1
|
Nykanen D, Stiffler H, Bay M, Goldie C, Chou S, Swalve N. The effects of cannabinoid agonism on auditory discrimination. Behav Pharmacol 2024:00008877-990000000-00117. [PMID: 39718041 DOI: 10.1097/fbp.0000000000000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Recent evidence suggests that cannabis can impair simple auditory processes, and these alterations might be due to cannabinoid agonism. The effect of cannabinoid agonism on relatively complex processes such as auditory discrimination is unknown. The goal of this study was to examine the impact of WIN 55,212-2, a CB1 receptor and CB2 receptor agonism, on auditory discrimination using a go/no-go task. Twenty-two male and female Sprague-Dawley rats were initially trained to lever-press for sucrose to either a pure tone or white noise cue in a go/no-go paradigm, where rats were reinforced for lever-pressing during one cue and punished for lever-pressing during the other auditory cue. After criterion performance was met, rats were then injected with WIN 55,212-2 at 1.2 mg/kg, 3 mg/kg, or a corresponding vehicle (saline) and were tested on auditory discrimination. On day 3, active lever-pressing was higher in both the low- and high-dose WIN groups compared with the saline group. Overall lever-pressing decreased over time in the high-dose WIN 55,212-2 group. There were no effects of the drug on discrimination or errors, suggesting that cannabinoid agonism did not negatively affect auditory discrimination. This is the first study to examine the impact of cannabinoids on the discrimination of tones, finding that, contrary to previous research, the low and high doses of WIN 55,212-2 did not adversely impact auditory-linked behaviors.
Collapse
Affiliation(s)
| | | | - Merrick Bay
- Department of Psychology, Alma College, Alma, Michigan
| | | | - Shinnyi Chou
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Natashia Swalve
- Department of Psychology, Grand Valley State University, Allendale, Michigan, USA
| |
Collapse
|
2
|
Zhou F, Wang X, Tan S, Shi Y, Xie B, Xiang P, Cong B, Ma C, Wen D. Differential cannabinoid-like effects and pharmacokinetics of ADB-BICA, ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA in mice: A comparative study. Addict Biol 2024; 29:e13372. [PMID: 38380735 PMCID: PMC10898835 DOI: 10.1111/adb.13372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 02/22/2024]
Abstract
Despite synthetic cannabinoids' (SCs) prevalent use among humans, these substances often lack comprehensive pharmacological data, primarily due to their rapid emergence in the market. This study aimed to discern differences and causal factors among four SCs (ADB-BICA, ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA), with respect to locomotor activity, body temperature and nociception threshold. Adult male C57BL/6 mice received intraperitoneal injections of varying doses (0.5, 0.1 and 0.02 mg/kg) of these compounds. Three substances (including ADB-BINACA, ADB-4en-PINACA and MDMB-4en-PINACA) demonstrated dose- and time-dependent hypolocomotive and hypothermic effects. Notably, 0.1 mg/kg MDMB-4en-PINACA exhibited analgesic properties. However, ADB-BICA did not cause any effects. MDMB-4en-PINACA manifested the most potent and sustained effects, followed by ADB-4en-PINACA, ADB-BINACA and ADB-BICA. Additionally, the cannabinoid receptor 1 (CB1R) antagonist AM251 suppressed the effects induced by acute administration of the substances. Analysis of molecular binding configurations revealed that the four SCs adopted a congruent C-shaped geometry, with shared linker binding pockets conducive to robust steric interaction with CB1R. Essential residues PHE268 , PHE200 and SER173 within CB1R were identified as pivotal contributors to enhancing receptor-ligand associations. During LC-MS/MS analysis, 0.5 mg/kg MDMB-4en-PINACA exhibited the highest plasma concentration and most prolonged detection window post-administration. The study of SCs' pharmacological and pharmacokinetic profiles is crucial for better understanding the main mechanisms of cannabinoid-like effects induced by SCs, interpreting clinical findings related to SC uses and enhancing SCs risk awareness.
Collapse
Affiliation(s)
- Fenghua Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Xiaoli Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Sujun Tan
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic ToxicologyAcademy of Forensic Science, Ministry of JusticeShanghaiChina
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Judicial Expertise, Department of Forensic ToxicologyAcademy of Forensic Science, Ministry of JusticeShanghaiChina
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Research Unit of Digestive Tract Microecosystem Pharmacology and ToxicologyChinese Academy of Medical SciencesShijiazhuangHebei ProvinceChina
- Key Laboratory of Neural and Vascular BiologyMinistry of EducationShijiazhuangHebei ProvinceChina
| |
Collapse
|
3
|
Gharbi KA, Bonomo YA, Hallinan CM. Evidence from Human Studies for Utilising Cannabinoids for the Treatment of Substance-Use Disorders: A Scoping Review with a Systematic Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4087. [PMID: 36901098 PMCID: PMC10001982 DOI: 10.3390/ijerph20054087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 06/08/2023]
Abstract
Substance-use disorders are pervasive, comorbid with a plethora of disease and possess limited treatment options. Medicinal cannabinoids have been proposed as a novel potential treatment based on preclinical/animal trials. The objective of this study was to examine the efficacy and safety of potential therapeutics targeting the endocannabinoid system in the treatment of substance-use disorders. We performed a scoping review using a systematic approach of systematic reviews, narrative reviews, and randomised control trials that utilised cannabinoids as treatment for substance-use disorders. For this scoping review we used the PRISMA guidelines, a framework for systematic reviews and meta-analyses, to inform our methodology. We conducted a manual search of Medline, Embase, and Scopus databases in July 2022. Of the 253 results returned by the databases, 25 studies including reviews were identified as relevant, from which 29 randomised controlled trials were derived and analysed via a primary study decomposition. This review captured a small volume of highly heterogenous primary literature investing the therapeutic effect of cannabinoids for substance-use disorders. The most promising findings appeared to be for cannabis-use disorder. Cannabidiol appeared to be the cannabinoid showing the most promise for the treatment of multiple-substance-use disorders.
Collapse
Affiliation(s)
- Kayvan Ali Gharbi
- Department of General Practice, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yvonne Ann Bonomo
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- St Vincent’s Health—Department of Addiction Medicine, Fitzroy, VIC 3065, Australia
| | - Christine Mary Hallinan
- Department of General Practice, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Health & Biomedical Research Information Technology Unit (HaBIC R2), Department of General Practice, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Sinani A, Vassi A, Tsotsokou G, Nikolakopoulou M, Kouvelas ED, Mitsacos A. Early life stress influences basal ganglia dopamine receptors and novel object recognition of adolescent and adult rats. IBRO Neurosci Rep 2022; 12:342-354. [PMID: 35572456 PMCID: PMC9092503 DOI: 10.1016/j.ibneur.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Environmental stimuli in early life are recognized to affect brain development and behavior. Mother-pup interaction constitutes a determinant stimulus during this critical period. It is known that the dopaminergic system undergoes significant reorganization during adolescence and that dopamine receptors are involved in recognition memory. Based on the above, we examined the effects of brief and prolonged maternal separation during the neonatal period (15 or 180 min daily) on basal ganglia dopamine receptors and on the behavior in the novel object recognition task of adolescent and adult male rats. Using the NOR task, we observed that the discrimination index (DI) was decreased in rats with brief maternal separations independent of age. Using receptor autoradiography, we observed that brief maternal separation induced decreases in D1, D2 and D4 receptor binding levels in adult basal ganglia nuclei, while prolonged maternal separation induced increases in D1 receptor binding levels in caudate - putamen (CPu) of adolescent rats. With immunoblotting experiments, we found decreases in D1 and increases in D2 total protein levels in CPu of adult rats with prolonged maternal separations. Α positive correlation was observed between DI and D1 binding levels in CPu, internal globus pallidus and substantia nigra, and D2 binding levels in nucleus accumbens core in adult rats, using the Pearson correlation coefficient. Our results indicate that the long-lasting effects of neonatal mother-offspring separation on dopamine receptors depend on the duration of maternal separation and age and that this early life experience impairs recognition memory in adolescent and adult rats. Furthermore, the present results suggest that modulation of striatal dopamine receptors might underlie the reduced recognition memory of adult rats with brief neonatal maternal separations.
Collapse
Affiliation(s)
- Ada Sinani
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Andriana Vassi
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Giota Tsotsokou
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Maria Nikolakopoulou
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Elias D Kouvelas
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Ada Mitsacos
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
5
|
Gomez DM, Everett TJ, Hamilton LR, Ranganath A, Cheer JF, Oleson EB. Chronic cannabinoid exposure produces tolerance to the dopamine releasing effects of WIN 55,212-2 and heroin in adult male rats. Neuropharmacology 2021; 182:108374. [PMID: 33115642 PMCID: PMC7836093 DOI: 10.1016/j.neuropharm.2020.108374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/16/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
Synthetic cannabinoids were introduced into recreational drug culture in 2008 and quickly became one of the most commonly abused drugs in the United States. The neurobiological consequences resulting from synthetic cannabinoid repeated exposure remain poorly understood. It is possible that a blunted dopamine (DA) response may lead drug users to consume larger quantities to compensate for this form of neurochemical tolerance. Because the endogenous cannabinoid and opioid systems exhibit considerable cross-talk and cross-tolerance frequently develops following repeated exposure to either opioids or cannabinoids, there is interest in investigating whether a history of synthetic cannabinoid exposure influences the ability of heroin to increase DA release. To test the effects of chronic cannabinoid exposure on cannabinoid- and heroin-evoked DA release, male adult rats were treated with either vehicle or a synthetic cannabinoid (WIN55-212-2; WIN) using an intravenous (IV) dose escalation regimen (0.2-0.8 mg/kg IV over 9 treatments). As predicted, WIN-treated rats showed a rightward shift in the dose-response relationship across all behavioral/physiological measures when compared to vehicle-treated controls. Then, using fast-scan cyclic voltammetry to measure changes in the frequency of transient DA events in the nucleus accumbens shell of awake and freely-moving rats, it was observed that the DA releasing effects of both WIN and heroin were significantly reduced in male rats with a pharmacological history of cannabinoid exposure. These results demonstrate that repeated exposure to the synthetic cannabinoid WIN can produce tolerance to its DA releasing effects and cross-tolerance to the DA releasing effects of heroin.
Collapse
Affiliation(s)
- Devan M Gomez
- Psychology Department, University of Colorado Denver, USA; Current: Department of Biomedical Sciences, Marquette University, USA
| | | | | | - Ajit Ranganath
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, USA
| | - Joseph F Cheer
- Department of Neurobiology and Anatomy, University of Maryland Baltimore, USA
| | - Erik B Oleson
- Psychology Department, University of Colorado Denver, USA; Biology Department, University of Colorado Denver, USA.
| |
Collapse
|
6
|
Meneses-Gaya CD, Crippa JA, Hallak JE, Miguel AQ, Laranjeira R, Bressan RA, Zuardi AW, Lacerda AL. Cannabidiol for the treatment of crack-cocaine craving: an exploratory double-blind study. BRAZILIAN JOURNAL OF PSYCHIATRY 2020; 43:467-476. [PMID: 33146345 PMCID: PMC8555645 DOI: 10.1590/1516-4446-2020-1416] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Objective: To assess the efficacy of cannabidiol (CBD) in the management of crack-cocaine craving and the treatment of frequent withdrawal symptoms. Methods: Thirty-one men with a diagnosis of crack-cocaine dependence were enrolled in a randomized, double-blind, placebo-controlled trial. We applied neuropsychological tests and assessed craving intensity, anxiety and depression symptoms, and substance use patterns at baseline and at the end of the trial. The participants were treated with CBD 300 mg/day or placebo for 10 days. During this period, we used a technique to induce craving and assessed the intensity of symptoms before and after the induction procedure. Results: Craving levels reduced significantly over the 10 days of the trial, although no differences were found between the CBD and placebo groups. Craving induction was successful in both groups, with no significant differences between them. Indicators of anxiety, depression, and sleep alterations before and after treatment also did not differ across groups. Conclusion: Under the conditions of this trial, CBD was unable to interfere with symptoms of crack-cocaine withdrawal. Further studies with larger outpatient samples involving different doses and treatment periods would be desirable and timely to elucidate the potential of CBD to induce reductions in crack-cocaine self-administration.
Collapse
Affiliation(s)
- Carolina de Meneses-Gaya
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - José A. Crippa
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Jaime E. Hallak
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - André Q. Miguel
- Instituto Nacional de Políticas Públicas do Álcool e Drogas (INPAD), UNIFESP, Brazil
| | - Ronaldo Laranjeira
- Instituto Nacional de Políticas Públicas do Álcool e Drogas (INPAD), UNIFESP, Brazil
| | - Rodrigo A. Bressan
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| | - Antonio W. Zuardi
- Divisão de Psiquiatria, Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Acioly L. Lacerda
- Laboratório Interdisciplinar de Neurociências Clínicas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), Brazil
| |
Collapse
|
7
|
Perescis MFJ, Flipsen NAR, van Luijtelaar G, van Rijn CM. Altered SWD stopping mechanism in WAG/Rij rats subchronically treated with the cannabinoid agonist R(+)WIN55,212-2. Epilepsy Behav 2020; 102:106722. [PMID: 31855784 DOI: 10.1016/j.yebeh.2019.106722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022]
Abstract
A single injection of the cannabinoid agonist R(+)WIN55,212-2 (WIN) is known to cause an increase of the mean duration of spontaneously occurring spike-and-wave discharges (SWDs) in rats of the WAG/Rij strain, a genetic model for absence epilepsy. The aim of the present study was to establish whether repeated activation of CB1 receptors with WIN leads to tolerance in its effect on SWD parameters, spectral density, and behavior over time. Adult male WAG/Rij rats (n = 16) were treated with WIN (6 mg/kg) or vehicle (olive oil). Injections (s.c.) took place 3 times per week during 2 weeks. Electroencephalogram (EEG) recordings, each lasting 24 h, were made 3 times: immediately before the first injection (baseline), immediately after the first injection (acute treatment), and after 2 weeks of treatment (subchronic treatment). The recordings were analyzed regarding incidence, durations of SWDs, and hazard rates of the durations of SWDs, the latter to describe SWD stopping probabilities. Putative changes in the spectral content of the EEG before and after WIN during active and passive behaviors were additionally investigated. Spike-and-wave discharge incidence was not affected by the acute and subchronic treatments. The mean duration of the SWDs was significantly longer than controls in the acute WIN-treated animals [11.9-s standard error of the mean (SEM): 0.64 compared with 8.4-s SEM: 0.25] as well as in subchronically treated animals (11.5-s SEM: 1.00 compared with 8.4-s SEM: 0.25). Hazard rates were significantly lower for WIN-treated animals at SWD durations in the 5.04-20.16-s range on both occasions. No effects of WIN on the frequency spectrum of the ongoing EEG were found, neither acutely nor after repeated administration. Evidence for tolerance was not found. The results on the mean duration and hazard rates suggest that stimulating the endocannabinoid system affects the SWD stopping mechanism, resulting in more long SWDs. We speculate that this effect is likely to be a direct result of CB1 receptor agonism and a subsequent decrease in the availability of gamma-aminobutyric acid (GABA) in the reticular thalamic nucleus, which further weakens, in WAG/Rij rats already disturbed, the stopping mechanism of the SWDs.
Collapse
Affiliation(s)
- Martin F J Perescis
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands; HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands.
| | - Nienke A R Flipsen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands; HAS University of Applied Sciences, Onderwijsboulevard 221, 5223 DE 's-Hertogenbosch, the Netherlands
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands.
| | - Clementina M van Rijn
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci 2019; 50:2322-2345. [DOI: 10.1111/ejn.14407] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| | | | - Aviv Weinstein
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| |
Collapse
|
9
|
Soderstrom K, Soliman E, Van Dross R. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Front Pharmacol 2017; 8:720. [PMID: 29066974 PMCID: PMC5641363 DOI: 10.3389/fphar.2017.00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Zagazig University, Zagazig, Egypt
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
10
|
Chesworth R, Karl T. Molecular Basis of Cannabis-Induced Schizophrenia-Relevant Behaviours: Insights from Animal Models. Curr Behav Neurosci Rep 2017. [DOI: 10.1007/s40473-017-0120-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|