1
|
Awad KS, Wang S, Dougherty EJ, Keshavarz A, Demirkale CY, Yu ZX, Miller L, Elinoff JM, Danner RL. Disruption of DLL4/NOTCH1 Causes Dysregulated PPARγ/AKT Signaling in Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578230. [PMID: 38903104 PMCID: PMC11188078 DOI: 10.1101/2024.01.31.578230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, activates NOTCH1 signaling and plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in PAECs activated AKT and decreased DLL4 expression. DLL4 loss was also seen in lungs of patients with IPAH and HPAH. Over-expression of DLL4 in PAECs induced BMPR2 promoter activity and exogenous DLL4 increased BMPR2 mRNA through NOTCH1 activation. Furthermore, DLL4/NOTCH1 signaling blocked AKT activation, decreased proliferation and reversed EndoMT in BMPR2-silenced PAECs and ECs from IPAH patients. PPARγ, suppressed by BMPR2 loss, was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH PAECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Finally, leniolisib, a well-tolerated oral PI3Kδ/AKT inhibitor, decreased cell proliferation, induced apoptosis and reversed markers of EndoMT in BMPR2-silenced PAECs. Restoring DLL4/NOTCH1/PPARγ signaling and/or suppressing AKT activation may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.
Collapse
Affiliation(s)
- Keytam S Awad
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Shuibang Wang
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Edward J Dougherty
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Ali Keshavarz
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Zu Xi Yu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Latonia Miller
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Jason M Elinoff
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Robert L Danner
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| |
Collapse
|
2
|
Huang WQ, Zou Y, Tian Y, Ma XF, Zhou QY, Li ZY, Gong SX, Wang AP. Mammalian Target of Rapamycin as the Therapeutic Target of Vascular Proliferative Diseases: Past, Present, and Future. J Cardiovasc Pharmacol 2022; 79:444-455. [PMID: 34983907 DOI: 10.1097/fjc.0000000000001208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation. However, the molecular mechanisms linking mTOR to vascular proliferative diseases remain elusive. In our review, we summarize the key roles of the mTOR and the recent discoveries in vascular proliferative diseases, focusing on the therapeutic potential of mTOR inhibitors to target the mTOR signaling pathway for the treatment of vascular proliferative diseases. In this study, we discuss mTOR inhibitors as promising candidates to prevent VSMC-associated vascular proliferative diseases.
Collapse
Affiliation(s)
- Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Yan Zou
- Department of Hand and Foot Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China ; and
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Qin-Yi Zhou
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Zhen-Yu Li
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| |
Collapse
|
3
|
Peng H, Zhou L, Li H, Zhang Y, Cheng S, Chen Z, Yu S, Hu S, Chen W, Ouyang M, Xue J, Zeng W. The therapeutic effect and mechanism of Rapamycin combined with HO-3867 on monocrotaline-induced pulmonary hypertension in rats. Eur J Pharm Sci 2021; 170:106102. [PMID: 34958883 DOI: 10.1016/j.ejps.2021.106102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023]
Abstract
This study test was designed to investigate the possible modulatory effect of rapamycin combined with HO-3867 in monocrotaline(MCT)-induced pulmonary arterial hypertension in rats. We hypothesized that combined treatment with rapamycin and HO-3867 is superior to either alone in attenuating MCT-induced rat pulmonary arterial hypertension (PAH). Pulmonary arterial hypertension was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg). 2 weeks later, rapamycin (2 mg/kg i.p.) and HO3867 (10 mg/kg i.h.) were administered daily, alone and in combination, for 2 weeks. Right ventricular systolic pressure, echocardiography were recorded and then rats were sacrificed. Histological analysis of pulmonary arteries medial wall thickness, right ventricular hypertrophy index (RVHI), the ratio of right ventricular to body weight, and collagen volume fraction (CVF) of right ventricular were performed. Moreover, the expression of t-STAT3, p-STAT3, t-Akt, p-Akt in lung and t-STAT3, p-STAT3, t-S6, p-S6 in right ventricular were examined. The result showed that combined treatment provided a considerable improvement toward maintaining hemodynamic changes, lung vascular remodeling as well as amending RV remodeling and function. Furthermore, Combined treatment can normalize the protein levels of two signal pathways in lung and heart tissue, where p-S6 or p-Akt significantly decreased compared to HO-3867 alone, or p-STAT3 significantly reduced compared to rapamycin alone. In conclusion, combined treatment with rapamycin and HO-3867 is superior to either alone in attenuating MCT-induced PAH in rats.
Collapse
Affiliation(s)
- Huajing Peng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Ling Zhou
- Ultrasonic Department, Hospital of South China University of Technology, 510000, Guangzhou, China
| | - Huayang Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 510000, Guangzhou, Guangdong Province, China
| | - Yitao Zhang
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Shiyao Cheng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Zhichong Chen
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Shuqi Yu
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Sutian Hu
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Wenzeng Chen
- Department of Cardiac Surgery, Sun Yet-sen Memorial Hospital, 510000, Guangzhou, China
| | - Mao Ouyang
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China
| | - Jiaojie Xue
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China.
| | - Weijie Zeng
- Cardiovascular Department of the Sixth Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Zimmer A, Teixeira RB, Constantin RL, Fernandes-Piedras TRG, Campos-Carraro C, Türck P, Visioli F, Baldo G, Schenkel PC, Araujo AS, Belló-Klein A. Thioredoxin system activation is associated with the progression of experimental pulmonary arterial hypertension. Life Sci 2021; 284:119917. [PMID: 34478759 DOI: 10.1016/j.lfs.2021.119917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
In addition to being an antioxidant, thioredoxin (Trx) is known to stimulate signaling pathways involved in cell proliferation and to inhibit apoptosis. The aim of this study was to explore the role of Trx in some of these pathways along the progression of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male rats were first divided into two groups: monocrotaline (MCT - 60 mg/kg i.p.) and control (received saline), that were further divided into three groups: 1, 2, and 3 weeks. Animals were submitted to echocardiographic analysis. Right and left ventricles were used for the measurement of hypertrophy, through morphometric and histological analysis. The lung was prepared for biochemical and molecular analysis. One week after MCT injection, there was an increase in thioredoxin reductase (TrxR) activity, a reduction in glutathione reductase (GR) activity, and an increase in Trx-1 and vitamin D3 up-regulated protein-1 (VDUP-1) expression. Two weeks after MCT injection, there was an increase in VDUP-1, Akt and cleaved caspase-3 activation, and a decrease in Trx-1 and Nrf2 expression. PAH-induced by MCT promoted a reduction in Nrf2 and Trx-1 expression as well as an increase in Akt and VDUP-1 expression after three weeks. The increase in pulmonary vascular resistance was accompanied by increased TrxR activity, suggesting an association between the Trx system and functional changes in the progression of PAH. It seems that Trx-1 activation was an adaptive response to MCT administration to cope with pulmonary remodeling and disease progression, suggesting a potential new target for PAH therapeutics.
Collapse
Affiliation(s)
- Alexsandra Zimmer
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosalia Lempk Constantin
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tânia Regina Gatelli Fernandes-Piedras
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Campos-Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrick Türck
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Visioli
- Laboratory of Oral Pathology, Post-Graduation Program in Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Guilherme Baldo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Paulo Cavalheiro Schenkel
- Laboratory of Cardiovascular Physiology, Department of Physiology and Pharmacology, Biology Institute, Universidade Federal de Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil.
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Zimmer A, Teixeira RB, Constantin RL, Campos-Carraro C, Aparicio Cordero EA, Ortiz VD, Donatti L, Gonzalez E, Bahr AC, Visioli F, Baldo G, Luz de Castro A, Araujo AS, Belló-Klein A. The progression of pulmonary arterial hypertension induced by monocrotaline is characterized by lung nitrosative and oxidative stress, and impaired pulmonary artery reactivity. Eur J Pharmacol 2021; 891:173699. [PMID: 33160936 DOI: 10.1016/j.ejphar.2020.173699] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
The time-course of pulmonary arterial hypertension in the monocrotaline (MCT) model was investigated. Male rats were divided into two groups: MCT (received a 60 mg/kg i.p. injection) and control (received saline). The MCT and control groups were further divided into three cohorts, based on the follow-up interval: 1, 2, and 3 weeks. Right ventricle (RV) catheterization was performed and RV hypertrophy (RVH) was estimated. The lungs were used for biochemical, histological, molecular, and immunohistochemical analysis, while pulmonary artery rings were used for vascular reactivity. MCT promoted lung perivascular edema, inflammatory cells exudation, greater neutrophils and lymphocytes profile, and arteriolar wall thickness, compared to CTR group. Increases in pulmonary artery pressure and in RVH were observed in the MCT 2- and 3-week groups. The first week was marked by the presence of nitrosative stress (50% moderate and 33% accentuated staining by nitrotyrosine). These alterations lead to an adaptation of NO production by NO synthase activity after 2 weeks. Oxidative stress was evident in the third week, probably by an imbalance between endothelin-1 receptors, resulting in extracellular matrix remodeling, endothelial dysfunction, and RVH. Also, it was found a reduced pulmonary arterial vasodilatory response to acetylcholine after 2 (55%) and 3 (45%) weeks in MCT groups. The relevance of this study is precisely to show that nitrosative and oxidative stress predominate in distinct time windows of the disease progression.
Collapse
Affiliation(s)
- Alexsandra Zimmer
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rosalia Lempk Constantin
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Cristina Campos-Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Vanessa Duarte Ortiz
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Luiza Donatti
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Esteban Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Alan Christhian Bahr
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Fernanda Visioli
- Faculty of Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Guilherme Baldo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Liang S, Desai AA, Black SM, Tang H. Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:275-303. [PMID: 33788198 DOI: 10.1007/978-3-030-63046-1_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to the World Symposium Pulmonary Hypertension (WSPH) classification, pulmonary hypertension (PH) is classified into five categories based on etiology. Among them, Group 1 pulmonary arterial hypertension (PAH) disorders are rare but progressive and often, fatal despite multiple approved treatments. Elevated pulmonary arterial pressure in patients with WSPH Group 1 PAH is mainly caused by increased pulmonary vascular resistance (PVR), due primarily to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Growing evidence indicates that inflammation plays a critical role in the development of pulmonary vascular remodeling associated with PAH. While the role of auto-immunity is unclear, infiltration of inflammatory cells in and around vascular lesions, including T- and B-cells, dendritic cells, macrophages, and mast cells have been observed in PAH patients. Serum and plasma levels of chemokines, cytokines, and autoantibodies are also increased in PAH patients; some of these circulating molecules are correlated with disease severity and survival. Preclinical experiments have reported a key role of the inflammation in PAH pathophysiology in vivo. Importantly, anti-inflammatory and immunosuppressive agents have further exhibited therapeutic effects. The present chapter reviews published experimental and clinical evidence highlighting the canonical role of inflammation in the pathogenesis of PAH and as a major target for the development of anti-inflammatory therapies in patients with PAH.
Collapse
Affiliation(s)
- Shuxin Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Chen X, Jiang X, Cheng C, Chen J, Huang S, Xu M, Liu S. Berberine Attenuates Cardiac Hypertrophy Through Inhibition of mTOR Signaling Pathway. Cardiovasc Drugs Ther 2020; 34:463-473. [PMID: 32394178 DOI: 10.1007/s10557-020-06977-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Berberine was reported to exert beneficial effects on cardiac hypertrophy. However, its cellular and molecular mechanisms still remained unclear. METHODS Cardiac hypertrophy was induced in male Sprague-Dawley (SD) rats by transverse aorta constriction (TAC), with or without 6-week treatment of berberine. Echocardiography was performed to evaluate cardiac function. Rats were then sacrificed for histological assay, with detection for proteins and mRNA. H9c2 cells were pretreated with berberine of different concentrations (0, 1 μM, and 10 μM), followed by treatment with 2 μM norepinephrine (NE). Cells of different groups were measured for cell surface area, with mRNA detected by qRT-PCR and proteins by western blot. RESULTS Compared with the sham group, rats of the TAC group showed significantly increased cardiac hypertrophy and fibrosis, which could be ameliorated by treatment with berberine. Western blot showed that mammalian target of rapamycin (mTOR) signaling-related protein expressions, including phospho-mTOR, phospho-4EBP1, and phospho-p70 S6K (Thr389), but not phospho-p70 S6K (Ser371), were significantly increased in the TAC group, which were inhibited by berberine treatment. H9c2 cells were treated with NE to induce hypertrophy with increased cell surface area and mRNA expressions of anp and bnp. Berberine of 10 μM, but not 1 μM, significantly ameliorated NE-induced hypertrophy and inhibited protein expressions of mTOR signaling pathway similar to those in the rat model. CONCLUSIONS Berberine can exert cardioprotective effects on both pressure-overloaded cardiac hypertrophy and failure in vivo and NE-induced hypertrophy in vitro. Our results suggest berberine could be a potential treatment for patients with cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Xing Chen
- Department of Geriatrics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xingzuan Jiang
- Department of Geriatrics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Chuanfang Cheng
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jing Chen
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shuyan Huang
- Department of Geriatrics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Miqing Xu
- Department of Geriatrics, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
8
|
Crosstalk between the Akt/mTORC1 and NF-κB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs. Acta Pharmacol Sin 2019; 40:1322-1333. [PMID: 31316183 DOI: 10.1038/s41401-019-0272-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Abnormal wound healing by pulmonary artery smooth muscle cells (PASMCs) promotes vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Increasing evidence shows that both the mammalian target of rapamycin complex 1 (mTORC1) and nuclear factor-kappa B (NF-κB) are involved in the development of HPH. In this study, we explored the crosstalk between mTORC1 and NF-κB in PASMCs cultured under hypoxic condition and in a rat model of hypoxia-induced pulmonary hypertension (HPH). We showed that hypoxia promoted wound healing of PASMCs, which was dose-dependently blocked by the mTORC1 inhibitor rapamycin (5-20 nM). In PASMCs, hypoxia activated mTORC1, which in turn promoted the phosphorylation of NF-κB. Molecular docking revealed that mTOR interacted with IκB kinases (IKKs) and that was validated by immunoprecipitation. In vitro kinase assays and mass spectrometry demonstrated that mTOR phosphorylated IKKα and IKKβ separately. Inhibition of mTORC1 decreased the level of phosphorylated IKKα/β, thus reducing the phosphorylation and transcriptional activity of NF-κB. Bioinformatics study revealed that dipeptidyl peptidase-4 (DPP4) was a target gene of NF-κB; DPP4 inhibitor, sitagliptin (10-500 μM) effectively inhibited the abnormal wound healing of PASMCs under hypoxic condition. In the rat model of HPH, we showed that NF-κB activation (at 3 weeks) was preceded by mTOR signaling activation (after 1 or 2 weeks) in lungs, and administration of sitagliptin (1-5 mg/kg every day, ig) produced preventive effects against the development of HPH. In conclusion, hypoxia activates the crosstalk between mTORC1 and NF-κB, and increased DPP4 expression in PASMCs that leads to vascular remodeling. Sitagliptin, a DPP4 inhibitor, exerts preventive effect against HPH.
Collapse
|
9
|
Li Y, Ren W, Wang X, Yu X, Cui L, Li X, Zhang X, Shi B. MicroRNA-150 relieves vascular remodeling and fibrosis in hypoxia-induced pulmonary hypertension. Biomed Pharmacother 2019; 109:1740-1749. [DOI: 10.1016/j.biopha.2018.11.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
|
10
|
Abstract
PURPOSE OF REVIEW Obesity is a major risk factor for the development of hypertension (HTN), a leading cause of cardiovascular morbidity and mortality. Growing body of research suggests that adipose tissue function is directly associated with the pathogenesis of obesity-related HTN. In this review, we will discuss recent research on the role of adipose tissue in blood pressure (BP) regulation and activation of brown adipose tissue (BAT) as a potentially new therapeutic means for obesity-related HTN. RECENT FINDINGS Adipose tissue provides mechanical protection of the blood vessels and plays a role in regulation of vascular tone. Exercise and fasting activate BAT and induce browning of white adipose tissue (WAT). BAT-secreted FGF21 lowers BP and protects against HTN. Browning of perivascular WAT improves HTN. New insights on WAT browning and BAT activation can open new avenues of potential therapeutic interventions to treat obesity-related HTN.
Collapse
Affiliation(s)
- Eashita Das
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Microbiology, Siliguri College, North Bengal University, Siliguri, West Bengal, 734001, India
| | - Joon Ho Moon
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Nikita Thakkar
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
| | - Zdenka Pausova
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, M5G 0A4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Lu QB, Wang HP, Tang ZH, Cheng H, Du Q, Wang YB, Feng WB, Li KX, Cai WW, Qiu LY, Sun HJ. Nesfatin-1 functions as a switch for phenotype transformation and proliferation of VSMCs in hypertensive vascular remodeling. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2154-2168. [PMID: 29627363 DOI: 10.1016/j.bbadis.2018.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/11/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The phenotypic transformation from differentiated to dedifferentiated vascular smooth muscle cells (VSMCs) plays a crucial role in VSMC proliferation and vascular remodeling in many cardiovascular diseases including hypertension. Nesfatin-1, a multifunctional adipocytokine, is critically involved in the regulation of blood pressure. However, it is still largely unexplored whether nesfatin-1 is a potential candidate in VSMC phenotypic switch and proliferation in hypertension. Experiments were carried out in Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), human VSMCs and primary rat aortic VSMCs. We showed that the expression of nesfatin-1 was upregulated in media layer of the aorta in SHR and SHR-derived VSMCs. Nesfatin-1 promoted VSMC phenotypic transformation, accelerated cell cycle progression and proliferation. Knockdown of nesfatin-1 inhibited the VSMC phenotype switch from a contractile to a synthetic state, attenuated cell cycle progression and retarded VSMC proliferation in SHR-derived VSMCs. Moreover, nesfatin-1-activated PI3K/Akt/mTOR signaling was abolished by JAK/STAT inhibitor WP1066, and the increased phosphorylation levels of JAK2/STAT3 in response to nesfatin-1 were suppressed by inhibition of PI3K/Akt/mTOR in VSMCs. Pharmacological blockade of the forming feedback loop between PI3K/Akt/mTOR and JAK2/STAT3 prevented the proliferation of nesfatin-1-incubated VSMCs and primary VSMCs from SHR. Chronic intraperitoneal injection of nesfatin-1 caused severe hypertension and cardiovascular remodeling in normal rats. In contrast, silencing of nesfatin-1 gene ameliorated hypertension, phenotype switching, and vascular remodeling in the aorta of SHR. Therefore, our data identified nesfatin-1 as a key modulator in hypertension and vascular remodeling by facilitating VSMC phenotypic switching and proliferation.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Hui-Ping Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zi-Han Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Han Cheng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qiong Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yuan-Ben Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wu-Bing Feng
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|