1
|
Ollitrault G, Marzo M, Roncaglioni A, Benfenati E, Mombelli E, Taboureau O. Prediction of Endocrine-Disrupting Chemicals Related to Estrogen, Androgen, and Thyroid Hormone (EAT) Modalities Using Transcriptomics Data and Machine Learning. TOXICS 2024; 12:541. [PMID: 39195643 PMCID: PMC11360171 DOI: 10.3390/toxics12080541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are chemicals that can interfere with homeostatic processes. They are a major concern for public health, and they can cause adverse long-term effects such as cancer, intellectual impairment, obesity, diabetes, and male infertility. The endocrine system is a complex machinery, with the estrogen (E), androgen (A), and thyroid hormone (T) modes of action being of major importance. In this context, the availability of in silico models for the rapid detection of hazardous chemicals is an effective contribution to toxicological assessments. We developed Qualitative Gene expression Activity Relationship (QGexAR) models to predict the propensities of chemically induced disruption of EAT modalities. We gathered gene expression profiles from the LINCS database tested on two cell lines, i.e., MCF7 (breast cancer) and A549 (adenocarcinomic human alveolar basal epithelial). We optimized our prediction protocol by testing different feature selection methods and classification algorithms, including CATBoost, XGBoost, Random Forest, SVM, Logistic regression, AutoKeras, TPOT, and deep learning models. For each EAT endpoint, the final prediction was made according to a consensus prediction as a function of the best model obtained for each cell line. With the available data, we were able to develop a predictive model for estrogen receptor and androgen receptor binding and thyroid hormone receptor antagonistic effects with a consensus balanced accuracy on a validation set ranging from 0.725 to 0.840. The importance of each predictive feature was further assessed to identify known genes and suggest new genes potentially involved in the mechanisms of action of EAT perturbation.
Collapse
Affiliation(s)
| | - Marco Marzo
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (M.M.); (A.R.); (E.B.)
| | - Alessandra Roncaglioni
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (M.M.); (A.R.); (E.B.)
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy; (M.M.); (A.R.); (E.B.)
| | - Enrico Mombelli
- Institut National de l’Environnement Industriel et des Risques (INERIS), 60550 Verneuil en Halatte, France;
| | - Olivier Taboureau
- Inserm U1133, CNRS UMR 8251, Université Paris Cité, 75013 Paris, France;
| |
Collapse
|
2
|
Lehle JD, McCarrey JR. Differential susceptibility to endocrine disruptor-induced epimutagenesis. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa016. [PMID: 33324495 PMCID: PMC7722801 DOI: 10.1093/eep/dvaa016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 05/08/2023]
Abstract
There is now considerable evidence indicating the potential for endocrine disrupting chemicals to alter the epigenome and for subsets of these epigenomic changes or "epimutations" to be heritably transmitted to offspring in subsequent generations. While there have been many studies indicating how exposure to endocrine disrupting chemicals can disrupt various organs associated with the body's endocrine systems, there is relatively limited information regarding the relative susceptibility of different specific organs, tissues, or cell types to endocrine disrupting chemical-induced epimutagenesis. Here we review available information about different organs, tissues, cell types, and/or cell lines which have been shown to be susceptible to specific endocrine disrupting chemical-induced epimutations. In addition, we discuss possible mechanisms that may be involved, or impacted by this tissue- or cell type-specific, differential susceptibility to different endocrine disrupting chemicals. Finally, we summarize available information indicating that certain periods of development display elevated susceptibility to endocrine disrupting chemical exposure and we describe how this may affect the extent to which germline epimutations can be transmitted inter- or transgenerationally. We conclude that cell type-specific differential susceptibility to endocrine disrupting chemical-induced epimutagenesis is likely to directly impact the extent to, or manner in, which endocrine disrupting chemical exposure initially induces epigenetic changes to DNA methylation and/or histone modifications, and how these endocrine disrupting chemical-induced epimutations can then subsequently impact gene expression, potentially leading to the development of heritable disease states.
Collapse
Affiliation(s)
- Jake D Lehle
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
3
|
Tq D, L C, A I, K N, M M, Ml S. In vitro profiling of the potential endocrine disrupting activities affecting steroid and aryl hydrocarbon receptors of compounds and mixtures prevalent in human drinking water resources. CHEMOSPHERE 2020; 258:127332. [PMID: 32554009 DOI: 10.1016/j.chemosphere.2020.127332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Prioritizing chemicals posing threats to drinking water resources is crucial for legislation considering the cost of water treatment, remediation, and monitoring. We profiled in vitro potential endocrine disrupting activities (both agonistic and antagonistic) of 18 contaminants most prevalent in Walloon raw water resources intended for drinking water production, including several compound groups: pesticides, perfluorinated compounds, polycyclic aromatic hydrocarbons, a corrosion inhibitor, and bisphenol A. Mixtures thereof relevant for human realistic exposure were also investigated. Seven luciferase reporter gene cell lines were used i.e. three (human and rat) responsive to dioxins through the aryl hydrocarbon receptor (AhR) and four (human) responsive to steroids through the estrogen (ER), androgen (AR), progesterone (PR), and glucocorticoid (GR) receptors. Among the 18 compounds, ten caused at least one response in at least one receptor. Specifically, chlorpyrifos, bisphenol A, fluoranthene, phenanthrene, and benzo [a]pyrene displayed significant activities on several receptors. Bisphenol A agonized ER, but abolished the cells' response to androgen and progesterone. While fluoranthene and phenanthrene strongly reduced human AhR and AR transactivation, benzo [a]pyrene strongly activated AhR and ER, but inhibited GR and AR. In human breast cancer cells, benzo [a]pyrene dramatically activated AhR, inducing a 10-fold higher response than 2,3,7,8-tetrachlorodibenzodioxin (TCDD) at concentrations possibly found realistically in human blood. The mixture of the 18 compounds exerted both ER and rat AhR agonism, with the main contribution being from benzo [a]pyrene or its combination with bisphenol A. Moreover, the mixture significantly inhibited TCDD-induced CYP1A activity (detected only by EROD assays) in human hepatoma cells.
Collapse
Affiliation(s)
- Doan Tq
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - Connolly L
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT9 5DL, UK
| | - Igout A
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liège, Liège, 4000, Belgium
| | - Nott K
- La Société Wallonne des Eaux (SWDE), Verviers, 4800, Belgium
| | - Muller M
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - Scippo Ml
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
4
|
LC-MS/MS based profiling and dynamic modelling of the steroidogenesis pathway in adrenocarcinoma H295R cells. Toxicol In Vitro 2018; 52:332-341. [PMID: 30017865 DOI: 10.1016/j.tiv.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/22/2018] [Accepted: 07/06/2018] [Indexed: 12/17/2022]
Abstract
Endocrine disrupting chemicals have been reported to exert effects directly on enzymes involved in steroid biosynthesis. Here, we present a new liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for profiling the steroid metabolome of H295R human adrenocarcinoma cells. Our method can simultaneously analyse 19 precursors, intermediates and end-products, representing the adrenal steroid biosynthesis pathway. In order to obtain better insights into the processes of steroidogenesis, we investigated the dose-response relationship of forskolin, an activator of adenylate cyclase, on steroid production in H295R cells. We observed that 1.5 μM forskolin stimulated steroid production at approximately 50% of the maximum rate for most steroids. Hence, we studied the time course for steroid synthesis over 72 h in H295R cells that were stimulated with forskolin. At 24 h, we observed a peak in steroid levels for the intermediate metabolites, such as progesterone and pregnenolone, while end-products such as testosterone and cortisol continued to increase until 72 h. Finally, we show how global data provide a unique basis to develop a comprehensive, dynamic model for steroidogenesis using first order kinetics. The timeline data made it possible to estimate all reaction rate constants of the network. We propose this method as a unique and sensitive screening tool to identify effects on adrenal steroidogenesis by endocrine disrupting compounds.
Collapse
|
5
|
Schlotz N, Kim GJ, Jäger S, Günther S, Lamy E. In vitro observations and in silico predictions of xenoestrogen mixture effects in T47D-based receptor transactivation and proliferation assays. Toxicol In Vitro 2017; 45:146-157. [PMID: 28855101 DOI: 10.1016/j.tiv.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
Abstract
Within endocrine disruptor research, evaluation and interpretation of mixture effects and the predictive value for downstream responses still warrant more in-depth investigations. We used an estrogen receptor (ER)-mediated reporter gene assay (ER-CALUX®) and a cell proliferation assay (WST-1 assay), both based on the T47D breast cancer cell line, to test mixtures of heterogeneous xenoestrogens. Observed concentration-response curves were compared to those predicted by the concepts of concentration addition (CA), generalized concentration addition (GCA), and a novel full logistic model (FLM). CA performed better regarding mixture potency (EC50 values), whereas GCA was superior in predicting mixture efficacy (maximal response). In comparison, FLM proved to be highly suitable for in silico mixture effect prediction, combining advantages of both CA and GCA. The inter-assay comparison revealed that ER activation is not necessarily predictive for induction of cell proliferation. The results support the use of models like CA, GCA, or FLM in mixture effect evaluation. However, we conclude that reliable estimations regarding the disruptive potential of mixtures of endocrine active substances require an integrative approach considering more than one assay/endpoint to avoid misinterpretations. The formazan-based WST-1 proliferation assay might be a possible alternative to commonly used proliferation assays in endocrine disrupter research.
Collapse
Affiliation(s)
- Nina Schlotz
- Institute for Prevention and Cancer Epidemiology, Molecular Preventive Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Elsässerstrasse 2, 79110 Freiburg im Breisgau, Germany.
| | - Gwang-Jin Kim
- Institute of Pharmaceutical Sciences, Pharmaceutical Bioinformatics, University of Freiburg, Albertstrasse 25, 79104 Freiburg im Breisgau, Germany.
| | - Stefan Jäger
- Institute for Prevention and Cancer Epidemiology, Molecular Preventive Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Elsässerstrasse 2, 79110 Freiburg im Breisgau, Germany.
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Pharmaceutical Bioinformatics, University of Freiburg, Albertstrasse 25, 79104 Freiburg im Breisgau, Germany.
| | - Evelyn Lamy
- Institute for Prevention and Cancer Epidemiology, Molecular Preventive Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Elsässerstrasse 2, 79110 Freiburg im Breisgau, Germany.
| |
Collapse
|
6
|
Salehi ASM, Shakalli Tang MJ, Smith MT, Hunt JM, Law RA, Wood DW, Bundy BC. Cell-Free Protein Synthesis Approach to Biosensing hTRβ-Specific Endocrine Disruptors. Anal Chem 2017; 89:3395-3401. [DOI: 10.1021/acs.analchem.6b04034] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amin S. M. Salehi
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Miriam J. Shakalli Tang
- Department
of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, United States
| | - Mark T. Smith
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Jeremy M. Hunt
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Robert A. Law
- Department
of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, United States
| | - David W. Wood
- Department
of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, United States
| | - Bradley C. Bundy
- Department
of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
7
|
Screening of endocrine activity of compounds migrating from plastic baby bottles using a multi-receptor panel of in vitro bioassays. Toxicol In Vitro 2016; 37:121-133. [DOI: 10.1016/j.tiv.2016.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/01/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022]
|
8
|
Chamas A, Nieter A, Pham HTM, Giersberg M, Hettwer K, Uhlig S, Simon K, Baronian K, Kunze G. Development of a recombinant Arxula adeninivorans cell bioassay for the detection of molecules with progesterone activity in wastewater. Anal Bioanal Chem 2015; 407:8109-20. [DOI: 10.1007/s00216-015-8985-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
|
9
|
Gauvin DV, Abernathy MM, Tapp RL, Yoder JD, Dalton JA, Baird TJ. The failure to detect drug-induced sensory loss in standard preclinical studies. J Pharmacol Toxicol Methods 2015; 74:53-74. [DOI: 10.1016/j.vascn.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
|
10
|
Gerbron M, Geraudie P, Xuereb B, Marie S, Minier C. In vitro and in vivo studies of the endocrine disrupting potency of cadmium in roach (Rutilus rutilus) liver. MARINE POLLUTION BULLETIN 2015; 95:582-589. [PMID: 26024563 DOI: 10.1016/j.marpolbul.2015.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 03/11/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
Cadmium has been reported to exert estrogenic, antiestrogenic or both effects in vertebrate species. To elucidate the endocrine disrupting action of CdCl2, ex vivo and in vivo experiments were performed in roach (Rutilus rutilus). Roach liver explants were exposed to a range of CdCl2 concentrations alone (0.1-50μM) or with an effective concentration (100nM) of 17β-estradiol (E2). In addition, juvenile roach were intraperitoneally injected with CdCl2 (0.1-2.5mg/kg) with or without 1mg E2/kg. Subsequent analysis evaluated the effect of CdCl2 on vitellogenin (VTG) synthesis both at the mRNA and protein level, on estrogen receptors (erα and erβ1) and on androgen receptor (ar) mRNA expression. Ex vivo and in vivo experiments indicated that CdCl2 is strongly anti-estrogenic as, when co-exposed to E2, CdCl2 significantly inhibited VTG production as well as vtg and erα mRNA expressions. Moreover, CdCl2 compromised the E2-mediated induction of the ar mRNA expression in vivo.
Collapse
Affiliation(s)
- M Gerbron
- Laboratory of Ecotoxicology, ULH Normandie Université, SFR SACLE 4116, BP 540, 76058 Le Havre, France.
| | - P Geraudie
- Laboratory of Ecotoxicology, ULH Normandie Université, SFR SACLE 4116, BP 540, 76058 Le Havre, France; Akvaplan Niva as, Fram Centre, 9296 Tromsø, Norway
| | - B Xuereb
- Laboratory of Ecotoxicology, ULH Normandie Université, SFR SACLE 4116, BP 540, 76058 Le Havre, France
| | - S Marie
- Laboratory of Ecotoxicology, ULH Normandie Université, SFR SACLE 4116, BP 540, 76058 Le Havre, France
| | - C Minier
- Laboratory of Ecotoxicology, ULH Normandie Université, SFR SACLE 4116, BP 540, 76058 Le Havre, France
| |
Collapse
|
11
|
Gierach I, Shapero K, Eyster TW, Wood DW. Bacterial biosensors for evaluating potential impacts of estrogenic endocrine disrupting compounds in multiple species. ENVIRONMENTAL TOXICOLOGY 2013; 28:179-189. [PMID: 21544920 DOI: 10.1002/tox.20708] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/30/2011] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
To study the effects and possible mechanisms of suspected endocrine disrupting compounds (EDCs), a wide variety of assays have been developed. In this work, we generated engineered Escherichia coli biosensor strains that incorporate the ligand-binding domains (LBDs) of the β-subtype estrogen receptors (ERβ) from Solea solea (sole), and Sus scrofa (pig). These strains indicate the presence of ligands for these receptors by changes in growth phenotype, and can differentiate agonist from antagonist and give a rough indication of binding affinity via dose-response curves. The resulting strains were compared with our previously reported Homo sapiens ERβ biosensor strain. In initial tests, all three of the strains correctly identified estrogenic test compounds with a high degree of certainly (Z' typically greater than 0.5), including the weakly binding test compound bisphenol A (BPA) (Z' ≈ 0.1-0.3). The modular design of the sensing element in this strain allows quick development of new species-based biosensors by simple LBD swapping, suggesting its use in initial comparative analysis of EDC impacts across multiple species. Interestingly, the growth phenotypes of the biosensor strains indicate similar binding for highly estrogenic control compounds, but suggest differences in ligand binding for more weakly binding EDCs.
Collapse
Affiliation(s)
- Izabela Gierach
- Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
12
|
Effect of combining in vitro estrogenicity data with kinetic characteristics of estrogenic compounds on the in vivo predictive value. Toxicol In Vitro 2013; 27:44-51. [DOI: 10.1016/j.tiv.2012.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/23/2022]
|
13
|
Quignot N, Bois FY. A computational model to predict rat ovarian steroid secretion from in vitro experiments with endocrine disruptors. PLoS One 2013; 8:e53891. [PMID: 23326527 PMCID: PMC3543310 DOI: 10.1371/journal.pone.0053891] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/05/2012] [Indexed: 01/20/2023] Open
Abstract
A finely tuned balance between estrogens and androgens controls reproductive functions, and the last step of steroidogenesis plays a key role in maintaining that balance. Environmental toxicants are a serious health concern, and numerous studies have been devoted to studying the effects of endocrine disrupting chemicals (EDCs). The effects of EDCs on steroidogenic enzymes may influence steroid secretion and thus lead to reproductive toxicity. To predict hormonal balance disruption on the basis of data on aromatase activity and mRNA level modulation obtained in vitro on granulosa cells, we developed a mathematical model for the last gonadal steps of the sex steroid synthesis pathway. The model can simulate the ovarian synthesis and secretion of estrone, estradiol, androstenedione, and testosterone, and their response to endocrine disruption. The model is able to predict ovarian sex steroid concentrations under normal estrous cycle in female rat, and ovarian estradiol concentrations in adult female rats exposed to atrazine, bisphenol A, metabolites of methoxychlor or vinclozolin, and letrozole.
Collapse
Affiliation(s)
- Nadia Quignot
- Bioengineering Department, Université de Technologie de Compiègne, Compiègne, France.
| | | |
Collapse
|
14
|
Quignot N, Arnaud M, Robidel F, Lecomte A, Tournier M, Cren-Olivé C, Barouki R, Lemazurier E. Characterization of endocrine-disrupting chemicals based on hormonal balance disruption in male and female adult rats. Reprod Toxicol 2012; 33:339-52. [DOI: 10.1016/j.reprotox.2012.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 10/14/2022]
|
15
|
A comparison of two human cell lines and two rat gonadal cell primary cultures as in vitro screening tools for aromatase modulation. Toxicol In Vitro 2012; 26:107-18. [DOI: 10.1016/j.tiv.2011.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/25/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022]
|
16
|
McElroy AE, Barron MG, Beckvar N, Driscoll SBK, Meador JP, Parkerton TF, Preuss TG, Steevens JA. A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2011; 7:50-74. [PMID: 21184569 DOI: 10.1002/ieam.132] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/24/2010] [Accepted: 08/02/2010] [Indexed: 05/24/2023]
Abstract
This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (Sn, Hg, and Pb) in aquatic organisms. Specific emphasis was placed on evaluating key factors that influence interpretation of critical body residue (CBR) toxicity metrics including data quality issues, lipid dynamics, choice of endpoints, processes that alter toxicokinetics and toxicodynamics, phototoxicity, species- and life stage-specific sensitivities, and biotransformation. The vast majority of data available on TRA is derived from laboratory studies of acute lethal responses to organic toxicants exhibiting baseline toxicity. Application of the TRA to various baseline toxicants as well as substances with specific modes of action via receptor-mediated processes, such as chlorinated aromatic hydrocarbons, pesticides, and organometallics is discussed, as is application of TRA concepts in field assessments of tissue residues. In contrast to media-based toxicity relationships, CBR values tend to be less variable and less influenced by factors that control bioavailability and bioaccumulation, and TRA can be used to infer mechanisms of toxic action, evaluate the toxicity of mixtures, and interpret field data on bioaccumulated toxicants. If residue-effects data are not available, body residues can be estimated, as has been done using the target lipid model for baseline toxicants, to derive critical values for risk assessment. One of the primary unresolved issues complicating TRA for organic chemicals is biotransformation. Further work on the influence of biotransformation, a better understanding of contaminant lipid interactions, and an explicit understanding of the time dependency of CBRs and receptor-mediated toxicity are all required to advance this field. Additional residue-effects data on sublethal endpoints, early life stages, and a wider range of legacy and emergent contaminants will be needed to improve the ability to use TRA for organic and organometallic compounds.
Collapse
Affiliation(s)
- Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Montaño M, Bakker EJ, Murk AJ. Meta-analysis of Supramaximal Effects in In Vitro Estrogenicity Assays. Toxicol Sci 2010; 115:462-74. [DOI: 10.1093/toxsci/kfq056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Krewski D, Acosta D, Andersen M, Anderson H, Bailar JC, Boekelheide K, Brent R, Charnley G, Cheung VG, Green S, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O, Patterson RD, Pennie W, Scala RA, Solomon GM, Stephens M, Yager J, Zeise L. Toxicity testing in the 21st century: a vision and a strategy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2010; 13:51-138. [PMID: 20574894 PMCID: PMC4410863 DOI: 10.1080/10937404.2010.483176] [Citation(s) in RCA: 494] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
With the release of the landmark report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences, in 2007, precipitated a major change in the way toxicity testing is conducted. It envisions increased efficiency in toxicity testing and decreased animal usage by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters. Risk assessment in the exposed human population would focus on avoiding significant perturbations in these toxicity pathways. Computational systems biology models would be implemented to determine the dose-response models of perturbations of pathway function. Extrapolation of in vitro results to in vivo human blood and tissue concentrations would be based on pharmacokinetic models for the given exposure condition. This practice would enhance human relevance of test results, and would cover several test agents, compared to traditional toxicological testing strategies. As all the tools that are necessary to implement the vision are currently available or in an advanced stage of development, the key prerequisites to achieving this paradigm shift are a commitment to change in the scientific community, which could be facilitated by a broad discussion of the vision, and obtaining necessary resources to enhance current knowledge of pathway perturbations and pathway assays in humans and to implement computational systems biology models. Implementation of these strategies would result in a new toxicity testing paradigm firmly based on human biology.
Collapse
Affiliation(s)
- Daniel Krewski
- R Samuel McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Penza M, Jeremic M, Montani C, Unkila M, Caimi L, Mazzoleni G, Di Lorenzo D. Alternatives to animal experimentation for hormonal compounds research. GENES AND NUTRITION 2009; 4:165-72. [PMID: 19468777 DOI: 10.1007/s12263-009-0124-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 05/07/2009] [Indexed: 11/28/2022]
Abstract
Alternatives to animal testing and the identification of reliable methods that may decrease the need for animals are currently the subject of intense investigation worldwide. Alternative testing procedures are particularly important for synthetic and natural chemicals that exert their biological actions through binding nuclear receptors, called nuclear receptors-interacting compounds (NR-ICs), for which research is increasingly emphasizing the limits of several models in the accurate estimation of the physiological consequences of exposure to these compounds. In particular, estrogen receptor interacting compounds (ER-ICs) have a great impact on human health from the therapeutic, nutritional, and toxicological point of view due to the highly permissive nature of the estrogen receptors towards a large number of natural and synthetic compounds. Similar to in vitro systems, recently generated animal models (e.g., animal models generated for the study of estrogen receptor ligands) may fulfill the 3R principles: refine, reduce, and replace. If used correctly, NR-regulated models, such as reporter mice, xenopus, or zebrafish, and models obtained by somatic gene transfer in reporter systems, combined with imaging technologies, may contribute to strongly decreasing the overall number of animals required for NR-IC testing and research. With these models, flexible and highly standardized parameters and reporter marker quantification can be obtained. Here, we highlight the need for the substitution of currently used testing models with more appropriate ones that can reproduce the features and reactivity of specific mammalian target tissue/organs. We consider the promotion of this advancement a research priority bearing scientific, economic, social, and ethical relevance.
Collapse
Affiliation(s)
- M Penza
- Laboratory of Biotechnology, Department of Laboratory Medicine, Civic Hospital of Brescia, Piazzale Spedali Civili 1, A.O. Spedali Civili di Brescia, 25123, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Navas JM, Segner H. In-vitro screening of the antiestrogenic activity of chemicals. Expert Opin Drug Metab Toxicol 2008; 4:605-17. [PMID: 18484918 DOI: 10.1517/17425255.4.5.605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Many chemicals have the potential to interfere with the endocrine systems of humans and wildlife, leading to adverse health effects. In the tiered testing strategies developed for regulatory hazard assessment, in-vitro screens could serve for prioritisation of compounds and for guiding subsequent testing. OBJECTIVE To describe in-vitro assays to detect antiestrogenic activity of chemicals. METHODS Antiestrogenicity was considered in this review as any inhibition or reduction of estrogen-induced processes due to interference with the normal functioning of the estrogen receptor pathway. Accordingly, in-vitro screening assays for antiestrogenicity have to consider all the possible mechanisms by which this inhibition may occur. Such assays include binding assays, cell proliferation assays, reporter gene assays, and gene activation/protein production assays. RESULTS/CONCLUSIONS While binding assays appear to be of limited value in assessing antiestrogenicity, assays using differentiated cells with metabolic competence and a varied receptor/regulatory factor equipment have the capability to detect various modes of antiestrogenic action.
Collapse
Affiliation(s)
- José M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Department of Environment, Madrid, Spain.
| | | |
Collapse
|
21
|
Bursztyka J, Perdu E, Pettersson K, Pongratz I, Fernández-Cabrera M, Olea N, Debrauwer L, Zalko D, Cravedi J. Biotransformation of genistein and bisphenol A in cell lines used for screening endocrine disruptors. Toxicol In Vitro 2008; 22:1595-604. [DOI: 10.1016/j.tiv.2008.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/05/2008] [Accepted: 06/24/2008] [Indexed: 02/07/2023]
|
22
|
Phillips KP, Foster WG, Leiss W, Sahni V, Karyakina N, Turner MC, Kacew S, Krewski D. Assessing and managing risks arising from exposure to endocrine-active chemicals. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:351-372. [PMID: 18368561 DOI: 10.1080/10937400701876657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Managing risks to human health and the environment produced by endocrine-active chemicals (EAC) is dependent on sound principles of risk assessment and risk management, which need to be adapted to address the uncertainties in the state of the science of EAC. Quantifying EAC hazard identification, mechanisms of action, and dose-response curves is complicated by a range of chemical structure/toxicology classes, receptors and receptor subtypes, and nonlinear dose-response curves with low-dose effects. Advances in risk science including toxicogenomics and quantitative structure-activity relationships (QSAR) along with a return to the biological process of hormesis are proposed to complement existing risk assessment strategies, including that of the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC 1998). EAC represents a policy issue that has captured the public's fears and concerns about environmental health. This overview describes the process of EAC risk assessment and risk management in the context of traditional risk management frameworks, with emphasis on the National Research Council Framework (1983), taking into consideration the strategies for EAC management in Canada, the United States, and the European Union.
Collapse
Affiliation(s)
- Karen P Phillips
- Faculty of Health Sciences, University of Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Knight A. Systematic Reviews of Animal Experiments Demonstrate Poor Human Clinical and Toxicological Utility. Altern Lab Anim 2007; 35:641-59. [DOI: 10.1177/026119290703500610] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The assumption that animal models are reasonably predictive of human outcomes provides the basis for their widespread use in toxicity testing and in biomedical research aimed at developing cures for human diseases. To investigate the validity of this assumption, the comprehensive Scopus biomedical bibliographic databases were searched for published systematic reviews of the human clinical or toxicological utility of animal experiments. In 20 reviews in which clinical utility was examined, the authors concluded that animal models were either significantly useful in contributing to the development of clinical interventions, or were substantially consistent with clinical outcomes, in only two cases, one of which was contentious. These included reviews of the clinical utility of experiments expected by ethics committees to lead to medical advances, of highly-cited experiments published in major journals, and of chimpanzee experiments — those involving the species considered most likely to be predictive of human outcomes. Seven additional reviews failed to clearly demonstrate utility in predicting human toxicological outcomes, such as carcinogenicity and teratogenicity. Consequently, animal data may not generally be assumed to be substantially useful for these purposes. Possible causes include interspecies differences, the distortion of outcomes arising from experimental environments and protocols, and the poor methodological quality of many animal experiments, which was evident in at least 11 reviews. No reviews existed in which the majority of animal experiments were of good methodological quality. Whilst the effects of some of these problems might be minimised with concerted effort (given their widespread prevalence), the limitations resulting from interspecies differences are likely to be technically and theoretically impossible to overcome. Non-animal models are generally required to pass formal scientific validation prior to their regulatory acceptance. In contrast, animal models are simply assumed to be predictive of human outcomes. These results demonstrate the invalidity of such assumptions. The consistent application of formal validation studies to all test models is clearly warranted, regardless of their animal, non-animal, historical, contemporary or possible future status. Likely benefits would include, the greater selection of models truly predictive of human outcomes, increased safety of people exposed to chemicals that have passed toxicity tests, increased efficiency during the development of human pharmaceuticals and other therapeutic interventions, and decreased wastage of animal, personnel and financial resources. The poor human clinical and toxicological utility of most animal models for which data exists, in conjunction with their generally substantial animal welfare and economic costs, justify a ban on animal models lacking scientific data clearly establishing their human predictivity or utility.
Collapse
|
24
|
Preuß TG, Ratte HT. Ökotoxikologische Charakterisierung von Nonylphenol Isomeren. ACTA ACUST UNITED AC 2007. [DOI: 10.1065/uwsf2007.10.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Scrivens M, Bhogal N. The use of human cell line reporter gene-based assays in chemical toxicity testing. Toxicol In Vitro 2007; 21:1233-40. [PMID: 17604594 DOI: 10.1016/j.tiv.2007.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 04/25/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Genetically modified rodents allow greater sensitivity in monitoring DNA damage or gene expression than traditional rodent bioassays and have become increasingly used for toxicity testing, particularly with the greater availability of protein and DNA-based toxicity biomarkers. Here, the advantages and limitations of several in vitro reporter assays already used to study the mechanisms of toxicity are discussed in relation to the in vivo traditional and reporter-based bioassays for carcinogenicity, mutagenicity, endocrine changes and inflammation endpoints to examine the scope for refining and replacing transgenic in vivo models.
Collapse
|
26
|
Navas JM, Segner H. Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 80:1-22. [PMID: 16950525 DOI: 10.1016/j.aquatox.2006.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 07/12/2006] [Accepted: 07/13/2006] [Indexed: 05/11/2023]
Abstract
Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.
Collapse
Affiliation(s)
- José M Navas
- Spanish National Institute for Agriculture and Food Research and Technology (INIA), Department for the Environment, Ctra de la Coruña Km 7, Madrid, Spain.
| | | |
Collapse
|
27
|
Stokes WS. Selecting Appropriate Animal Models and Experimental Designs for Endocrine Disruptor Research and Testing Studies. ILAR J 2004; 45:387-93. [PMID: 15454677 DOI: 10.1093/ilar.45.4.387] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Evidence that chemicals in the environment may cause developmental and reproductive abnormalities in fish and wildlife by disrupting normal endocrine functions has increased concern about potential adverse human health effects from such chemicals. US laws have now been enacted that require the US Environmental Protection Agency (EPA) to develop and validate a screening program to identify chemicals in food and water with potential endocrine-disrupting activity. EPA subsequently proposed an Endocrine Disruptor Screening Program that uses in vitro and in vivo test systems to identify chemicals that may adversely affect humans and ecologically important animal species. However, the endocrine system can be readily modulated by many experimental factors, including diet and the genetic background of the selected animal strain or stock. It is therefore desirable to minimize or avoid factors that cause or contribute to experimental variation in endocrine disruptor research and testing studies. Standard laboratory animal diets contain high and variable levels of phytoestrogens, which can modulate physiologic and behavioral responses similar to both endogenous estrogen as well as exogenous estrogenic chemicals. Other studies have determined that some commonly used outbred mice and rats are less responsive to estrogenic substances than certain inbred mouse and rat strains for various estrogen-sensitive endpoints. It is therefore critical to select appropriate biological models and diets for endocrine disruptor studies that provide optimal sensitivity and specificity to accomplish the research or testing objectives. An introduction is provided to 11 other papers in this issue that review these and other important laboratory animal experimental design considerations in greater detail, and that review laboratory animal and in vitro models currently being used or evaluated for endocrine disruptor research and testing. Selection of appropriate animal models and experimental design parameters for endocrine disruptor research and testing will minimize confounding experimental variables, increase the likelihood of replicable experimental results, and contribute to more reliable and relevant test systems.
Collapse
Affiliation(s)
- William S Stokes
- US Public Health Service, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|