1
|
Hillson K, Saglani S, Bush A. The new biologic drugs: Which children with asthma should get what? Pediatr Pulmonol 2024; 59:3057-3074. [PMID: 39267467 PMCID: PMC11601016 DOI: 10.1002/ppul.27218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 09/17/2024]
Abstract
Novel biologics (targeted antibody therapies) have revolutionized the management of severe childhood asthma. However, it is important that the right biologic is selected for the right patient, and understanding the evidence base for each biologic is crucial. Currently, four biologics (all monoclonal antibodies) are licensed in the UK for the treatment of children with severe asthma - omalizumab (Xolair), mepolizumab (Nucala), and dupilumab (Dupixent) in children aged 6 years and over; and tezepelumab (Tezspire), only in children aged 12 years and over. Tezepelumab is the only licensed biological that may be beneficial in severe asthma without evidence of Type 2 inflammation. All have a good safety profile but varying degrees of clinical efficacy in children, with wide variation in treatment responsiveness between individual patients. When selecting biologics for severe asthma, it is essential to remember the limitations of the current pediatric evidence. At present, there are no results from randomized, head-to-head trials of biologics in severe asthma. TREAT is an ongoing trial comparing omalizumab to mepolizumab and will be one of the first to provide such evidence. We must be especially aware of the dangers of extrapolating data from adults to children, because the pathophysiology and role of biomarkers may differ significantly from adult asthma. Given the current level of knowledge, even after treatment has been initiated, children should be regularly reviewed to determine the efficacy of treatment, side-effect profile and consideration of when treatment with the biologic should be discontinued.
Collapse
Affiliation(s)
- K. Hillson
- National Heart and Lung Institute, Imperial College LondonLondonUK
- Pediatric Respiratory Medicine, Royal Brompton and Harefield HospitalsLondonUK
| | - S. Saglani
- National Heart and Lung Institute, Imperial College LondonLondonUK
- Pediatric Respiratory Medicine, Royal Brompton and Harefield HospitalsLondonUK
| | - A. Bush
- National Heart and Lung Institute, Imperial College LondonLondonUK
- Pediatric Respiratory Medicine, Royal Brompton and Harefield HospitalsLondonUK
| |
Collapse
|
2
|
Proskocil BJ, Bash GN, Jacoby DB, Fryer AD, Nie Z. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Am J Physiol Lung Cell Mol Physiol 2024; 327:L867-L875. [PMID: 39316677 DOI: 10.1152/ajplung.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Eosinophils contribute to metabolic homeostasis and airway hyperresponsiveness, but their specific role in obesity-related airway hyperresponsiveness remains unclear. To address this, we used transgenic mice that overexpress interleukin-5 (IL-5) in peripheral T cells (+IL-5T) and wild-type controls. On a normal diet, +IL-5T and wild-type mice have similar body weight, body fat, and airway nerve-mediated reflex bronchoconstriction in response to inhaled serotonin. Feeding wild-type mice a 61.6% high-fat diet resulted in significantly increased body weight, body fat, fasting glucose, fasting insulin, and reflex bronchoconstriction induced by serotonin, which was blocked by vagotomy. In contrast, +IL-5T mice on a high-fat diet gained less body weight and fat than wild-type mice on the same diet and did not exhibit potentiation in fasting glucose, fasting insulin, or reflex bronchoconstriction induced by serotonin. Compared with wild-type mice, +IL-5T mice on normal diet had significantly more adipose tissue eosinophils, and this was further increased by high-fat diet. High-fat diet did not increase adipose tissue eosinophils in wild-type mice. Our findings suggest that adipose tissue eosinophils may play a role in regulating body fat, thereby reducing insulin, which is a mediator of obesity-related airway hyperresponsiveness. Thus, our data indicate adipose tissue eosinophils may be an important avenue for research in obesity-related asthma.NEW & NOTEWORTHY This study investigates how eosinophils influence systemic metabolism and airway function in obesity. Known for their immune functions, eosinophils also mitigate obesity-related hyperinsulinemia, reducing airway hyperresponsiveness in obese mice models. The findings suggest potential therapeutic strategies targeting the intricate interplay among neurons, eosinophils, and the endocrine system to alleviate asthma in obesity. This research provides novel insights into the critical neuro-immune-endocrine interactions essential for managing obesity-related asthma.
Collapse
Grants
- HL163087 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL164474 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL144088 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131525 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30HL154526 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AI152498 HHS | NIH | NIAID | Division of Intramural Research (DIR, NIAID)
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Gina N Bash
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
3
|
Bush A. Evaluating Severe Therapy-Resistant Asthma in Children: Diagnostic and Therapeutic Strategies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1799. [PMID: 39596984 PMCID: PMC11596764 DOI: 10.3390/medicina60111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Introduction: Worldwide, asthma is the most common non-communicable respiratory disease and causes considerable morbidity and mortality. Most people with asthma can be treated effectively with low-dose medications if these are taken correctly and regularly. Around 10% of people with asthma have an uncontrolled form of the disease or can only achieve control with high-dose medications, incurring disproportionately high health care costs. Areas Covered: PubMed and personal archives were searched for relevant articles on the definition, management and pharmacotherapy of severe asthma. The WHO classification of severe asthma and the treatment levels encompassed in the definition are discussed. Most children and young people referred for consideration of 'beyond-guidelines therapy' can in fact be managed on standard treatment after a multi-disciplinary team assessment focusing on ensuring correct basic management, and these steps are described in detail. Options for those with true therapy-resistant asthma are described. These include monoclonal antibodies, most of which target type 2 inflammation. Expert Opinion: Getting the basics right is still the most important aspect of asthma care. For those with severe, therapy-resistant asthma, an increasing number of life-transforming monoclonals have been developed, but there is still little understanding of, and a paucity of treatment options for, non-eosinophilic asthma.
Collapse
Affiliation(s)
- Andrew Bush
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| |
Collapse
|
4
|
Srivastava C, Saroj AK, Kumar S, Rao SK. Assessment of Airway Inflammation by Induced Sputum in Children with Persistent Asthma. Indian J Pediatr 2024; 91:519. [PMID: 38194205 DOI: 10.1007/s12098-024-05020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Affiliation(s)
- Chandradeep Srivastava
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India
| | - Anil Kumar Saroj
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India
| | - Sandip Kumar
- Department of Pathology, IMS, BHU, Varanasi, UP, India
| | - Sunil Kumar Rao
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India.
| |
Collapse
|
5
|
Sampaio Dotto Fiuza B, Machado de Andrade C, Meirelles PM, Santos da Silva J, de Jesus Silva M, Vila Nova Santana C, Pimentel Pinheiro G, Mpairwe H, Cooper P, Brooks C, Pembrey L, Taylor S, Douwes J, Cruz ÁA, Barreto ML, Pearce N, Figueiredo CA. Gut microbiome signature and nasal lavage inflammatory markers in young people with asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100242. [PMID: 38585449 PMCID: PMC10998106 DOI: 10.1016/j.jacig.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/04/2023] [Accepted: 12/24/2023] [Indexed: 04/09/2024]
Abstract
Background Asthma is a complex disease and a severe global public health problem resulting from interactions between genetic background and environmental exposures. It has been suggested that gut microbiota may be related to asthma development; however, such relationships needs further investigation. Objective This study aimed to characterize the gut microbiota as well as the nasal lavage cytokine profile of asthmatic and nonasthmatic individuals. Methods Stool and nasal lavage samples were collected from 29 children and adolescents with type 2 asthma and 28 children without asthma in Brazil. Amplicon sequencing of the stool bacterial V4 region of the 16S rRNA gene was performed using Illumina MiSeq. Microbiota analysis was performed by QIIME 2 and PICRUSt2. Type 2 asthma phenotype was characterized by high sputum eosinophil counts and positive skin prick tests for house dust mite, cockroach, and/or cat or dog dander. The nasal immune marker profile was assessed using a customized multiplex panel. Results Stool microbiota differed significantly between asthmatic and nonasthmatic participants (P = .001). Bacteroides was more abundant in participants with asthma (P < .05), while Prevotella was more abundant in nonasthmatic individuals (P < .05). In people with asthma, the relative abundance of Bacteroides correlated with IL-4 concentration in nasal lavage samples. Inference of microbiota functional capacity identified differential fatty acid biosynthesis in asthmatic compared to nonasthmatic subjects. Conclusion The stool microbiota differed between asthmatic and nonasthmatic young people in Brazil. Asthma was associated with higher Bacteroides levels, which correlated with nasal IL-4 concentration.
Collapse
Affiliation(s)
| | | | - Pedro Milet Meirelles
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Salvador, Brazil
| | | | | | | | | | | | - Philip Cooper
- Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
- Universidad Internacional del Ecuador, Quito, Ecuador
- St George’s University of London, London, United Kingdom
| | - Collin Brooks
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Lucy Pembrey
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven Taylor
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Álvaro A. Cruz
- Fundação ProAR Salvador, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Mauricio L. Barreto
- Centro de Integração de Dados e Conhecimentos para Saúde, Fiocruz, Salvador, Brazil
| | - Neil Pearce
- Centre for Public Health Research, Massey University, Wellington, New Zealand
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
6
|
Chatziparasidis G, Chatziparasidi MR, Kantar A, Bush A. Time-dependent gene-environment interactions are essential drivers of asthma initiation and persistence. Pediatr Pulmonol 2024; 59:1143-1152. [PMID: 38380964 DOI: 10.1002/ppul.26935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Asthma is a clinical syndrome caused by heterogeneous underlying mechanisms with some of them having a strong genetic component. It is known that up to 82% of atopic asthma has a genetic background with the rest being influenced by environmental factors that cause epigenetic modification(s) of gene expression. The interaction between the gene(s) and the environment has long been regarded as the most likely explanation of asthma initiation and persistence. Lately, much attention has been given to the time frame the interaction occurs since the host response (immune or biological) to environmental triggers, differs at different developmental ages. The integration of the time variant into asthma pathogenesis is appearing to be equally important as the gene(s)-environment interaction. It seems that, all three factors should be present to trigger the asthma initiation and persistence cascade. Herein, we introduce the importance of the time variant in asthma pathogenesis and emphasize the long-term clinical significance of the time-dependent gene-environment interactions in childhood.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Faculty of Nursing, University of Thessaly, Volos, Greece
- School of Physical Education, Sport Science & Dietetics, University of Thessaly, Volos, Greece
| | | | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamashi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, UK
| |
Collapse
|
7
|
Rabe APJ, Loke WJ, Gurjar K, Brackley A, Lucero-Prisno III DE. Global Burden of Asthma, and Its Impact on Specific Subgroups: Nasal Polyps, Allergic Rhinitis, Severe Asthma, Eosinophilic Asthma. J Asthma Allergy 2023; 16:1097-1113. [PMID: 37822519 PMCID: PMC10563777 DOI: 10.2147/jaa.s418145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023] Open
Abstract
Background The complex nature of asthma has resulted in a poor understanding of its epidemiology, particularly in low-and middle-income countries (LMIC). Clinical subgroups, such as patients with severe asthma, eosinophilic asthma, allergic rhinitis, or nasal polyps, experience additional barriers to care. Methods Prevalence estimates for asthma and key clinical subgroups were extracted from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 and from a targeted literature review conducted through PubMed in October of 2021. National estimates were calculated and the roles of potential explanatory factors were explored through qualitative analysis. Results In total, 162 publications from 69 countries were included. Across continents, asthma prevalence values ranged from 3.44% (Asia), 3.67% (Africa), 4.90% (South America), 5.69% (Europe), 8.29% (North America), to 8.33% (Oceania). Globally, of those with asthma, 26.70% had severe asthma, 30.99% had eosinophilic asthma, 48.95% had allergic rhinitis, and 7.0% to 25.40% had nasal polyps. Countries with higher air quality, income status, and healthcare access and quality reported a higher asthma prevalence. Conclusion Asthma prevalence values were low in LMICs, potentially indicating health system deficiencies resulting in low diagnosis and reporting. The prevalence of eosinophilic asthma and severe asthma phenotypes was high in many countries, although the prevalence estimates of all asthma subgroups were quite variable.
Collapse
Affiliation(s)
- Adrian Paul J Rabe
- BioPharmaceutical Medical, Respiratory & Immunology, AstraZeneca, Cambridge, UK
- Imperial College, London, UK
| | - Wei Jie Loke
- East and North Hertfordshire NHS Trust, Stevenage, UK
| | - Khushboo Gurjar
- RWA Health Economics, Cytel Health Canada, Toronto, Ontario, Canada
| | | | - Don Eliseo Lucero-Prisno III
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- University of the Philippines Open University, Los Baños City, Philippines
| |
Collapse
|
8
|
Li Y, Liu Y, Duo M, Wu R, Jiang T, Li P, Wang Y, Cheng Z. Bioinformatic analysis and preliminary validation of potential therapeutic targets for COVID-19 infection in asthma patients. Cell Commun Signal 2022; 20:201. [PMID: 36575422 PMCID: PMC9793391 DOI: 10.1186/s12964-022-01010-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 causes coronavirus disease 19 (COVID-19). The number of confirmed cases of COVID-19 is also rapidly increasing worldwide, posing a significant challenge to human safety. Asthma is a risk factor for COVID-19, but the underlying molecular mechanisms of the asthma-COVID-19 interaction remain unclear. METHODS We used transcriptome analysis to discover molecular biomarkers common to asthma and COVID-19. Gene Expression Omnibus database RNA-seq datasets (GSE195599 and GSE196822) were used to identify differentially expressed genes (DEGs) in asthma and COVID-19 patients. After intersecting the differentially expressed mRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to identify the common pathogenic molecular mechanism. Bioinformatic methods were used to construct protein-protein interaction (PPI) networks and identify key genes from the networks. An online database was used to predict interactions between transcription factors and key genes. The differentially expressed long noncoding RNAs (lncRNAs) in the GSE195599 and GSE196822 datasets were intersected to construct a competing endogenous RNA (ceRNA) regulatory network. Interaction networks were constructed for key genes with RNA-binding proteins (RBPs) and oxidative stress-related proteins. The diagnostic efficacy of key genes in COVID-19 was verified with the GSE171110 dataset. The differential expression of key genes in asthma was verified with the GSE69683 dataset. An asthma cell model was established with interleukins (IL-4, IL-13 and IL-17A) and transfected with siRNA-CXCR1. The role of CXCR1 in asthma development was preliminarily confirmed. RESULTS By intersecting the differentially expressed genes for COVID-19 and asthma, 393 common DEGs were obtained. GO and KEGG enrichment analyses of the DEGs showed that they mainly affected inflammation-, cytokine- and immune-related functions and inflammation-related signaling pathways. By analyzing the PPI network, we obtained 10 key genes: TLR4, TLR2, MMP9, EGF, HCK, FCGR2A, SELP, NFKBIA, CXCR1, and SELL. By intersecting the differentially expressed lncRNAs for COVID-19 and asthma, 13 common differentially expressed lncRNAs were obtained. LncRNAs that regulated microRNAs (miRNAs) were mainly concentrated in intercellular signal transduction, apoptosis, immunity and other related functional pathways. The ceRNA network suggested that there were a variety of regulatory miRNAs and lncRNAs upstream of the key genes. The key genes could also bind a variety of RBPs and oxidative stress-related genes. The key genes also had good diagnostic value in the verification set. In the validation set, the expression of key genes was statistically significant in both the COVID-19 group and the asthma group compared with the healthy control group. CXCR1 expression was upregulated in asthma cell models, and interference with CXCR1 expression significantly reduced cell viability. CONCLUSIONS Key genes may become diagnostic and predictive biomarkers of outcomes in COVID-19 and asthma. Video Abstract.
Collapse
Affiliation(s)
- Yue Li
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Ye Liu
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Ruhao Wu
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Tianci Jiang
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Pengfei Li
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yu Wang
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhe Cheng
- grid.412633.10000 0004 1799 0733Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|