1
|
Luglio D, Kleeman MJ, Yu X, Lin JC, Chow T, Martinez MP, Chen Z, Chen JC, Eckel SP, Schwartz J, Lurmann F, McConnell R, Xiang AH, Rahman MM. Prenatal Exposure to Source-Specific Fine Particulate Matter and Autism Spectrum Disorder. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18566-18577. [PMID: 39392704 PMCID: PMC11500427 DOI: 10.1021/acs.est.4c05563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
In this study, associations between prenatal exposure to fine particulate matter (PM2.5) from 9 sources and development of autism spectrum disorder (ASD) were assessed in a population-based retrospective pregnancy cohort in southern California. The cohort included 318,750 mother-child singleton pairs. ASD cases (N = 4559) were identified by ICD codes. Source-specific PM2.5 concentrations were estimated from a chemical transport model with a 4 × 4 km2 resolution and assigned to maternal pregnancy residential addresses. Cox proportional hazard models were used to estimate the hazard ratios (HR) of ASD development for each individual source. We also adjusted for total PM2.5 mass and in a separate model for all other sources simultaneously. Increased ASD risk was observed with on-road gasoline (HR [CI]: 1.18 [1.13, 1.24]), off-road gasoline (1.15 [1.12, 1.19]), off-road diesel (1.08 [1.05, 1.10]), food cooking (1.05 [1.02, 1.08]), aircraft (1.04 [1.01, 1.06]), and natural gas combustion (1.09 [1.06, 1.11]), each scaled to standard deviation increases in concentration. On-road gasoline and off-road gasoline were robust for other pollutant groups. PM2.5 emitted from different sources may have different impacts on ASD. The results also identify PM source mixtures for toxicological investigations that may provide evidence for future public health policies.
Collapse
Affiliation(s)
- David
G. Luglio
- Department
of Environmental Health Sciences, Tulane
University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70118, United States
| | - Michael J. Kleeman
- Department
of Civil and Environmental Engineering, University of California, Davis, Davis, California 95616, United States
| | - Xin Yu
- Spatial
Science Institute, University of Southern
California, Los Angeles, California 90089, United States
| | - Jane C. Lin
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Ting Chow
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Mayra P. Martinez
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Zhanghua Chen
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Jiu-Chiuan Chen
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Sandrah Proctor Eckel
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Joel Schwartz
- Department
of Environmental Health, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts 02115, United States
- Department
of Epidemiology, Harvard T.H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
| | | | - Rob McConnell
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Anny H. Xiang
- Department
of Research & Evaluation, Kaiser Permanente
Southern California, Pasadena, California 91101, United States
| | - Md Mostafijur Rahman
- Department
of Environmental Health Sciences, Tulane
University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70118, United States
- Department
of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Willis MD, Campbell EJ, Selbe S, Koenig MR, Gradus JL, Nillni YI, Casey JA, Deziel NC, Hatch EE, Wesselink AK, Wise LA. Residential Proximity to Oil and Gas Development and Mental Health in a North American Preconception Cohort Study: 2013-2023. Am J Public Health 2024; 114:923-934. [PMID: 38991173 PMCID: PMC11306607 DOI: 10.2105/ajph.2024.307730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/13/2024]
Abstract
Objectives. To evaluate associations between oil and gas development (OGD) and mental health using cross-sectional data from a preconception cohort study, Pregnancy Study Online. Methods. We analyzed baseline data from a prospective cohort of US and Canadian women aged 21 to 45 years who were attempting conception without fertility treatment (2013-2023). We developed residential proximity measures for active OGD during preconception, including distance from nearest site. At baseline, participants completed validated scales for perceived stress (10-item Perceived Stress Scale, PSS) and depressive symptoms (Major Depression Inventory, MDI) and reported psychotropic medication use. We used log-binomial regression and restricted cubic splines to estimate prevalence ratios (PRs) and 95% confidence intervals (CIs). Results. Among 5725 participants across 37 states and provinces, residence at 2 km versus 20 to 50 km of active OGD was associated with moderate to high perceived stress (PSS ≥ 20 vs < 20: PR = 1.08; 95% CI = 0.98, 1.18), moderate to severe depressive symptoms (MDI ≥ 20 vs < 20: PR = 1.27; 95% CI = 1.11, 1.45), and psychotropic medication use (PR = 1.11; 95% CI = 0.97, 1.28). Conclusions. Among North American pregnancy planners, closer proximity to OGD was associated with adverse preconception mental health symptomatology. (Am J Public Health. 2024;114(9):923-934. https://doi.org/10.2105/AJPH.2024.307730).
Collapse
Affiliation(s)
- Mary D Willis
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Erin J Campbell
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Sophie Selbe
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Martha R Koenig
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Jaimie L Gradus
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Yael I Nillni
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Joan A Casey
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Nicole C Deziel
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Elizabeth E Hatch
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Amelia K Wesselink
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Lauren A Wise
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| |
Collapse
|
3
|
Caron-Beaudoin É, Akpo H, Doyle-Waters MM, Ronald LA, Friesen M, Takaro T, Leven K, Meyer U, McGregor MJ. The human health effects of unconventional oil and gas (UOG) chemical exposures: a scoping review of the toxicological literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0076. [PMID: 38985132 DOI: 10.1515/reveh-2024-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Many chemicals associated with unconventional oil and natural gas (UOG) are known toxicants, leading to health concerns about the effects of UOG. Our objective was to conduct a scoping review of the toxicological literature to assess the effects of UOG chemical exposures in models relevant to human health. We searched databases for primary research studies published in English or French between January 2000 and June 2023 on UOG-related toxicology studies. Two reviewers independently screened abstracts and full texts to determine inclusion. Seventeen studies met our study inclusion criteria. Nine studies used solely in vitro models, while six conducted their investigation solely in animal models. Two studies incorporated both types of models. Most studies used real water samples impacted by UOG or lab-made mixtures of UOG chemicals to expose their models. Most in vitro models used human cells in monocultures, while all animal studies were conducted in rodents. All studies detected significant deleterious effects associated with exposure to UOG chemicals or samples, including endocrine disruption, carcinogenicity, behavioral changes and metabolic alterations. Given the plausibility of causal relationships between UOG chemicals and adverse health outcomes highlighted in this review, future risk assessment studies should focus on measuring exposure to UOG chemicals in human populations.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Health and Society, 33530 University of Toronto Scarborough , Ontario, Canada
- Department of Physical and Environmental Sciences, 33530 University of Toronto Scarborough , Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Ontario, Canada
| | - Hélène Akpo
- Department of Occupational and Environmental Health, Université de Montréal, Quebec, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
| | - Lisa A Ronald
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | - Michael Friesen
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | - Tim Takaro
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | | | - Ulrike Meyer
- Department of Family Practice, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Margaret J McGregor
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
4
|
Aker AM, Friesen M, Ronald LA, Doyle-Waters MM, Takaro TK, Thickson W, Levin K, Meyer U, Caron-Beaudoin E, McGregor MJ. The human health effects of unconventional oil and gas development (UOGD): A scoping review of epidemiologic studies. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2024; 115:446-467. [PMID: 38457120 PMCID: PMC11133301 DOI: 10.17269/s41997-024-00860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Unconventional oil and gas development (UOGD, sometimes termed "fracking" or "hydraulic fracturing") is an industrial process to extract methane gas and/or oil deposits. Many chemicals used in UOGD have known adverse human health effects. Canada is a major producer of UOGD-derived gas with wells frequently located in and around rural and Indigenous communities. Our objective was to conduct a scoping review to identify the extent of research evidence assessing UOGD exposure-related health impacts, with an additional focus on Canadian studies. METHODS We included English- or French-language peer-reviewed epidemiologic studies (January 2000-December 2022) which measured exposure to UOGD chemicals directly or by proxy, and where health outcomes were plausibly caused by UOGD-related chemical exposure. Results synthesis was descriptive with results ordered by outcome and hierarchy of methodological approach. SYNTHESIS We identified 52 studies from nine jurisdictions. Only two were set in Canada. A majority (n = 27) used retrospective cohort and case-control designs. Almost half (n = 24) focused on birth outcomes, with a majority (n = 22) reporting one or more significant adverse associations of UOGD exposure with: low birthweight; small for gestational age; preterm birth; and one or more birth defects. Other studies identified adverse impacts including asthma (n = 7), respiratory (n = 13), cardiovascular (n = 6), childhood acute lymphocytic leukemia (n = 2), and all-cause mortality (n = 4). CONCLUSION There is a growing body of research, across different jurisdictions, reporting associations of UOGD with adverse health outcomes. Despite the rapid growth of UOGD, which is often located in remote, rural, and Indigenous communities, Canadian research on its effects on human health is remarkably sparse. There is a pressing need for additional evidence.
Collapse
Affiliation(s)
- Amira M Aker
- Université Laval, CHU de Quebec - Université Laval, Québec, QC, Canada
| | - Michael Friesen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa A Ronald
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Willow Thickson
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Karen Levin
- Emerald Environmental Consulting, Kent, OH, USA
| | - Ulrike Meyer
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Margaret J McGregor
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Sun BZ, Gaffin JM. Recent Insights into the Environmental Determinants of Childhood Asthma. Curr Allergy Asthma Rep 2024; 24:253-260. [PMID: 38498229 DOI: 10.1007/s11882-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW Ubiquitous environmental exposures, including ambient air pollutants, are linked to the development and severity of childhood asthma. Advances in our understanding of these links have increasingly led to clinical interventions to reduce asthma morbidity. RECENT FINDINGS We review recent work untangling the complex relationship between air pollutants, including particulate matter, nitrogen dioxide, and ozone and asthma, such as vulnerable windows of pediatric exposure and their interaction with other factors influencing asthma development and severity. These have led to interventions to reduce air pollutant levels in children's homes and schools. We also highlight emerging environmental exposures increasingly associated with childhood asthma. Growing evidence supports the present threat of climate change to children with asthma. Environmental factors play a large role in the pathogenesis and persistence of pediatric asthma; in turn, this poses an opportunity to intervene to change the course of disease early in life.
Collapse
Affiliation(s)
- Bob Z Sun
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3121, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan M Gaffin
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave, BCH 3121, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Doris M, Daley C, Zalzal J, Chesnaux R, Minet L, Kang M, Caron-Beaudoin É, MacLean HL, Hatzopoulou M. Modelling spatial & temporal variability of air pollution in an area of unconventional natural gas operations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123773. [PMID: 38499172 DOI: 10.1016/j.envpol.2024.123773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
Despite the growing unconventional natural gas production industry in northeastern British Columbia, Canada, few studies have explored the air quality implications on human health in nearby communities. Researchers who have worked with pregnant women in this area have found higher levels of volatile organic compounds (VOCs) in the indoor air of their homes associated with higher density and closer proximity to gas wells. To inform ongoing exposure assessments, this study develops land use regression (LUR) models to predict ambient air pollution at the homes of pregnant women by using natural gas production activities as predictor variables. Using the existing monitoring network, the models were developed for three temporal scales for 12 air pollutants. The models predicting monthly, bi-annual, and annual mean concentrations explained 23%-94%, 54%-94%, and 73%-91% of the variability in air pollutant concentrations, respectively. These models can be used to investigate associations between prenatal exposure to air pollutants associated with natural gas production and adverse health outcomes in northeastern British Columbia.
Collapse
Affiliation(s)
- Miranda Doris
- Civil and Mineral Engineering, University of Toronto, Canada.
| | - Coreen Daley
- Physical and Environmental Sciences, University of Toronto Scarborough, Canada.
| | - Jad Zalzal
- Civil and Mineral Engineering, University of Toronto, Canada.
| | - Romain Chesnaux
- Applied Sciences, University of Quebec at Chicoutimi, Canada.
| | - Laura Minet
- Civil Engineering, University of Victoria, Canada.
| | - Mary Kang
- Civil Engineering, McGill University, Canada.
| | | | | | | |
Collapse
|
7
|
Kerr GH, van Donkelaar A, Martin RV, Brauer M, Bukart K, Wozniak S, Goldberg DL, Anenberg SC. Increasing Racial and Ethnic Disparities in Ambient Air Pollution-Attributable Morbidity and Mortality in the United States. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:37002. [PMID: 38445892 PMCID: PMC10916678 DOI: 10.1289/ehp11900] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Ambient nitrogen dioxide (NO 2 ) and fine particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ) threaten public health in the US, and systemic racism has led to modern-day disparities in the distribution and associated health impacts of these pollutants. OBJECTIVES Many studies on environmental injustices related to ambient air pollution focus only on disparities in pollutant concentrations or provide only an assessment of pollution or health disparities at a snapshot in time. In this study, we compare injustices in NO 2 - and PM 2.5 -attributable health burdens, considering NO 2 -attributable health impacts across the entire US; document changing disparities in these health burdens over time (2010-2019); and evaluate how more stringent air quality standards would reduce disparities in health impacts associated with these pollutants. METHODS Through a health impact assessment, we quantified census tract-level variations in health outcomes attributable to NO 2 and PM 2.5 using health impact functions that combine demographic data from the US Census Bureau; two spatially resolved pollutant datasets, which fuse satellite data with physical and statistical models; and epidemiologically derived relative risk estimates and incidence rates from the Global Burden of Disease study. RESULTS Despite overall decreases in the public health damages associated with NO 2 and PM 2.5 , racial and ethnic relative disparities in NO 2 -attributable pediatric asthma and PM 2.5 -attributable premature mortality have widened in the US during the last decade. Racial relative disparities in PM 2.5 -attributable premature mortality and NO 2 -attributable pediatric asthma have increased by 16% and 19%, respectively, between 2010 and 2019. Similarly, ethnic relative disparities in PM 2.5 -attributable premature mortality have increased by 40% and NO 2 -attributable pediatric asthma by 10%. DISCUSSION Enacting and attaining more stringent air quality standards for both pollutants could preferentially benefit the most marginalized and minoritized communities by greatly reducing racial and ethnic relative disparities in pollution-attributable health burdens in the US. Our methods provide a semi-observational approach to track changes in disparities in air pollution and associated health burdens across the US. https://doi.org/10.1289/EHP11900.
Collapse
Affiliation(s)
- Gaige Hunter Kerr
- Department of Environmental and Occupational Health, The George Washington University, Washington, District of Columbia, USA
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Randall V. Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael Brauer
- Department of Health Metrics Sciences, Institute of Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katrin Bukart
- Department of Health Metrics Sciences, Institute of Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
| | - Sarah Wozniak
- Department of Health Metrics Sciences, Institute of Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA
| | - Daniel L. Goldberg
- Department of Environmental and Occupational Health, The George Washington University, Washington, District of Columbia, USA
| | - Susan C. Anenberg
- Department of Environmental and Occupational Health, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
8
|
Plant G, Kort EA, Gorchov Negron AM, Chen Y, Fordice G, Harkins C. In Situ Sampling of NOx Emissions from United States Natural Gas Flares Reveals Heavy-Tail Emission Characteristic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1509-1517. [PMID: 38189232 PMCID: PMC10809782 DOI: 10.1021/acs.est.3c08095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Natural gas flaring is a common practice employed in many United States (U.S.) oil and gas regions to dispose of gas associated with oil production. Combustion of predominantly hydrocarbon gas results in the production of nitrogen oxides (NOx). Here, we present a large field data set of in situ sampling of real world flares, quantifying flaring NOx production in major U.S. oil production regions: the Bakken, Eagle Ford, and Permian. We find that a single emission factor does not capture the range of the observed NOx emission factors within these regions. For all three regions, the median emission factors fall within the range of four emission factors used by the Texas Commission for Environmental Quality. In the Bakken and Permian, the distribution of emission factors exhibits a heavy tail such that basin-average emission factors are 2-3 times larger than the value employed by the U.S. Environmental Protection Agency. Extrapolation to basin scale emissions using auxiliary satellite assessments of flare volumes indicates that NOx emissions from flares are skewed, with 20%-30% of the flares responsible for 80% of basin-wide flaring NOx emissions. Efforts to reduce flaring volume through alternative gas capture methods would have a larger impact on the NOx oil and gas budget than current inventories indicate.
Collapse
Affiliation(s)
- Genevieve Plant
- Climate
and Space Sciences and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eric A. Kort
- Climate
and Space Sciences and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alan M. Gorchov Negron
- Climate
and Space Sciences and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yuanlei Chen
- Energy
Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Graham Fordice
- Climate
and Space Sciences and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Colin Harkins
- NOAA
Chemical Sciences Laboratory (CSL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
Milani Z, Conrad BM, Roth CS, Johnson MR. Fence-Line Spectroscopic Measurements Suggest Carry-Over of Salt-Laden Aerosols into Flare Systems Is Common. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:1068-1074. [PMID: 38025957 PMCID: PMC10653271 DOI: 10.1021/acs.estlett.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023]
Abstract
Pollutant emissions from gas flares in the upstream oil and gas (UOG) industry can be exacerbated by aerosols of coproduced liquid hydrocarbons and formation water that survive separation and enter the flare. Of noteworthy concern is the potential impact of salt-laden aerosols, since the associated chlorine may adversely affect combustion and emissions. Here, we use a novel approach to remotely detect carry-over of salt-laden aerosols into field-operational flares via flame emission spectroscopy targeting two of the most abundant species in produced water samples, sodium and potassium. Ninety-five UOG flares were examined during field campaigns in the Bakken (U.S.A. and Canada) and Amazon (Ecuador) basins. For the first time, carry-over of salt species into flares is definitively detected and further found to be concerningly common, with 74% of studied flares having detectable sodium and/or potassium signatures. Additional analysis reveals that carry-over strongly correlates with reported flared gas volume (positive) and well age (negative), but carry-over was also observed in flares linked to older wells and those flaring relatively little gas. Given the scale of global UOG flaring and the risk of salt-laden aerosols affecting emissions, these findings emphasize the need to review separation standards and re-evaluate pollutant emissions from flares experiencing carry-over.
Collapse
Affiliation(s)
- Zachary
R. Milani
- Energy and Emissions Research Laboratory,
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Bradley M. Conrad
- Energy and Emissions Research Laboratory,
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cameron S. Roth
- Energy and Emissions Research Laboratory,
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Matthew R. Johnson
- Energy and Emissions Research Laboratory,
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
10
|
Tyris J, Keller S, Parikh K, Gourishankar A. Population-level SDOH and Pediatric Asthma Health Care Utilization: A Systematic Review. Hosp Pediatr 2023; 13:e218-e237. [PMID: 37455665 DOI: 10.1542/hpeds.2022-007005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
CONTEXT Spatial analysis is a population health methodology that can determine geographic distributions of asthma outcomes and examine their relationship to place-based social determinants of health (SDOH). OBJECTIVES To systematically review US-based studies analyzing associations between SDOH and asthma health care utilization by geographic entities. DATA SOURCES Pubmed, Medline, Web of Science, Scopus, and Cumulative Index to Nursing and Allied Health Literature. STUDY SELECTION Empirical, observational US-based studies were included if (1) outcomes included asthma-related emergency department visits or revisits, and hospitalizations or rehospitalizations; (2) exposures were ≥1 SDOH described by the Healthy People (HP) SDOH framework; (3) analysis occurred at the population-level using a geographic entity (eg, census-tract); (4) results were reported separately for children ≤18 years. DATA EXTRACTION Two reviewers collected data on study information, demographics, geographic entities, SDOH exposures, and asthma outcomes. We used the HP SDOH framework's 5 domains to organize and synthesize study findings. RESULTS The initial search identified 815 studies; 40 met inclusion criteria. Zip-code tabulation areas (n = 16) and census-tracts (n = 9) were frequently used geographic entities. Ten SDOH were evaluated across all HP domains. Most studies (n = 37) found significant associations between ≥1 SDOH and asthma health care utilization. Poverty and environmental conditions were the most often studied SDOH. Eight SDOH-poverty, higher education enrollment, health care access, primary care access, discrimination, environmental conditions, housing quality, and crime - had consistent significant associations with asthma health care utilization. CONCLUSIONS Population-level SDOH are associated with asthma health care utilization when evaluated by geographic entities. Future work using similar methodology may improve this research's quality and utility.
Collapse
Affiliation(s)
- Jordan Tyris
- Children's National Hospital, Washington, District of Columbia; and Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Susan Keller
- Children's National Hospital, Washington, District of Columbia; and Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Kavita Parikh
- Children's National Hospital, Washington, District of Columbia; and Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Anand Gourishankar
- Children's National Hospital, Washington, District of Columbia; and Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
11
|
Caseiro A, Soszyńska A. Quantification of Gas Flaring from Satellite Imagery: A Comparison of Two Methods for SLSTR and BIROS Imagery. J Imaging 2023; 9:152. [PMID: 37623684 PMCID: PMC10455728 DOI: 10.3390/jimaging9080152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Gas flaring is an environmental problem of local, regional and global concerns. Gas flares emit pollutants and greenhouse gases, yet knowledge about the source strength is limited due to disparate reporting approaches in different geographies, whenever and wherever those are considered. Remote sensing has bridged the gap but uncertainties remain. There are numerous sensors which provide measurements over flaring-active regions in wavelengths that are suitable for the observation of gas flares and the retrieval of flaring activity. However, their use for operational monitoring has been limited. Besides several potential sensors, there are also different approaches to conduct the retrievals. In the current paper, we compare two retrieval approaches over an offshore flaring area during an extended period of time. Our results show that retrieved activities are consistent between methods although discrepancies may originate for individual flares at the highly temporal scale, which are traced back to the variable nature of flaring. The presented results are helpful for the estimation of flaring activity from different sources and will be useful in a future integration of diverse sensors and methodologies into a single monitoring scheme.
Collapse
Affiliation(s)
- Alexandre Caseiro
- Research Institute for Sustainability–Helmholtz Centre Potsdam, 14467 Potsdam, Germany
| | - Agnieszka Soszyńska
- School of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK;
- Faculty Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
12
|
Willis MD, Cushing LJ, Buonocore JJ, Deziel NC, Casey JA. It's electric! An environmental equity perspective on the lifecycle of our energy sources. Environ Epidemiol 2023; 7:e246. [PMID: 37064423 PMCID: PMC10097546 DOI: 10.1097/ee9.0000000000000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/23/2023] [Indexed: 04/05/2023] Open
Abstract
Energy policy decisions are driven primarily by economic and reliability considerations, with limited consideration given to public health, environmental justice, and climate change. Moreover, epidemiologic studies relevant for public policy typically focus on immediate public health implications of activities related to energy procurement and generation, considering less so health equity or the longer-term health consequences of climate change attributable to an energy source. A more integrated, collective consideration of these three domains can provide more robust guidance to policymakers, communities, and individuals. Here, we illustrate how these domains can be evaluated with respect to natural gas as an energy source. Our process began with a detailed overview of all relevant steps in the process of extracting, producing, and consuming natural gas. We synthesized existing epidemiologic and complementary evidence of how these processes impact public health, environmental justice, and climate change. We conclude that, in certain domains, natural gas looks beneficial (e.g., economically for some), but when considered more expansively, through the life cycle of natural gas and joint lenses of public health, environmental justice, and climate change, natural gas is rendered an undesirable energy source in the United States. A holistic climate health equity framework can inform how we value and deploy different energy sources in the service of public health.
Collapse
Affiliation(s)
- Mary D. Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon
| | - Lara J. Cushing
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Jonathan J. Buonocore
- Center for Climate, Health, and the Global Environment, T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts
- Department of Environmental Health, School of Public Health, Boston University, Boston, Massachusetts
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, Connecticut
| | - Joan A. Casey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington
| |
Collapse
|
13
|
Trickey KS, Chen Z, Sanghavi P. Hospitalisations for cardiovascular and respiratory disease among older adults living near unconventional natural gas development: a difference-in-differences analysis. Lancet Planet Health 2023; 7:e187-e196. [PMID: 36889860 DOI: 10.1016/s2542-5196(23)00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND During 2008-15, the Marcellus shale region of the US state of Pennsylvania experienced a boom in unconventional natural gas development (UNGD) or "fracking". However, despite much public debate, little is known about the effects of UNGD on population health in local communities. Among other mechanisms, air pollution from UNGD might affect individuals living nearby through cardiovascular or respiratory disease, and older adults could be particularly susceptible. METHODS To study the health impacts of Pennsylvania's fracking boom, we exploited the ban on UNGD in neighbouring New York state. Using 2002-15 Medicare claims, we conducted difference-in-differences analyses over multiple timepoints to estimate the risk of living near UNGD for hospitalisation with acute myocardial infarction (AMI), chronic obstructive pulmonary disease (COPD) and bronchiectasis, heart failure, ischaemic heart disease, and stroke among older adults (aged ≥65 years). FINDINGS Pennsylvania ZIP codes that started UNGD in 2008-10 were associated with more hospitalisations for cardiovascular diseases in 2012-15 than would be expected in the absence of UNGD. Specifically, in 2015, we estimated an additional 11·8, 21·6, and 20·4 hospitalisations for AMI, heart failure, and ischaemic heart disease, respectively, per 1000 Medicare beneficiaries. Hospitalisations increased even as UNGD growth slowed. Results were robust in sensitivity analyses. INTERPRETATION Older adults living near UNGD could be at high risk of poor cardiovascular outcomes. Mitigation policies for existing UNGD might be needed to address current and future health risks. Future consideration of UNGD should prioritise local population health. FUNDING University of Chicago and Argonne National Laboratories.
Collapse
Affiliation(s)
- Kevin S Trickey
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Zihan Chen
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Prachi Sanghavi
- Department of Public Health Sciences, Biological Sciences Division, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Gorski-Steiner I, Bandeen-Roche K, Volk HE, O'Dell S, Schwartz BS. The association of unconventional natural gas development with diagnosis and treatment of internalizing disorders among adolescents in Pennsylvania using electronic health records. ENVIRONMENTAL RESEARCH 2022; 212:113167. [PMID: 35341757 PMCID: PMC9233008 DOI: 10.1016/j.envres.2022.113167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Unconventional natural gas development (UNGD) introduces physical and psychosocial hazards into communities, which could contribute to psychosocial stress in adolescents and an increased risk of internalizing disorders, common and impactful health outcomes. OBJECTIVES To evaluate associations between a 180-day composite UNGD activity metric and new onset of internalizing disorders, overall and separately for anxiety and depressive disorders, and effect modification by sex. METHODS We used a nested case-control design from 2008 to 2016 in 38 Pennsylvania counties using electronic health records from adolescent Geisinger subjects. Cases were defined by at least two diagnoses or medication orders indicating new onset of an internalizing disorder, and controls frequency-matched 4:1 on age, sex, and year. To evaluate associations, we used generalized estimating equations, with logit link, robust standard errors, and an exchangeable correlation structure within community. RESULTS We identified 7,974 adolescents (65.9% female, mean age 15.0 years) with new onset internalizing disorders. There were no associations when we used data from the entire study period. When restricted to years with higher UNGD activity (2010-2016), comparing the highest to lowest quartile, UNGD activity was associated (odds ratio [95% confidence level]) with new onset internalizing disorders (1.15 [1.06, 1.25]). Associations were slightly stronger for depressive disorders. Associations were only present in females (p = 0.009). DISCUSSION This is the first epidemiologic study of UNGD in relation to adolescent mental health, an important health outcome in a potentially susceptible group to the environmental and community impacts of UNGD. UNGD activity was associated with new onset internalizing disorders in females in this large sample in an area of active UNGD.
Collapse
Affiliation(s)
- Irena Gorski-Steiner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Karen Bandeen-Roche
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Heather E Volk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sean O'Dell
- Department of Psychiatry and Behavioral Health, Geisinger, Danville, PA, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Population Health Sciences, Geisinger, Danville, PA, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Deziel NC, Clark CJ, Casey JA, Bell ML, Plata DL, Saiers JE. Assessing Exposure to Unconventional Oil and Gas Development: Strengths, Challenges, and Implications for Epidemiologic Research. Curr Environ Health Rep 2022; 9:436-450. [PMID: 35522388 PMCID: PMC9363472 DOI: 10.1007/s40572-022-00358-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic studies have observed elevated health risks in populations living near unconventional oil and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment approaches used in or available for epidemiologic studies, emphasizing studies of children's health outcomes. RECENT FINDINGS Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful surrogates for the complex mix of potential hazards. Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collection of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assessments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.
Collapse
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY 10032 USA
| | - Michelle L. Bell
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| | - Desiree L. Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139 USA
| | - James E. Saiers
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
16
|
Willis MD, Hill EL, Kile ML, Carozza S, Hystad P. Associations between residential proximity to oil and gas extraction and hypertensive conditions during pregnancy: a difference-in-differences analysis in Texas, 1996-2009. Int J Epidemiol 2022; 51:525-536. [PMID: 34897479 PMCID: PMC9082796 DOI: 10.1093/ije/dyab246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Oil and gas extraction produces air pollutants that are associated with increased risks of hypertension. To date, no study has examined residential proximity to oil and gas extraction and hypertensive conditions during pregnancy. This study quantifies associations between residential proximity to oil and gas development on gestational hypertension and eclampsia. METHODS We utilized a population-based retrospective birth cohort in Texas (1996-2009), where mothers reside <10 km from an active or future drilling site (n = 2 845 144.) Using full-address data, we linked each maternal residence at delivery to assign exposure and evaluate this exposure with respect to gestational hypertension and eclampsia. In a difference-in-differences framework, we model the interaction between maternal health before (unexposed) or after (exposed) the start of drilling activity (exposed) and residential proximity near (0-1, >1-2 or >2-3 km) or far (≥3-10 km) from an active or future drilling site. RESULTS Among pregnant women residing 0-1 km from an active oil or gas extraction site, we estimate 5% increased odds of gestational hypertension [95% confidence interval (CI): 1.00, 1.10] and 26% increased odds of eclampsia (95% CI: 1.05, 1.51) in adjusted models. This association dissipates in the 1- to 3-km buffer zones. In restricted models, we find elevated odds ratios among maternal ages ≤35 years at delivery, maternal non-Hispanic White race, ≥30 lbs gained during pregnancy, nulliparous mothers and maternal educational attainment beyond high school. CONCLUSIONS Living within 1 km of an oil or gas extraction site during pregnancy is associated with increased odds of hypertensive conditions during pregnancy.
Collapse
Affiliation(s)
- Mary D Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Elaine L Hill
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Susan Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
17
|
Proximity and density of unconventional natural gas wells and mental illness and substance use among pregnant individuals: An exploratory study in Canada. Int J Hyg Environ Health 2022; 242:113962. [DOI: 10.1016/j.ijheh.2022.113962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
|
18
|
Black Carbon Emissions and Associated Health Impacts of Gas Flaring in the United States. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gas flaring from oil and gas fields is a significant source of black carbon (BC) emissions, a component of particulate matter that damages health and warms the climate. Observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instrument indicate that approximately 17.2 billion cubic meters (bcm) of gas was flared from upstream oil and gas operations in the United States in 2019. Based on an emissions factor equation that accounts for the higher heating value of the gas, that corresponded to nearly 16,000 tons of BC emitted, though estimates vary widely across published emissions factors. In this study, we used three reduced-form air quality and health effect models to estimate the health impacts from the flaring-emitted BC particulate matter in the United States. The three models—EASIUR, AP3, and InMAP—predict 26, 48, and 53 premature deaths, respectively, in 2019. The mortality range expands from 5 to 360 deaths annually if alternative emission factors are used. This study shows that reduced-form models can be useful to estimate the impacts of numerous dispersed emissions sources such as flares, and that further research is needed to better quantify BC emissions factors from flares.
Collapse
|
19
|
Okorn K, Jimenez A, Collier-Oxandale A, Johnston J, Hannigan M. Characterizing methane and total non-methane hydrocarbon levels in Los Angeles communities with oil and gas facilities using air quality monitors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146194. [PMID: 34602658 PMCID: PMC8485894 DOI: 10.1016/j.scitotenv.2021.146194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Over the past decade, sensor networks have been proven valuable to assess air quality on highly localized scales. Here we leverage innovative sensors to characterize gaseous pollutants in a complex urban environment and evaluate differences in air quality in three different Los Angeles neighborhoods where oil and gas activity is present. We deployed monitors across urban neighborhoods in South Los Angles adjacent to oil and gas facilities with varying levels of production. Using low-cost sensors built in-house, we measured methane, total non-methane hydrocarbons (TNMHCs), carbon monoxide, and carbon dioxide during three deployment campaigns over four years. The multi-sensor linear regression calibration model developed to quantify methane and TNMHCs offers up to 16% improvement in coefficient of determination and up to a 22% reduction in root mean square error for the most recent dataset as compared to previous models. The deployment results demonstrate that airborne methane concentrations are higher within a 500 m radius of three urban oil and gas facilities, as well as near a natural gas distribution pipeline, likely a result of proximity to sources. While there are numerous additional sources of TNMHCs in complex urban environments, some sites appear to be larger emitters than others. Significant methane emissions were also measured at an idle site, suggesting that fugitive emissions may still occur even if production is ceased. Episodic spikes of both compounds suggested an association with oil and gas activities, demonstrating how sensor networks can be used to elucidate community-scale sources and differences in air quality moving forward.
Collapse
Affiliation(s)
- Kristen Okorn
- Environmental Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence: , P: (303) 735-8054, A: 1111 Engineering Dr., Boulder, CO 80309, USA
| | - Amanda Jimenez
- Preventative Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Jill Johnston
- Preventative Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael Hannigan
- Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
20
|
Landrigan PJ, Bernstein A. Commentary: Epidemiology, economics and the path to clean energy. Int J Epidemiol 2021; 49:1896-1898. [PMID: 33349840 PMCID: PMC7825938 DOI: 10.1093/ije/dyaa224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Philip J Landrigan
- Program for Global Public Health and the Common Good, Boston College, Boston, MA, USA
| | - Aaron Bernstein
- Harvard Medical School, Boston, MA, USA.,Division of General Pediatrics, Boston Children's Hospital, Boston, MA, USA.,Center for Climate, Health and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
21
|
Johnston JE, Enebish T, Eckel SP, Navarro S, Shamasunder B. Respiratory health, pulmonary function and local engagement in urban communities near oil development. ENVIRONMENTAL RESEARCH 2021; 197:111088. [PMID: 33794173 PMCID: PMC8579779 DOI: 10.1016/j.envres.2021.111088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Modern oil development frequently occurs in close proximity to human populations. Los Angeles, California is home to the largest urban oil field in the country with thousands of active oil and gas wells in very close proximity to homes, schools and parks, yet few studies have investigated potential health impacts. The neighborhoods along the Las Cienagas oil fields are situated in South LA, densely populated by predominantly low-income Black and Latinx families, many of whom are primarily Spanish-speakers. METHODS A cross-sectional community-based study was conducted between January 2017 and August 2019 among residents living <1000 m from two oil wells (one active, one idle) in the Las Cienagas oil field. We collected self-reported acute health symptoms and measured FEV1 (forced expiratory volume in the first second of exhalation) and FVC (forced vital capacity). We related lung function measures to distance and direction from an oil and gas development site using generalized linear models adjusted for covariates. RESULTS A total of 961 residents from two neighborhoods participated, the majority of whom identify as Latinx. Participants near active oil development reported significantly higher prevalence of wheezing, eye and nose irritation, sore throat and dizziness in the past 2 weeks. Among 747 valid spirometry tests, we observe that living near (less than 200 m) of oil operations was associated with, on average, -112 mL lower FEV1 (95% CI: -213, -10) and -128 mL lower FVC (95% CI: -252, -5) compared to residents living more than 200 m from the sites after adjustments for covariates, including age, sex, height, proximity to freeway, asthma status and smoking status. When accounting for predominant wind direction and proximity, we observe that residents living downwind and less than 200 m from oil operations have, on average, -414 mL lower FEV1 (95% CI: -636, -191) and -400 mL lower FVC (95% CI: -652, -147) compared to residents living upwind and more than 200 m from the wells. CONCLUSIONS Living nearby and downwind of urban oil and gas development sites is associated with lower lung function among residents, which may contribute to environmental health disparities.
Collapse
Affiliation(s)
- Jill E Johnston
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Temuulen Enebish
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Bhavna Shamasunder
- Department of Urban & Environmental Policy, Occidental College, Los Angeles, CA, USA
| |
Collapse
|
22
|
Tang IW, Langlois PH, Vieira VM. Birth defects and unconventional natural gas developments in Texas, 1999-2011. ENVIRONMENTAL RESEARCH 2021; 194:110511. [PMID: 33245885 DOI: 10.1016/j.envres.2020.110511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Unconventional natural gas developments (UNGD) may release air and water pollutants into the environment, potentially increasing the risk of birth defects. We conducted a case-control study evaluating 52,955 cases with birth defects and 642,399 controls born between 1999 and 2011 to investigate the relationship between UNGD exposure and the risk of gastroschisis, congenital heart defects (CHD), neural tube defects (NTDs), and orofacial clefts in Texas. We calculated UNGD densities (number of UNGDs per area) within 1, 3, and 7.5 km of maternal address at birth and categorized exposure by density tertiles. For CHD subtypes with large case numbers, we also performed time-stratified analyses to examine temporal trends. We calculated adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the association with UNGD exposure, accounting for maternal characteristics and neighborhood factors. We also included a bivariable smooth of geocoded maternal location in an additive model to account for unmeasured spatially varying risk factors. Positive associations were observed between the highest tertile of UNGD density within 1 km of maternal address and risk of anencephaly (aOR: 2.44, 95% CI: 1.55, 3.86), spina bifida (aOR: 2.09, 95% CI: 1.47, 2.99), gastroschisis among older mothers (aOR: 3.19, 95% CI: 1.77, 5.73), aortic valve stenosis (aOR: 1.90, 95% CI: 1.33, 2.71), hypoplastic left heart syndrome (aOR: 2.00, 95% CI: 1.39, 2.86), and pulmonary valve atresia or stenosis (aOR: 1.36, 95% CI: 1.10, 1.66). For CHD subtypes, results did not differ substantially by distance from maternal address or when residual confounding was considered, except for atrial septal defects. We did not observe associations with orofacial clefts. Our results suggest that UNGDs were associated with some CHDs and possibly NTDs. In addition, we identified temporal trends and observed presence of spatial residual confounding for some CHDs.
Collapse
Affiliation(s)
- Ian W Tang
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, USA.
| | - Peter H Langlois
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas School of Public Health Austin Regional Campus, Austin, TX, USA
| | - Verónica M Vieira
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, USA
| |
Collapse
|
23
|
Elser H, Goldman-Mellor S, Morello-Frosch R, Deziel NC, Ranjbar K, Casey JA. Petro-riskscapes and environmental distress in West Texas: Community perceptions of environmental degradation, threats, and loss. ENERGY RESEARCH & SOCIAL SCIENCE 2020; 70:101798. [PMID: 33072520 PMCID: PMC7566653 DOI: 10.1016/j.erss.2020.101798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Unconventional oil and gas development (UOGD) expanded rapidly in the United States between 2004-2019 with resultant industrial change to landscapes and new environmental exposures. By 2019, West Texas' Permian Basin accounted for 35% of domestic oil production. We conducted an online survey of 566 Texans in 2019 to examine the implications of UOGD using three measures from the Environmental Distress Scale (EDS): perceived threat of environmental issues, felt impact of environmental change, and loss of solace when valued environments are transformed ("solastalgia"). We found increased levels of environmental distress among respondents living in counties in the Permian Basin who reported a 2.75% increase in perceived threat of environmental issues (95% CI = -1.14, 6.65) and a 4.21% increase in solastalgia (95% CI = 0.03, 8.40). In our subgroup analysis of women, we found higher EDS subscale scores among respondents in Permian Basin counties for perceived threat of environmental issues (4.08%, 95% CI= -0.12, 8.37) and solastalgia (7.09%, 95% CI= 2.44, 11.88). In analysis restricted to Permian Basin counties, we found exposure to at least one earthquake of magnitude ≥ 3 was associated with increases in perceived threat of environmental issues (4.69%, 95% CI = 0.15, 9.23), and that county-level exposure to oil and gas injection wells was associated with increases in felt impact (4.38%, 95% CI = -1.77, 10.54) and solastalgia (4.06%, 95% CI = 3.02, 11.14). Our results indicate increased environmental distress in response to UOGD-related environmental degradation among Texans and highlight the importance of considering susceptible sub-groups.
Collapse
Affiliation(s)
- Holly Elser
- Stanford Medical School, Stanford Center for Population Health Sciences
| | | | - Rachel Morello-Frosch
- Department of Environment, Science, Policy and Management & School of Public Health, University of California, Berkeley
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health
| | - Kelsey Ranjbar
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - Joan A Casey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1206, New York NY 10032-3727
| |
Collapse
|