled, which may have implications for the selection of hibernacula and responses to climate change.
Collapse
Affiliation(s)
- Nicholas M. Teets
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (E.G.D.); (M.H.H.)
- Correspondence: ; Tel.: +1-859-257-7459
| | - Emma G. Dalrymple
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (E.G.D.); (M.H.H.)
| | - Maya H. Hillis
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA; (E.G.D.); (M.H.H.)
| | - J. D. Gantz
- Biology Department, Hendrix College, Conway, AK 72032, USA;
| | - Drew E. Spacht
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA; (D.E.S.); (D.L.D.)
| | - Richard E. Lee
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| | - David L. Denlinger
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43210, USA; (D.E.S.); (D.L.D.)
- Department of Entomology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
40
|
Dillon ME, Lozier JD. Adaptation to the abiotic environment in insects: the influence of variability on ecophysiology and evolutionary genomics. CURRENT OPINION IN INSECT SCIENCE 2019; 36:131-139. [PMID: 31698151 DOI: 10.1016/j.cois.2019.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Advances in tools to gather environmental, phenotypic, and molecular data have accelerated our ability to detect abiotic drivers of variation across the genome-to-phenome spectrum in model and non-model insects. However, differences in the spatial and temporal resolution of these data sets may create gaps in our understanding of linkages between environment, genotype, and phenotype that yield missed or misleading results about adaptive variation. In this review we highlight sources of variability that might impact studies of phenotypic and 'omic environmental adaptation, challenges to collecting data at relevant scales, and possible solutions that link intensive fine-scale reductionist studies of mechanisms to large-scale biogeographic patterns.
Collapse
Affiliation(s)
- Michael E Dillon
- Department of Zoology & Physiology and Program in Ecology, The University of Wyoming, Laramie, Wyoming 82071, USA.
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, Alabama 35487, USA
| |
Collapse
|
41
|
Environmental Predictability as a Cause and Consequence of Animal Movement. Trends Ecol Evol 2019; 35:163-174. [PMID: 31699411 DOI: 10.1016/j.tree.2019.09.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022]
Abstract
The impacts of environmental predictability on the ecology and evolution of animal movement have been the subject of vigorous speculation for several decades. Recently, the swell of new biologging technologies has further stimulated their investigation. This advancing research frontier, however, still lacks conceptual unification and has so far focused little on converse effects. Populations of moving animals have ubiquitous effects on processes such as nutrient cycling and seed dispersal and may therefore shape patterns of environmental predictability. Here, we synthesise the main strands of the literature on the feedbacks between environmental predictability and animal movement and discuss how they may react to anthropogenic disruption, leading to unexpected threats for wildlife and the environment.
Collapse
|
42
|
Gilbert AL, Miles DB. Spatiotemporal variation in thermal niches suggests lability rather than conservatism of thermal physiology along an environmental gradient. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Temperature variation throughout a species range can be extensive and exert divergent spatiotemporal patterns of selection. The estimation of phenotypic differences of populations along environmental gradients provides information regarding population-level responses to changing environments and evolutionary lability in climate-relevant traits. However, few studies have found physiological differentiation across environmental gradients attributable to behavioural thermoregulation buffering physiological evolution. Here, we compared thermal sensitivity of physiological performance among three populations of the ornate tree lizard (Urosaurus ornatus) along a 1100 m elevational gradient in southeastern Arizona across years in order to determine whether spatial differences in thermal environments are capable of driving local physiological differentiation. Lizards exhibited significant population-level differences in thermal physiology. The thermal traits of lizards at low elevations included warmer body temperatures and higher preferred and critical thermal temperatures. In contrast, lizards at higher elevations had cooler body temperatures and lower preferred and critical thermal temperatures. Populations also exhibited differences in the optimal temperature for performance and thermal performance breadth. The direction of population variation was consistent across years. Environmental gradients can provide model systems for studying the evolution of thermal physiology, and our study is one of the first to suggest that population differentiation in thermal physiology could be more prominent than previously thought.
Collapse
Affiliation(s)
- Anthony L Gilbert
- Department of Biological Sciences, Ohio University, Athens, OH, USA
- Ohio Center for Ecological and Evolutionary Studies, Athens, OH, USA
| | - Donald B Miles
- Department of Biological Sciences, Ohio University, Athens, OH, USA
- Ohio Center for Ecological and Evolutionary Studies, Athens, OH, USA
| |
Collapse
|
43
|
Koussoroplis AM, Schälicke S, Raatz M, Bach M, Wacker A. Feeding in the frequency domain: coarser-grained environments increase consumer sensitivity to resource variability, covariance and phase. Ecol Lett 2019; 22:1104-1114. [PMID: 31016844 DOI: 10.1111/ele.13267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 11/28/2022]
Abstract
Theory predicts that resource variability hinders consumer performance. How this effect depends on the temporal structure of resource fluctuations encountered by individuals remains poorly understood. Combining modelling and growth experiments with Daphnia magna, we decompose the complexity of resource fluctuations and test the effect of resource variance, supply peak timing (i.e. phase) and co-limiting resource covariance along a gradient from high to low frequencies reflecting fine- to coarse-grained environments. Our results show that resource storage can buffer growth at high frequencies, but yields a sensitivity of growth to resource peak timing at lower ones. When two resources covary, negative covariance causes stronger growth depression at low frequencies. However, negative covariance might be beneficial at intermediate frequencies, an effect that can be explained by digestive acclimation. Our study provides a mechanistic basis for understanding how alterations of the environmental grain size affect consumers experiencing variable nutritional quality in nature.
Collapse
Affiliation(s)
- Apostolos-Manuel Koussoroplis
- Theoretical Aquatic Ecology and Ecophysiology group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Aquatic Food Web Interactions group (I.R.T.A), Microorganisms Genome and Environment Lab (L.M.G.E.), UMR CNRS 6023, Université Clermont Auvergne, Aubière, France
| | - Svenja Schälicke
- Theoretical Aquatic Ecology and Ecophysiology group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Raatz
- Theoretical Aquatic Ecology and Ecophysiology group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Moritz Bach
- Theoretical Aquatic Ecology and Ecophysiology group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Alexander Wacker
- Theoretical Aquatic Ecology and Ecophysiology group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Animal Ecology group, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
44
|
da Silva CRB, Riginos C, Wilson RS. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. J Comp Physiol B 2019; 189:385-398. [PMID: 30874900 DOI: 10.1007/s00360-019-01212-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/17/2022]
Abstract
The co-evolution of acclimation capacity and thermal performance breadth has been a contentious issue for decades, and little is known regarding the extent to which acclimation alters the shape of acute thermal performance curves. Current acclimation theory suggests that when daily variation is large and unpredictable ectotherms should not acclimate but should evolve wide performance breadths, allowing maintenance of performance across a wide thermal range. The subtropical intertidal zone, however, experiences a large amount of daily thermal variation, but daily means and ranges shift in predictable ways with season, where daily and seasonal variation is roughly equal. We predicted that animals in this habitat would maintain their capacity to acclimate and that performance breadth would not be altered by acclimation to maintain function with rapidly fluctuating daily temperatures. We tested our prediction using a subtropical goby, Bathygobius cocosensis, which lives in tide pools that vary widely, over days and seasons. We exposed B. cocosensis to winter (12-17 °C) and summer (30-35 °C) thermal conditions for six weeks and then measured the thermal dependence of burst swimming speed, routine and maximum metabolic rate, and ventilation rate between 12 and 36 °C. B. cocosensis exhibited an acclimation response for burst swimming speed, maximum metabolic rate and metabolic scope, but acclimation did not alter the shape of acute thermal performance curves. These results indicate that thermal acclimation can occur when short-term thermal variability is large and equal to seasonal variation, and wide performance breadths can be maintained with acclimation in heterogeneous environments.
Collapse
Affiliation(s)
- Carmen Rose Burke da Silva
- School of Biological Sciences, Faculty of Science, The University of Queensland, Saint Lucia, Brisbane, 4072, Australia.
| | - Cynthia Riginos
- School of Biological Sciences, Faculty of Science, The University of Queensland, Saint Lucia, Brisbane, 4072, Australia
| | - Robbie Stuart Wilson
- School of Biological Sciences, Faculty of Science, The University of Queensland, Saint Lucia, Brisbane, 4072, Australia
| |
Collapse
|
45
|
Burggren WW. Inadequacy of typical physiological experimental protocols for investigating consequences of stochastic weather events emerging from global warming. Am J Physiol Regul Integr Comp Physiol 2019; 316:R318-R322. [PMID: 30698987 DOI: 10.1152/ajpregu.00307.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increasingly variable, extreme, and nonpredictable weather events are predicted to accompany climate change, and such weather events will especially affect temperate, terrestrial environments. Yet, typical protocols in comparative physiology that examine environmental change typically employ simple step-wise changes in the experimental stressor of interest (e.g., temperature, water availability, oxygen, nutrition). Such protocols fall short of mimicking actual natural environments and may be inadequate for fully exploring the physiological effects of stochastic, extreme weather events. Indeed, numerous studies from the field of thermal biology, especially, indicate nonlinear and sometimes counterintuitive findings associated with variable and fluctuating (but rarely truly stochastic) protocols for temperature change. This Perspective article suggests that alternative experimental protocols should be employed that go beyond step-wise protocols and even beyond variable protocols employing circadian rhythms, for example, to those that actually embrace nonpredictable elements. Such protocols, though admittedly more difficult to implement, are more likely to reveal the capabilities (and, importantly, the limitations) of animals experiencing weather, as distinct from climate. While some possible protocols involving stochasticity are described as examples to stimulate additional thought on experimental design, the overall goal of this Perspective article is to encourage comparative physiologists to entertain incorporation of nonpredictable experimental conditions as they design future experimental protocols.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas , Denton, Texas
| |
Collapse
|
46
|
Kellermann V, Chown SL, Schou MF, Aitkenhead I, Janion-Scheepers C, Clemson A, Scott MT, Sgrò CM. Comparing thermal performance curves across traits: how consistent are they? J Exp Biol 2019; 222:jeb.193433. [DOI: 10.1242/jeb.193433] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Thermal performance curves (TPCs) are intended to approximate the relationship between temperature and fitness, and are commonly integrated into species distributional models for understanding climate change responses. However, TPCs may vary across traits because selection and environmental sensitivity (plasticity) differ across traits or because the timing and duration of the temperature exposure, here termed time-scale, may alter trait variation. Yet the extent to which TPCs vary temporally and across traits is rarely considered in assessments of climate change responses. Using a common garden approach, we estimate TPCs for standard metabolic rate (SMR), and activity in Drosophila melanogaster at three test temperatures (16, 25 and 30 °C), using flies from each of six developmental temperatures (16, 18, 20, 25, 28 and 30 °C). We examined the effects of time-scale of temperature exposure (mins/hours vs days/weeks) in altering the TPC shape, position and commonly used descriptors of the TPC- thermal optimum (TOPT), thermal limits (TMIN and TMAX) and thermal breadth (TBR). In addition we collated previously published estimates of TPCs for fecundity and egg-to-adult viability in D. melanogaster. We found that the descriptors of the TPCs varied across traits (egg-to-adult viability, SMR, activity and fecundity), but variation in TPCs within these traits was small across studies when measured at the same time-scales. The time-scale at which traits were measured contributed to greater variation in TPCs than the observed variance across traits, although the relative importance of time-scale differed depending on the trait (activity vs fecundity). Variation in the TPC across traits and time-scales suggests that TPCs using single traits may not be an accurate predictor of fitness and thermal adaptation across environments.
Collapse
Affiliation(s)
- Vanessa Kellermann
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| | - Steven L. Chown
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| | | | - Ian Aitkenhead
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| | - Charlene Janion-Scheepers
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
- Iziko South African Museum, Cape Town, 8001m South Africa
| | - Allannah Clemson
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| | | | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne 3800 Australia
| |
Collapse
|
47
|
Teets NM, Kawarasaki Y, Potts LJ, Philip BN, Gantz JD, Denlinger DL, Lee RE. Rapid cold hardening protects against sublethal freezing injury in an Antarctic insect. J Exp Biol 2019; 222:jeb.206011. [DOI: 10.1242/jeb.206011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/22/2019] [Indexed: 01/17/2023]
Abstract
Rapid cold hardening (RCH) is a type of beneficial phenotypic plasticity that occurs on extremely short time scales (minutes to hours) to enhance insects’ ability to cope with cold snaps and diurnal temperature fluctuations. RCH has a well-established role in extending lower lethal limits, but its ability to prevent sublethal cold injury has received less attention. The Antarctic midge, Belgica antarctica is Antarctica's only endemic insect and has a well-studied RCH response that extends freeze tolerance in laboratory conditions. However, the discriminating temperatures used in previous studies of RCH are far below those ever experienced in the field. Here, we tested the hypothesis that RCH protects against nonlethal freezing injury. Larvae of B. antarctica were exposed to either control (2°C), direct freezing (-9°C for 24 h), or RCH (-5°C for 2 h followed by -9°C for 24 h). All larvae survived both freezing treatments, but RCH larvae recovered more quickly from freezing stress and had significantly higher metabolic rates during recovery. RCH larvae also sustained less damage to fat body and midgut tissue and had lower expression of two heat shock protein transcripts (hsp60 and hsp90), which is consistent with RCH protecting against protein denaturation. The protection afforded by RCH resulted in energy savings; directly frozen larvae experienced a significant depletion in glycogen energy stores that was not observed in RCH larvae. Together, these results provide strong evidence that RCH protects against a variety of sublethal freezing injuries and allows insects to rapidly fine-tune their performance in thermally variable environments.
Collapse
Affiliation(s)
| | - Yuta Kawarasaki
- Department of Biology, Gustavus Adolphus College, Saint Peter, MN USA
| | - Leslie J. Potts
- Department of Entomology, University of Kentucky, Lexington, KY USA
| | | | - J. D. Gantz
- Department of Biology, Miami University, Oxford, OH USA
- Current address: Biology Department, Hendrix College, Conway, AR, USA
| | | | | |
Collapse
|
48
|
Hopping KA, Chignell SM, Lambin EF. The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proc Natl Acad Sci U S A 2018; 115:11489-11494. [PMID: 30348756 PMCID: PMC6233077 DOI: 10.1073/pnas.1811591115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Demand for traditional medicine ingredients is causing species declines globally. Due to this trade, Himalayan caterpillar fungus (Ophiocordyceps sinensis) has become one of the world's most valuable biological commodities, providing a crucial source of income for hundreds of thousands of collectors. However, the resulting harvesting boom has generated widespread concern over the sustainability of its collection. We investigate whether caterpillar fungus production is decreasing-and if so, why-across its entire range. To overcome the limitations of sparse quantitative data, we use a multiple evidence base approach that makes use of complementarities between local knowledge and ecological modeling. We find that, according to collectors across four countries, caterpillar fungus production has decreased due to habitat degradation, climate change, and especially overexploitation. Our statistical models corroborate that climate change is contributing to this decline. They indicate that caterpillar fungus is more productive under colder conditions, growing in close proximity to areas likely to have permafrost. With significant warming already underway throughout much of its range, we conclude that caterpillar fungus populations have been negatively affected by a combination of overexploitation and climate change. Our results underscore that harvesting is not the sole threat to economically valuable species, and that a collapse of the caterpillar fungus system under ongoing warming and high collection pressure would have serious implications throughout the Himalayan region.
Collapse
Affiliation(s)
- Kelly A Hopping
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305
| | - Stephen M Chignell
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523
| | - Eric F Lambin
- Department of Earth System Science, Stanford University, Stanford, CA 94305;
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305
- Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
49
|
Struelens Q, Rebaudo F, Quispe R, Dangles O. Thermal pace-of-life strategies improve phenological predictions in ectotherms. Sci Rep 2018; 8:15891. [PMID: 30367155 PMCID: PMC6203799 DOI: 10.1038/s41598-018-34274-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
Phenological variability among populations is widespread in nature. A few predictive phenological models integrate intrapopulational variability, but none has ever explored the individual strategies potentially occurring within a population. The "pace-of-life" syndrome accounts for such individual strategies, but has yet to be explored under a phenological context. Here we integrated, for the first time, the slow-fast thermal strategies stemming from the "pace-of-life" into a mechanistic predictive framework. We obtained 4619 phenological observations of an important crop pest in the Bolivian Andes by individually following 840 individuals under five rearing temperatures and across nine life stages. The model calibrated with the observed individual "pace-of-life" strategies showed a higher accuracy in phenological predictions than when accounting for intrapopulational variability alone. We further explored our framework with generated data and suggest that ectotherm species with a high number of life stages and with slow and/or fast individuals should exhibit a greater variance of populational phenology, resulting in a potentially longer time window of interaction with other species. We believe that the "pace-of-life" framework is a promising approach to improve phenological prediction across a wide array of species.
Collapse
Affiliation(s)
- Quentin Struelens
- Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France. .,Institut de Recherche pour le Développement, Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry, Montpellier, EPHE, IRD, Montpellier, France.
| | - François Rebaudo
- Institut de Recherche pour le Développement, UMR EGCE-Université Paris Sud-CNRS-IRD-Paris Saclay, Gif-sur-Yvette, France
| | | | - Olivier Dangles
- Institut de Recherche pour le Développement, Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry, Montpellier, EPHE, IRD, Montpellier, France.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
50
|
Di Cecco GJ, Gouhier TC. Increased spatial and temporal autocorrelation of temperature under climate change. Sci Rep 2018; 8:14850. [PMID: 30287852 PMCID: PMC6172201 DOI: 10.1038/s41598-018-33217-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/25/2018] [Indexed: 11/09/2022] Open
Abstract
Understanding spatiotemporal variation in environmental conditions is important to determine how climate change will impact ecological communities. The spatial and temporal autocorrelation of temperature can have strong impacts on community structure and persistence by increasing the duration and the magnitude of unfavorable conditions in sink populations and disrupting spatial rescue effects by synchronizing spatially segregated populations. Although increases in spatial and temporal autocorrelation of temperature have been documented in historical data, little is known about how climate change will impact these trends. We examined daily air temperature data from 21 General Circulation Models under the business-as-usual carbon emission scenario to quantify patterns of spatial and temporal autocorrelation between 1871 and 2099. Although both spatial and temporal autocorrelation increased over time, there was significant regional variation in the temporal autocorrelation trends. Additionally, we found a consistent breakpoint in the relationship between spatial autocorrelation and time around the year 2030, indicating an acceleration in the rate of increase of the spatial autocorrelation over the second half of the 21st century. Overall, our results suggest that ecological populations might experience elevated extinction risk under climate change because increased spatial and temporal autocorrelation of temperature is expected to erode both spatial and temporal refugia.
Collapse
Affiliation(s)
- Grace J Di Cecco
- Northeastern University, Department of Biology, 360 Huntington Ave., Boston, MA, 02115, USA.
| | - Tarik C Gouhier
- Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| |
Collapse
|