1
|
Zhang B, Yu C, Xu Y, Huang Z, Cai Y, Li Y. Hepatopancreas immune response during different photoperiods in the Chinese mitten crab, Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108482. [PMID: 36503058 DOI: 10.1016/j.fsi.2022.108482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Photoperiod plays an important role in the growth, development, and metabolism of crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. The hepatopancreas is an important source of innate immune molecules; however, hepatopancreatic patterns of gene expression depending on the photoperiod-which may underlie changes in immune mechanisms-remain unknown. To study the molecular basis of immune regulation in the Chinese mitten crab (Eriocheir sinensis) under different light conditions, a new generation of high-throughput Illumina sequencing technology was used, and functional genes associated with immune function in the hepatopancreas of this crab were explored via assembly of high-quality sequences, gene annotation, and classification. A total of 383,899,798 clean reads from the hepatopancreas of the normal group (12 h/12 h L:D), 387,936,676 clean reads from the continuous light group (24 h/0 h L:D), and 384,872,734 clean reads from the continuous darkness group (0 h/24 h L:D) were obtained. Compared with the normal group, 141, 152, 60, 87, 90, and 101 differentially expressed genes were identified in the groups exposed to continuous light for 2 days, continuous darkness for 2 days, continuous light for 4 days, continuous darkness for 4 days, continuous light for 6 days, and continuous darkness for 6 days, respectively. The results of this study revealed that under continuous light and dark conditions, the crabs were most affected by light on day 2, but the interference gradually decreased with time. We suggest that long-term light or dark treatment makes crabs adaptable to fluctuations in the photoperiod. The expression of genes associated with immune response patterns was found to change during different photoperiods. Prophenoloxidase (proPO) and serine proteinase (kazal-type serine proteinase inhibitor 1 and serine proteinase inhibitor-3) in the proPO-activating system were significantly upregulated in the 2-day continuous light group. Glutathione peroxidase 3 was significantly downregulated under continuous light exposure, while cyclooxygenase was upregulated in the continuous light and dark environments. These results provide insights into the molecular mechanism underlying the effects of the photoperiod on immune regulation and the physiological activity of E. sinensis.
Collapse
Affiliation(s)
- Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Ziwei Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yuqiao Cai
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 110866, Shenyang, China.
| |
Collapse
|
2
|
Khamtorn P, Peigneur S, Amorim FG, Quinton L, Tytgat J, Daduang S. De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules 2021; 27:molecules27010047. [PMID: 35011282 PMCID: PMC8746590 DOI: 10.3390/molecules27010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.
Collapse
Affiliation(s)
- Pornsawan Khamtorn
- Program in Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Sakda Daduang
- Center for Research and Development of Herbal Health Products (CDR-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
3
|
Gene Expression and Carcass Traits Are Different between Different Quality Grade Groups in Red-Faced Hereford Steers. Animals (Basel) 2021; 11:ani11071910. [PMID: 34198984 PMCID: PMC8300355 DOI: 10.3390/ani11071910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Producing a consistent and positive experience for beef consumers is challenging. The gene expression in muscle at harvest may provide insight into better prediction of United States Department of Agriculture (USDA) quality grade. In this pilot study muscle samples were collected at harvest on sixteen steers with a similar background and identical management. Muscle transcripts were sequenced to determine gene expression. Transcripts related to the extracellular matrix, stem cell differentiation, and focal cell adhesions were differentially expressed in muscle tissue from carcasses with differing USDA quality grades. This confirmed the application of this technique to provide insight into muscle development and fat deposition necessary for better prediction and selection to improve consistency and consumer experience. Abstract Fat deposition is important to carcass value and some palatability characteristics. Carcasses with higher USDA quality grades produce more value for producers and processors in the US system and are more likely to have greater eating satisfaction. Using genomics to identify genes impacting marbling deposition provides insight into muscle biochemistry that may lead to ways to better predict fat deposition, especially marbling and thus quality grade. Hereford steers (16) were managed the same from birth through harvest after 270 days on feed. Samples were obtained for tenderness and transcriptome profiling. As expected, steaks from Choice carcasses had a lower shear force value than steaks from Select carcasses; however, steaks from Standard carcasses were not different from steaks from Choice carcasses. A significant number of differentially expressed (DE) genes was observed in the longissimus lumborum between Choice and Standard carcass RNA pools (1257 genes, p < 0.05), but not many DE genes were observed between Choice and Select RNA pools. Exploratory analysis of global muscle tissue transcriptome from Standard and Choice carcasses provided insight into muscle biochemistry, specifically the upregulation of extracellular matrix development and focal adhesion pathways and the downregulation of RNA processing and metabolism in Choice versus Standard. Additional research is needed to explore the function and timing of gene expression changes.
Collapse
|
4
|
Collins M, Clark MS, Spicer JI, Truebano M. Transcriptional frontloading contributes to cross-tolerance between stressors. Evol Appl 2021; 14:577-587. [PMID: 33664796 PMCID: PMC7896706 DOI: 10.1111/eva.13142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/01/2022] Open
Abstract
The adaptive value of phenotypic plasticity for performance under single stressors is well documented. However, plasticity may only truly be adaptive in the natural multifactorial environment if it confers resilience to stressors of a different nature, a phenomenon known as cross-tolerance. An understanding of the mechanistic basis of cross-tolerance is essential to aid prediction of species resilience to future environmental change. Here, we identified mechanisms underpinning cross-tolerance between two stressors predicted to increasingly challenge aquatic ecosystems under climate change, chronic warming and hypoxia, in an ecologically-important aquatic invertebrate. Warm acclimation improved hypoxic performance through an adaptive hypometabolic strategy and changes in the expression of hundreds of genes that are important in the response to hypoxia. These 'frontloaded' genes showed a reduced reaction to hypoxia in the warm acclimated compared to the cold acclimated group. Frontloaded genes included stress indicators, immune response and protein synthesis genes that are protective at the cellular level. We conclude that increased constitutive gene expression as a result of warm acclimation reduced the requirement for inducible stress responses to hypoxia. We propose that transcriptional frontloading contributes to cross-tolerance between stressors and may promote fitness of organisms in environments increasingly challenged by multiple anthropogenic threats.
Collapse
Affiliation(s)
- Michael Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Melody S. Clark
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - John I. Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| |
Collapse
|
5
|
Havird JC, Meyer E, Fujita Y, Vaught RC, Henry RP, Santos SR. Disparate responses to salinity across species and organizational levels in anchialine shrimps. ACTA ACUST UNITED AC 2019; 222:jeb.211920. [PMID: 31727759 DOI: 10.1242/jeb.211920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/05/2019] [Indexed: 01/22/2023]
Abstract
Environmentally induced plasticity in gene expression is one of the underlying mechanisms of adaptation to habitats with variable environments. For example, euryhaline crustaceans show predictable changes in the expression of ion-transporter genes during salinity transfers, although studies have typically been limited to specific genes, taxa and ecosystems of interest. Here, we investigated responses to salinity change at multiple organizational levels in five species of shrimp representing at least three independent invasions of the anchialine ecosystem, defined as habitats with marine and freshwater influences with spatial and temporal fluctuations in salinity. Although all five species were generally strong osmoregulators, salinity-induced changes in gill physiology and gene expression were highly species specific. While some species exhibited patterns similar to those of previously studied euryhaline crustaceans, instances of distinct and atypical patterns were recovered from closely related species. Species-specific patterns were found when examining: (1) numbers and identities of differentially expressed genes, (2) salinity-induced expression of genes predicted a priori to play a role in osmoregulation, and (3) salinity-induced expression of orthologs shared among all species. Notably, ion transport genes were unchanged in the atyid Halocaridina rubra while genes normally associated with vision and light perception were among those most highly upregulated. Potential reasons for species-specific patterns are discussed, including variation among anchialine habitats in salinity regimes and divergent evolution in anchialine taxa. Underexplored mechanisms of osmoregulation in crustaceans revealed here by the application of transcriptomic approaches to ecologically and taxonomically understudied systems are also explored.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA .,Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, 3106 Cordley Hall, Corvallis, OR 97331, USA
| | - Yoshihisa Fujita
- Okinawa Prefectural University of Arts, 1-4, Shuri-Tonokura, Naha-shi, Okinawa 903-8602, Japan
| | - Rebecca C Vaught
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA.,School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Raymond P Henry
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
6
|
Tarrant AM, Nilsson B, Hansen BW. Molecular physiology of copepods - from biomarkers to transcriptomes and back again. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:230-247. [DOI: 10.1016/j.cbd.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/31/2022]
|
7
|
Hyde CJ, Elizur A, Ventura T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J Steroid Biochem Mol Biol 2019; 185:172-183. [PMID: 30157455 DOI: 10.1016/j.jsbmb.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies. The Crustacea are among the most ancient arthropods from which insects descended, comprising a huge variety of life histories and ecological roles. Of the events in a typical crustacean development, metamorphosis is perhaps the most ubiquitous, challenging and highly studied. Despite this, our knowledge of the endocrinology which underpins metamorphosis is rudimentary at best; although several key molecules have been identified and studied in depth, the link between them is quite nebulous and leans heavily on well-explored insect models, which diverged from the Pancrustacea over 450 million years ago. As omics technologies become increasingly accessible, they bring the prospect of explorative molecular research which will allow us to uncover components and pathways unique to crustaceans. This review reconciles known components of crustacean metamorphosis and reflects on our findings in insects to outline a future search space, with focus given to the ecdysone cascade. To expand our knowledge of this ubiquitous endocrine system not only aids in our understanding of crustacean metamorphosis, but also provides a deeper insight into the adaptive capacity of arthropods throughout evolution.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
8
|
Delroisse J, Duchatelet L, Flammang P, Mallefet J. De novo transcriptome analyses provide insights into opsin-based photoreception in the lanternshark Etmopterus spinax. PLoS One 2018; 13:e0209767. [PMID: 30596723 PMCID: PMC6312339 DOI: 10.1371/journal.pone.0209767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
The velvet belly lanternshark (Etmopterus spinax) is a small deep-sea shark commonly found in the Eastern Atlantic and the Mediterranean Sea. This bioluminescent species is able to emit a blue-green ventral glow used in counter-illumination camouflage, mainly. In this study, paired-end Illumina HiSeqTM technology has been employed to generate transcriptome data from eye and ventral skin tissues of the lanternshark. About 64 and 49 million Illumina reads were generated from skin and eye tissues respectively. The assembly allowed us to predict 119,749 total unigenes including 94,569 for the skin transcriptome and 94,365 for the eye transcriptome while 74,753 were commonly found in both transcriptomes. A taxonomy filtering was applied to extract a reference transcriptome containing 104,390 unigenes among which 38,836 showed significant similarities to known sequences in NCBI non-redundant protein sequences database. Around 58% of the annotated unigenes match with predicted genes from the Elephant shark (Callorhinchus milii) genome. The transcriptome completeness has been evaluated by successfully capturing around 98% of orthologous genes of the « Core eukaryotic gene dataset » within the E. spinax reference transcriptome. We identified potential "light-interacting toolkit" genes including multiple genes related to ocular and extraocular light perception processes such as opsins, phototransduction actors or crystallins. Comparative gene expression analysis reveals eye-specific expression of opsins, ciliary phototransduction actors, crystallins and vertebrate retinoid pathway actors. In particular, mRNAs from a single rhodopsin gene and its potentially associated peropsin were detected in the eye transcriptome, only, confirming a monochromatic vision of the lanternshark. Encephalopsin mRNAs were mainly detected in the ventral skin transcriptome. In parallel, immunolocalization of the encephalopsin within the ventral skin of the shark suggests a functional relation with the photophores, i.e. epidermal light-producing organs. We hypothesize that extraocular photoreception might be involved in the bioluminescence control possibly acting on the shutter opening and/or the photocyte activity itself. The newly generated reference transcriptome provides a valuable resource for further understanding of the shark biology.
Collapse
Affiliation(s)
- Jérôme Delroisse
- University of Mons (UMONS), Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| | - Laurent Duchatelet
- Catholic University of Louvain (UCLouvain), Earth and Life Institute, Marine Biology Laboratory, Louvain-La-Neuve, Belgium
| | - Patrick Flammang
- University of Mons (UMONS), Research Institute for Biosciences, Biology of Marine Organisms and Biomimetics, Mons, Belgium
| | - Jérôme Mallefet
- Catholic University of Louvain (UCLouvain), Earth and Life Institute, Marine Biology Laboratory, Louvain-La-Neuve, Belgium
| |
Collapse
|
9
|
Chen L, Sun F, Yang X, Jin Y, Shi M, Wang L, Shi Y, Zhan C, Wang Q. Correlation between RNA-Seq and microarrays results using TCGA data. Gene 2017; 628:200-204. [PMID: 28734892 DOI: 10.1016/j.gene.2017.07.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/20/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023]
Abstract
RNA sequencing (RNA-Seq) and microarray are two of the most commonly used high-throughput technologies for transcriptome profiling; however, they both have their own inherent strengths and limitations. This research aims to analyze the correlation between microarrays and RNA-Seq detection of transcripts in the same tissue sample to explore the reproducibility between the techniques. Using data of RNA-Seq v2 and three different microarrays provided by The Cancer Genome Atlas, 11,120 genes of 111 lung squamous cell carcinoma samples were simultaneously detected by the four methods. Then we analyzed the Pearson correlation between microarrays and RNA-Seq. Finally, in the six comparison results, 9984 (89.8%) genes, irrespective of which two methods were used, simultaneously showed the existence of correlation, whereas only 83 (0.1%) genes proved to have no significant correlation in either comparison. In addition, the comparisons between 3266 (29.3%) genes showed high correlation (R≥0.8) in all six comparisons, only for 1643 (14.8%) genes correlation were not as high in either comparison. Meanwhile, transcripts with extreme high or low expression levels were more highly discrepant across the methods. In conclusion, we found that, for most transcripts, the results obtained by RNA-Seq and microarrays were highly reproducible.
Collapse
Affiliation(s)
- Li Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Xiaodong Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Yulin Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
10
|
Mykles DL, Burnett KG, Durica DS, Joyce BL, McCarthy FM, Schmidt CJ, Stillman JH. Resources and Recommendations for Using Transcriptomics to Address Grand Challenges in Comparative Biology. Integr Comp Biol 2016; 56:1183-1191. [PMID: 27639274 PMCID: PMC5146710 DOI: 10.1093/icb/icw083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High-throughput RNA sequencing (RNA-seq) technology has become an important tool for studying physiological responses of organisms to changes in their environment. De novo assembly of RNA-seq data has allowed researchers to create a comprehensive catalog of genes expressed in a tissue and to quantify their expression without a complete genome sequence. The contributions from the "Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology" symposium in this issue show the successes and limitations of using RNA-seq in the study of crustaceans. In conjunction with the symposium, the Animal Genome to Phenome Research Coordination Network collated comments from participants at the meeting regarding the challenges encountered when using transcriptomics in their research. Input came from novices and experts ranging from graduate students to principal investigators. Many were unaware of the bioinformatics analysis resources currently available on the CyVerse platform. Our analysis of community responses led to three recommendations for advancing the field: (1) integration of genomic and RNA-seq sequence assemblies for crustacean gene annotation and comparative expression; (2) development of methodologies for the functional analysis of genes; and (3) information and training exchange among laboratories for transmission of best practices. The field lacks the methods for manipulating tissue-specific gene expression. The decapod crustacean research community should consider the cherry shrimp, Neocaridina denticulata, as a decapod model for the application of transgenic tools for functional genomics. This would require a multi-investigator effort.
Collapse
Affiliation(s)
- Donald L Mykles
- *Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Karen G Burnett
- Grice Marine Laboratory, College of Charleston, Charleston, SC 29412, USA
- Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - David S Durica
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Blake L Joyce
- BIO5 Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - Jonathon H Stillman
- Romberg Tiburon Center for Environmental Studies and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
11
|
Mykles DL, Burnett KG, Durica DS, Stillman JH. Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology: An Introduction to the Symposium. Integr Comp Biol 2016; 56:1047-1054. [PMID: 27591249 DOI: 10.1093/icb/icw116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Crustaceans, and decapods in particular (i.e., crabs, shrimp, and lobsters), are a diverse and ecologically and commercially important group of organisms. Understanding responses to abiotic and biotic factors is critical for developing best practices in aquaculture and assessing the effects of changing environments on the biology of these important animals. A relatively small number of decapod crustacean species have been intensively studied at the molecular level; the availability, experimental tractability, and economic relevance factor into the selection of a particular species as a model. Transcriptomics, using high-throughput next generation sequencing (NGS, coupled with RNA sequencing or RNA-seq) is revolutionizing crustacean biology. The 11 symposium papers in this volume illustrate how RNA-seq is being used to study stress response, molting and limb regeneration, immunity and disease, reproduction and development, neurobiology, and ecology and evolution. This symposium occurred on the 10th anniversary of the symposium, "Genomic and Proteomic Approaches to Crustacean Biology", held at the Society for Integrative and Comparative Biology 2006 meeting. Two participants in the 2006 symposium, the late Paul Gross and David Towle, were recognized as leaders who pioneered the use of molecular techniques that would ultimately foster the transcriptomics research reviewed in this volume. RNA-seq is a powerful tool for hypothesis-driven research, as well as an engine for discovery. It has eclipsed the technologies available in 2006, such as microarrays, expressed sequence tags, and subtractive hybridization screening, as the millions of "reads" from NGS enable researchers to de novo assemble a comprehensive transcriptome without a complete genome sequence. The symposium series concludes with a policy paper that gives an overview of the resources available and makes recommendations for developing better tools for functional annotation and pathway and network analysis in organisms in which the genome is not available or is incomplete.
Collapse
Affiliation(s)
- Donald L Mykles
- *Department of Biology, Colorado State University, 1878 Campus, Fort Collins, CO 80523, USA
| | - Karen G Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Rd., Charleston, SC 29412, USA.,Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - David S Durica
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Jonathon H Stillman
- Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920, USA.,Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Das S, Mykles DL. A Comparison of Resources for the Annotation of a De Novo Assembled Transcriptome in the Molting Gland (Y-Organ) of the Blackback Land Crab, Gecarcinus lateralis. Integr Comp Biol 2016; 56:1103-1112. [PMID: 27549198 DOI: 10.1093/icb/icw107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Next-generation sequencing technologies are revolutionizing crustacean biology. De novo assembly of RNA sequencing (RNA-seq) data allows researchers to catalog and quantify genes expressed in tissues of a species that lacks a complete genome sequence. RNA-seq has become an important tool for understanding phenotypic plasticity and the responses of organisms to environmental cues. However, there are challenges with identification of assembled contiguous sequences (contigs) without a reference genome. Thus, the selection of resources for annotating contigs is critical for the downstream analysis of gene functions. A de novo-assembled transcriptome of the Gecarcinus lateralis molting gland, or Y-organ (YO), was used to compare two functional annotation packages, Trinotate and Blast2GO. The assembled transcriptome contained 229,278 contigs derived from YOs from animals in intermolt, premolt (early, mid, and late), and postmolt stages. Gene identification using BLAST against four databases and functional annotation using Gene Ontologies were conducted. The analysis revealed two major limitations of de novo assembly: (1) assembly using Trinity generates redundant contigs and (2) transcripts that encode protein isoforms are not distinguished with current computational tools. It is recommended that the NCBI Non-Redundant, SwissProt, TrEMBL, and Uniref90 databases be used to maximize gene identification. Trinotate is preferred for assigning functions to identified genes, as the package uses multiple databases for annotation. The differences between packages to generate Gene Ontology (GO) terms are attributed to the databases used for inputs: Trinotate uses both Pfam and BLAST databases, while Blast2GO uses only the BLAST database. InterProScan was used to verify the GO terms assigned via BLAST. A comprehensive annotation of de novo assembled transcriptome is necessary for the downstream analysis of differentially expressed transcripts in the YO over the molt cycle.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
13
|
Havird JC, Santos SR. Here We Are, But Where Do We Go? A Systematic Review of Crustacean Transcriptomic Studies from 2014-2015. Integr Comp Biol 2016; 56:1055-1066. [PMID: 27400974 DOI: 10.1093/icb/icw061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite their economic, ecological, and experimental importance, genomic resources remain scarce for crustaceans. In lieu of genomes, many researchers have taken advantage of technological advancements to instead sequence and assemble crustacean transcriptomes de novo However, there is little consensus on what standard operating procedures are, or should be, for the field. Here, we systematically reviewed 53 studies published during 2014-2015 that utilized transcriptomic resources from this taxonomic group in an effort to identify commonalities as well as potential weaknesses that have applicability beyond just crustaceans. In general, these studies utilized RNA-Seq data, both novel and publicly available, to characterize transcriptomes and/or identify differentially expressed genes (DEGs) between treatments. Although the software suite Trinity was popular in assembly pipelines and other programs were also commonly employed, many studies failed to report crucial details regarding bioinformatic methodologies, including read mappers and the utilized parameters in identifying and characterizing DEGs. Annotation percentages for assembled transcriptomic contigs were low, averaging 32% overall. While other metrics, such as numbers of contigs and DEGs reported, correlated with the number of sequence reads utilized per sample, these did reach apparent saturation with increasing sequencing depth. Most disturbingly, a number of studies (55%) reported DEGs based on non-replicated experimental designs and single biological replicates for each treatment. Given this, we suggest future RNA-Seq experiments targeting transcriptome characterization conduct deeper (i.e., 50-100 M reads) sequencing while those examining differential expression instead focus more on increased biological replicates at shallower (i.e., ∼10-20 M reads/sample) sequencing depths. Moreover, the community must avoid submitting for review, or accepting for publication, non-replicated differential expression studies. Finally, mining the ever growing publicly available transcriptomic data from crustaceans will allow future studies to focus on hypothesis-driven research instead of continuing to simply characterize transcriptomes. As an example of this, we utilized neurotoxin sequences from the recently described remipede venom gland transcriptome in conjunction with publicly available crustacean transcriptomic data to derive preliminary results and hypotheses regarding the evolution of venom in crustaceans.
Collapse
Affiliation(s)
- Justin C Havird
- *Department of Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| |
Collapse
|