1
|
Swaegers J, De Cupere S, Gaens N, Lancaster LT, Carbonell JA, Sánchez Guillén RA, Stoks R. Plasticity and associated epigenetic mechanisms play a role in thermal evolution during range expansion. Evol Lett 2024; 8:76-88. [PMID: 38370551 PMCID: PMC10872138 DOI: 10.1093/evlett/qrac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 02/20/2024] Open
Abstract
Due to global change, many species are shifting their distribution and are thereby confronted with novel thermal conditions at the moving range edges. Especially during the initial phases of exposure to a new environment, it has been hypothesized that plasticity and associated epigenetic mechanisms enable species to cope with environmental change. We tested this idea by capitalizing on the well-documented southward range expansion of the damselfly Ischnura elegans from France into Spain where the species invaded warmer regions in the 1950s in eastern Spain (old edge region) and in the 2010s in central Spain (new edge region). Using a common garden experiment at rearing temperatures matching the ancestral and invaded thermal regimes, we tested for evolutionary changes in (thermal plasticity in) larval life history and heat tolerance in these expansion zones. Through the use of de- and hypermethylating agents, we tested whether epigenetic mechanisms play a role in enabling heat tolerance during expansion. We used the phenotype of the native sister species in Spain, I. graellsii, as proxy for the locally adapted phenotype. New edge populations converged toward the phenotype of the native species through plastic thermal responses in life history and heat tolerance while old edge populations (partly) constitutively evolved a faster life history and higher heat tolerance than the core populations, thereby matching the native species. Only the heat tolerance of new edge populations increased significantly when exposed to the hypermethylating agent. This suggests that the DNA methylation machinery is more amenable to perturbation at the new edge and shows it is able to play a role in achieving a higher heat tolerance. Our results show that both (evolved) plasticity as well as associated epigenetic mechanisms are initially important when facing new thermal regimes but that their importance diminishes with time.
Collapse
Affiliation(s)
- Janne Swaegers
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Simon De Cupere
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Noah Gaens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - José A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Walter GM, Clark J, Terranova D, Cozzolino S, Cristaudo A, Hiscock SJ, Bridle J. Hidden genetic variation in plasticity provides the potential for rapid adaptation to novel environments. THE NEW PHYTOLOGIST 2023; 239:374-387. [PMID: 36651081 DOI: 10.1111/nph.18744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Rapid environmental change is forcing populations into environments where plasticity will no longer maintain fitness. When populations are exposed to novel environments, evolutionary theory predicts that genetic variation in fitness will increase and should be associated with genetic differences in plasticity. If true, then genetic variation in plasticity can increase adaptive potential in novel environments, and population persistence via evolutionary rescue is more likely. To test whether genetic variation in fitness increases in novel environments and is associated with plasticity, we transplanted 8149 clones of 314 genotypes of a Sicilian daisy (Senecio chrysanthemifolius) within and outside its native range, and quantified genetic variation in fitness, and plasticity in leaf traits and gene expression. Although mean fitness declined by 87% in the novel environment, genetic variance in fitness increased threefold and was correlated with plasticity in leaf traits. High fitness genotypes showed greater plasticity in gene expression, but lower plasticity in most leaf traits. Interestingly, genotypes with the highest fitness in the novel environment had the lowest fitness at the native site. These results suggest that standing genetic variation in plasticity could help populations to persist and adapt to novel environments, despite remaining hidden in native environments.
Collapse
Affiliation(s)
- Greg M Walter
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - James Clark
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Delia Terranova
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, 95128, Italy
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Antonia Cristaudo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, 95128, Italy
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
3
|
Kuo HC, Yao CT, Liao BY, Weng MP, Dong F, Hsu YC, Hung CM. Weak gene-gene interaction facilitates the evolution of gene expression plasticity. BMC Biol 2023; 21:57. [PMID: 36941675 PMCID: PMC10029303 DOI: 10.1186/s12915-023-01558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individual organisms may exhibit phenotypic plasticity when they acclimate to different conditions. Such plastic responses may facilitate or constrain the adaptation of their descendant populations to new environments, complicating their evolutionary trajectories beyond the genetic blueprint. Intriguingly, phenotypic plasticity itself can evolve in terms of its direction and magnitude during adaptation. However, we know little about what determines the evolution of phenotypic plasticity, including gene expression plasticity. Recent laboratory-based studies suggest dominance of reversing gene expression plasticity-plastic responses that move the levels of gene expression away from the new optima. Nevertheless, evidence from natural populations is still limited. RESULTS Here, we studied gene expression plasticity and its evolution in the montane and lowland populations of an elevationally widespread songbird-the Rufous-capped Babbler (Cyanoderma ruficeps)-with reciprocal transplant experiments and transcriptomic analyses; we set common gardens at altitudes close to these populations' native ranges. We confirmed the prevalence of reversing plasticity in genes associated with altitudinal adaptation. Interestingly, we found a positive relationship between magnitude and degree of evolution in gene expression plasticity, which was pertinent to not only adaptation-associated genes but also the whole transcriptomes from multiple tissues. Furthermore, we revealed that genes with weaker expressional interactions with other genes tended to exhibit stronger plasticity and higher degree of plasticity evolution, which explains the positive magnitude-evolution relationship. CONCLUSIONS Our experimental evidence demonstrates that species may initiate their adaptation to new habitats with genes exhibiting strong expression plasticity. We also highlight the role of expression interdependence among genes in regulating the magnitude and evolution of expression plasticity. This study illuminates how the evolution of phenotypic plasticity in gene expression facilitates the adaptation of species to challenging environments in nature.
Collapse
Affiliation(s)
- Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Te Yao
- Division of Zoology, Endemic Species Research Institute, Nantou, 55244, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Meng-Pin Weng
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Feng Dong
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yu-Cheng Hsu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
4
|
Napier JD, Heckman RW, Juenger TE. Gene-by-environment interactions in plants: Molecular mechanisms, environmental drivers, and adaptive plasticity. THE PLANT CELL 2023; 35:109-124. [PMID: 36342220 PMCID: PMC9806611 DOI: 10.1093/plcell/koac322] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/03/2022] [Indexed: 05/13/2023]
Abstract
Plants demonstrate a broad range of responses to environmental shifts. One of the most remarkable responses is plasticity, which is the ability of a single plant genotype to produce different phenotypes in response to environmental stimuli. As with all traits, the ability of plasticity to evolve depends on the presence of underlying genetic diversity within a population. A common approach for evaluating the role of genetic variation in driving differences in plasticity has been to study genotype-by-environment interactions (G × E). G × E occurs when genotypes produce different phenotypic trait values in response to different environments. In this review, we highlight progress and promising methods for identifying the key environmental and genetic drivers of G × E. Specifically, methodological advances in using algorithmic and multivariate approaches to understand key environmental drivers combined with new genomic innovations can greatly increase our understanding about molecular responses to environmental stimuli. These developing approaches can be applied to proliferating common garden networks that capture broad natural environmental gradients to unravel the underlying mechanisms of G × E. An increased understanding of G × E can be used to enhance the resilience and productivity of agronomic systems.
Collapse
Affiliation(s)
- Joseph D Napier
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Robert W Heckman
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
5
|
Hu J, Barrett RDH. The role of plastic and evolved DNA methylation in parallel adaptation of threespine stickleback (Gasterosteus aculeatus). Mol Ecol 2022; 32:1581-1591. [PMID: 36560898 DOI: 10.1111/mec.16832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Repeated phenotypic patterns among populations undergoing parallel evolution in similar environments provide support for the deterministic role of natural selection. Epigenetic modifications can mediate plastic and evolved phenotypic responses to environmental change and might make important contributions to parallel adaptation. While many studies have explored the genetic basis of repeated phenotypic divergence, the role of epigenetic processes during parallel adaptation remains unclear. The parallel evolution of freshwater ecotypes of threespine stickleback fish (Gasterosteus aculeatus) following colonization of thousands of lakes and streams from the ocean is a classic example of parallel phenotypic and genotypic adaptation. To investigate epigenetic modifications during parallel adaptation of threespine stickleback, we reanalysed three independent data sets that investigated DNA methylation variation between marine and freshwater ecotypes. Although we found widespread methylation differentiation between ecotypes, there was no significant tendency for CpG sites associated with repeated methylation differentiation across studies to be parallel versus nonparallel. To next investigate the role of plastic versus evolved changes in methylation during freshwater adaptation, we explored if CpG sites exhibiting methylation plasticity during salinity change were more likely to also show evolutionary divergence in methylation between ecotypes. The directions of divergence between ecotypes were generally in the opposite direction to those observed for plasticity when ecotypes were challenged with non-native salinity conditions, suggesting that most plastic responses are likely to be maladaptive during colonization of new environments. Finally, we found a greater number of CpG sites showing evolved changes when ancestral marine ecotypes are acclimated to freshwater environments, whereas plastic changes predominate when derived freshwater ecotypes transition back to their ancestral marine environments. These findings provide evidence for an epigenetic contribution to parallel adaptation and demonstrate the contrasting roles of plastic and evolved methylation differences during adaptation to new environments.
Collapse
Affiliation(s)
- Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Rowan D H Barrett
- Redpath Museum and Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Evidence for adaptive morphological plasticity in the Caribbean coral, Acropora cervicornis. Proc Natl Acad Sci U S A 2022; 119:e2203925119. [PMID: 36442118 PMCID: PMC9894258 DOI: 10.1073/pnas.2203925119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Genotype-by-environment interactions (GxE) indicate that variation in organismal traits cannot be explained by fixed effects of genetics or site-specific plastic responses alone. For tropical coral reefs experiencing dramatic environmental change, identifying the contributions of genotype, environment, and GxE on coral performance will be vital for both predicting persistence and developing restoration strategies. We quantified the impacts of G, E, and GxE on the morphology and survival of the endangered coral, Acropora cervicornis, through an in situ transplant experiment exposing common garden (nursery)-raised clones of ten genotypes to nine reef sites in the Florida Keys. By fate-tracking outplants over one year with colony-level 3D photogrammetry, we uncovered significant GxE on coral size, shape, and survivorship, indicating that no universal winner exists in terms of colony performance. Rather than differences in mean trait values, we found that individual-level morphological plasticity is adaptive in that the most plastic individuals also exhibited the fastest growth and highest survival. This indicates that adaptive morphological plasticity may continue to evolve, influencing the success of A. cervicornis and resulting reef communities in a changing climate. As focal reefs are active restoration sites, the knowledge that variation in phenotype is an important predictor of performance can be directly applied to restoration planning. Taken together, these results establish A. cervicornis as a system for studying the ecoevolutionary dynamics of phenotypic plasticity that also can inform genetic- and environment-based strategies for coral restoration.
Collapse
|
7
|
Preston JC, Wooliver R, Driscoll H, Coughlin A, Sheth SN. Spatial variation in high temperature-regulated gene expression predicts evolution of plasticity with climate change in the scarlet monkeyflower. Mol Ecol 2022; 31:1254-1268. [PMID: 34859530 PMCID: PMC8821412 DOI: 10.1111/mec.16300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/13/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
A major way that organisms can adapt to changing environmental conditions is by evolving increased or decreased phenotypic plasticity. In the face of current global warming, more attention is being paid to the role of plasticity in maintaining fitness as abiotic conditions change over time. However, given that temporal data can be challenging to acquire, a major question is whether evolution in plasticity across space can predict adaptive plasticity across time. In growth chambers simulating two thermal regimes, we generated transcriptome data for western North American scarlet monkeyflowers (Mimulus cardinalis) collected from different latitudes and years (2010 and 2017) to test hypotheses about how plasticity in gene expression is responding to increases in temperature, and if this pattern is consistent across time and space. Supporting the genetic compensation hypothesis, individuals whose progenitors were collected from the warmer-origin northern 2017 descendant cohort showed lower thermal plasticity in gene expression than their cooler-origin northern 2010 ancestors. This was largely due to a change in response at the warmer (40°C) rather than cooler (20°C) treatment. A similar pattern of reduced plasticity, largely due to a change in response at 40°C, was also found for the cooler-origin northern versus the warmer-origin southern population from 2017. Our results demonstrate that reduced phenotypic plasticity can evolve with warming and that spatial and temporal changes in plasticity predict one another.
Collapse
Affiliation(s)
- Jill C. Preston
- Department of Plant Biology, The University of Vermont, 63 Carrigan Drive, Burlington, VT 05405, USA,Corresponding author:
| | - Rachel Wooliver
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA,Current address: Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Heather Driscoll
- Bioinformatics Core, Vermont Biomedical Research Network, Department of Biology, Norwich University, 158 Harmon Drive, Northfield, VT 05663, USA
| | - Aeran Coughlin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Seema N. Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
8
|
Méndez‐Narváez J, Warkentin KM. Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecol Evol 2022; 12:e8570. [PMID: 35222954 PMCID: PMC8843769 DOI: 10.1002/ece3.8570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Vertebrate colonization of land has occurred multiple times, including over 50 origins of terrestrial eggs in frogs. Some environmental factors and phenotypic responses that facilitated these transitions are known, but responses to water constraints and risk of ammonia toxicity during early development are poorly understood. We tested if ammonia accumulation and dehydration risk induce a shift from ammonia to urea excretion during early stages of four anurans, from three origins of terrestrial development. We quantified ammonia and urea concentrations during early development on land, under well-hydrated and dry conditions. Where we found urea excretion, we tested for a plastic increase under dry conditions and with ammonia accumulation in developmental environments. We assessed the potential adaptive role of urea excretion by comparing ammonia tolerance measured in 96h-LC50 tests with ammonia levels in developmental environments. Ammonia accumulated in foam nests and perivitelline fluid, increasing over development and reaching higher concentrations under dry conditions. All four species showed high ammonia tolerance, compared to fishes and aquatic-breeding frogs. Both nest-dwelling larvae of Leptodactylus fragilis and late embryos of Hyalinobatrachium fleischmanni excreted urea, showing a plastic increase under dry conditions. These two species can develop the longest on land and urea excretion appears adaptive, preventing their exposure to potentially lethal levels of ammonia. Neither late embryos of Agalychnis callidryas nor nest-dwelling larvae of Engystomops pustulosus experienced toxic ammonia levels under dry conditions, and neither excreted urea. Our results suggest that an early onset of urea excretion, its increase under dry conditions, and elevated ammonia tolerance can all help prevent ammonia toxicity during terrestrial development. High ammonia represents a general risk for development which may be exacerbated as climate change increases dehydration risk for terrestrial-breeding frogs. It may also be a cue that elicits adaptive physiological responses during early development.
Collapse
Affiliation(s)
- Javier Méndez‐Narváez
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- CalimaFundación para la Investigación de la Biodiversidad y Conservación en el TrópicoCaliColombia
| | - Karen M. Warkentin
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
9
|
Campbell-Staton SC, Velotta JP, Winchell KM. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat Commun 2021; 12:6195. [PMID: 34702827 PMCID: PMC8548502 DOI: 10.1038/s41467-021-26334-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Phenotypic plasticity enables a single genotype to produce multiple phenotypes in response to environmental variation. Plasticity may play a critical role in the colonization of novel environments, but its role in adaptive evolution is controversial. Here we suggest that rapid parallel regulatory adaptation of Anolis lizards to urban heat islands is due primarily to selection for reduced and/or reversed heat-induced plasticity that is maladaptive in urban thermal conditions. We identify evidence for polygenic selection across genes of the skeletal muscle transcriptome associated with heat tolerance. Forest lizards raised in common garden conditions exhibit heat-induced changes in expression of these genes that largely correlate with decreased heat tolerance, consistent with maladaptive regulatory response to high-temperature environments. In contrast, urban lizards display reduced gene expression plasticity after heat challenge in common garden and a significant increase in gene expression change that is congruent with greater heat tolerance, a putatively adaptive state in warmer urban environments. Genes displaying maladaptive heat-induced plasticity repeatedly show greater genetic divergence between urban and forest habitats than those displaying adaptive plasticity. These results highlight the role of selection against maladaptive regulatory plasticity during rapid adaptive modification of complex systems in the wild.
Collapse
Affiliation(s)
- Shane C Campbell-Staton
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA.
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
- Institute for Society and Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO, 80208, USA
| | | |
Collapse
|
10
|
Eskew EA, Fraser D, Vonhof MJ, Pinsky ML, Maslo B. Host gene expression in wildlife disease: making sense of species-level responses. Mol Ecol 2021; 30:6517-6530. [PMID: 34516689 DOI: 10.1111/mec.16172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
Emerging infectious diseases are significant threats to wildlife conservation, yet the impacts of pathogen exposure and infection can vary widely among host species. As such, conservation biologists and disease ecologists have increasingly aimed to understand species-specific host susceptibility using molecular methods. In particular, comparative gene expression assays have been used to contrast the transcriptomic responses of disease-resistant and disease-susceptible hosts to pathogen exposure. This work usually assumes that the gene expression responses of disease-resistant species will reveal the activation of molecular pathways contributing to host defence. However, results often show that disease-resistant hosts undergo little gene expression change following pathogen challenge. Here, we discuss the mechanistic implications of these "null" findings and offer methodological suggestions for future molecular studies of wildlife disease. First, we highlight that muted transcriptomic responses with minimal immune system recruitment may indeed be protective for nonsusceptible hosts if they limit immunopathology and promote pathogen tolerance in systems where susceptible hosts suffer from genetic dysregulation. Second, we argue that overly narrow investigation of responses to pathogen exposure may overlook important, constitutively active molecular pathways that underlie species-specific defences. Finally, we outline alternative study designs and approaches that complement interspecific transcriptomic comparisons, including intraspecific gene expression studies and genomic methods to detect signatures of selection. Collectively, these insights will help ecologists extract maximal information from conservation-relevant transcriptomic data sets, leading to a deeper understanding of host defences and, ultimately, the implementation of successful conservation interventions.
Collapse
Affiliation(s)
- Evan A Eskew
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA.,Department of Biology, Pacific Lutheran University, Tacoma, Washington, USA
| | - Devaughn Fraser
- Wildlife Genetics Research Laboratory, California Department of Fish and Wildlife, Sacramento, California, USA
| | - Maarten J Vonhof
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Brooke Maslo
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
11
|
Wilsterman K, Cheviron ZA. Fetal growth, high altitude, and evolutionary adaptation: a new perspective. Am J Physiol Regul Integr Comp Physiol 2021; 321:R279-R294. [PMID: 34259046 DOI: 10.1152/ajpregu.00067.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Residence at high altitude is consistently associated with low birthweight among placental mammals. This reduction in birthweight influences long-term health trajectories for both the offspring and mother. However, the physiological processes that contribute to fetal growth restriction at altitude are still poorly understood, and thus our ability to safely intervene remains limited. One approach to identify the factors that mitigate altitude-dependent fetal growth restriction is to study populations that are protected from fetal growth restriction through evolutionary adaptations (e.g., high altitude-adapted populations). Here, we examine human gestational physiology at high altitude from a novel evolutionary perspective that focuses on patterns of physiological plasticity, allowing us to identify 1) the contribution of specific physiological systems to fetal growth restriction and 2) the mechanisms that confer protection in highland-adapted populations. Using this perspective, our review highlights two general findings: first, that the beneficial value of plasticity in maternal physiology is often dependent on factors more proximate to the fetus; and second, that our ability to understand the contributions of these proximate factors is currently limited by thin data from altitude-adapted populations. Expanding the comparative scope of studies on gestational physiology at high altitude and integrating studies of both maternal and fetal physiology are needed to clarify the mechanisms by which physiological responses to altitude contribute to fetal growth outcomes. The relevance of these questions to clinical, agricultural, and basic research combined with the breadth of the unknown highlight gestational physiology at high altitude as an exciting niche for continued work.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
12
|
Robertson CE, McClelland GB. Ancestral and developmental cold alter brown adipose tissue function and adult thermal acclimation in Peromyscus. J Comp Physiol B 2021; 191:589-601. [PMID: 33644836 DOI: 10.1007/s00360-021-01355-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 01/21/2023]
Abstract
Small, non-hibernating endotherms increase their thermogenic capacity to survive seasonal cold, through adult phenotypic flexibility. In mammals, this response is primarily driven by remodeling of brown adipose tissue (BAT), which matures postnatally in altricial species. In many regions, ambient temperatures can vary dramatically throughout the breeding season. We used second-generation lab-born Peromyscus leucopus, cold exposed during two critical developmental windows, to test the hypothesis that adult phenotypic flexibility to cold is influenced by rearing temperature. We found that cold exposure during the postnatal period (14 °C, birth to 30 days) accelerated BAT maturation and permanently remodeled this tissue. As adults, these mice had increased BAT activity and thermogenic capacity relative to controls. However, they also had a blunted acclimation response when subsequently cold exposed as adults (5 °C for 6 weeks). Mice born to cold-exposed mothers (14 °C, entire pregnancy) also showed limited capacity for flexibility as adults, demonstrating that maternal cold stress programs the offspring thermal acclimation response. In contrast, for P. maniculatus adapted to the cold high alpine, BAT maturation rate was unaffected by rearing temperature. However, both postnatal and prenatal cold exposure limited the thermal acclimation response in these cold specialists. Our results suggest a complex interaction between developmental and adult environment, influenced strongly by ancestry, drives thermogenic capacity in the wild.
Collapse
Affiliation(s)
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
13
|
Puri S, Panza G, Mateika JH. A comprehensive review of respiratory, autonomic and cardiovascular responses to intermittent hypoxia in humans. Exp Neurol 2021; 341:113709. [PMID: 33781731 PMCID: PMC8527806 DOI: 10.1016/j.expneurol.2021.113709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
This review explores forms of respiratory and autonomic plasticity, and associated outcome measures, that are initiated by exposure to intermittent hypoxia. The review focuses primarily on studies that have been completed in humans and primarily explores the impact of mild intermittent hypoxia on outcome measures. Studies that have explored two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of ventilation and upper airway muscle activity, are initially reviewed. The role these forms of plasticity might have in sleep disordered breathing are also explored. Thereafter, the role of intermittent hypoxia in the initiation of autonomic plasticity is reviewed and the role this form of plasticity has in cardiovascular and hemodynamic responses during and following intermittent hypoxia is addressed. The role of these responses in individuals with sleep disordered breathing and spinal cord injury are subsequently addressed. Ultimately an integrated picture of the respiratory, autonomic and cardiovascular responses to intermittent hypoxia is presented. The goal of the integrated picture is to address the types of responses that one might expect in humans exposed to one-time and repeated daily exposure to mild intermittent hypoxia. This form of intermittent hypoxia is highlighted because of its potential therapeutic impact in promoting functional improvement and recovery in several physiological systems.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Gino Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States of America; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States of America.
| |
Collapse
|
14
|
Fischer EK, Song Y, Hughes KA, Zhou W, Hoke KL. Nonparallel transcriptional divergence during parallel adaptation. Mol Ecol 2021; 30:1516-1530. [PMID: 33522041 DOI: 10.1111/mec.15823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
How underlying mechanisms bias evolution toward predictable outcomes remains an area of active debate. In this study, we leveraged phenotypic plasticity and parallel adaptation across independent lineages of Trinidadian guppies (Poecilia reticulata) to assess the predictability of gene expression evolution during parallel adaptation. Trinidadian guppies have repeatedly and independently adapted to high- and low-predation environments in the wild. We combined this natural experiment with a laboratory breeding design to attribute transcriptional variation to the genetic influences of population of origin and developmental plasticity in response to rearing with or without predators. We observed substantial gene expression plasticity, as well as the evolution of expression plasticity itself, across populations. Genes exhibiting expression plasticity within populations were more likely to also differ in expression between populations, with the direction of population differences more likely to be opposite those of plasticity. While we found more overlap than expected by chance in genes differentially expressed between high- and low-predation populations from distinct evolutionary lineages, the majority of differentially expressed genes were not shared between lineages. Our data suggest alternative transcriptional configurations associated with shared phenotypes, highlighting a role for transcriptional flexibility in the parallel phenotypic evolution of a species known for rapid adaptation.
Collapse
Affiliation(s)
- Eva K Fischer
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana, IL, USA.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Youngseok Song
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Kimberly A Hughes
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wen Zhou
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
Abstract
Population genomic studies of humans and other animals at high altitude have generated many hypotheses about the genes and pathways that may have contributed to hypoxia adaptation. Future advances require experimental tests of such hypotheses to identify causal mechanisms. Studies to date illustrate the challenge of moving from lists of candidate genes to the identification of phenotypic targets of selection, as it can be difficult to determine whether observed genotype-phenotype associations reflect causal effects or secondary consequences of changes in other traits that are linked via homeostatic regulation. Recent work on high-altitude models such as deer mice has revealed both plastic and evolved changes in respiratory, cardiovascular, and metabolic traits that contribute to aerobic performance capacity in hypoxia, and analyses of tissue-specific transcriptomes have identified changes in regulatory networks that mediate adaptive changes in physiological phenotype. Here we synthesize recent results and discuss lessons learned from studies of high-altitude adaptation that lie at the intersection of genomics and physiology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| |
Collapse
|
16
|
Rossi GS, Cochrane PV, Wright PA. Fluctuating environments during early development can limit adult phenotypic flexibility: insights from an amphibious fish. J Exp Biol 2020; 223:jeb228304. [PMID: 32616545 DOI: 10.1242/jeb.228304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
The interaction between developmental plasticity and the capacity for reversible acclimation (phenotypic flexibility) is poorly understood, particularly in organisms exposed to fluctuating environments. We used an amphibious killifish (Kryptolebias marmoratus) to test the hypotheses that organisms reared in fluctuating environments (i) will make no developmental changes to suit any one environment because fixing traits to suit one environment could be maladaptive for another, and (ii) will be highly phenotypically flexible as adults because their early life experiences predict high environmental variability in the future. We reared fish under constant (water) or fluctuating (water-air) environments until adulthood and assessed a suite of traits along the oxygen cascade (e.g. neuroepithelial cell density and size, cutaneous capillarity, gill morphology, ventricle size, red muscle morphometrics, terrestrial locomotor performance). To evaluate the capacity for phenotypic flexibility, a subset of adult fish from each rearing condition was then air-exposed for 14 days before the same traits were measured. In support of the developmental plasticity hypothesis, traits involved with O2 sensing and uptake were largely unaffected by water-air fluctuations during early life, but we found marked developmental changes in traits related to O2 transport, utilization and locomotor performance. In contrast, we found no evidence supporting the phenotypic flexibility hypothesis. Adult fish from both rearing conditions exhibited the same degree of phenotypic flexibility in various O2 sensing- and uptake-related traits. In other cases, water-air fluctuations attenuated adult phenotypic flexibility despite the fact that phenotypic flexibility is hypothesized to be favoured when environments fluctuate. Overall, we conclude that exposure to environmental fluctuations during development in K. marmoratus can dramatically alter the constitutive adult phenotype, as well as diminish the scope for phenotypic flexibility in later life.
Collapse
Affiliation(s)
- Giulia S Rossi
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Paige V Cochrane
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Patricia A Wright
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
17
|
Abstract
Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway, PHD2 and HIF2A The product of the former induces the degradation of the product of the latter. Key issues regarding Tibetan PHD2 are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation. Tibetan PHD2 possesses two amino acid changes, D4E and C127S. We previously showed that in vitro, Tibetan PHD2 is defective in its interaction with p23, a cochaperone of the HSP90 pathway, and we proposed that Tibetan PHD2 is a loss-of-function allele. Here, we report that additional PHD2 mutations at or near Asp-4 or Cys-127 impair interaction with p23 in vitro. We find that mice with the Tibetan Phd2 allele display augmented hypoxic ventilatory response, supporting this loss-of-function proposal. This is phenocopied by mice with a mutation in p23 that abrogates the PHD2:p23 interaction. Hif2a haploinsufficiency, but not the Tibetan Phd2 allele, ameliorates hypoxia-induced increases in right ventricular systolic pressure. The Tibetan Phd2 allele is not associated with hemoglobin levels in mice. We propose that Tibetans possess genetic alterations that both activate and inhibit selective outputs of the HIF pathway to facilitate successful adaptation to the chronic hypoxia of high altitude.
Collapse
|
18
|
Scott AL, Pranckevicius NA, Nurse CA, Scott GR. Regulation of catecholamine release from the adrenal medulla is altered in deer mice ( Peromyscus maniculatus) native to high altitudes. Am J Physiol Regul Integr Comp Physiol 2019; 317:R407-R417. [PMID: 31242021 DOI: 10.1152/ajpregu.00005.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-altitude natives have evolved to overcome environmental hypoxia and provide a compelling system to understand physiological function during reductions in oxygen availability. The sympathoadrenal system plays a key role in responses to acute hypoxia, but prolonged activation of this system in chronic hypoxia may be maladaptive. Here, we examined how chronic hypoxia exposure alters adrenal catecholamine secretion and how adrenal function is altered further in high-altitude natives. Populations of deer mice (Peromyscus maniculatus) native to low and high altitudes were each born and raised in captivity at sea level, and adults from each population were exposed to normoxia or hypobaric hypoxia for 5 mo. Using carbon fiber amperometry on adrenal slices, catecholamine secretion evoked by low doses of nicotine (10 µM) or acute hypoxia (Po2 ∼15-20 mmHg) was reduced in lowlanders exposed to hypobaric hypoxia, which was attributable mainly to a decrease in quantal charge rather than event frequency. However, secretion evoked by high doses of nicotine (50 µM) was unaffected. Hypobaric hypoxia also reduced plasma epinephrine and protein expression of 3,4-dihydroxyphenylalanine (DOPA) decarboxylase in the adrenal medulla of lowlanders. In contrast, highlanders were unresponsive to hypobaric hypoxia, exhibiting typically low adrenal catecholamine secretion, plasma epinephrine, and DOPA decarboxylase. Highlanders also had consistently lower catecholamine secretion evoked by high nicotine, smaller adrenal medullae with fewer chromaffin cells, and a larger adrenal cortex compared with lowlanders across both acclimation environments. Our results suggest that plastic responses to chronic hypoxia along with evolved changes in adrenal function attenuate catecholamine release in deer mice at high altitude.
Collapse
Affiliation(s)
- Angela L Scott
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Lande R. Developmental integration and evolution of labile plasticity in a complex quantitative character in a multiperiodic environment. Proc Natl Acad Sci U S A 2019; 116:11361-11369. [PMID: 31097589 PMCID: PMC6561267 DOI: 10.1073/pnas.1900528116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Labile plasticity in a complex quantitative character is modeled, with multiple components contributing to net plasticity in the character. Each component has a specific development rate, norm of reaction, and cost of plasticity. For example, thermal adaptation in mammals includes seasonal fat deposition and fur growth, short-term shivering and sweating or panting, and movement between warm and cold sites. Norms of reaction do not reveal patterns of developmental integration, which must be investigated by studies of developmental dynamics in a changing environment. In a periodic environment, a labile character with a single component of plasticity is constrained by filtering environmental frequencies above the development rate and by the cost of plasticity. With multiple components of plasticity, some patterns of integration can alleviate these constraints to greatly improve fidelity of the mean phenotype tracking multiperiodic cycles in the optimum phenotype. This occurs by environmental signal amplification or inhibition through developmental integration among components and by an augmented development rate of net plasticity in the character that reduces environmental frequency filtering. When development of a component with high cost of plasticity is regulated partly by the norm of reaction of another component, evolution can diminish the reaction norm slope of the costly component without curtailing its development, thereby reducing the loss of fitness from its cost of plasticity. Apparent maladaptation in a component of plasticity may be an integral part of an adaptive pattern of developmental integration by mutual inhibition between components and compensatory evolution of a negative component reaction norm slope.
Collapse
Affiliation(s)
- Russell Lande
- Center for Biodiversity Dynamics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
20
|
Nelson TC, Jones MR, Velotta JP, Dhawanjewar AS, Schweizer RM. UNVEILing connections between genotype, phenotype, and fitness in natural populations. Mol Ecol 2019; 28:1866-1876. [PMID: 30830713 PMCID: PMC6525050 DOI: 10.1111/mec.15067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/29/2022]
Abstract
Understanding the links between genetic variation and fitness in natural populations is a central goal of evolutionary genetics. This monumental task spans the fields of classical and molecular genetics, population genetics, biochemistry, physiology, developmental biology, and ecology. Advances to our molecular and developmental toolkits are facilitating integrative approaches across these traditionally separate fields, providing a more complete picture of the genotype-phenotype map in natural and non-model systems. Here, we summarize research presented at the first annual symposium of the UNVEIL Network, an NSF-funded collaboration between the University of Montana and the University of Nebraska, Lincoln, which took place from the 1st to the 3rd of June, 2018. We discuss how this body of work advances basic evolutionary science, what it implies for our ability to predict evolutionary change, and how it might inform novel conservation strategies.
Collapse
Affiliation(s)
- Thomas C Nelson
- Division of Biological Sciences, University of Montana, 32 Campus Dr HS 104, Missoula, MT, 59812
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, 32 Campus Dr HS 104, Missoula, MT, 59812
| | - Jonathan P Velotta
- Division of Biological Sciences, University of Montana, 32 Campus Dr HS 104, Missoula, MT, 59812
| | | | - Rena M Schweizer
- Division of Biological Sciences, University of Montana, 32 Campus Dr HS 104, Missoula, MT, 59812
| |
Collapse
|
21
|
Andrade MC. Sexual selection and social context: Web-building spiders as emerging models for adaptive plasticity. ADVANCES IN THE STUDY OF BEHAVIOR 2019. [DOI: 10.1016/bs.asb.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Velotta JP, Ivy CM, Wolf CJ, Scott GR, Cheviron ZA. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution 2018; 72:2712-2727. [PMID: 30318588 DOI: 10.1111/evo.13626] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
How often phenotypic plasticity acts to promote or inhibit adaptive evolution is an ongoing debate among biologists. Recent work suggests that adaptive phenotypic plasticity promotes evolutionary divergence, though several studies have also suggested that maladaptive plasticity can potentiate adaptation. The role of phenotypic plasticity, adaptive, or maladaptive, in evolutionary divergence remains controversial. We examined the role of plasticity in evolutionary divergence between two species of Peromyscus mice that differ in native elevations. We used cardiac mass as a model phenotype, since ancestral hypoxia-induced responses of the heart may be both adaptive and maladaptive at high-altitude. While left ventricle growth should enhance oxygen delivery to tissues, hypertrophy of the right ventricle can lead to heart failure and death. We compared left- and right-ventricle plasticity in response to hypoxia between captive-bred P. leucopus (representing the ancestral lowland condition) and P. maniculatus from high-altitude. We found that maladaptive ancestral plasticity in right ventricle hypertrophy is reduced in high-altitude deer mice. Analysis of the heart transcriptome suggests that changes in expression of inflammatory signaling genes, particularly interferon regulatory factors, contribute to the suppression of right ventricle hypertrophy. We found weak evidence that adaptive plasticity of left ventricle mass contributes to evolution. Our results suggest that selection to suppress ancestral maladaptive plasticity plays a role in adaptation.
Collapse
Affiliation(s)
- Jonathan P Velotta
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Cole J Wolf
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812
| |
Collapse
|