1
|
Mizuno T, Mori S, Sugahara K, Yukawa T, Koi S, Iwashina T. Floral pigments and their perception by avian pollinators in three Chilean Puya species. JOURNAL OF PLANT RESEARCH 2024; 137:395-409. [PMID: 38436743 DOI: 10.1007/s10265-024-01531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
The Chilean Puya species, Puya coerulea var. violacea and P. chilensis bear blue and pale-yellow flowers, respectively, while P. alpestris considered to be their hybrid-derived species has unique turquoise flowers. In this study, the chemical basis underlying the different coloration of the three Puya species was explored. We first isolated and identified three anthocyanins: delphinidin 3,3',5'-tri-O-glucoside, delphinidin 3,3'-di-O-glucoside and delphinidin 3-O-glucoside; seven flavonols: quercetin 3-O-rutinoside-3'-O-glucoside, quercetin 3,3'-di-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-rutinoside, myricetin 3,3',5'-tri-O-glucoside, myricetin 3,3'-di-O-glucoside and laricitrin 3,5'-di-O-glucoside; and six flavones: luteolin 4'-O-glucoside, apigenin 4'-O-glucoside, tricetin 4'-O-glucoside, tricetin 3',5'-di-O-glucoside, tricetin 3'-O-glucoside and selagin 5'-O-glucoside, which is a previously undescribed flavone, from their petals. We also compared compositions of floral flavonoid and their aglycone among these species, which suggested that the turquoise species P. alpestris has an essentially intermediate composition between the blue and pale-yellow species. The vacuolar pH was relatively higher in the turquoise (pH 6.2) and pale-yellow (pH 6.2) flower species, while that of blue flower species was usual (pH 5.2). The flower color was reconstructed in vitro using isolated anthocyanin, flavonol and flavone at neutral and acidic pH, and its color was analyzed by reflectance spectra and the visual modeling of their avian pollinators. The modeling demonstrated that the higher pH of the turquoise and pale-yellow species enhances the chromatic contrast and spectral purity. The precise regulation of flower color by flavonoid composition and vacuolar pH may be adapted to the visual perception of their avian pollinator vision.
Collapse
Affiliation(s)
- Takayuki Mizuno
- Department of Botany, National Museum of Nature and Science, Ibaraki, 305-0005, Japan.
| | - Shinnosuke Mori
- Faculty of Science and Technology, Keio University, Kanagawa, 223-8522, Japan
| | - Kohtaro Sugahara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, 619-0284, Japan
| | - Tomohisa Yukawa
- Department of Botany, National Museum of Nature and Science, Ibaraki, 305-0005, Japan
| | - Satoshi Koi
- Graduate School of Science, Osaka Metropolitan University, Osaka, 576-0004, Japan
| | - Tsukasa Iwashina
- Department of Botany, National Museum of Nature and Science, Ibaraki, 305-0005, Japan
| |
Collapse
|
2
|
Wang Y, Shang B, Génard M, Hilbert-Masson G, Delrot S, Gomès E, Poni S, Keller M, Renaud C, Kong J, Chen J, Liang Z, Dai Z. Model-assisted analysis for tuning anthocyanin composition in grape berries. ANNALS OF BOTANY 2023; 132:1033-1050. [PMID: 37850481 PMCID: PMC10808033 DOI: 10.1093/aob/mcad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway. The model was calibrated and validated using six datasets from eight cultivars and 37 growth conditions. Tuning the transformation and degradation parameters allowed us to accurately simulate the accumulation process of each individual anthocyanin under different environmental conditions. The model parameters were robust across environments for each genotype. The coefficients of determination (R2) for the simulated versus observed values for the six datasets ranged from 0.92 to 0.99, while the relative root mean square errors (RRMSEs) were between 16.8 and 42.1 %. The leave-one-out cross-validation for three datasets showed R2 values of 0.99, 0.96 and 0.91, and RRMSE values of 28.8, 32.9 and 26.4 %, respectively, suggesting a high prediction quality of the model. Model analysis showed that the anthocyanin profiles of diverse genotypes are relatively stable in response to parameter perturbations. Virtual experiments further suggested that targeted anthocyanin profiles may be reached by manipulating a minimum of three parameters, in a genotype-dependent manner. This model presents a promising methodology for characterizing the temporal progression of anthocyanin composition, while also offering a logical foundation for bioengineering endeavours focused on precisely adjusting the anthocyanin composition of grapes.
Collapse
Affiliation(s)
- Yongjian Wang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Boxing Shang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Michel Génard
- INRAE, UR1115, Unité Plantes et Systèmes de Culture Horticoles, Avignon, France
| | | | - Serge Delrot
- EGFV, University of Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Eric Gomès
- EGFV, University of Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Stefano Poni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Markus Keller
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Christel Renaud
- EGFV, University of Bordeaux, Bordeaux-Sciences Agro, INRAE, ISVV, Villenave d’Ornon, France
| | - Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Petrone-Mendoza E, Vergara-Silva F, Olson ME. Plant morpho evo-devo. TRENDS IN PLANT SCIENCE 2023; 28:1257-1276. [PMID: 37423784 DOI: 10.1016/j.tplants.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Evo-devo is often thought of as being the study of which genes underlie which phenotypes. However, evo-devo is much more than this, especially in plant science. In leaf scars along stems, cell changes across wood growth rings, or flowers along inflorescences, plants trace a record of their own development. Plant morpho evo-devo provides data that genes could never furnish on themes such as heterochrony, the evolution of temporal phenotypes, modularity, and phenotype-first evolution. As plant science surges into increasingly -omic realms, it is essential to keep plant morpho evo-devo in full view as an honored member of the evo-devo canon, ensuring that plant scientists can, wherever they are, generate fundamental insights at the appropriate level of biological organization.
Collapse
Affiliation(s)
- Emilio Petrone-Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México 04510, México; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, México
| | - Francisco Vergara-Silva
- Laboratorio de Teoría Evolutiva e Historia de la Ciencia, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México 04510, México.
| |
Collapse
|
4
|
Cao H, Li H, Chen X, Zhang Y, Lu L, Li S, Tao X, Zhu W, Wang J, Ma L. Insight into the molecular mechanisms of leaf coloration in Cymbidium ensifolium. Front Genet 2022; 13:923082. [PMID: 36035180 PMCID: PMC9413228 DOI: 10.3389/fgene.2022.923082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cymbidiumensifolium L. is a significant ornamental plant in Orchidaceae. Aside from its attractive flowers, its leaf coloration is also an important ornamental trait. However, there is an apparent lack of studies concerning the intricate mechanism of leaf coloration in C. ensifolium. In this study, we report a systematic evaluation of leaf coloration utilizing transcriptome and metabolome profiles of purple, yellow, and green leaves. In total, 40 anthocyanins and 67 flavonoids were quantified along with chlorophyll content. The tissue–transcriptome profile identified 26,499 differentially expressed genes (DEGs). The highest chlorophyll contents were identified in green leaves, followed by yellow and purple leaves. We identified key anthocyanins and flavonoids associated with leaf coloration, including cyanidin-3-O-sophoroside, naringenin-7-O-glucoside, delphinidin, cyanidin, petunidin, and quercetin, diosmetin, sinensetin, and naringenin chalcone. Moreover, genes encoding UDP-glucoronosyl, UDP-glucosyl transferase, chalcone synthesis, flavodoxin, cytochrome P450, and AMP-binding enzyme were identified as key structural genes affecting leaf coloration in C. ensifolium. In summary, copigmentation resulting from several key metabolites modulated by structural genes was identified as governing leaf coloration in C. ensifolium. Further functional verification of the identified DEGs and co-accumulation of metabolites can provide a tool to modify leaf color and improve the aesthetic value of C. ensifolium.
Collapse
Affiliation(s)
- Hua Cao
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Han Li
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Xiang Chen
- Fujian Forestry Science and Technology Experimental Center, Zhangzhou, China
| | - Yuying Zhang
- Yunnan Agricultural University College of Horticulture and Landscape, Kunming, China
| | - Lin Lu
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Shenchong Li
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
| | - Xiang Tao
- Yunnan Agriculture Academy Science, Kunming, China
| | - WeiYin Zhu
- Fujian Forestry Science and Technology Experimental Center, Zhangzhou, China
| | - Jihua Wang
- Yunnan Agriculture Academy Science, Kunming, China
- *Correspondence: Lulin Ma, ; Jihua Wang,
| | - Lulin Ma
- Flower Research Institute Yunnan Agriculture Academy Science, Kunming, China
- *Correspondence: Lulin Ma, ; Jihua Wang,
| |
Collapse
|
5
|
McClean PE, Lee R, Howe K, Osborne C, Grimwood J, Levy S, Haugrud AP, Plott C, Robinson M, Skiba RM, Tanha T, Zamani M, Thannhauser TW, Glahn RP, Schmutz J, Osorno JM, Miklas PN. The Common Bean V Gene Encodes Flavonoid 3'5' Hydroxylase: A Major Mutational Target for Flavonoid Diversity in Angiosperms. FRONTIERS IN PLANT SCIENCE 2022; 13:869582. [PMID: 35432409 PMCID: PMC9009181 DOI: 10.3389/fpls.2022.869582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The classic V (violet, purple) gene of common bean (Phaseolus vulgaris) functions in a complex genetic network that controls seed coat and flower color and flavonoid content. V was cloned to understand its role in the network and the evolution of its orthologs in the Viridiplantae. V mapped genetically to a narrow interval on chromosome Pv06. A candidate gene was selected based on flavonoid analysis and confirmed by recombinational mapping. Protein and domain modeling determined V encodes flavonoid 3'5' hydroxylase (F3'5'H), a P450 enzyme required for the expression of dihydromyricetin-derived flavonoids in the flavonoid pathway. Eight recessive haplotypes, defined by mutations of key functional domains required for P450 activities, evolved independently in the two bean gene pools from a common ancestral gene. V homologs were identified in Viridiplantae orders by functional domain searches. A phylogenetic analysis determined F3'5'H first appeared in the Streptophyta and is present in only 41% of Angiosperm reference genomes. The evolutionarily related flavonoid pathway gene flavonoid 3' hydroxylase (F3'H) is found nearly universally in all Angiosperms. F3'H may be conserved because of its role in abiotic stress, while F3'5'H evolved as a major target gene for the evolution of flower and seed coat color in plants.
Collapse
Affiliation(s)
- Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Kevin Howe
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Caroline Osborne
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Shawn Levy
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Amanda Peters Haugrud
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Melanie Robinson
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Ryan M. Skiba
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Tabassum Tanha
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Mariam Zamani
- Genomics, Phenomics, and Bioinformatic Program, North Dakota State University, Fargo, ND, United States
| | - Theodore W. Thannhauser
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Raymond P. Glahn
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Juan M. Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip N. Miklas
- USDA-ARS, Grain Legumes Genetics and Physiology Research Unit, Prosser, WA, United States
| |
Collapse
|
6
|
Wheeler LC, Walker JF, Ng J, Deanna R, Dunbar-Wallis A, Backes A, Pezzi PH, Palchetti MV, Robertson HM, Monaghan A, Brandão de Freitas L, Barboza GE, Moyroud E, Smith SD. Transcription factors evolve faster than their structural gene targets in the flavonoid pigment pathway. Mol Biol Evol 2022; 39:6536971. [PMID: 35212724 PMCID: PMC8911815 DOI: 10.1093/molbev/msac044] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dissecting the relationship between gene function and substitution rates is key to understanding genome-wide patterns of molecular evolution. Biochemical pathways provide powerful systems for investigating this relationship because the functional role of each gene is often well characterized. Here, we investigate the evolution of the flavonoid pigment pathway in the colorful Petunieae clade of the tomato family (Solanaceae). This pathway is broadly conserved in plants, both in terms of its structural elements and its MYB, basic helix–loop–helix, and WD40 transcriptional regulators, and its function has been extensively studied, particularly in model species of petunia. We built a phylotranscriptomic data set for 69 species of Petunieae to infer patterns of molecular evolution across pathway genes and across lineages. We found that transcription factors exhibit faster rates of molecular evolution (dN/dS) than their targets, with the highly specialized MYB genes evolving fastest. Using the largest comparative data set to date, we recovered little support for the hypothesis that upstream enzymes evolve slower than those occupying more downstream positions, although expression levels do predict molecular evolutionary rates. Although shifts in floral pigmentation were only weakly related to changes affecting coding regions, we found a strong relationship with the presence/absence patterns of MYB transcripts. Intensely pigmented species express all three main MYB anthocyanin activators in petals, whereas pale or white species express few or none. Our findings reinforce the notion that pathway regulators have a dynamic history, involving higher rates of molecular evolution than structural components, along with frequent changes in expression during color transitions.
Collapse
Affiliation(s)
- Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Joseph F Walker
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607 U.S.A
| | - Julienne Ng
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Rocío Deanna
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
| | - Amy Dunbar-Wallis
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| | - Alice Backes
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Pedro H Pezzi
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - M Virginia Palchetti
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina
| | - Holly M Robertson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Andrew Monaghan
- Research Computing,University of Colorado, 3100 Marine Street, 597 UCB Boulder, CO 80303
| | - Loreta Brandão de Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET and Universidad Nacional de Córdoba, CC 495, CP 5000, Córdoba, Argentina.,Facultad de Ciencias Químicas, Universidad Nacional de Córdoba,Haya de la Torre y Medina Allende, Córdoba, Argentina
| | - Edwige Moyroud
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street 334 UCB, Boulder, CO, USA, 80309-0334
| |
Collapse
|
7
|
Koski MH, Finnell LM, Leonard E, Tharayil N. Elevational divergence in pigmentation plasticity is associated with selection and pigment biochemistry. Evolution 2022; 76:512-527. [PMID: 35038345 DOI: 10.1111/evo.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Phenotypic plasticity is predicted to evolve in environmentally variable habitats, or those experiencing a high frequency of strong selection. However, the evolution of plasticity may be constrained by costs or physiological constraints. In flowers, UV-absorbing pigmentation ameliorates UV damage to pollen, and is linked with elevated UV exposure. Whether plasticity contributes to this pattern remains unclear. Petals of Argentina anserina have larger UV-absorbing petal areas at high elevations where they experience higher and more variable UV exposure compared to low elevations. We measured UV-induced pigmentation plasticity in high- and low-elevation populations (hereafter, 'high, 'low'), and selection on pigmentation via male fitness. We dissected UV pigment biochemistry using metabolomics to explore biochemical mechanisms underlying plasticity. High displayed positive UV-induced pigmentation plasticity but low lacked plasticity. Selection favored elevated pigmentation under UV in high, supporting adaptive plasticity. In high, UV-absorption was conferred by flavonoids produced in one flavonoid pathway branch. However, in low, UV-absorption was associated with many compounds spanning many branches. Elevated plasticity was thus associated with reduced pigment diversity. The results are consistent with adaptive floral pigmentation plasticity in more extreme and variable environments. We discuss how biochemical underpinnings of pigmentation may permit or constrain the evolution of pigmentation plasticity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634
| | - Lindsay M Finnell
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634
| | - Elizabeth Leonard
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634
| | - Nishanth Tharayil
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634
| |
Collapse
|
8
|
Liu X, Zhang M, Jiang X, Li H, Jia Z, Hao M, Jiang B, Huang L, Ning S, Yuan Z, Chen X, Chen X, Liu D, Liu B, Zhang L. TbMYC4A Is a Candidate Gene Controlling the Blue Aleurone Trait in a Wheat- Triticum boeoticum Substitution Line. FRONTIERS IN PLANT SCIENCE 2021; 12:762265. [PMID: 34804098 PMCID: PMC8603940 DOI: 10.3389/fpls.2021.762265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Triticum boeoticum Boiss (AbAb, 2n = 2x = 14) is one of the sources of the blue grain trait controlled by blue aleurone layer 2 (Ba2). However, the underlying genes have not been cloned. In this study, a transcriptomic comparison between a blue-grained wheat-T. boeoticum substitution line and its wheat parent identified 41 unigenes related to anthocyanin biosynthesis and 29 unigenes related to transport. The bHLH transcription factor gene TbMYC4A showed a higher expression level in the blue-grained substitution line. TbMYC4A contained the three characteristic bHLH transcription factor domains (bHLH-MYC_N, HLH and ACT-like) and clustered with genes identified from other wheat lines with the blue grain trait derived from other Triticeae species. TbMYC4A overexpression confirmed that it was a functional bHLH transcription factor. The analysis of a TbMYC4A-specific marker showed that the gene was also present in T. boeoticum and T. monococcum with blue aleurone but absent in other Triticeae materials with white aleurone. These results indicate that TbMYC4A is a candidate gene of Ba2 controlling the blue aleurone trait. The isolation of TbMYC4A is helpful for further clarifying the genetic mechanism of the blue aleurone trait and is of great significance for breeding blue-grained wheat varieties.
Collapse
Affiliation(s)
- Xin Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Minghu Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomei Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhenjiao Jia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bo Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Li M, Coneva V, Robbins KR, Clark D, Chitwood D, Frank M. Quantitative dissection of color patterning in the foliar ornamental coleus. PLANT PHYSIOLOGY 2021; 187:1310-1324. [PMID: 34618067 PMCID: PMC8566300 DOI: 10.1093/plphys/kiab393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/17/2021] [Indexed: 05/04/2023]
Abstract
Coleus (Coleus scutellarioides) is a popular ornamental plant that exhibits a diverse array of foliar color patterns. New cultivars are currently hand selected by both amateur and experienced plant breeders. In this study, we reimagine breeding for color patterning using a quantitative color analysis framework. Despite impressive advances in high-throughput data collection and processing, complex color patterns remain challenging to extract from image datasets. Using a phenotyping approach called "ColourQuant," we extract and analyze pigmentation patterns from one of the largest coleus breeding populations in the world. Working with this massive dataset, we can analyze quantitative relationships between maternal plants and their progeny, identify features that underlie breeder-selections, and collect and compare public input on trait preferences. This study is one of the most comprehensive explorations into complex color patterning in plant biology and provides insights and tools for exploring the color pallet of the plant kingdom.
Collapse
Affiliation(s)
- Mao Li
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Viktoriya Coneva
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Kelly R Robbins
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850, USA
| | - David Clark
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611-0670, USA
| | - Dan Chitwood
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Computational Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Margaret Frank
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
10
|
Huffine CA, Wheeler LC, Wing B, Cameron JC. Computational modeling and evolutionary implications of biochemical reactions in bacterial microcompartments. Curr Opin Microbiol 2021; 65:15-23. [PMID: 34717259 DOI: 10.1016/j.mib.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 11/19/2022]
Abstract
Bacterial microcompartments (BMCs) are protein-encapsulated compartments found across at least 23 bacterial phyla. BMCs contain a variety of metabolic processes that share the commonality of toxic or volatile intermediates, oxygen-sensitive enzymes and cofactors, or increased substrate concentration for magnified reaction rates. These compartmentalized reactions have been computationally modeled to explore the encapsulated dynamics, ask evolutionary-based questions, and develop a more systematic understanding required for the engineering of novel BMCs. Many crucial aspects of these systems remain unknown or unmeasured, such as substrate permeabilities across the protein shell, feasibility of pH gradients, and transport rates of associated substrates into the cell. This review explores existing BMC models, dominated in the literature by cyanobacterial carboxysomes, and highlights potentially important areas for exploration.
Collapse
Affiliation(s)
- Clair A Huffine
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80309, USA; Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; Interdisciplinary Quantitative Biology Program (IQ Biology), BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Boswell Wing
- Department of Geological Sciences, Boulder, CO 80309, USA
| | - Jeffrey C Cameron
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA; Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA; National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
11
|
O'Donnell AJ, Huang R, Barboline JJ, Barkman TJ. Convergent Biochemical Pathways for Xanthine Alkaloid Production in Plants Evolved from Ancestral Enzymes with Different Catalytic Properties. Mol Biol Evol 2021; 38:2704-2714. [PMID: 33662138 PMCID: PMC8233510 DOI: 10.1093/molbev/msab059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Convergent evolution is widespread but the extent to which common ancestral conditions are necessary to facilitate the independent acquisition of similar traits remains unclear. In order to better understand how ancestral biosynthetic catalytic capabilities might lead to convergent evolution of similar modern-day biochemical pathways, we resurrected ancient enzymes of the caffeine synthase (CS) methyltransferases that are responsible for theobromine and caffeine production in flowering plants. Ancestral CS enzymes of Theobroma, Paullinia, and Camellia exhibited similar substrate preferences but these resulted in the formation of different sets of products. From these ancestral enzymes, descendants with similar substrate preference and product formation independently evolved after gene duplication events in Theobroma and Paullinia. Thus, it appears that the convergent modern-day pathways likely originated from ancestral pathways with different inferred flux. Subsequently, the modern-day enzymes originated independently via gene duplication and their convergent catalytic characteristics evolved to partition the multiple ancestral activities by different mutations that occurred in homologous regions of the ancestral proteins. These results show that even when modern-day pathways and recruited genes are similar, the antecedent conditions may be distinctive such that different evolutionary steps are required to generate convergence.
Collapse
Affiliation(s)
- Andrew J O'Donnell
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Ruiqi Huang
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Jessica J Barboline
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| |
Collapse
|
12
|
Sánchez-Cabrera M, Jiménez-López FJ, Narbona E, Arista M, Ortiz PL, Romero-Campero FJ, Ramanauskas K, Igić B, Fuller AA, Whittall JB. Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia arvensis. FRONTIERS IN PLANT SCIENCE 2021; 12:633979. [PMID: 33692818 PMCID: PMC7937975 DOI: 10.3389/fpls.2021.633979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
Anthocyanins are the primary pigments contributing to the variety of flower colors among angiosperms and are considered essential for survival and reproduction. Anthocyanins are members of the flavonoids, a broader class of secondary metabolites, of which there are numerous structural genes and regulators thereof. In western European populations of Lysimachia arvensis, there are blue- and orange-petaled individuals. The proportion of blue-flowered plants increases with temperature and daylength yet decreases with precipitation. Here, we performed a transcriptome analysis to characterize the coding sequences of a large group of flavonoid biosynthetic genes, examine their expression and compare our results to flavonoid biochemical analysis for blue and orange petals. Among a set of 140 structural and regulatory genes broadly representing the flavonoid biosynthetic pathway, we found 39 genes with significant differential expression including some that have previously been reported to be involved in similar flower color transitions. In particular, F3'5'H and DFR, two genes at a critical branchpoint in the ABP for determining flower color, showed differential expression. The expression results were complemented by careful examination of the SNPs that differentiate the two color types for these two critical genes. The decreased expression of F3'5'H in orange petals and differential expression of two distinct copies of DFR, which also exhibit amino acid changes in the color-determining substrate specificity region, strongly correlate with the blue to orange transition. Our biochemical analysis was consistent with the transcriptome data indicating that the shift from blue to orange petals is caused by a change from primarily malvidin to largely pelargonidin forms of anthocyanins. Overall, we have identified several flavonoid biosynthetic pathway loci likely involved in the shift in flower color in L. arvensis and even more loci that may represent the complex network of genetic and physiological consequences of this flower color polymorphism.
Collapse
Affiliation(s)
- Mercedes Sánchez-Cabrera
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | | | - Eduardo Narbona
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Montserrat Arista
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Pedro L. Ortiz
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
| | - Francisco J. Romero-Campero
- Institute for Plant Biochemistry and Photosynthesis, University of Seville – Centro Superior de Investigación Científica, Seville, Spain
- Department of Computer Science and Artificial Intelligence, University of Seville, Seville, Spain
| | - Karolis Ramanauskas
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Boris Igić
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Amelia A. Fuller
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, United States
| | - Justen B. Whittall
- Department of Biology, College of Arts and Sciences, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
13
|
Wheeler LC, Wing BA, Smith SD. Structure and contingency determine mutational hotspots for flower color evolution. Evol Lett 2021; 5:61-74. [PMID: 33552536 PMCID: PMC7857289 DOI: 10.1002/evl3.212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 01/26/2023] Open
Abstract
Evolutionary genetic studies have uncovered abundant evidence for genomic hotspots of phenotypic evolution, as well as biased patterns of mutations at those loci. However, the theoretical basis for this concentration of particular types of mutations at particular loci remains largely unexplored. In addition, historical contingency is known to play a major role in evolutionary trajectories, but has not been reconciled with the existence of such hotspots. For example, do the appearance of hotspots and the fixation of different types of mutations at those loci depend on the starting state and/or on the nature and direction of selection? Here, we use a computational approach to examine these questions, focusing the anthocyanin pigmentation pathway, which has been extensively studied in the context of flower color transitions. We investigate two transitions that are common in nature, the transition from blue to purple pigmentation and from purple to red pigmentation. Both sets of simulated transitions occur with a small number of mutations at just four loci and show strikingly similar peaked shapes of evolutionary trajectories, with the mutations of the largest effect occurring early but not first. Nevertheless, the types of mutations (biochemical vs. regulatory) as well as their direction and magnitude are contingent on the particular transition. These simulated color transitions largely mirror findings from natural flower color transitions, which are known to occur via repeated changes at a few hotspot loci. Still, some types of mutations observed in our simulated color evolution are rarely observed in nature, suggesting that pleiotropic effects further limit the trajectories between color phenotypes. Overall, our results indicate that the branching structure of the pathway leads to a predictable concentration of evolutionary change at the hotspot loci, but the types of mutations at these loci and their order is contingent on the evolutionary context.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Boswell A. Wing
- Department of Geological SciencesUniversity of ColoradoBoulderCOUSA
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| |
Collapse
|
14
|
Matthew Ogburn R, Edwards EJ. Celebrating a New Division of Botany at SICB: An Introduction to the Integrative Plant Biology Symposium. Integr Comp Biol 2020; 59:489-492. [PMID: 31411674 DOI: 10.1093/icb/icz114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Society for Integrative and Comparative Biology (SICB) should, in theory, be a home for scientists working across the entire Tree of Life. In practice, SICB has remained principally a society that supports integrative zoological research. Here we highlight a broad collection of what we consider to the best in integrative and comparative plant biology, gathered together for a special symposium at the 2019 SICB meeting. This symposium and special issue mark the initiation of a new Division of Botany within SICB, which we hope will usher in a new era of SICB where botanists and zoologists engage, collaborate, and celebrate together in this especially creative period of integrative and comparative biology.
Collapse
Affiliation(s)
- R Matthew Ogburn
- Department of Biology, Southern Utah University, 351 West University Blvd, Cedar City, UT 84720, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA
| |
Collapse
|
15
|
Ogutcen E, Durand K, Wolowski M, Clavijo L, Graham C, Glauser G, Perret M. Chemical Basis of Floral Color Signals in Gesneriaceae: The Effect of Alternative Anthocyanin Pathways. FRONTIERS IN PLANT SCIENCE 2020; 11:604389. [PMID: 33381138 PMCID: PMC7767864 DOI: 10.3389/fpls.2020.604389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/23/2020] [Indexed: 05/14/2023]
Abstract
Changes in floral pigmentation can have dramatic effects on angiosperm evolution by making flowers either attractive or inconspicuous to different pollinator groups. Flower color largely depends on the type and abundance of pigments produced in the petals, but it is still unclear whether similar color signals rely on same biosynthetic pathways and to which extent the activation of certain pathways influences the course of floral color evolution. To address these questions, we investigated the physical and chemical aspects of floral color in the Neotropical Gesnerioideae (ca. 1,200 spp.), in which two types of anthocyanins, hydroxyanthocyanins, and deoxyanthocyanins, have been recorded as floral pigments. Using spectrophotometry, we measured flower reflectance for over 150 species representing different clades and pollination syndromes. We analyzed these reflectance data to estimate how the Gesnerioideae flowers are perceived by bees and hummingbirds using the visual system models of these pollinators. Floral anthocyanins were further identified using high performance liquid chromatography coupled to mass spectrometry. We found that orange/red floral colors in Gesnerioideae are produced either by deoxyanthocyanins (e.g., apigenidin, luteolinidin) or hydroxyanthocyanins (e.g., pelargonidin). The presence of deoxyanthocyanins in several lineages suggests that the activation of the deoxyanthocyanin pathway has evolved multiple times in the Gesnerioideae. The hydroxyanthocyanin-producing flowers span a wide range of colors, which enables them to be discriminated by hummingbirds or bees. By contrast, color diversity among the deoxyanthocyanin-producing species is lower and mainly represented at longer wavelengths, which is in line with the hue discrimination optima for hummingbirds. These results indicate that Gesnerioideae have evolved two different biochemical mechanisms to generate orange/red flowers, which is associated with hummingbird pollination. Our findings also suggest that the activation of the deoxyanthocyanin pathway has restricted flower color diversification to orange/red hues, supporting the potential constraining role of this alternative biosynthetic pathway on the evolutionary outcome of phenotypical and ecological diversification.
Collapse
Affiliation(s)
- Ezgi Ogutcen
- Conservatoire et Jardin botaniques de la Ville de Genève, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karine Durand
- Conservatoire et Jardin botaniques de la Ville de Genève, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Marina Wolowski
- Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Laura Clavijo
- Instituto de Ciencias Naturales, National University of Colombia, UNAL, Bogotá, Colombia
| | - Catherine Graham
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Gaétan Glauser
- Neuchatel Platform of Analytical Chemistry, University of Neuchatel, Neuchâtel, Switzerland
| | - Mathieu Perret
- Conservatoire et Jardin botaniques de la Ville de Genève, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- *Correspondence: Mathieu Perret,
| |
Collapse
|
16
|
Zong Y, Li G, Xi X, Sun X, Li S, Cao D, Zhang H, Liu B. A bHLH transcription factor TsMYC2 is associated with the blue grain character in triticale (Triticum × Secale). PLANT CELL REPORTS 2019; 38:1291-1298. [PMID: 31352584 DOI: 10.1007/s00299-019-02449-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/17/2019] [Indexed: 05/22/2023]
Abstract
RNA-Seq was employed to compare the transcriptome differences between the triticale lines and to identify the key gene responsible for the blue aleurone trait. The accumulation of anthocyanins in the aleurone of triticale results in the formation of the blue-grained trait, but the identity of the genes associated with anthocyanin biosynthesis in the aleurone has not yet been reported. In this manuscript, RNA-Seq was employed to compare the transcriptome differences between the triticale lines HM13 (blue aleurone) and HM5 (white aleurone), and to identify the key genes responsible for the blue aleurone trait. There were 32,406 differentially expressed genes between HM13 and HM5. Seventy-three unigenes were homologous to the structural genes related to anthocyanin biosynthesis, and the average transcript level of the structural genes was higher in HM13 than in HM5, so that quantitative differences between the two lines in transcription rates could be the cause of the blue aleurone. The MYB and bHLH transcription factors had two homologous unigenes, but contained only one differentially expressed unigene each. The relative transcript level of bHLH Unigene5672_All (TsMYC2) in HM13 was 42.71 times that in HM5, while the relative transcript level of the MYB transcription factor Unigene12228_All in HM13 was 2.20 times that in HM5. qPCR experiments determined the relative transcript level of TsMYC2 in developing grain, with the expression of TsMYC2 in grain being the highest compared with that in root, stem or leaf tissue. TsMYC2 was homologous to the bHLH transcription factor regulating anthocyanin biosynthesis and contained three entire functional domains: bHLH-MYC_N, HLH and ACT-like, which were important for exercising regulation of anthocyanin biosynthesis as a bHLH transcription factor. Transient expression of ZmC1 and TsMYC2 could induce anthocyanin biosynthesis in white wheat coleoptile cells, demonstrating that TsMYC2 was a functional bHLH transcription factor. These results indicated that TsMYC2 was associated with the blue aleurone trait and could prove to be a valuable gene with which to breed new triticale cultivars with the blue aleurone trait.
Collapse
Affiliation(s)
- Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 800010, Qinghai, China
| | - Guomin Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Xingyuan Xi
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Xuemei Sun
- Qinghai Key Laboratory of Genetics and Physiology of Vegetables, Qinghai University, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 800010, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Huaigang Zhang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 800010, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 800010, Qinghai, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|