1
|
Husak JF, Lailvaux SP. Stable isotopes reveal sex- and context-dependent amino acid routing in green anole lizards (Anolis carolinensis). J Exp Biol 2024; 227:jeb248024. [PMID: 39155675 DOI: 10.1242/jeb.248024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Allocation of acquired resources to phenotypic traits is affected by resource availability and current selective context. While differential investment in traits is well documented, the mechanisms driving investment at lower levels of biological organization, which are not directly related to fitness, remain poorly understood. We supplemented adult male and female Anolis carolinensis lizards with an isotopically labelled essential amino acid (13C-leucine) to track routing in four tissues (muscle, liver, gonads and spleen) under different combinations of resource availability (high- and low-calorie diets) and exercise training (sprint training and endurance capacity). We predicted sprint training should drive routing to muscle, and endurance training to liver and spleen, and that investment in gonads should be of lower priority in each of the cases of energetic stress. We found complex interactions between training regime, diet and tissue type in females, and between tissue type and training, and tissue type and diet in males, suggesting that males and females adjust their 13C-leucine routing strategies differently in response to similar environmental challenges. Importantly, our data show evidence of increased 13C-leucine routing in training contexts not to muscle as we expected, but to the spleen, which turns over blood cells, and to the liver, which supports metabolism under differing energetic scenarios. Our results reveal the context-specific nature of long-term trade-offs associated with increased chronic activity. They also illustrate the importance of considering the costs of locomotion in studies of life-history strategies.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St Thomas, St Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Bottini CLJ, Whiley RE, Branfireun BA, MacDougall-Shackleton SA. Effects of sublethal methylmercury and food stress on songbird energetic performance: metabolic rates, molt and feather quality. J Exp Biol 2024; 227:jeb246239. [PMID: 38856174 PMCID: PMC11418191 DOI: 10.1242/jeb.246239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Organisms regularly adjust their physiology and energy balance in response to predictable seasonal environmental changes. Stressors and contaminants have the potential to disrupt these critical seasonal transitions. No studies have investigated how simultaneous exposure to the ubiquitous toxin methylmercury (MeHg) and food stress affects birds' physiological performance across seasons. We quantified several aspects of energetic performance in song sparrows, Melospiza melodia, exposed or not to unpredictable food stress and MeHg in a 2×2 experimental design, over 3 months during the breeding season, followed by 3 months post-exposure. Birds exposed to food stress had reduced basal metabolic rate and non-significant higher factorial metabolic scope during the exposure period, and had a greater increase in lean mass throughout most of the experimental period. Birds exposed to MeHg had increased molt duration, and increased mass:length ratio of some of their primary feathers. Birds exposed to the combined food stress and MeHg treatment often had responses similar to the stress-only or MeHg-only exposure groups, suggesting these treatments affected physiological performance through different mechanisms and resulted in compensatory or independent effects. Because the MeHg and stress variables were selected in candidate models with a ΔAICc lower than 2 but the 95% confidence interval of these variables overlapped zero, we found weak support for MeHg effects on all measures except basal metabolic rate, and for food stress effects on maximum metabolic rate, factorial metabolic scope and feather mass:length ratio. This suggests that MeHg and food stress effects on these measures are statistically identified but not simple and/or were too weak to be detected via linear regression. Overall, combined exposure to ecologically relevant MeHg and unpredictable food stress during the breeding season does not appear to induce extra energetic costs for songbirds in the post-exposure period. However, MeHg effects on molt duration could carry over across multiple annual cycle stages.
Collapse
Affiliation(s)
- Claire L. J. Bottini
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Rebecca E. Whiley
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Brian A. Branfireun
- The University of Western Ontario, Department of Biology, 1151 Richmond St., London, ON, Canada, N6A 5B7
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
| | - Scott A. MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, ON, N6G 4W4, Canada
- The University of Western Ontario, Department of Psychology, 1151 Richmond St., London, ON, N6A 5C2, Canada
| |
Collapse
|
3
|
Marks JR, Sorlin M, Lailvaux SP. The maternal energetic environment affects both egg and offspring phenotypes in green anole lizards ( Anolis carolinensis). Ecol Evol 2023; 13:e9656. [PMID: 36628150 PMCID: PMC9822813 DOI: 10.1002/ece3.9656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Animals exist in dynamic environments that may affect both their own fitness and that of their offspring. Maternal effects might allow mothers to prepare their offspring for the environment in which they will be born via several mechanisms, not all of which are well understood. Resource scarcity and forced resource allocation are two scenarios that could affect maternal investment by altering the amount and type of resources available for investment in offspring, albeit in potentially different ways. We tested the hypothesis that maternal dietary restriction and sprint training have different consequences for the offspring phenotype in an oviparous lizard (Anolis carolinensis). To do this, we collected and reared eggs from adult diet-manipulated females (low-diet [LD] or high-diet [HD]) and sprint-trained females (sprint trained [ST] or untrained [UT]) and measured both egg characteristics and hatchling morphology. ST and LD mothers laid both the fewest and heaviest eggs, and ST, UT, and LD eggs also had significantly longer incubation periods than the HD group. Hatchlings from the diet experiment (LD and HD offspring) were the heaviest overall. Furthermore, both body mass of the mother at oviposition and change in maternal body mass over the course of the experiment had significant and sometimes different effects on egg and offspring phenotypes, highlighting the importance of maternal energetic state to the allocation of maternal resources.
Collapse
Affiliation(s)
- Jamie R. Marks
- Department of BiologyUniversity of New OrleansNew OrleansLouisianaUSA
| | - Mahaut Sorlin
- Department of BiologyUniversity of New OrleansNew OrleansLouisianaUSA
| | - Simon P. Lailvaux
- Department of BiologyUniversity of New OrleansNew OrleansLouisianaUSA
| |
Collapse
|
4
|
Marks JR, Beatty AE, Husak JF, Schwartz TS, Lailvaux SP. Sprint training interacts with body mass to affect hepatic insulin-like growth factor expression in female green anoles (Anolis carolinensis). Gen Comp Endocrinol 2022; 327:114067. [PMID: 35640679 DOI: 10.1016/j.ygcen.2022.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Locomotor performance is a key predictor of fitness in many animal species. As such, locomotion integrates the output of a number of morphological, physiological, and molecular levels of organization, yet relatively little is known regarding the major molecular pathways that bolster locomotor performance. One potentially relevant pathway is the insulin and insulin-like signaling (IIS) network, a significant regulator of physiological processes such as reproduction, growth, and metabolism. Two primary hormones of this network, insulin-like growth factor 1 (IGF1) and insulin-like growth factor 2 (IGF2) are important mediators of these processes and, consequently, of life-history strategies. We sprint-trained green anole (Anolis carolinensis) females to test the responsiveness of IGF1 and IGF2 hepatic gene expression to exercise training. We also tested how sprint training would affect glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 2 (EEF2). The former is a crucial enzyme for glycolytic function in a cell, and the latter is necessary for protein synthesis. Resistance exercise forces animals to increase investment of resources towards skeletal muscle growth. Because IGF1 and IGF2 are important hormones for growth, and GAPDH and EEF2 are crucial for proper cellular function, we hypothesized that these four genes would be affected by sprint training. We found that sprint training affects IGF and EEF2 expression, such that larger sprint-trained lizards express hepatic IGF1, IGF2, and EEF2 to a lesser extent than similarly sized untrained lizards. These results demonstrate that the IIS, and pathways connected to it, can react in a size-dependent manner and are implicated in the exercise response in reptiles.
Collapse
Affiliation(s)
- Jamie R Marks
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA.
| | - Abby E Beatty
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St Paul, MN 55105, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
| |
Collapse
|
5
|
Husak JF, Lailvaux SP. Conserved and convergent mechanisms underlying performance-life-history trade-offs. J Exp Biol 2022; 225:274252. [PMID: 35119073 DOI: 10.1242/jeb.243351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phenotypic trade-offs are inevitable in nature, but the mechanisms driving them are poorly understood. Movement and oxygen are essential to all animals, and as such, the common ancestor to all living animals passed on mechanisms to acquire oxygen and contract muscle, sometimes at the expense of other activities or expression of traits. Nevertheless, convergent pathways have also evolved to deal with critical trade-offs that are necessary to survive ubiquitous environmental challenges. We discuss how whole-animal performance traits, such as locomotion, are important to fitness, yet costly, resulting in trade-offs with other aspects of the phenotype via specific conserved and convergent mechanistic pathways across all animals. Specifically, we discuss conserved pathways involved in muscle structure and signaling, insulin/insulin-like signaling, sirtuins, mitochondria and hypoxia-inducible factors, as well as convergent pathways involved in energy regulation, development, reproductive investment and energy storage. The details of these mechanisms are only known from a few model systems, and more comparative studies are needed. We make two main recommendations as a framework for future studies of animal form and function. First, studies of performance should consider the broader life-history context of the organism, and vice versa, as performance expression can require a large portion of acquired resources. Second, studies of life histories or mechanistic pathways that measure performance should do so in meaningful and standardized ways. Understanding proximate mechanisms of phenotypic trade-offs will not only better explain the phenotypes of the organisms we study, but also allow predictions about phenotypic variation at the evolutionary scale.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
6
|
Lailvaux SP, Mishra A, Pun P, Ul Kabir MW, Wilson RS, Herrel A, Hoque MT. Machine learning accurately predicts the multivariate performance phenotype from morphology in lizards. PLoS One 2022; 17:e0261613. [PMID: 35061733 PMCID: PMC8782310 DOI: 10.1371/journal.pone.0261613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
Completing the genotype-to-phenotype map requires rigorous measurement of the entire multivariate organismal phenotype. However, phenotyping on a large scale is not feasible for many kinds of traits, resulting in missing data that can also cause problems for comparative analyses and the assessment of evolutionary trends across species. Measuring the multivariate performance phenotype is especially logistically challenging, and our ability to predict several performance traits from a given morphology is consequently poor. We developed a machine learning model to accurately estimate multivariate performance data from morphology alone by training it on a dataset containing performance and morphology data from 68 lizard species. Our final, stacked model predicts missing performance data accurately at the level of the individual from simple morphological measures. This model performed exceptionally well, even for performance traits that were missing values for >90% of the sampled individuals. Furthermore, incorporating phylogeny did not improve model fit, indicating that the phenotypic data alone preserved sufficient information to predict the performance based on morphological information. This approach can both significantly increase our understanding of performance evolution and act as a bridge to incorporate performance into future work on phenomics.
Collapse
Affiliation(s)
- Simon P. Lailvaux
- Department of Biological Sciences, The University of New Orleans, New Orleans, LA, United States of America
| | - Avdesh Mishra
- Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX, United States of America
| | - Pooja Pun
- Department of Computer Science, The University of New Orleans, New Orleans, LA, United States of America
| | - Md Wasi Ul Kabir
- Department of Computer Science, The University of New Orleans, New Orleans, LA, United States of America
| | - Robbie S. Wilson
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Anthony Herrel
- Département Adaptations du Vivant, UMR 7179 C.N.R.S/M.N.H.N., Paris, France
| | - Md Tamjidul Hoque
- Department of Computer Science, The University of New Orleans, New Orleans, LA, United States of America
| |
Collapse
|
7
|
Hudson SB, Virgin EE, Brodie ED, French SS. Recovery from discrete wound severities in side-blotched lizards (Uta stansburiana): implications for energy budget, locomotor performance, and oxidative stress. J Comp Physiol B 2021; 191:531-543. [PMID: 33582858 DOI: 10.1007/s00360-021-01347-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 12/22/2020] [Accepted: 01/18/2021] [Indexed: 01/21/2023]
Abstract
Wounding events (predation attempts, competitive combat) result in injuries and/or infections that induce integrated immune responses for the recovery process. Despite the survival benefits of immunity in this context, the costs incurred may require investment to be diverted from traits contributing to immediate and/or future survival, such as locomotor performance and oxidative status. Yet, whether trait constraints manifest likely depends on wound severity and the implications for energy budget. For this study, food intake, body mass, sprint speed, and oxidative indices (reactive oxygen metabolites, antioxidant capacity) were monitored in male side-blotched lizards (Uta stansburiana) healing from cutaneous wounds of discrete sizes (control, small, large). Results indicate that larger wounds induced faster healing, reduced food consumption, and led to greater oxidative stress over time. Granted wounding did not differentially affect body mass or sprint speed overall, small-wounded lizards with greater wound area healed had faster sprint speeds while large-wounded lizards with greater wound area healed had slower sprint speeds. During recovery from either wound severity, however, healing and sprint performance did not correspond with food consumption, body mass loss, nor oxidative status. These findings provide support that energy budget, locomotor performance, and oxidative status of a reptile are linked to wound recovery to an extent, albeit dependent on wound severity.
Collapse
Affiliation(s)
- Spencer B Hudson
- Department of Biology, Utah State University, Logan, UT, 84322-5205, USA. .,Ecology Center, Utah State University, Logan, UT, 84322‑5205, USA.
| | - Emily E Virgin
- Department of Biology, Utah State University, Logan, UT, 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT, 84322‑5205, USA
| | - Edmund D Brodie
- Department of Biology, Utah State University, Logan, UT, 84322-5205, USA
| | - Susannah S French
- Department of Biology, Utah State University, Logan, UT, 84322-5205, USA.,Ecology Center, Utah State University, Logan, UT, 84322‑5205, USA
| |
Collapse
|
8
|
Husak JF, Rohlf CM, Lailvaux SP. Immune activation affects whole-organism performance in male but not female green anole lizards (Anolis carolinensis). J Comp Physiol B 2021; 191:895-905. [PMID: 33900433 DOI: 10.1007/s00360-021-01370-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/21/2021] [Accepted: 04/13/2021] [Indexed: 12/01/2022]
Abstract
Immune responses are intuitively beneficial, but they can incur a variety of costs, many of which are poorly understood. The nature and extent of trade-offs between immune activity and other components of the integrated phenotype can vary, and depend on the type of immune challenge, as well as the energetic costs of simultaneously expressing other traits. There may also be sex differences in both immune activity and immunity-induced trade-offs, particularly in the case of trade-offs involving functional traits such as whole-organism performance capacities that might be of different fitness value to males and females. We tested the response of three performance traits (sprinting, endurance, and biting) to two different immune challenges (LPS injection and wound healing) in both male and female Anolis carolinensis lizards. We found clear differences in how male and female performance capacities were affected by immune activation. LPS injection and wound healing had interactive effects on all three performance traits in males, but immune activation did not affect female performance. We also found that the degree of wound healing exhibited complex interactive effects involving sex and type of immune activation that varied depending on the performance trait in question. These results demonstrate that male and female green anoles experience different consequences of immune responses, and also that the type and extent of that activation can drive trait-specific performance trade-offs.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN, 55105, USA.
| | - Christine M Rohlf
- Department of Biology, University of St. Thomas, St. Paul, MN, 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| |
Collapse
|
9
|
Yap KN, Yamada K, Zikeli S, Kiaris H, Hood WR. Evaluating endoplasmic reticulum stress and unfolded protein response through the lens of ecology and evolution. Biol Rev Camb Philos Soc 2020; 96:541-556. [PMID: 33164297 DOI: 10.1111/brv.12667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER ). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Shelby Zikeli
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, 29208, U.S.A
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| |
Collapse
|
10
|
Wang AZ, Husak JF. Endurance and sprint training affect immune function differently in green anole lizards ( Anolis carolinensis). J Exp Biol 2020; 223:jeb232132. [PMID: 32917817 DOI: 10.1242/jeb.232132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
Abstract
Limited resources must be partitioned among traits that enhance fitness. Although survival-related traits often trade off with reproduction, survival-related traits themselves may trade off with each other under energy limitations. Whole-organism performance and the immune system both enhance survival, yet are costly, but it is unclear how the two might trade off with each other under energy-limited conditions. Resources can be allocated to very different types of performance (e.g. aerobic endurance versus anaerobic sprinting), just as they can be allocated to different components of the immune system (e.g. innate versus acquired) to maximize survival. We forced allocation to different performance traits in green anole lizards (Anolis carolinensis) using specialized exercise training, to determine how different components of the immune system would be impacted by shifts in energy use. We measured immunocompetence in endurance-trained, sprint-trained and untrained control lizards by evaluating swelling response to phytohemagglutinin (cell-mediated immunity), antibody response to sheep red blood cells (acquired humoral immunity) and wound healing (integrated immunity). Endurance-trained lizards had reduced cell-mediated immunity, whereas sprint-trained lizards had reduced rates of wound healing. The acquired immune response was not affected by either type of training. Because each immune measure responded differently to the different types of training, our results do not support the hypothesis that simple energy limitation determines overall investment in immunity. Instead, different components of the immune system appear to be affected in ways specific to how energy is invested in performance.
Collapse
Affiliation(s)
- Andrew Z Wang
- Department of Biology, University of St Thomas, St. Paul, MN 55105, USA
| | - Jerry F Husak
- Department of Biology, University of St Thomas, St. Paul, MN 55105, USA
| |
Collapse
|
11
|
Meter B, Starostová Z, Kubička L, Kratochvíl L. The limits of the energetical perspective: life-history decisions in lizard growth. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10054-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Lailvaux SP, Cespedes AM, Weber WD, Husak JF. Sprint speed is unaffected by dietary manipulation in trained male Anolis carolinensis lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:164-170. [PMID: 31867872 DOI: 10.1002/jez.2338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 11/11/2022]
Abstract
Performance traits are energetically costly, and their expression and use can drive trade-offs with other energetically costly life-history traits. However, different performance traits incur distinct costs and may be sensitive to both resource limitation and to the types of resources that are accrued. Protein is likely to be especially important for supporting burst performance traits such as sprint speed, but the effect of varying diet composition on sprint training in lizards, an emerging model system for exercise training, is unknown. We tested the hypothesis that the response to sprint training is sensitive to both the type and amount of resources in Anolis carolinensis. We also measured bite force across all treatments as a control whole-organism performance trait that should be unaffected by locomotor training. Both mass and bite force are reduced by dietary restriction over the course of 9 weeks of sprint training, but sprint speed is unaffected by either training or dietary restriction relative to controls. Furthermore, protein supplementation does not rescue a decline in either mass or bite force in trained, diet-restricted males. These results contrast with those for endurance training, and suggest that sprint speed is more canalized than either endurance or bite force in green anoles.
Collapse
Affiliation(s)
- Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana
| | - Ann M Cespedes
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana
| | - William D Weber
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana.,Department of Biology, University of Maryland, College Park, Maryland
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota
| |
Collapse
|
13
|
Husak JF, Lailvaux SP. Experimentally enhanced performance decreases survival in nature. Biol Lett 2019; 15:20190160. [PMID: 30991916 DOI: 10.1098/rsbl.2019.0160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Superior locomotor performance confers advantages in terms of male combat success, survival and fitness in a variety of organisms. In humans, investment in increased performance via the exercise response is also associated with numerous health benefits, and aerobic capacity is an important predictor of longevity. Although the response to exercise is conserved across vertebrates, no studies have tested whether non-human animals that invest in increased athletic performance through exercise realize a survival advantage in nature. Green anole lizards respond to exercise training, and enhanced performance drives trade-offs with reproduction and immunocompetence. We released sprint-trained, endurance-trained and untrained-control male and female green anole lizards into an isolated, urban island in New Orleans, LA, USA and monitored their survival. Sedentary controls realized a significant survivorship advantage compared to trained lizards. Our results suggest that locomotor capacity is currently optimized to maximize survival in green anoles, and that forcing additional investment in performance moves them into a suboptimal phenotypic space relative to their current environmental demands.
Collapse
Affiliation(s)
- Jerry F Husak
- 1 Department of Biology, University of St. Thomas , St. Paul, MN 55105 , USA
| | - Simon P Lailvaux
- 2 Department of Biological Sciences, University of New Orleans , New Orleans, LA 70148 , USA
| |
Collapse
|
14
|
Lailvaux SP, Cespedes AM, Houslay TM. Conflict, compensation, and plasticity: Sex-specific, individual-level trade-offs in green anole (Anolis carolinensis) performance. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:280-289. [PMID: 30942562 DOI: 10.1002/jez.2263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/28/2022]
Abstract
Trade-offs in performance expression occur because animals must perform multiple whole-organism performance tasks that place conflicting demands on shared underlying morphology. Although not always detectable within populations, such trade-offs may be apparent when analyzed at the level of the individual, particularly when all of the available data are taken into account as opposed to only maximum values. Detection of performance trade-offs is further complicated in species where sexual dimorphism drives performance differences between males and females, leading potentially to differing patterns of trade-offs within each sex. We tested for within- and between-individual trade-offs among three whole-organism performance traits (sprint speed, endurance, and bite force) in adult male and female Anolis carolinensis lizards using all of the measured performance data. Sprinting and endurance did not trade-off among individuals in either sex, but we found a significant negative among-individual relationship between sprint speed and bite force in females only, likely driven by the mechanical burden of larger than optimal heads imposed on females through intralocus sexual conflict. We also found evidence for marked within-individual plasticity in male bite force, but no within-individual trade-offs between any traits in either sex. These data offer new insight into the sex-specific nature of performance trade-offs and plasticity and, ultimately, into the constraints on multivariate performance evolution.
Collapse
Affiliation(s)
- Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana
| | - Ann M Cespedes
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana
| | - Thomas M Houslay
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Wang AZ, Husak JF, Lovern M. Leptin ameliorates the immunity, but not reproduction, trade-off with endurance in lizards. J Comp Physiol B 2019; 189:261-269. [DOI: 10.1007/s00360-019-01202-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
|
16
|
Walsh CB, McGuigan K. Do slower movers have lower reproductive success and higher mutation load? Evol Lett 2018; 2:590-598. [PMID: 30564442 PMCID: PMC6292707 DOI: 10.1002/evl3.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/18/2018] [Indexed: 02/01/2023] Open
Abstract
Deleterious mutations occur frequently in eukaryotes, resulting in individuals carrying multiple alleles that decrease their fitness. At a population level, if unchecked, accumulation of this mutation load can ultimately lead to extinction. How selection counters the accumulation of mutation load, limiting declines in population fitness, is not well understood. Here, we use manipulative experiments in zebrafish (Danio rerio) to investigate the opportunities for selection on mutation load. Inducing high mutation load through mutagenesis, we applied one generation of within‐family selection on locomotor performance and characterized both the direct response to this selection and the indirect response of reproductive success. Offspring of slow swimming parents exhibited age‐dependent declines in swimming speed, whereas their cousins, with faster swimming parents, did not. This pattern mimics previously documented differences between high and low mutation load populations of zebrafish, suggesting that slow swimming siblings inherited (and transmitted) more mutations than their faster swimming siblings. Crosses among offspring of slow swimming fish had, on average, <75% of the reproductive success of crosses among offspring of fast swimming parents, or crosses of offspring of slow swimmers with offspring of fast swimmers. This evidence of mutationally correlated swimming speed and reproductive success reveals the potential for concordant selection on mutation load through different fitness components. There was no evidence that crosses within families (where parents potentially shared the same mutations inherited from their common ancestor) had lower reproductive success than crosses among families, suggesting that viability selection was not acting predominantly through lethal recessive homozygotes. Rather, patterns of reproductive success are suggestive of effects of mutation number per se on embryo viability. Overall, our results highlight the potential for early life mortality to remove deleterious mutations, and the need to account for this mortality when investigating the evolutionary dynamics of mutation load.
Collapse
Affiliation(s)
- Carly B Walsh
- School of Biological Sciences The University of Queensland Brisbane 4072 Australia
| | - Katrina McGuigan
- School of Biological Sciences The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
17
|
Lailvaux SP, Husak JF. Predicting Life-History Trade-Offs with Whole-Organism Performance. Integr Comp Biol 2018; 57:325-332. [PMID: 28859417 DOI: 10.1093/icb/icx073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SYNOPSIS Whole-organism performance traits are key intermediaries between the organism and the environment. Because performance traits are energetically costly to both build and maintain, performance will compete with other life-history traits over a limited pool of acquired energetic resources at any given time, potentially leading to trade-offs in performance expression. Although these trade-offs can have important implications for organismal fitness we currently lack a conceptual framework for predicting both where trade-offs might be expected, and which traits may be especially prone to trade-offs with other fitness-related life-history traits. We propose such a framework based on an estimate of the energetic requirements of locomotion in vertebrates, the ecological cost of transport. By analyzing existing data on mammalian energetic budgets and life-history, we found that species with higher costs of locomotion also tended to be those with "slow" life histories that invest relatively less in current reproduction than "fast" life-history species. We discuss the potential implications of ectothermy for masking such relationships, and how this framework might be expanded upon in the future.
Collapse
Affiliation(s)
- Simon P Lailvaux
- Department of Biological Sciences, The University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St Paul, MN 55105, USA
| |
Collapse
|
18
|
Lailvaux SP, Husak JF. Introduction to the Symposium: Integrative Life-History of Whole-Organism Performance. Integr Comp Biol 2018; 57:320-324. [PMID: 28859412 DOI: 10.1093/icb/icx084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SYNOPSIS A strong case can be made for whole-organism performance traits (i.e., dynamic, ecologically relevant traits whose expression is shaped by underlying morphological factors) as being the ultimate integrative traits. This is not only because they capture the output of multiple lower levels of biological organization, but also because they are directly relevant to individual fitness in multiple ecological contexts, and are in many cases important proximate determinants of survival and/or reproductive success. But although many ecological and evolutionary phenomena can be examined through the lens of performance (and vice-versa), performance research has been surprisingly slow to incorporate concepts from the large and important field of life-history evolution. Such a synthesis is necessary, because shifts in resource allocation strategies can have implications for these highly ecologically relevant, functional traits, whose expression may trade-off against fecundity, immune function, or longevity, among other key life-history traits. The papers in this symposium showcase many of the ways in which life-history strategies can have direct consequences for the expression, maintenance, and evolution of whole-organism performance (and at least one case where they may not). By approaching the issue of life-history trade-offs from a number of diverse perspectives, this symposium reveals the scope for future explicit integration of life-history techniques with those of whole-organism performance studies for a more complete understanding of multivariate phenotypic evolution.
Collapse
Affiliation(s)
- Simon P Lailvaux
- Department of Biological Sciences, The University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St Paul, MN 55105, USA
| |
Collapse
|
19
|
Lailvaux SP, Wang AZ, Husak JF. Energetic costs of performance in trained and untrained Anolis carolinensis lizards. J Exp Biol 2018. [DOI: 10.1242/jeb.176867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The energetic costs of performance constitute a non-trivial component of animals’ daily energetic budgets. However, we currently lack an understanding of how those costs are partitioned among the various stages of performance development, maintenance, and production. We manipulated individual investment in performance by training Anolis carolinensis lizards for endurance or sprinting ability. We then measured energetic expenditure both at rest and immediately following exercise to test whether such training alters the maintenance and production costs of performance. Trained lizards had lower resting metabolic rates than controls, suggestive of a maintenance saving associated with enhanced performance as opposed to a cost. Production costs also differed, with sprint-trained lizards incurring the largest energetic performance cost and experiencing the longest recovery times compared to endurance trained and control animals. Although performance training modifies metabolism, production costs are probably the key drivers of trade-offs between performance and other life-history traits in this species.
Collapse
Affiliation(s)
- Simon P. Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Andrew Z. Wang
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Jerry F. Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| |
Collapse
|