1
|
Zheng Z, Kyzer JL, Worob A, Wenthur CJ. Family of Structurally Related Bioconjugates Yields Antibodies with Differential Selectivity against Ketamine and 6-Hydroxynorketamine. ACS Chem Neurosci 2021; 12:4113-4122. [PMID: 34652905 PMCID: PMC9358770 DOI: 10.1021/acschemneuro.1c00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The dissociative-hypnotic compound ketamine is being used in an increasingly wide range of therapeutic contexts, including anesthesia, adjunctive analgesia, treatment-resistant depression, but it also continues to be a notable substance of abuse. No specific antidotes exist for ketamine intoxication or overdose. Immunopharmacotherapy has demonstrated the ability to offer overdose protection through production of highly specific antibodies that prevent psychoactive drug penetration across the blood-brain barrier, although antiketamine antibodies have not yet been assessed or optimized for use in this approach. Moreover, generation of specific antibodies also provides an opportunity to address the role of 6-hydroxynorketamine metabolites in ketamine's rapid-acting antidepressant effect through selective restriction of metabolite access to the central nervous system. Hapten design is a critical element for tuning immune recognition of small molecules, as it affects the presentation of the target antigen and thus the quality and selectivity of the response. Here, we report the synthesis and optimization of carrier protein and conjugation conditions for an initial hapten, norketamine-N-COOH (NK-N-COOH), to optimize vaccination conditions and assess the functional consequences of such vaccination on ketamine-induced behavioral alterations occurring at dissociative-like (50 mg/kg) doses. Iterating from this initial approach, two additional haptens, ketamine-N-COOH (KET-N-COOH) and 6-hydroxynorketamine-N-COOH (HNK-N-COOH), were synthesized to target either ketamine or 6-hydroxynorketamine with greater selectivity. The ability of these haptens to generate antiketamine, antinorketamine, and anti-6-hydroxynorketamine immune responses in mice was then assessed using enzyme-linked immunosorbent assay (ELISA) and competitive surface plasmon resonance (SPR) methods. All three haptens provoked immune responses in vivo, although the KET-N-COOH and 6-HNK-N-COOH haptens yielded antibodies with 5- to 10-fold improvements in affinity for ketamine and/or 6-hydroxynorketamine, as compared to NK-N-COOH. Regarding selectivity, vaccines bearing a KET-N-COOH hapten yielded an antibody response with approximately equivalent Kd values against ketamine (86.4 ± 3.2 nM) and 6-hydroxynorketamine (74.1 ± 7.8 nM) and a 90-fold weaker Kd against norketamine. Contrastingly, 6-HNK-N-COOH generated the highest affinity and most selective antibody profile, with a 38.3 ± 4.7 nM IC50 against 6-hydroxynorketamine; Kd values for ketamine and norketamine were 33- to 105-fold weaker, at 1290 ± 281.5 and 3971 ± 2175 nM, respectively. Overall, these findings support the use of rational hapten design to generate antibodies capable of distinguishing between structurally related, yet mechanistically distinct, compounds arising from the same precursor molecule. As applied to the production of the first-reported anti-6-hydroxynorketamine antibodies to date, this approach demonstrates a promising path forward for identifying the individual and combinatorial roles of ketamine and its metabolites in supporting rewarding effects and/or rapid-acting antidepressant activity.
Collapse
Affiliation(s)
- Zhen Zheng
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jillian L Kyzer
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Adam Worob
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Cody J Wenthur
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
2
|
Chiral Pharmacokinetics and Metabolite Profile of Prolonged-release Ketamine Tablets in Healthy Human Subjects. Anesthesiology 2021; 135:326-339. [PMID: 34019627 DOI: 10.1097/aln.0000000000003829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The anesthetic ketamine after intravenous dosing is nearly completely metabolized to R- and S-stereoisomers of the active norketamine (analgesic, psychoactive) and 2,6-hydroxynorketamine (potential analgesic, antidepressant) as well as the inactive dehydronorketamine. Oral administration favors the formation of 2,6-hydroxynorketamines via extensive presystemic metabolism. The authors hypothesized that plasma exposure to 2,6-hydroxynorketamines relative to the psychoactive ketamine is greater after prolonged-release ketamine tablets than it is after intravenous ketamine. METHODS Pharmacokinetics of ketamine after intravenous infusion (5.0 mg) and single-dose administrations of 10, 20, 40, and 80 mg prolonged-released tablets were evaluated in 15 healthy white human subjects by means of a controlled, ascending-dose study. The stereoisomers of ketamine and metabolites were quantified in serum and urine by validated tandem mass-spectrometric assays and evaluated by noncompartmental pharmacokinetic analysis. RESULTS After 40 mg prolonged-release tablets, the mean ± SD area under the concentrations-time curve ratios for 2,6-hydroxynorketamine/ketamine were 18 ± 11 (S-stereoisomers) and 30 ± 16 (R-stereoisomers) compared to 1.7 ± 0.8 and 3.1 ± 1.4 and after intravenous infusion (both P < 0.001). After 10 and 20 mg tablets, the R-ratios were even greater. The distribution volumes at steady state of S- and R-ketamine were 6.6 ± 2.2 and 5.6 ± 2.1 l/kg, terminal half-lives 5.2 ± 3.4 and 6.1 ± 3.1 h, and metabolic clearances 1,620 ± 380 and 1,530 ± 380 ml/min, respectively. Bioavailability of the 40 mg tablets was 15 ± 8 (S-isomer) and 19 ± 10% (R-isomer) and terminal half-life 11 ± 4 and 10 ± 4 h. About 7% of the dose was renally excreted as S-stereoisomers and 17% as R-stereoisomers. CONCLUSIONS Prolonged-release ketamine tablets generate a high systemic exposure to 2,6-hydroxynorketamines and might therefore be an efficient and safer pharmaceutical dosage form for treatment of patients with chronic neuropathic pain compared to intravenous infusion. EDITOR’S PERSPECTIVE
Collapse
|
3
|
Latuga NM, Luczkiewicz DL, Grant PC, Levy K, Hansen E, Kerr CW. Single Subcutaneous Ketamine Dose Followed by Oral Ketamine for Depression Symptoms in Hospice Patients: A Case Series. J Pain Palliat Care Pharmacother 2021; 35:106-112. [PMID: 33847212 DOI: 10.1080/15360288.2021.1883182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Management of depression symptoms in hospice patients is complicated by the fact that an appropriate trial of antidepressant therapy requires 4-6 weeks and most hospice patients receive hospice services for less than 8 weeks. Intravenously administered ketamine has been shown to produce rapid improvement in depression symptoms but is not an ideal route for hospice patients and oral ketamine appears to have a slower onset of antidepressant activity. We present a case series that illustrates the use of a single subcutaneous dose of ketamine (0.5 mg/kg) followed by daily oral ketamine (0.5 mg/kg daily) therapy to manage depression symptoms in three hospice patients. Clinical improvement of depression symptoms occurred quickly for all patients as measured by the PHQ-4, numeric ratings, and subjective reporting. A single subcutaneous dose of ketamine followed by oral therapy presents itself as an option to quickly reduce depression symptoms in hospice patients that do not also require additional pain management. Combining the use of the subcutaneous and oral routes takes advantage of the possibly faster onset, home administration, and milder side effects than intravenous dosing. Prospective studies are needed to determine which dosing strategy would be the most beneficial for hospice patients.
Collapse
Affiliation(s)
- Natalie M Latuga
- Natalie M. Latuga, PharmD, BCPS, Debra L. Luczkiewicz, MD, Christopher W. Kerr, MD, PhD, are with Hospice & Palliative Care Buffalo, Cheektowaga, NY, USA
| | - Debra L Luczkiewicz
- Natalie M. Latuga, PharmD, BCPS, Debra L. Luczkiewicz, MD, Christopher W. Kerr, MD, PhD, are with Hospice & Palliative Care Buffalo, Cheektowaga, NY, USA
| | - Pei C Grant
- Pei C. Grant, PhD, is with the Research Department, Hospice & Palliative Care Buffalo, Cheektowaga, NY, USA
| | - Kathryn Levy
- Pei C. Grant, PhD, is with the Research Department, Hospice & Palliative Care Buffalo, Cheektowaga, NY, USA.,Kathryn Levy, MSW, is with AdvStat, Research Department, Hospice & Palliative Care Buffalo, Cheektowaga, NY, USA; Department of Planning and Research, Trocaire College, Buffalo, NY, USA
| | - Eric Hansen
- Eric Hansen, MD, is with the Department of Supportive and Palliative Care, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Division of Geriatrics and Palliative Medicine, State University at Buffalo Jacobs School of Medicine and Biomedical Science, Buffalo, NY, USA
| | - Christopher W Kerr
- Natalie M. Latuga, PharmD, BCPS, Debra L. Luczkiewicz, MD, Christopher W. Kerr, MD, PhD, are with Hospice & Palliative Care Buffalo, Cheektowaga, NY, USA
| |
Collapse
|
4
|
Response to commentary on the comparative efficacy of esketamine vs. ketamine meta-analysis: Putting the cart before the horse? J Affect Disord 2021; 282:258-260. [PMID: 33418376 PMCID: PMC8202174 DOI: 10.1016/j.jad.2020.12.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022]
|
5
|
Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochem Pharmacol 2020; 177:113935. [DOI: 10.1016/j.bcp.2020.113935] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
|
6
|
Matveychuk D, Thomas RK, Swainson J, Khullar A, MacKay MA, Baker GB, Dursun SM. Ketamine as an antidepressant: overview of its mechanisms of action and potential predictive biomarkers. Ther Adv Psychopharmacol 2020; 10:2045125320916657. [PMID: 32440333 PMCID: PMC7225830 DOI: 10.1177/2045125320916657] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
Ketamine, a drug introduced in the 1960s as an anesthetic agent and still used for that purpose, has garnered marked interest over the past two decades as an emerging treatment for major depressive disorder. With increasing evidence of its efficacy in treatment-resistant depression and its potential anti-suicidal action, a great deal of investigation has been conducted on elucidating ketamine's effects on the brain. Of particular interest and therapeutic potential is the ability of ketamine to exert rapid antidepressant properties as early as several hours after administration. This is in stark contrast to the delayed effects observed with traditional antidepressants, often requiring several weeks of therapy for a clinical response. Furthermore, ketamine appears to have a unique mechanism of action involving glutamate modulation via actions at the N-methyl-D-aspartate (NMDA) and α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as downstream activation of brain-derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR) signaling pathways to potentiate synaptic plasticity. This paper provides a brief overview of ketamine with regard to pharmacology/pharmacokinetics, toxicology, the current state of clinical trials on depression, postulated antidepressant mechanisms and potential biomarkers (biochemical, inflammatory, metabolic, neuroimaging sleep-related and cognitive) for predicting response to and/or monitoring of therapeutic outcome with ketamine.
Collapse
Affiliation(s)
- Dmitriy Matveychuk
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Rejish K. Thomas
- Grey Nuns Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Swainson
- Misericordia Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Atul Khullar
- Grey Nuns Community Hospital and Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Mary-Anne MacKay
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Glen B. Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, 12-105B Clin Sci Bldg, Edmonton, Alberta T6G 2G3, Canada
| | - Serdar M. Dursun
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
- Grey Nuns Community Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Wei Y, Chang L, Hashimoto K. A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol Biochem Behav 2020; 190:172870. [DOI: 10.1016/j.pbb.2020.172870] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022]
|
8
|
Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Transl Psychiatry 2019; 9:280. [PMID: 31699965 PMCID: PMC6838457 DOI: 10.1038/s41398-019-0624-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 12/14/2022] Open
Abstract
Although the robust antidepressant effects of the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine in patients with treatment-resistant depression are beyond doubt, the precise molecular and cellular mechanisms underlying its antidepressant effects remain unknown. NMDAR inhibition and the subsequent α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activation are suggested to play a role in the antidepressant effects of ketamine. Although (R)-ketamine is a less potent NMDAR antagonist than (S)-ketamine, (R)-ketamine has shown more marked and longer-lasting antidepressant-like effects than (S)-ketamine in several animal models of depression. Furthermore, non-ketamine NMDAR antagonists do not exhibit robust ketamine-like antidepressant effects in patients with depression. These findings suggest that mechanisms other than NMDAR inhibition play a key role in the antidepressant effects of ketamine. Duman's group demonstrated that the activation of mammalian target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex is reportedly involved in the antidepressant effects of ketamine. However, we reported that mTORC1 serves a role in the antidepressant effects of (S)-ketamine, but not of (R)-ketamine, and that extracellular signal-regulated kinase possibly underlie the antidepressant effects of (R)-ketamine. Several lines of evidence have demonstrated that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are crucial in the antidepressant effects of ketamine and its two enantiomers, (R)-ketamine and (S)-ketamine, in rodents. In addition, (2R,6R)-hydroxynormetamine [a metabolite of (R)-ketamine] and (S)-norketamine [a metabolite of (S)-ketamine] have been shown to exhibit antidepressant-like effects on rodents through the BDNF-TrkB cascade. In this review, we discuss recent findings on the molecular and cellular mechanisms underlying the antidepressant effects of enantiomers of ketamine and its metabolites. It may be time to reconsider the hypothesis of NMDAR inhibition and the subsequent AMPAR activation in the antidepressant effects of ketamine.
Collapse
|
9
|
Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin Neurosci 2019; 73:613-627. [PMID: 31215725 PMCID: PMC6851782 DOI: 10.1111/pcn.12902] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
10
|
Swainson J, Thomas RK, Archer S, Chrenek C, MacKay MA, Baker G, Dursun S, Klassen LJ, Chokka P, Demas ML. Esketamine for treatment resistant depression. Expert Rev Neurother 2019; 19:899-911. [PMID: 31282772 DOI: 10.1080/14737175.2019.1640604] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Treatment Resistant Depression (TRD) is a common and burdensome condition with poor outcomes and few treatment options. Esketamine is the S-enantiomer of ketamine and has recently been FDA approved in the United States for treating depression that has failed to respond to trials of two or more antidepressants. Areas covered: This review will briefly discuss current treatment options for TRD, then review esketamine. Relevant literature was identified through online database searches, and clinical trial data were provided by Janssen Pharmaceuticals. Pharmacology, including kinetics and dynamics, is discussed, then clinical data regarding efficacy and safety for esketamine from Phase 2-3 trials are reviewed. Expert opinion: In the expert opinion, the authors discuss multiple factors including patient, physician, and social factors that will influence the use of esketamine. While the efficacy of esketamine compared to off-label use of racemic ketamine remains unclear, both esketamine's approval for use in TRD and longer-term safety data may position it preferentially above racemic ketamine, although factors such as cost and monitoring requirements may limit its use. While questions remain regarding duration and frequency of treatment, as well as addictive potential, esketamine is a novel treatment option offering new hope for TRD.
Collapse
Affiliation(s)
- Jennifer Swainson
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada.,Misericordia Community Hospital , Edmonton , AB , Canada
| | - Rejish K Thomas
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada.,Grey Nuns Community Hospital , Edmonton , AB , Canada
| | - Shaina Archer
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada
| | - Carson Chrenek
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada.,Misericordia Community Hospital , Edmonton , AB , Canada
| | - Mary-Anne MacKay
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada
| | - Glen Baker
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada
| | - Serdar Dursun
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada.,Grey Nuns Community Hospital , Edmonton , AB , Canada
| | | | - Pratap Chokka
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada.,Grey Nuns Community Hospital , Edmonton , AB , Canada
| | - Michael L Demas
- Department of Psychiatry, University of Alberta , Edmonton , AB , Canada.,Grey Nuns Community Hospital , Edmonton , AB , Canada
| |
Collapse
|
11
|
Xiong Z, Fujita Y, Zhang K, Pu Y, Chang L, Ma M, Chen J, Hashimoto K. Beneficial effects of (R)-ketamine, but not its metabolite (2R,6R)-hydroxynorketamine, in the depression-like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model. Behav Brain Res 2019; 368:111904. [PMID: 30980851 DOI: 10.1016/j.bbr.2019.111904] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/25/2019] [Accepted: 04/09/2019] [Indexed: 02/03/2023]
Abstract
Inflammatory bone markers may play a role in the antidepressant actions of (R)-ketamine in susceptible mice after chronic social defeat stress (CSDS). In this study, we compared the effects of (R)-ketamine and its final metabolite (2R,6R)-hydroxynorketamine (HNK) in depression-like phenotypes, inflammatory bone markers and bone mineral density (BMD) in CSDS susceptible mice. We measured plasma levels of inflammatory bone markers, which included osteoprotegerin (OPG), receptor activator of nuclear factor κB ligand (RANKL), and osteopontin after behavioral tests. (R)-ketamine, but not (2R,6R)-HNK, elicited rapid and sustained antidepressant effects in CSDS susceptible mice. Furthermore, (R)-ketamine, but not (2R,6R)-HNK, significantly improved the increased plasma levels of RANKL and decreased OPG/RANKL ratio in CSDS susceptible mice. Moreover, (R)-ketamine, but not (2R,6R)-HNK, significantly attenuated the decreased BMD in CSDS susceptible mice. These findings demonstrate that (R)-ketamine may have beneficial effects in depression-like phenotype and abnormalities in bone functions of CSDS susceptible mice. It is, therefore, likely that (R)-ketamine would be a potential therapeutic drug for abnormalities in bone metabolism in depressed patients.
Collapse
Affiliation(s)
- Zhongwei Xiong
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kai Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Min Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Jincao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
12
|
Zhang K, Hashimoto K. An update on ketamine and its two enantiomers as rapid-acting antidepressants. Expert Rev Neurother 2018; 19:83-92. [PMID: 30513009 DOI: 10.1080/14737175.2019.1554434] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Introduction: Depression is one of the most disabling diseases worldwide. Approximately one-third of depressed patients are treatment-resistant to the currently available antidepressants and there is a significant therapeutic time lag of weeks to months. There is a clear unmet need for rapid-acting and more efficacious treatments. (R,S)-ketamine, an old anesthetic drug, appears now to be going through a renaissance. Areas covered: This paper reviews recent literature describing the antidepressant effects of ketamine and its enantiomer (S)-ketamine in patients with major depressive disorder (MDD) and bipolar disorder (BD). Furthermore, the authors discuss the therapeutic potential of (R)-ketamine, another enantiomer of (R,S)-ketamine, and (S)-norketamine. Expert commentary: A number of clinical studies have demonstrated that (R,S)-ketamine has rapid-acting and sustained antidepressant activity in treatment-resistant patients with MDD, BD, and other psychiatric disorders. Off-label use of ketamine for mood disorders is proving popular in the United States. Meanwhile, preclinical data suggests that (R)-ketamine can exert longer-lasting antidepressant effects than (S)-ketamine in animal models of depression, and (R)-ketamine may have less detrimental side effects than (R,S)-ketamine and (S)-ketamine. Additionally, (S)-norketamine exhibits rapid and sustained antidepressant effects, with a potency similar to that of (S)-ketamine. Unlike (S)-ketamine, (S)-norketamine does not cause behavioral and biochemical abnormalities and could be a safer than (S)-ketamine too.
Collapse
Affiliation(s)
- Kai Zhang
- a Division of Clinical Neuroscience , Chiba University Center for Forensic Mental Health , Chiba , Japan.,b Wuxi Mental Health Center , Nanjing Medical University , Wuxi , China
| | - Kenji Hashimoto
- a Division of Clinical Neuroscience , Chiba University Center for Forensic Mental Health , Chiba , Japan
| |
Collapse
|
13
|
Zhang K, Toki H, Fujita Y, Ma M, Chang L, Qu Y, Harada S, Nemoto T, Mizuno-Yasuhira A, Yamaguchi JI, Chaki S, Hashimoto K. Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model. Psychopharmacology (Berl) 2018; 235:3177-3185. [PMID: 30215218 DOI: 10.1007/s00213-018-5017-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/29/2018] [Indexed: 12/28/2022]
Abstract
RATIONALE (R,S)-ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, exhibits rapid and long-lasting antidepressant effects and anti-suicidal ideation in treatment-resistant patients with depression. However, the precise mechanisms underlying the antidepressant actions of (R,S)-ketamine are unknown. Although the previous report demonstrated the deuterium isotope effects in the antidepressant actions of (R,S)-ketamine, the deuterium isotope effects in the antidepressant actions of (R)-ketamine, which is more potent than (S)-ketamine, are unknown. METHODS We examined whether deuterium substitution at the C6 position could affect antidepressant effects of (R)-ketamine in a chronic social defeat stress (CSDS) model. RESULTS Pharmacokinetic studies showed that levels of (2R,6R)-d1-hydroxynorketamine [(2R,6R)-d1-HNK], a final metabolite of (R)-d2-ketamine, in the plasma and brain after administration of (R)-d2-ketamine (10 mg/kg) were lower than those of (2R,6R)-HNK from (R)-ketamine (10 mg/kg), indicating deuterium isotope effects in the production of (2R,6R)-HNK. In contrast, levels of (R)-ketamine and its metabolite (R)-norketamine in the plasma and brain were the same for both compounds. In a CSDS model, both (R)-ketamine (10 mg/kg) and (R)-d2-ketamine (10 mg/kg) showed rapid and long-lasting (7 days) antidepressant effects, indicating no deuterium isotope effect in the antidepressant effects of (R)-ketamine. CONCLUSIONS The present study suggests that deuterium substitution of hydrogen at the C6 position slows the metabolism from (R)-ketamine to (2R,6R)-HNK in mice. In contrast, we did not find the deuterium isotope effects in terms of the rapid and long-lasting antidepressant effects of (R)-ketamine in a CSDS model. Therefore, it is unlikely that (2R,6R)-HNK is essential for antidepressant effects of (R)-ketamine.
Collapse
Affiliation(s)
- Kai Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | - Hidetoh Toki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Min Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Shingo Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | | - Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
14
|
Chang L, Toki H, Qu Y, Fujita Y, Mizuno-Yasuhira A, Yamaguchi JI, Chaki S, Hashimoto K. No Sex-Specific Differences in the Acute Antidepressant Actions of (R)-Ketamine in an Inflammation Model. Int J Neuropsychopharmacol 2018; 21:932-937. [PMID: 29893929 PMCID: PMC6165956 DOI: 10.1093/ijnp/pyy053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although previous reports suggest sex-specific differences in the antidepressant actions of (R,S)-ketamine, these differences in the antidepressant actions of (R)-ketamine, which is more potent than (S)-ketamine, are unknown. METHODS Saline or (R)-ketamine was administered 23 hours post lipopolysaccharide administration to adult male or female mice. Subsequently, antidepressant effects were assessed using a forced swimming test. Furthermore, the concentration of (R)-ketamine and its 2 major metabolites, (R)-norketamine and (2R,6R)-hydroxynorketamine, was measured in the plasma and brain after the administration of (R)-ketamine in the mice. RESULTS (R)-ketamine (10 mg/kg) significantly attenuated the increased immobility time of forced swimming test in the lipopolysaccharide-treated mice. There were no sex-specific differences in the concentrations of (R)-ketamine and its 2 metabolites in the plasma and brain. CONCLUSIONS These findings showed no sex-specific differences in terms of the acute antidepressant effects and pharmacokinetic profile of (R)-ketamine.
Collapse
Affiliation(s)
- Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Hidetoh Toki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | | | | | - Shigeyuki Chaki
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan,Correspondence: Kenji Hashimoto, PhD, Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan ()
| |
Collapse
|
15
|
Lack of metabolism in (R)-ketamine's antidepressant actions in a chronic social defeat stress model. Sci Rep 2018; 8:4007. [PMID: 29507385 PMCID: PMC5838158 DOI: 10.1038/s41598-018-22449-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
Since the metabolism of (R,S)-ketamine to (2R,6R)-hydroxynorketamine (HNK) is reported to be essential for ketamine's antidepressant effects, there is an increasing debate about antidepressant effects of (2R,6R)-HNK. Using pharmacokinetic and behavioral techniques, we investigated whether intracerebroventricular (i.c.v.) infusion of (R)-ketamine or (2R,6R)-HNK show antidepressant effects in a chronic social defeat stress (CSDS) model of depression. Low levels of (2R,6R)-HNK in the brain after i.c.v. infusion of (R)-ketamine were detected, although brain levels of (2R,6R)-HNK were markedly lower than those after i.c.v. infusion of (2R,6R)-HNK. Furthermore, high levels of (2R,6R)-HNK in the blood and liver after i.c.v. infusion of (R)-ketamine or (2R,6R)-HNK were detected. A single i.c.v. infusion of (R)-ketamine showed rapid and long-lasting (7 days) antidepressant effects in a CSDS model. In contrast, i.c.v. infusion of (2R,6R)-HNK did not show any antidepressant effect in the same model, although brain concentration of (2R,6R)-HNK was higher than after i.c.v. infusion of (R)-ketamine. This study suggest that (R)-ketamine in the periphery after washout from the brain is metabolized to (2R,6R)-HNK in the liver, and subsequently, (2R,6R)-HNK enters into brain tissues. Furthermore, it is unlikely that (2R,6R)-HNK is essential for the antidepressant actions of (R)-ketamine in a CSDS model.
Collapse
|