1
|
An W, Zhao C, Wang Y, Zhang Y, Qiao Z. Identifying causal relationships between 35 blood and urine biomarkers and urologic cancers: MR-meta combined with Bayesian colocalization Mendelian randomization analysis. Discov Oncol 2024; 15:617. [PMID: 39495393 DOI: 10.1007/s12672-024-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Blood and urine biomarkers have been associated with urologic tumors, but their causal relationship with urologic tumors is unclear. METHODS We performed a bidirectional Mendelian randomization (MR) analysis of the association between 35 blood and urine biomarkers and urological tumors in our discovery cohort. A Bayesian weighting approach was used to validate the positive results identified in the discovery cohort, and steiger filtering analysis was used to distinguish causality from reverse causality. Bayesian colocalization analysis was used to analyze which single nucleotide polymorphisms (SNPs) specifically co-located between the positive blood and urine biomarkers and the disease phenotypes were driven, and MR-positive results from the discovery cohort and the validation cohort were combined using the MR-meta method. RESULTS Several blood and urine biomarkers were found to be significantly and causally associated with urologic cancers. Notably, calcium (OR: 1.34, 95%CI 1.10-1.63, P = 0.0040) and sex hormone-binding globulin (SHBG) (OR: 0.81, 95%CI 0.70-0.95, P = 0.0092) were associated with bladder cancer; gamma glutamyl transferase (GGT) (OR: 0.91, 95%CI 0.83-0.99, P = 0.0209), lipoprotein A (Lp(a)) (OR: 1.12, 95%CI 1.01-1.24, P = 0.0399), and insulinlike growth factor 1 (IGF 1) (OR: 1.10, 95%CI 1.01-1.20, P = 0.0220) were linked to prostate cancer (PCa); non albumin protein (OR: 0.78, 95%CI 0.65-0.93, P = 0.0065) and total protein (OR: 0.80, 95%CI 0.64-0.99, P = 0.0380) were linked to renal cancer; and apolipoprotein A (Apo-A) (OR: 0.56, 95%CI 0.32-0.98, P = 0.0426) and urate (OR:1.89, 95%CI 1.03-3.47, P = 0.0399) were associated with renal pelvis cancer. These associations were validated in an independent cohort, with GGT, IGF 1, and Lp(a) being consistently linked to PCa. CONCLUSION This study identified significant biomarkers associated with urological cancers in blood and urine. These include GGT, IGF 1, and Lp(a), which are strong biomarkers for PCa. In addition, the findings of this study provide evidence for a handful of risk and protective factors for the development of urologic cancers.
Collapse
Affiliation(s)
- Wenxin An
- Department of Urology, Harbin Medical University Cancer Hospital, 150 HaPing Road, NanGang, Harbin, 150081, Heilongjiang, China.
| | - Chengyi Zhao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaru Wang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yinghui Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhi Qiao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
2
|
Hynes MC, Watling CZ, Dunneram Y, Key TJ, Perez-Cornago A. Associations of body composition measures with circulating insulin-like growth factor-I, testosterone, and sex hormone-binding globulin concentrations in 16,000 men. Int J Obes (Lond) 2024:10.1038/s41366-024-01633-0. [PMID: 39433891 DOI: 10.1038/s41366-024-01633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Adiposity is positively associated with risk of some cancer sites and other health conditions in men; however, it is unclear if endogenous hormones play a role in these associations. We examined how body composition, measured from magnetic resonance imaging (MRI) and common measures of adiposity (e.g., body mass index (BMI)), are related to hormone concentrations in men from the UK Biobank study. METHODS Up to 16,237 men with available body composition data (including visceral, subcutaneous, and liver fat, muscle fat infiltration (MFI), lean tissue, and common adiposity measures) and serum hormone measurements (insulin-like growth factor-I (IGF-I), total testosterone, sex hormone-binding globulin (SHBG), and calculated free testosterone) were included. Multivariable-adjusted linear regression models were used to determine the geometric mean hormone and SHBG concentrations across categories of each exposure. RESULTS Common measurements of adiposity were highly correlated with MRI measures of central and total adiposity (r = 0.76-0.91), although correlations with ectopic fat (liver fat and MFI) were lower (r = 0.43-0.54). Most adiposity measurements showed an inverse U- or J-shaped association with circulating IGF-I and free testosterone; however, MFI was linearly inversely associated, and lean tissue volume was positively associated with both IGF-I and free testosterone concentrations. All body composition measures were inversely associated with total testosterone and SHBG concentrations (relative geometric mean difference between Q5 vs. Q1: 20-30%). CONCLUSION Our results show that common adiposity and most MRI measures of adiposity relate similarly to serum hormone concentrations; however, associations with ectopic fat (particularly MFI) and lean tissue were different.
Collapse
Affiliation(s)
- Matthew C Hynes
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Cody Z Watling
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yashvee Dunneram
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Coelingh Bennink HJT, Roos EPM, van Moorselaar RJA, van Melick HHE, Somford DM, Roeleveld TA, de Haan TD, Reisman Y, Schultz IJ, Krijgh J, Debruyne FMJ. Estetrol Inhibits the Prostate Cancer Tumor Stimulators FSH and IGF-1. J Clin Med 2024; 13:5996. [PMID: 39408055 PMCID: PMC11478095 DOI: 10.3390/jcm13195996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Background: The co-treatment of androgen deprivation therapy (ADT) for advanced prostate cancer (PCa) with the fetal estrogen estetrol (E4) may further inhibit endocrine PCa tumor stimulators. We previously reported the suppression of follicle-stimulating hormone (FSH), total and free testosterone, and prostate-specific antigen by ADT+E4. Here, we provide more detailed data on FSH suppression by E4 and present new findings on the effect of ADT+E4 on insulin-like growth factor-1 (IGF-1). Methods: A Phase II, double-blind, randomized, placebo-controlled study (the PCombi study) was conducted in advanced PCa patients treated with ADT. The study assessed the effect of E4 co-treatment with LHRH agonist ADT on tumor stimulators, including FSH and IGF-1. Patients starting ADT were randomized 2:1 to receive either 40 mg E4 (n = 41) or placebo (n = 21) for 24 weeks. Non-parametric analyses were performed on the per-protocol population (PP) and individual changes were visualized. Results: The PP included 57 patients (37 ADT+E4; 20 ADT+placebo). ADT+E4 almost completely suppressed FSH in all patients (98% versus 37%; p < 0.0001). IGF-1 levels decreased by 41% with ADT+E4 versus an increase of 10% with ADT+placebo (p < 0.0001). Conclusions: The almost complete suppression of the tumor stimulator FSH using ADT plus E4 observed in all individual patients in this study, along with the augmented suppression of IGF-1 versus an increase by ADT only, may be clinically relevant and suggest the enhanced anti-cancer treatment efficacy of E4 in addition to the previously reported additional suppression of total and free T and PSA.
Collapse
Affiliation(s)
| | - Erik P. M. Roos
- Department of Urology, Antonius Hospital, 8601 ZK Sneek, The Netherlands;
| | | | | | - Diederik M. Somford
- Department of Urology, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands;
| | - Ton A. Roeleveld
- Department of Urology, North-West Hospital, 1815 JD Alkmaar, The Netherlands;
| | - Tjard D. de Haan
- Department of Urology, Isala Hospital, 8025 AB Zwolle, The Netherlands;
| | | | - Iman J. Schultz
- Pantarhei Oncology, 3700 AL Zeist, The Netherlands; (I.J.S.); (J.K.)
| | - Jan Krijgh
- Pantarhei Oncology, 3700 AL Zeist, The Netherlands; (I.J.S.); (J.K.)
| | | |
Collapse
|
4
|
Chen P, Wang Y, Xiong Z, Luo T, Lai Y, Zhong H, Peng S, Zhuang R, Li K, Huang H. Association between autoimmunity-related disorders and prostate cancer: A Mendelian randomization study. CANCER PATHOGENESIS AND THERAPY 2024; 2:292-298. [PMID: 39371096 PMCID: PMC11447306 DOI: 10.1016/j.cpt.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 10/08/2024]
Abstract
Background Although many epidemiological studies and meta-analyses have reported an association between autoimmune disorders and prostate cancer, none has reported a clear correlation or the direction of the association. The purpose of our study was to explore the potential relationship between autoimmunity-related disorders and prostate cancer using Mendelian randomization (MR). Methods We retrieved literature from PubMed using the keywords "autoimmune disorder" AND "prostate cancer" to find more clues on the correlation between prostate cancer and autoimmunity-related disorder. Based on this literature search, we selected 16 autoimmunity-related disorders that had genome-wide association study (GWAS) data and may be associated with prostate cancer. The inverse variance weighting (IVW) method was applied as our primary analysis for two-sample MR and multivariate MR analysis to estimate the odds ratio (OR) and 95% confidence interval (CI). We further verified the robustness of our conclusions using a series of sensitivity analyses. Results The autoimmunity-related diseases selected include rheumatoid arthritis, ankylosing spondylitis, coxarthrosis, gonarthrosis, Crohn's disease, ulcerative colitis, irritable bowel syndrome, celiac disease, primary sclerosing cholangitis, asthma, type 1 diabetes, systemic lupus erythematosus, multiple sclerosis, autoimmune hyperthyroidism, psoriatic arthropathies, and polymyalgia rheumatica. The results of inverse variance weighting (IVW suggested that six diseases were associated with the development of prostate cancer. The three diseases that may increase the risk of prostate cancer are rheumatoid arthritis (P = 0.001), coxarthrosis (P < 0.001), and gonarthrosis (P = 0.008). The three possible protective factors against prostate cancer are primary sclerosing cholangitis (P = 0.001), autoimmune hyperthyroidism (P = 0.011), and psoriatic arthropathies (P = 0.001). Horizontal pleiotropy was not observed in the MR-Egger test. Conclusions Our findings provide predictive genetic evidence for an association between autoimmune disorders and prostate cancer. Further research is needed to explore the underlying mechanisms of comorbidities at the molecular level.
Collapse
Affiliation(s)
- Peixian Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yue Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Zhi Xiong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Haitao Zhong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Ruilin Zhuang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Hai Huang
- Department of Urology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, China
| |
Collapse
|
5
|
Wu Y, Yu W, Gu Y, Xia J, Sun G. Height and cancer risk in East Asians: Evidence from a prospective cohort study and Mendelian randomization analyses. Cancer Epidemiol 2024; 92:102647. [PMID: 39142240 DOI: 10.1016/j.canep.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Height is associated with increased cancer risk, but most studies focus on Western populations. We aimed to evaluate this relationship in East Asians. METHOD Observational analyses were performed utilizing data from China Kadoorie Biobank (CKB) prospective cohort. Adjusted hazard ratios (HRs) and corresponding 95 % confidence intervals (CIs) were estimated using Cox proportional hazards models. Two-sample Mendelian randomization (MR) analyses explored causal effects between height and cancer using data from Korean Genome and Epidemiology Study (KoGES), Biobank Japan (BBJ), and CKB. RESULTS Over a median 10.1-years follow-up, 22,731 incident cancers occurred. In observational analyses, after Bonferroni correction, each 10 cm increase in height was significantly associated with higher risk of overall cancer (HR 1.16, 95 % CI 1.14-1.19, P < 0.001), lung cancer (1.18, 95 % CI 1.12-1.24, P < 0.001), esophageal cancer (1.21, 95 % CI 1.12-1.30, P < 0.001), breast cancer (1.41, 95 % CI 1.31-1.53, P < 0.001), and cervix uteri cancer (1.29, 95 % CI 1.15-1.45, P < 0.001). Each 10 cm increase in height was suggestively associated with increased risk for lymphoma (1.18, 95 % CI 1.04-1.34, P = 0.010), colorectal cancer (1.09, 95 % CI 1.02-1.16, P = 0.010), and stomach cancer (1.07, 95 % CI 1.00-1.14, P = 0.044). In MR analyses, genetically predicted height (per 1 standard deviation increase, 8.07 cm) was suggestively associated with higher risk of lung cancer (odds ratio [OR] 1.17, 95 % confidence interval [CI] 1.02-1.35, P = 0.0244) and gastric cancer (OR 1.14, 95 % CI 1.02-1.29, P = 0.0233). CONCLUSIONS Taller height was significantly related to a higher risk for overall cancer, lung cancer, esophageal cancer, breast cancer, and cervix uteri cancer. Our findings suggest that height may be a potential causal risk factor for lung and gastric cancers among East Asians.
Collapse
Affiliation(s)
- Yougen Wu
- National Institute of Clinical Research, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Weimin Yu
- Department of Pharmacy, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuting Gu
- National Institute of Clinical Research, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ju Xia
- National Institute of Clinical Research, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Guangchun Sun
- National Institute of Clinical Research, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China; Department of Pharmacy, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Xu J, Song Y, Zhou B, Yuan S, Gao S. Prognostic and diagnostic value of circulating IGFBP2 in pancreatic cancer. Open Med (Wars) 2024; 19:20230893. [PMID: 39221034 PMCID: PMC11365464 DOI: 10.1515/med-2023-0893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 09/04/2024] Open
Abstract
Insulin-like growth factor binding protein 2 (IGFBP2) is overexpressed in tumor tissues of several malignancies, including pancreatic cancer. Because of its role in tumor progression, IGFBP2 has been investigated as a tumor biomarker. However, little is known about its utility in pancreatic cancer. Plasma IGFBP2 levels were determined using enzyme-linked immunosorbent assay in 75 patients with pancreatic ductal adenocarcinoma (PDAC), 73 matched healthy controls, and 17 chronic pancreatitis patients. Our results showed that the plasma IGFPB2 level was significantly higher in PDAC patients than in patients with chronic pancreatitis and healthy controls. At a cut-off value of 333.9 ng/mL, the specificity and sensitivity were 78.08 and 65.33%, respectively. IGFBP2 level alone did not outperform carbohydrate antigen 19-9 (CA19-9) in diagnostic accuracy, but it successfully identified 9 out of 24 PDAC patients who were misidentified by CA19-9. The combination of IGFBP2 and CA19-9 was more accurate in the detection of PDAC than CA19-9 alone. IGFBP2 was more accurate than the other in discriminating between chronic pancreatitis and PDAC. Plasma IGFBP2, rather than CA19-9, was higher in the new-onset diabetes, lymph node involvement, and distant metastasis subgroups. IGFBP2 level was notably higher in stage IV cases than in stage I/II or stage III disease. However, CA19-9 did not show a difference between stages. After adjusting for lymph node involvement and distant metastasis, plasma IGFBP2 was identified as an independent prognostic marker for PDAC. The median survival time for patients with an IGFBP2 level ≥333.9 ng/mL was significantly shorter than that for patients with an IGFBP2 level <333.9 ng/mL. Marked elevation of plasma IGFBP2 in PDAC is associated with poorer survival. IGFBP2 may be considered as a supplementary biomarker for the diagnosis and prognostic prediction in Chinese pancreatic cancer patients.
Collapse
Affiliation(s)
- Jie Xu
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuning Song
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Bodong Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Shuai Yuan
- Senior Ward, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
7
|
Liu T, Joshu CE, Lu J, Prizment A, Chatterjee N, Wu L, Platz EA. Validation of candidate protein biomarkers previously identified by genetic instruments for prostate cancer risk: A prospective cohort analysis of directly measured protein levels in the ARIC study. Prostate 2024. [PMID: 39148211 DOI: 10.1002/pros.24774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Multiple novel protein biomarkers have been shown to be associated with prostate cancer risk using genetic instruments. This study aimed to externally validate the associations of 30 genetically predicted candidate proteins with prostate cancer risk using aptamer-based levels in US Black and White men in the Atherosclerosis Risk in Communities (ARIC) study. Plasma protein levels were previously measured by SomaScan® using the blood collected in 1990-1992. METHODS Among 4864 eligible participants, we ascertained 667 first primary prostate cancer cases through 2015. Hazard ratios (HRs) of prostate cancer and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression for tertiles of each protein. We adjusted for age, race, and other risk factors. RESULTS Of the 30 proteins and considering a nominal p trend < 0.05, two were positively associated with prostate cancer risk-RF1ML (tertile 3 vs. 1: HR = 1.23; 95% CI 1.02-1.48; p trend = 0.037) and TPST1 (1.28, 95% CI 1.06-1.55; p trend = 0.0087); two were inversely associated-ATF6A (HR = 0.80, 95% CI 0.65-0.98; p trend = 0.028) and SPINT2 (HR = 0.74, 95% CI 0.61-0.90; p trend = 0.0025). One protein, KDEL2, which was nonlinearly associated (test-for-linearity: p < 0.01) showed a statistically significant lower risk in the second tertile (HR = 0.79, 95% CI 0.65-0.95). Of these five, four proteins-ATF6A, KDEL2, RF1ML, and TPST1-were consistent in the direction of association with the discovery studies. CONCLUSION This study validated some pre-diagnostic protein biomarkers of the risk of prostate cancer.
Collapse
Affiliation(s)
- Tanxin Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Corinne E Joshu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anna Prizment
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nilanjan Chatterjee
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lang Wu
- University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Zhang Y, Stopsack KH, Song M, Mucci LA, Liu B, Penney KL, Tabung FK, Giovannucci E, Plym A. Healthy dietary patterns and risk of prostate cancer in men at high genetic risk. Int J Cancer 2024; 155:71-80. [PMID: 38429859 PMCID: PMC11068494 DOI: 10.1002/ijc.34898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024]
Abstract
Prostate cancer has high heritability. Healthy lifestyle has been associated with lower lethal prostate cancer risk among men at increased genetic susceptibility, but the role of healthy dietary patterns remains unknown. We prospectively followed 10,269 genotyped men in the Health Professionals Follow-up Study (1993-2019). Genetic risk was quantified using an established polygenic risk score (PRS). Five dietary patterns were investigated: healthy eating index, Mediterranean, diabetes risk-reducing, hyperinsulinemic and inflammatory diet. Overall and lethal prostate cancer rates (metastatic disease/prostate cancer-specific death) were analyzed using multivariable Cox proportional hazards models. During 26 years of follow-up, 2133 overall and 253 lethal prostate cancer events were documented. In the highest PRS quartile, higher adherence to a diabetes risk-reducing diet was associated with lower rates of overall (top vs. bottom quintile HR [95% CI], 0.74 [0.58-0.94]) and lethal prostate cancer (0.43 [0.21-0.88]). A low insulinemic diet was associated with similar lower rates (overall, 0.76 [0.60-0.95]; lethal, 0.46 [0.23-0.94]). Other dietary patterns showed weaker, but similar associations. In the highest PRS quartile, men with healthy lifestyles based on body weight, physical activity, and low insulinemic diet had a substantially lower rate (0.26 [0.13-0.49]) of lethal prostate cancer compared with men with unhealthy lifestyles, translating to a lifetime risk of 3.4% (95% CI, 2.3%-5.0%) among those with healthy lifestyles and 9.5% (5.3%-16.7%) among those with unhealthy lifestyles. Our findings indicate that lifestyle modifications lowering insulin resistance and chronic hyperinsulinemia could be relevant in preventing aggressive prostate cancer among men genetically predisposed to prostate cancer.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Discovery Science, American Cancer Society, Atlanta GA
| | - Binkai Liu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fred K. Tabung
- Division of Medicine Oncology, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center-James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Anna Plym
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Urology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Desai TA, Hedman ÅK, Dimitriou M, Koprulu M, Figiel S, Yin W, Johansson M, Watts EL, Atkins JR, Sokolov AV, Schiöth HB, Gunter MJ, Tsilidis KK, Martin RM, Pietzner M, Langenberg C, Mills IG, Lamb AD, Mälarstig A, Key TJ, Travis RC, Smith-Byrne K. Identifying proteomic risk factors for overall, aggressive, and early onset prostate cancer using Mendelian Randomisation and tumour spatial transcriptomics. EBioMedicine 2024; 105:105168. [PMID: 38878676 PMCID: PMC11233900 DOI: 10.1016/j.ebiom.2024.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. METHODS We investigated the association of 2002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomisation (MR) and colocalisation. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalisation were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumour tissue to assess their role in tumour aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. FINDINGS We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which the majority replicated where data were available. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirmed an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also found an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that comparatively had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk also mapped to existing therapeutic interventions. INTERPRETATION Our findings emphasise the importance of proteomics for improving our understanding of prostate cancer aetiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumours. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer. FUNDING This work was supported by Cancer Research UK (grant no. C8221/A29017).
Collapse
Affiliation(s)
- Trishna A Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom.
| | - Åsa K Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
| | - Sandy Figiel
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Wencheng Yin
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Eleanor L Watts
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua R Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124, Uppsala, Sweden
| | - Marc J Gunter
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom; NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, United Kingdom; Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany; Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, United Kingdom; Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany; Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ian G Mills
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Alastair D Lamb
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tim J Key
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Zhen K, Hou W, Bai L, Wang M, Yue Z, Xu Z, Xiong D, Gao L, Ying W. An effective urobilin clearance strategy based on paramagnetic beads facilitates microscale proteomic analysis of urine. Analyst 2024; 149:3625-3635. [PMID: 38775334 DOI: 10.1039/d4an00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Urine provides an ideal source for disease biomarker discovery. High-adhesion contaminants such as urobilin, which are difficult to remove from urine, can severely interfere with urinary proteomic analysis. Here, we aimed to establish a strategy based on single-pot, solid-phase-enhanced sample preparation (SP3) technology to prepare samples for urinary proteomics analysis that almost completely eliminates the impact of urobilin. A systematic evaluation of the effects of two urinary protein precipitation methods, two types of protein lysis buffers, and different ratios of magnetic digestion beads on the identification and quantification of the microscale urinary proteome was conducted. Our results indicate that methanol-chloroform precipitation, coupled with efficient lysis facilitated by urea, and subsequent enzymatic digestion using a mix of hydrophilic and hydrophobic magnetic beads offers the best performance. Further applying this strategy to the urine of patients with benign prostatic hyperplasia, prostate cancer and healthy individuals, combined with a narrow window of data-independent acquisition, FGFR4, MYLK, ORM2, GOLM1, SPP1, CD55, CSF1, DLD and TIMP3 were identified as potential biomarkers to discriminate benign prostatic hyperplasia and prostate cancer patients.
Collapse
Affiliation(s)
- Kemiao Zhen
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Wenhao Hou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Lu Bai
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Mingchao Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Zhan Yue
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Zanxin Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Deyun Xiong
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Li Gao
- Department of Urology Surgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
11
|
Lynch SM, Heeran AB, Burke C, Lynam-Lennon N, Eustace AJ, Dean K, Robson T, Rahman A, Marcone S. Precision Oncology, Artificial Intelligence, and Novel Therapeutic Advancements in the Diagnosis, Prevention, and Treatment of Cancer: Highlights from the 59th Irish Association for Cancer Research (IACR) Annual Conference. Cancers (Basel) 2024; 16:1989. [PMID: 38893110 PMCID: PMC11171401 DOI: 10.3390/cancers16111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Advancements in oncology, especially with the era of precision oncology, is resulting in a paradigm shift in cancer care. Indeed, innovative technologies, such as artificial intelligence, are paving the way towards enhanced diagnosis, prevention, and personalised treatments as well as novel drug discoveries. Despite excellent progress, the emergence of resistant cancers has curtailed both the pace and extent to which we can advance. By combining both their understanding of the fundamental biological mechanisms and technological advancements such as artificial intelligence and data science, cancer researchers are now beginning to address this. Together, this will revolutionise cancer care, by enhancing molecular interventions that may aid cancer prevention, inform clinical decision making, and accelerate the development of novel therapeutic drugs. Here, we will discuss the advances and approaches in both artificial intelligence and precision oncology, presented at the 59th Irish Association for Cancer Research annual conference.
Collapse
Affiliation(s)
- Seodhna M. Lynch
- Personalised Medicine Centre, School of Medicine, Ulster University, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, UK;
| | - Aisling B. Heeran
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| | - Caoimbhe Burke
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 C1P1 Dublin, Ireland;
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| | - Alex J. Eustace
- Life Sciences Institute, Dublin City University, D09 NR58 Dublin, Ireland;
| | - Kellie Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland;
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland
| | - Arman Rahman
- UCD School of Medicine, UCD Conway Institute, University College Dublin, Belfield, D04 C1P1 Dublin, Ireland;
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.B.H.); (N.L.-L.); (S.M.)
| |
Collapse
|
12
|
Papier K, Atkins JR, Tong TYN, Gaitskell K, Desai T, Ogamba CF, Parsaeian M, Reeves GK, Mills IG, Key TJ, Smith-Byrne K, Travis RC. Identifying proteomic risk factors for cancer using prospective and exome analyses of 1463 circulating proteins and risk of 19 cancers in the UK Biobank. Nat Commun 2024; 15:4010. [PMID: 38750076 PMCID: PMC11096312 DOI: 10.1038/s41467-024-48017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
The availability of protein measurements and whole exome sequence data in the UK Biobank enables investigation of potential observational and genetic protein-cancer risk associations. We investigated associations of 1463 plasma proteins with incidence of 19 cancers and 9 cancer subsites in UK Biobank participants (average 12 years follow-up). Emerging protein-cancer associations were further explored using two genetic approaches, cis-pQTL and exome-wide protein genetic scores (exGS). We identify 618 protein-cancer associations, of which 107 persist for cases diagnosed more than seven years after blood draw, 29 of 618 were associated in genetic analyses, and four had support from long time-to-diagnosis ( > 7 years) and both cis-pQTL and exGS analyses: CD74 and TNFRSF1B with NHL, ADAM8 with leukemia, and SFTPA2 with lung cancer. We present multiple blood protein-cancer risk associations, including many detectable more than seven years before cancer diagnosis and that had concordant evidence from genetic analyses, suggesting a possible role in cancer development.
Collapse
Affiliation(s)
- Keren Papier
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - Joshua R Atkins
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kezia Gaitskell
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Trishna Desai
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Chibuzor F Ogamba
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mahboubeh Parsaeian
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Gillian K Reeves
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Tim J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
14
|
Liu VN, Van Blarigan EL, Zhang L, Graff RE, Loeb S, Langlais CS, Cowan JE, Carroll PR, Chan JM, Kenfield SA. Plant-Based Diets and Disease Progression in Men With Prostate Cancer. JAMA Netw Open 2024; 7:e249053. [PMID: 38691361 PMCID: PMC11063803 DOI: 10.1001/jamanetworkopen.2024.9053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/01/2024] [Indexed: 05/03/2024] Open
Abstract
Importance Plant-based diets are associated with many health and environmental benefits, including primary prevention of fatal prostate cancer, but less is known about postdiagnostic plant-based diet patterns in individuals with prostate cancer. Objective To examine whether postdiagnostic plant-based dietary patterns are associated with risk of prostate cancer progression and prostate cancer-specific mortality. Design, Setting, and Participants This longitudinal observational cohort study included men with biopsy-proven nonmetastatic prostate cancer (stage ≤T3a) from the diet and lifestyle substudy within the Cancer of the Prostate Strategic Urologic Research Endeavor (CaPSURE) enrolled at 43 urology practices across the US from 1999 to 2018. Participants completed a comprehensive diet and lifestyle questionnaire (including a validated food frequency questionnaire [FFQ]) between 2004 and 2016. Data were analyzed from August 2022 to April 2023. Exposures Overall plant-based diet index (PDI) and healthful plant-based diet index (hPDI) scores were calculated from the FFQ. Main Outcomes and Measures The primary outcome was prostate cancer progression (recurrence, secondary treatment, bone metastases, or prostate cancer-specific mortality). The secondary outcome was prostate cancer-specific mortality. Results Among 2062 participants (median [IQR] age, 65.0 [59.0-70.0] years), 61 (3%) identified as African American, 3 (<1%) identified as American Indian or Alaska Native, 9 (<1%) identified as Asian or Pacific Islander, 15 (1%) identified as Latino, and 1959 (95%) identified as White. Median (IQR) time from prostate cancer diagnosis to FFQ was 31.3 (15.9-62.0) months after diagnosis. During a median (IQR) follow-up of 6.5 (1.3-12.8) years after the FFQ, 190 progression events and 61 prostate cancer-specific mortality events were observed. Men scoring in the highest vs lowest quintile of PDI had a 47% lower risk of progression (HR, 0.53; 95% CI, 0.37-0.74; P for trend = .003). The hPDI was not associated with risk of progression overall. However, among 680 individuals with Gleason grade 7 or higher at diagnosis, the highest hPDI quintile was associated with a 55% lower risk of progression compared with the lowest hPDI quintile (HR 0.45; 95% CI, 0.25-0.81; P for trend = .01); no association was observed in individuals with Gleason grade less than 7. Conclusions and Relevance In this cohort study of 2062 men with prostate cancer, higher intake of plant foods after prostate cancer diagnosis was associated with lower risk of cancer progression. These findings suggest nutritional assessment and counseling may be recommended to patients with prostate cancer to help establish healthy dietary practices and support well-being and overall health.
Collapse
Affiliation(s)
- Vivian N. Liu
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Menwell Limited, London, England, United Kingdom
| | - Erin L. Van Blarigan
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Department of Urology, University of California, San Francisco
| | - Li Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Department of Medicine, University of California, San Francisco
| | - Rebecca E. Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Stacy Loeb
- Department of Urology and Population Health, New York University and Manhattan Veterans Affairs, New York
| | - Crystal S. Langlais
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Real World Solutions, IQVIA, Durham, North Carolina
| | - Janet E. Cowan
- Department of Urology, University of California, San Francisco
| | | | - June M. Chan
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Department of Urology, University of California, San Francisco
| | - Stacey A. Kenfield
- Department of Epidemiology and Biostatistics, University of California, San Francisco
- Department of Urology, University of California, San Francisco
| |
Collapse
|
15
|
Watts EL, Moore SC, Gunter MJ, Chatterjee N. Adiposity and cancer: meta-analysis, mechanisms, and future perspectives. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.16.24302944. [PMID: 38405761 PMCID: PMC10889047 DOI: 10.1101/2024.02.16.24302944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Obesity is a recognised risk factor for many cancers and with rising global prevalence, has become a leading cause of cancer. Here we summarise the current evidence from both population-based epidemiologic investigations and experimental studies on the role of obesity in cancer development. This review presents a new meta-analysis using data from 40 million individuals and reports positive associations with 19 cancer types. Utilising major new data from East Asia, the meta-analysis also shows that the strength of obesity and cancer associations varies regionally, with stronger relative risks for several cancers in East Asia. This review also presents current evidence on the mechanisms linking obesity and cancer and identifies promising future research directions. These include the use of new imaging data to circumvent the methodological issues involved with body mass index and the use of omics technologies to resolve biologic mechanisms with greater precision and clarity.
Collapse
Affiliation(s)
- Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, MD, USA
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, MD, USA
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Nilanjan Chatterjee
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
16
|
Wu R, Zhang J, Zou G, Li S, Wang J, Li X, Xu J. Diabetes Mellitus and Thyroid Cancers: Risky Correlation, Underlying Mechanisms and Clinical Prevention. Diabetes Metab Syndr Obes 2024; 17:809-823. [PMID: 38380275 PMCID: PMC10878320 DOI: 10.2147/dmso.s450321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
The incidences of thyroid cancer and diabetes are rapidly increasing worldwide. The relationship between thyroid cancer and diabetes is a popular topic in medicine. Increasing evidence has shown that diabetes increases the risk of thyroid cancer to a certain extent. This mechanism may be related to genetic factors, abnormal thyroid-stimulating hormone secretion, oxidative stress injury, hyperinsulinemia, elevated insulin-like growth factor-1 levels, abnormal secretion of adipocytokines, and increased secretion of inflammatory factors and chemokines. This article reviews the latest research progress on the relationship between thyroid cancer and diabetes, including the association between diabetes and the risk of developing thyroid cancer, its underlying mechanisms, and potential anti-thyroid cancer effects of hypoglycemic drugs. It providing novel strategies for the prevention, treatment, and improving the prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Rongqian Wu
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Junping Zhang
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Guilin Zou
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jinying Wang
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoxinlei Li
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The 1 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, People’s Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, People’s Republic of China
| |
Collapse
|
17
|
Ardisson Korat AV, Shea MK, Jacques PF, Sebastiani P, Wang M, Eliassen AH, Willett WC, Sun Q. Dietary protein intake in midlife in relation to healthy aging - results from the prospective Nurses' Health Study cohort. Am J Clin Nutr 2024; 119:271-282. [PMID: 38309825 PMCID: PMC10884611 DOI: 10.1016/j.ajcnut.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Protein intake plays an important role in maintaining the health status of older adults. However, few epidemiologic studies examined midlife protein intake in relation to healthy aging. OBJECTIVES The objective of this study was to evaluate the long-term role of dietary protein intake in healthy aging among female participants in the prospective Nurses' Health Study (NHS) cohort. METHODS We included 48,762 NHS participants aged <60 y in 1984. Total protein, animal protein, dairy protein (a subset of animal protein), and plant protein were derived from validated food frequency questionnaires. Healthy aging was defined as being free from 11 major chronic diseases, having good mental health, and not having impairments in either cognitive or physical function, as assessed in the 2014 or 2016 NHS participant questionnaires. We used multivariate logistic regression adjusted for lifestyle, demographics, and health status to estimate the odds ratios (ORs) and 95% confidence intervals for protein intake in relation to healthy aging. RESULTS A total of 3721 (7.6%) NHS participants met our healthy aging definition. Protein intake was significantly associated with higher odds of healthy aging. The ORs (95% confidence intervals) per 3%-energy increment with healthy aging were 1.05 (1.01, 1.10) for total protein, 1.07 (1.02, 1.11) for animal protein, 1.14 (1.06, 1.23) for dairy protein, and 1.38 (1.24, 1.54) for plant protein. Plant protein was also associated with higher odds of absence of physical function limitations and good mental status. In substitution analyses, we observed significant positive associations for the isocaloric replacement of animal or dairy protein, carbohydrate, or fat with plant protein (ORs for healthy aging: 1.22-1.58 for 3% energy replacement with plant protein). CONCLUSIONS Dietary protein intake, especially plant protein, in midlife, is associated with higher odds of healthy aging and with several domains of positive health status in a large cohort of female nurses.
Collapse
Affiliation(s)
- Andres V Ardisson Korat
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States; Tufts University School of Medicine, Tufts University, Boston, MA, United States.
| | - M Kyla Shea
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Paul F Jacques
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, United States
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
18
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Woodman IL. Modelling the distinct roles of epithelial and stromal androgen receptor in the regulation of prostate epithelial dynamics. FEBS J 2023; 290:5270-5291. [PMID: 37424435 DOI: 10.1111/febs.16900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
The prostate is an androgen-responsive organ, but the complex cellular and molecular interactions that mediate these responses remain incompletely defined. Here, I synthesise the existing literature to derive a simple conceptual framework describing the androgen-dependent regulation of prostate epithelial dynamics. In this framework, epithelial androgen receptor (AR) cell-autonomously controls luminal cell height, whereas stromal AR regulates the synthesis of growth factors that promote luminal cell survival and proliferation. With the additional aid of a reanalysis of single-cell RNA-seq data, I also propose that insulin-like growth factor 1 (IGF1) functions as a key androgen-dependent growth factor coordinating stromal-to-epithelial paracrine communication. A novel mathematical model based on this framework was able to quantitatively fit experimental data describing prostate regression and regeneration. Model analysis demonstrates how the luminal cell population can maintain a stable equilibrium size via competition for and degradation of stroma-derived IGF1 and how this population size can be controlled by androgen levels, without a requirement for distinct luminal cell subsets. Moreover, model simulations were able to qualitatively recapitulate experimental observations in inflammatory and cancerous states, thereby providing insights into potential disease mechanisms. This simple model could therefore serve as a foundation for more comprehensive modelling of both the healthy and diseased prostate.
Collapse
|
20
|
Wang Y, Yu T, Chen J, Zhao R, Diao M, Mei P, He S, Qiu W, Ye G, Jiang L, Xiao H, Liao Y. Immune characteristics analysis and construction of a four-gene prognostic signature for lung adenocarcinoma based on estrogen reactivity. BMC Cancer 2023; 23:1047. [PMID: 37907850 PMCID: PMC10619241 DOI: 10.1186/s12885-023-11415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/17/2023] [Indexed: 11/02/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a common type of malignant tumor with poor prognosis and high mortality. In our previous studies, we found that estrogen is an important risk factor for LUAD, and different estrogen statuses can predict different prognoses. Therefore, in this study, we constructed a prognostic signature related to estrogen reactivity to determine the relationship between different estrogen reactivities and prognosis. We downloaded the LUAD dataset from The Cancer Genome Atlas (TCGA) database, calculated the estrogen reactivity of each sample, and divided them into a high-estrogen reactivity group and a low-estrogen reactivity group. The difference in overall survival between the groups was significant. We also analyzed the status of immune cell infiltration and immune checkpoint expression between the groups. We analyzed the differential gene expression between the groups and screened four key prognostic factors by the least absolute shrinkage and selection operator (LASSO) regression and univariable and multivariable Cox regression. Based on the four genes, a risk signature was established. To a certain extent, the receiver operating characteristic (ROC) curve showed the predictive ability of the risk signature, which was further verified using the GSE31210 dataset. We also determined the role of estrogen in LUAD using an orthotopic mouse model. Additionally, we developed a predictive nomogram combining the risk signature with other clinical characteristics. In conclusion, our four-gene prognostic signature based on estrogen reactivity had prognostic value and can provide new insights into the development of treatment strategies for LUAD.
Collapse
Affiliation(s)
- Yangwei Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Yu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaping Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingxin Diao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiwen He
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenlin Qiu
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanchao Ye
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Jiang
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Desai TA, Hedman ÅK, Dimitriou M, Koprulu M, Figiel S, Yin W, Johansson M, Watts EL, Atkins JR, Sokolov AV, Schiöth HB, Gunter MJ, Tsilidis KK, Martin RM, Pietzner M, Langenberg C, Mills IG, Lamb AD, Mälarstig A, Key TJ, Travis RC, Smith-Byrne K. Identifying proteomic risk factors for overall, aggressive and early onset prostate cancer using Mendelian randomization and tumor spatial transcriptomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295864. [PMID: 37790472 PMCID: PMC10543057 DOI: 10.1101/2023.09.21.23295864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. Methods We investigated the association of 2,002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomization (MR) and colocalization. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalization were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumor tissue to assess their role in tumor aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. Results We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which a majority were novel and replicated. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirm an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also find an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk mapped to existing therapeutic interventions. Conclusion Our findings emphasize the importance of proteomics for improving our understanding of prostate cancer etiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumors. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Trishna A Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Åsa K Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
| | - Sandy Figiel
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Wencheng Yin
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Eleanor L Watts
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Joshua R Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience Uppsala University, 75124 Uppsala, Sweden
| | - Marc J Gunter
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Richard M Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, United Kingdom
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
- Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, United Kingdom
- Computational Medicine, Berlin Institute of HealthHealth (BIH) at Charité - Univeritätsmedizin- Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, United Kingdom
| | - Ian G Mills
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Alastair D Lamb
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, United Kingdom
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Department of Medicine, Stockholm, Sweden
| | - Tim J Key
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Tang Q, Zhou Q, Li J, Yang X, Wang R, Wang X, Xu M, Han L, Wu W, Wang S. Solamargine enhanced gefitinib antitumor effect via regulating MALAT1/miR-141-3p/Sp1/IGFBP1 signaling pathway in non-small cell lung cancer. Carcinogenesis 2023; 44:497-510. [PMID: 37144780 DOI: 10.1093/carcin/bgad028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2023] [Accepted: 05/04/2023] [Indexed: 05/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) showed great therapeutic efficacy for non-small cell lung cancer (NSCLC) patients. However, acquired resistance severely limits the clinical application and efficacy of EGFR-TKIs. In the current study, we found that solamargine (SM), a natural alkaloid derived from the fruit of Lycium tomato lobelia, has been found to inhibit the progression of NSCLC and enhance the anticancer effect of EGFR-TKIs. In brief, SM significantly inhibited the cell viability of NSCLC cells and enhanced the anticancer effect of gefitinib (GFTN) and erlotinib (ERL). Mechanistically, SM decreased the expression of MALAT1 and induced miR-141-3p, whereas reduced SP1 protein levels. Interestingly, both MALAT1 and Sp1 have classical and conservative binding sites of miR-141-3p in their 3'-UTR regions. Silence of MALAT1 and overexpression of miR-141-3p both decreased the protein expression of Sp1. Subsequently, promoter activity and protein expression of IGFBP1 were upregulated by SM, which was not observed in cells with SP1 overexpression. Moreover, the inhibitory effect of SM on cell growth was significantly blocked by knockdown of IGFBP1 expression. More importantly, the combination of SM and GFTN synergistically inhibited the progression of lung cancer. Similar results were observed in experiments in vivo. Finally, the clinical relevance of MALAT1, Sp1 and IGFBP1 was further validated using bioinformatics analysis. Taken together, we confirmed that SM significantly enhanced the anticancer effect of EGFR-TKIs by regulating the MALAT1/miR-141-3p/Sp1/IGFBP1 signaling pathway. This study unravels a novel mechanism and suggests a new potential NSCLC-associated therapy.
Collapse
Affiliation(s)
- Qing Tang
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, PR China
| | - Qichun Zhou
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, PR China
| | - Jing Li
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Xiaobing Yang
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, PR China
| | - Rui Wang
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, PR China
| | - Xi Wang
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, PR China
| | - Mengfei Xu
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
| | - Ling Han
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510120, PR China
| | - Wanyin Wu
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, PR China
| | - Sumei Wang
- The Second Clinical Medical College, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong 510120, PR China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, PR China
| |
Collapse
|
23
|
Perez‐Cornago A, Smith‐Byrne K, Hazelwood E, Watling CZ, Martin S, Frayling T, Lewis S, Martin RM, Yaghootkar H, Travis RC, Key TJ. Genetic predisposition to metabolically unfavourable adiposity and prostate cancer risk: A Mendelian randomization analysis. Cancer Med 2023; 12:16482-16489. [PMID: 37305903 PMCID: PMC10469819 DOI: 10.1002/cam4.6220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND The associations of adiposity with aggressive prostate cancer risk are unclear. Using two-sample Mendelian randomization, we assessed the association of metabolically unfavourable adiposity (UFA), favourable adiposity (FA) and for comparison body mass index (BMI), with prostate cancer, including aggressive prostate cancer. METHODS We examined the association of these genetically predicted adiposity-related traits with risk of prostate cancer overall, aggressive and early onset disease using outcome summary statistics from the PRACTICAL consortium (including 15,167 aggressive cases). RESULTS In inverse-variance weighted models, there was little evidence that genetically predicted one standard deviation higher UFA, FA and BMI were associated with aggressive prostate cancer [OR: 0.85 (95% CI:0.61-1.19), 0.80 (0.53-1.23) and 0.97 (0.88-1.08), respectively]; these associations were largely consistent in sensitivity analyses accounting for horizontal pleiotropy. There was no strong evidence that genetically determined UFA, FA or BMI were associated with overall prostate cancer or early age of onset prostate cancer. CONCLUSIONS We did not find differences in the associations of UFA and FA with prostate cancer risk, which suggest that adiposity is unlikely to influence prostate cancer via the metabolic factors assessed; however, these did not cover some aspects related to metabolic health that may link obesity with aggressive prostate cancer, which should be explored in future studies.
Collapse
Affiliation(s)
- Aurora Perez‐Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Karl Smith‐Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Emma Hazelwood
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Cody Z. Watling
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Susan Martin
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter HospitalExeterUK
| | - Timothy Frayling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Learning and Development building, Royal Devon & Exeter HospitalExeterUK
| | - Sarah Lewis
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Richard M. Martin
- Population Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- NIHR Bristol Biomedical Research CentreUniversity Hospitals Bristol and Weston NHS Foundation Trust and the University of BristolBristolUK
| | - Hanieh Yaghootkar
- Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life SciencesBrunel University LondonUxbridgeUK
- Research Centre for Optimal Health, School of Life SciencesUniversity of WestminsterLondonUK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| |
Collapse
|
24
|
Yang G, Schooling CM. Genetically mimicked effects of ASGR1 inhibitors on all-cause mortality and health outcomes: a drug-target Mendelian randomization study and a phenome-wide association study. BMC Med 2023; 21:235. [PMID: 37400795 DOI: 10.1186/s12916-023-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Asialoglycoprotein receptor 1 (ASGR1) is emerging as a potential drug target to reduce low-density lipoprotein (LDL)-cholesterol and coronary artery disease (CAD) risk. Here, we investigated genetically mimicked ASGR1 inhibitors on all-cause mortality and any possible adverse effects. METHODS We conducted a drug-target Mendelian randomization study to assess genetically mimicked effects of ASGR1 inhibitors on all-cause mortality and 25 a priori outcomes relevant to lipid traits, CAD, and possible adverse effects, i.e. liver function, cholelithiasis, adiposity and type 2 diabetes. We also performed a phenome-wide association study of 1951 health-related phenotypes to identify any novel effects. Associations found were compared with those for currently used lipid modifiers, assessed using colocalization, and replicated where possible. RESULTS Genetically mimicked ASGR1 inhibitors were associated with a longer lifespan (3.31 years per standard deviation reduction in LDL-cholesterol, 95% confidence interval 1.01 to 5.62). Genetically mimicked ASGR1 inhibitors were inversely associated with apolipoprotein B (apoB), triglycerides (TG) and CAD risk. Genetically mimicked ASGR1 inhibitors were positively associated with alkaline phosphatase, gamma glutamyltransferase, erythrocyte traits, insulin-like growth factor 1 (IGF-1) and C-reactive protein (CRP), but were inversely associated with albumin and calcium. Genetically mimicked ASGR1 inhibitors were not associated with cholelithiasis, adiposity or type 2 diabetes. Associations with apoB and TG were stronger for ASGR1 inhibitors compared with currently used lipid modifiers, and most non-lipid effects were specific to ASGR1 inhibitors. The probabilities for colocalization were > 0.80 for most of these associations, but were 0.42 for lifespan and 0.30 for CAD. These associations were replicated using alternative genetic instruments and other publicly available genetic summary statistics. CONCLUSIONS Genetically mimicked ASGR1 inhibitors reduced all-cause mortality. Beyond lipid-lowering, genetically mimicked ASGR1 inhibitors increased liver enzymes, erythrocyte traits, IGF-1 and CRP, but decreased albumin and calcium.
Collapse
Affiliation(s)
- Guoyi Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Graduate School of Public Health and Health Policy, City University of New York, New York, USA
| |
Collapse
|
25
|
Zhang B, Hong CQ, Lin YW, Luo Y, Ding TY, Xu YW, Peng YH, Wu FC. Association between IGFBP1 expression and cancer risk: A systematic review and meta-analysis. Heliyon 2023; 9:e16470. [PMID: 37251476 PMCID: PMC10220379 DOI: 10.1016/j.heliyon.2023.e16470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Background The results regarding the association between insulin-like growth factor binding protein 1 (IGFBP1) expression and cancer risk were controversial. We performed a meta-analysis to provide novel evidence on relationship between IGFBP1 expression and cancer risk. Methods PubMed, Embase, Cochrane library and Web of science were searched for relevant cohort and case-control studies exploring the relationship between IGFBP1 expression and cancer risk. Odds ratios (ORs) were pooled in this meta-analysis using random model. Subgroup analyses were performed based on ethnicity, tumor types, publication year, study type, Newcastle-Ottawa Scale (NOS) score and sex. Results A total of 27 studies including 16 cohort and 11 case-control studies were identified by literature search. No significant association was found between IGFBP1 expression and risk of various cancers [0.90, 95% confidence interval (CI): 0.79, 1.03]. The overall results showed that the pooled ORs were 0.71 (95% CI: 0.57, 0.88] for prostate cancer risk and 0.66 (95%CI: 0.44, 0.99) for colorectal cancer (CRC) risk. However, there is no significant association between IGFBP1 expression and risk for ovarian cancer (1.70, 95%CI: 0.41, 6.99), breast cancer (1.02, 95%CI: 0.85, 1.23), endometrial cancer (1.19, 95%CI: 0.64, 2.21), colorectal adenoma (0.93; 95%CI: 0.81, 1.07), lung cancer (0.81, 95%CI: 0.39, 1.68) or multiple myeloma (1.20, 95%CI: 0.98, 1.47). Conclusion In this study, compared with individuals at low IGFBP1 expression adjusted for age, smoking status, alcohol intake and so on, risk of the prostate cancer and CRC were decreased among individuals of high IGFBP1 expression. There needs further study to confirm this issue.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Preventive Medicine, Shantou University Medical College, Shantou China
| | - Chao-Qun Hong
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College Shantou China
| | - Yi-Wei Lin
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College Shantou China
| | - Yun Luo
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College Shantou China
| | - Tian-Yan Ding
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College Shantou China
| | - Yi-Wei Xu
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College Shantou China
| | - Yu-Hui Peng
- Department of Clinical Laboratory Medicine, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College Shantou China
| | - Fang-Cai Wu
- Esophageal Cancer Prevention and Control Research Center, The Cancer Hospital of Shantou University Medical College Shantou China
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
26
|
Pejčić T, Todorović Z, Đurašević S, Popović L. Mechanisms of Prostate Cancer Cells Survival and Their Therapeutic Targeting. Int J Mol Sci 2023; 24:ijms24032939. [PMID: 36769263 PMCID: PMC9917912 DOI: 10.3390/ijms24032939] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is today the second most common cancer in the world, with almost 400,000 deaths annually. Multiple factors are involved in the etiology of PCa, such as older age, genetic mutations, ethnicity, diet, or inflammation. Modern treatment of PCa involves radical surgical treatment or radiation therapy in the stages when the tumor is limited to the prostate. When metastases develop, the standard procedure is androgen deprivation therapy, which aims to reduce the level of circulating testosterone, which is achieved by surgical or medical castration. However, when the level of testosterone decreases to the castration level, the tumor cells adapt to the new conditions through different mechanisms, which enable their unhindered growth and survival, despite the therapy. New knowledge about the biology of the so-called of castration-resistant PCa and the way it adapts to therapy will enable the development of new drugs, whose goal is to prolong the survival of patients with this stage of the disease, which will be discussed in this review.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-641281844
| | - Zoran Todorović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- University Medical Centre “Bežanijska kosa”, University of Belgrade, 11000 Belgrade, Serbia
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Popović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Medical Oncology Department, Oncology Institute of Vojvodina, 21000 Novi Sad, Serbia
| |
Collapse
|
27
|
Larsson SC, Spyrou N, Mantzoros CS. Body fatness associations with cancer: evidence from recent epidemiological studies and future directions. Metabolism 2022; 137:155326. [PMID: 36191637 DOI: 10.1016/j.metabol.2022.155326] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
This narrative review highlights current evidence linking greater body fatness to risk of various cancers, with focus on evidence from recent large cohort studies and pooled analyses of cohort studies as well as Mendelian randomization studies (which utilized genetic variants associated with body mass index to debrief the causal effect of higher body fatness on cancer risk). This review also provides insights into the biological mechanisms underpinning the associations. Data from both observational and Mendelian randomization studies support the associations of higher body mass index with increased risk of many cancers with the strongest evidence for digestive system cancers, including esophageal, stomach, colorectal, liver, gallbladder, and pancreatic cancer, as well as kidney, endometrial, and ovarian (weak association) cancer. Evidence from observational studies suggests that greater body fatness has contrasting effects on breast cancer risk depending on menopausal status and on prostate cancer risk depending on disease stage. Experimental and Mendelian randomization studies indicate that adiponectin, insulin, and sex hormone pathways play an important role in mediating the link between body fatness and cancer risk. The possible role of specific factors and pathways, such as other adipocytokines and hormones and the gut microbiome in mediating the associations between greater body fatness and cancer risk is yet uncertain and needs investigation in future studies. With rising prevalence of overweight and obesity worldwide, the proportion of cancer caused by excess body fatness is expected to increase. There is thus an urgent need to identify efficient ways at the individual and societal level to improve diet and physical activity patterns to reduce the burden of obesity and accompanying comorbidities, including cancer.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Nikolaos Spyrou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Wu E, Ni JT, Zhu ZH, Xu HQ, Tao L, Xie T. Association of a Healthy Lifestyle with All-Cause, Cause-Specific Mortality and Incident Cancer among Individuals with Metabolic Syndrome: A Prospective Cohort Study in UK Biobank. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9936. [PMID: 36011568 PMCID: PMC9408492 DOI: 10.3390/ijerph19169936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 05/10/2023]
Abstract
This study investigated the association between a healthy lifestyle with all-cause, cause-specific mortality, and cancer incidence among individuals with metabolic syndrome (MetS). Healthy lifestyle scores were created based on MetS management guidelines, including never/quitting smoking, moderate drinking, good sleep, healthy diet, sufficient exercise, social support, and less sedentary behaviour. Weighted healthy lifestyle scores were further constructed and classified into three groups: unfavourable (lowest quintile), intermediate (quintiles 2−4), and favourable (highest quintile) lifestyles. We included 87,342 MetS participants from the UK Biobank. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using multivariate-adjusted Cox proportional hazards regression. During a median follow-up of 12.54 years, 6739 deaths were reported; during a median follow-up of 10.69 years, 10,802 new cancer cases were documented. We found a favourable lifestyle was inversely associated with all-cause mortality (HR: 0.57; 95%CI: 0.53−0.62), cause-specific mortality from respiratory disease, cancer, digestive disease, cardiovascular disease (HR < 1; p-trend < 0.001), and overall cancer incidence (HR: 0.84; 95% CI: 0.79−0.90). Our results indicate that adherence to healthy lifestyles is associated with lower overall cancer incidence and all-cause mortality risk among MetS individuals. However, causality cannot be made due to the nature of observational studies.
Collapse
Affiliation(s)
- E Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun-Tao Ni
- Women’s Hospital School of Medicine Zhejiang University, Hangzhou 310006, China
| | - Zhao-Hui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hong-Quan Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Tao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|