1
|
Putri AI, Peters RMH, De Sabbata K, Mengistu BS, Agusni RI, Alinda MD, Darlong J, Listiawan MY, Prakoeswa CRS, Walker SL, Zweekhorst MBM. A socio-ecological model of the management of leprosy reactions in Indonesia and India using the experiences of affected individuals, family members and healthcare providers. BMC Health Serv Res 2025; 25:196. [PMID: 39901142 PMCID: PMC11792248 DOI: 10.1186/s12913-025-12340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Leprosy reactions (LR) are immune-mediated complications of leprosy that may be associated with severe and irreversible nerve damage. Non-medical aspects, such as financing, service provision, and healthcare resources in the management of LR are generally overlooked as studies tend to concentrate on clinical features and treatment. Barriers to accessing care and services are a major cause of suboptimal care for people with leprosy. This study aims to explore the barriers to and facilitators of high-quality care and management of LR in two leprosy-endemic countries with different health care models - Indonesia and India - and identify areas for improvement. METHODS A socio-ecological model was adopted. Data were obtained from 66 interviews with individuals who experienced LR and were seeking care at the two study sites. In addition, immediate family members of individuals with LR and healthcare workers attending to people with leprosy participated in seven focus group discussions (FGDs). RESULTS This study highlights the significant impact of public health insurance regulations and uptake at the macrosystem level on the provision of healthcare services, clinical decision-making, care expenditure, and the psychological well-being of individuals with LR in Indonesia and India. Lack of specialized health professionals and communication challenges were identified in both study populations. Indonesian participants encounter additional challenges due to a fragmented information system and drug shortages. This study identifies key facilitators in providing high-quality care for LR-affected individuals, including financial assistance, availability of corticosteroid alternatives, timely provision of care, and counselling. It found that the high coverage of public health insurance cards in the Indonesian model has increased access to care among individuals affected by LR, despite the challenges. Conversely, the Indian model of care offers treatment subsidies. The advantage of the Indonesian model is its ability to provide wider access to high-quality care, whereas the Indian model focuses on those in most need. This study emphasizes the importance of addressing these challenges through improved communication strategies, education aimed at the affected individuals, and accessible medical care. Furthermore, variations in care-seeking behaviour and self-care practices were observed in both sites, underscoring the need for culturally sensitive and comprehensive approaches to the management of LR. CONCLUSION The study findings demonstrate that the factors identified at the four systemic levels are interrelated and have an impact on the access, acceptability, and management of LR services. Despite its accessibility and wider coverage of public health insurance, the integrated service model in Indonesia faces challenges associated with complex regulations and the availability of medication. India's care model offers intensive, specialised care but has difficulties in ensuring sufficient health personnel, resources, and public health insurance coverage. These findings highlight the need to address these challenges to ensure timely, effective, and comprehensive care for individuals with LR.
Collapse
Affiliation(s)
- Annisa Ika Putri
- Faculty of Science, Athena Institute, VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Dermatology and Venerology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ruth M H Peters
- Faculty of Science, Athena Institute, VU University Amsterdam, Amsterdam, The Netherlands
| | - Kevin De Sabbata
- Faculty of Science, Athena Institute, VU University Amsterdam, Amsterdam, The Netherlands
- School of Law, Keele University, Keele, Newcastle, UK
| | - Brittney S Mengistu
- Faculty of Science, Athena Institute, VU University Amsterdam, Amsterdam, The Netherlands
| | - Regitta I Agusni
- Department of Dermatology and Venerology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Leprosy Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Medhi Denisa Alinda
- Department of Dermatology and Venerology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Leprosy Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | | | - M Yulianto Listiawan
- Department of Dermatology and Venerology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Leprosy Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Cita R S Prakoeswa
- Department of Dermatology and Venerology, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Leprosy Study Group, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Stephen L Walker
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | |
Collapse
|
2
|
Guo H, Yang J, Wang H, Liu X, Liu Y, Zhou K. Reshaping the tumor microenvironment: The versatility of immunomodulatory drugs in B-cell neoplasms. Front Immunol 2022; 13:1017990. [PMID: 36311747 PMCID: PMC9596992 DOI: 10.3389/fimmu.2022.1017990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide and pomalidomide are antitumor compounds that have direct tumoricidal activity and indirect effects mediated by multiple types of immune cells in the tumor microenvironment (TME). IMiDs have shown remarkable therapeutic efficacy in a set of B-cell neoplasms including multiple myeloma, B-cell lymphomas and chronic lymphocytic leukemia. More recently, the advent of immunotherapy has revolutionized the treatment of these B-cell neoplasms. However, the success of immunotherapy is restrained by immunosuppressive signals and dysfunctional immune cells in the TME. Due to the pleiotropic immunobiological properties, IMiDs have shown to generate synergetic effects in preclinical models when combined with monoclonal antibodies, immune checkpoint inhibitors or CAR-T cell therapy, some of which were successfully translated to the clinic and lead to improved responses for both first-line and relapsed/refractory settings. Mechanistically, despite cereblon (CRBN), an E3 ubiquitin ligase, is considered as considered as the major molecular target responsible for the antineoplastic activities of IMiDs, the exact mechanisms of action for IMiDs-based TME re-education remain largely unknown. This review presents an overview of IMiDs in regulation of immune cell function and their utilization in potentiating efficacy of immunotherapies across multiple types of B-cell neoplasms.
Collapse
Affiliation(s)
| | | | | | | | | | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Santana AC, Andraus W, Silva FMO, Sala ACG, Schust AS, Neri LHM, Feliciano R, Pepineli R, Dellê H, Ruiz LM, de Oliveira-Braga KA, Nepomuceno NA, Pêgo-Fernandes PM, Dos Santos MJ, de Moraes EL, Brasil S, Figueiredo EG. Thalidomide modulates renal inflammation induced by brain death experimental model. Transpl Immunol 2022; 75:101710. [PMID: 36096418 DOI: 10.1016/j.trim.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Brain death (BD) is characterized by a complex inflammatory response, resulting in dysfunction of potentially transplantable organs. This process is modulated by cytokines, which amplify graft immunogenicity. We have investigated the inflammatory response in an animal model of BD and analyzed the effects of thalidomide, a drug with powerful immunomodulatory properties. METHODS BD was induced in male Lewis rats. We studied three groups: Control (sham-operated rats) (n = 6), BD (rats subjected to brain death) (n = 6) and BD + Thalid (BD rats treated with one dose of thalidomide (200 mg/Kg), administered by gavage) (n = 6). Six hours after BD, serum levels of urea and creatinine, as well as systemic and renal tissue protein levels of TNF-α and IL-6, were analyzed. We also determined the mRNA expression of ET-1, and macrophage infiltration by immunohistochemistry. RESULTS BD induced a striking inflammatory status, demonstrated by a significant increase of plasma cytokines: TNF-α (2.8 ± 4.3 pg/mL [BD] vs. 9.4 ± 2.8 pg/mL [Control]), and IL-6 (6219.5 ± 1380.6 pg/mL [BD] vs. 1854.7 ± 822.6 pg/mL [Control]), and in the renal tissue: TNF-α (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.4 relative expression [Control]; p < 0.05), and IL-6 (4.0 ± 0.4 relative expression [BD] vs. 1.0 ± 0.3 relative expression [Control]; p < 0.05). Moreover, BD increased macrophages infiltration (2.47 ± 0.07 cells/field [BD] vs. 1.20 ± 0.05 cells/field [Control]; p < 0.05), and ET-1 gene expression (2.5 ± 0.3 relative expression [BD] vs. 1.0 ± 0.2 relative expression [Control]; p < 0.05). In addition, we have observed deterioration in renal function, characterized by an increase of urea (194.7 ± 25.0 mg/dL [BD] vs. 108.0 ± 14.2 mg/dL [Control]; p < 0.05) and creatinine (1.4 ± 0.04 mg/dL [BD] vs. 1.0 ± 0.07 mg/dL [Control]; p < 0.05) levels. Thalidomide administration significantly reduced plasma cytokines: TNF-α (5.1 ± 1.4 pg/mL [BD + Thalid] vs. BD; p < 0.05), and IL-6 (1056.5 ± 488.3 pg/mL [BD + Thalid] vs. BD; p < 0.05), as well as in the renal tissue: TNF-α (1.5 ± 0.2 relative expression [BD + Thalid] vs. BD; p < 0.05), and IL-6 (2.1 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05). Thalidomide treatment also induced a significant decrease in the expression of ET-1 (1.4 ± 0.3 relative expression [BD + Thalid] vs. BD; p < 0.05), and macrophages infiltration (1.17 ± 0.06 cells/field [BD + Thalid] vs. BD; p < 0.05). Also thalidomide prevented kidney function failure by reduced urea (148.3 ± 4.4 mg/dL [BD + Thalid] vs. BD; p < 0.05), and creatinine (1.1 ± 0.14 mg/dL [BD + Thalid] vs. BD; p < 0.05). CONCLUSIONS The immunomodulatory properties of thalidomide were effective in decreasing systemic and local immunologic response, leading to diminished renal damage, as reflected in the decrease of urea and creatinine levels. These results suggest that use of thalidomide may represent a potential strategy for treating in BD kidney organ donors.
Collapse
Affiliation(s)
- Alexandre Chagas Santana
- Neurological Surgery Department, University of São Paulo, School of Medicine, São Paulo, Brazil; Organ Procurement Organization, Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil.
| | - Wellington Andraus
- Gastroenterology Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | | | | | - Regiane Feliciano
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Rafael Pepineli
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Humberto Dellê
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Liliane Moreira Ruiz
- Cardiopneumology Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | | | | | | | | - Edvaldo Leal de Moraes
- Organ Procurement Organization, Hospital das Clínicas, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sergio Brasil
- Neurological Surgery Department, University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
4
|
Bathula S, Sardana K, Mathachan SR, Khurana A, Ahuja A, Paliwal P. A real-world study of low-dose thalidomide in severe erythema nodosum leprosum highlighting its mechanistic rationale in a resource-constrained target population. Int J Dermatol 2022; 62:48-55. [PMID: 35924464 DOI: 10.1111/ijd.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Corticosteroids remain the main therapy in erythema nodosum leprosum (ENL), and long-term usage in chronic or recurrent ENL is a cause of significant morbidity and mortality. Thalidomide exerts dramatic effect in controlling ENL and helps reduce the dose of steroids, but the cost is a hindrance to its usage. METHODS Patients of ENL (steroid naïve and steroid-dependent) were recruited over a 1-year period. An escalating dose of low-dose thalidomide with a reducing dose of prednisolone was titrated depending on the control of disease activity. The primary aim was to reduce the dose of steroids to the lowest effective dose, and the secondary aim was to stop. RESULTS Sixteen patients of ENL were studied (mean duration of ENL 22.1 months, 15 severe ENL), and a majority (11/16, 68%) were on steroids with a mean duration of 11.27 months. All patients had steroid-related side effects (cushingoid habitus 81.8%, weight gain 54.5%, diabetes mellitus 9%, hyperlipidemia 18.18%, cataract 18.1%, osteoporosis 36.3%, striae 36.3%, acneiform eruptions 18.1%, and myopathy 9%). Steroids could be tapered in a majority of patients (n = 9) within 3 months (mean 2.44 months) with a low dose of thalidomide (25-150 mg/day, mean 78.3 mg) achieving a significant reduction in prednisolone dose (33.16 mg at baseline; 4.28 mg at 3 months, P < 0.05). Steroids could be stopped in 92% of patients by 3.03 months, and both drugs could be stopped in 80% of cases by 5.83 months. CONCLUSION The rapid and effective control of ENL with low-dose thalidomide in our series is comparable to the historical efficacy of high-dose thalidomide regimens, making it an affordable therapy in resource-constrained settings and an excellent steroid-sparing agent. The rapid onset of disease control is likely attributable to its action via neutrophils.
Collapse
Affiliation(s)
- Savitha Bathula
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Sinu Rose Mathachan
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Arvind Ahuja
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Purnima Paliwal
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
5
|
Luo Y, Kiriya M, Tanigawa K, Kawashima A, Nakamura Y, Ishii N, Suzuki K. Host-Related Laboratory Parameters for Leprosy Reactions. Front Med (Lausanne) 2021; 8:694376. [PMID: 34746168 PMCID: PMC8568883 DOI: 10.3389/fmed.2021.694376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
Leprosy reactions are acute inflammatory episodes that complicate the course of a Mycobacterium leprae infection and are the major cause of leprosy-associated pathology. Two types of leprosy reactions with relatively distinct pathogenesis and clinical features can occur: type 1 reaction, also known as reversal reaction, and type 2 reaction, also known as erythema nodosum leprosum. These acute nerve-destructive immune exacerbations often cause irreversible disabilities and deformities, especially when diagnosis is delayed. However, there is no diagnostic test to detect or predict leprosy reactions before the onset of clinical symptoms. Identification of biomarkers for leprosy reactions, which impede the development of symptoms or correlate with early-onset, will allow precise diagnosis and timely interventions to greatly improve the patients' quality of life. Here, we review the progress of research aimed at identifying biomarkers for leprosy reactions, including its correlation with not only immunity but also genetics, transcripts, and metabolites, providing an understanding of the immune dysfunction and inflammation that underly the pathogenesis of leprosy reactions. Nevertheless, no biomarkers that can reliably predict the subsequent occurrence of leprosy reactions from non-reactional patients and distinguish type I reaction from type II have yet been found.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital and Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, China.,Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Norihisa Ishii
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,National Sanatorium Tamazenshoen, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
6
|
Santana AC, Andraus W, Silva FMO, Dellê H, Pepineli R, de Moraes EL, Scavone C, de Sá Lima L, Degaspari S, Brasil S, Solla DJF, Ruiz LM, de Oliveira-Braga KA, Nepomuceno NA, Pêgo-Fernandes PM, Tullius SG, Figueiredo EG. Immunomodulatory effects of thalidomide in an experimental brain death liver donor model. Sci Rep 2021; 11:19221. [PMID: 34584130 PMCID: PMC8479052 DOI: 10.1038/s41598-021-98538-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Brain death is characterized by a generalized inflammatory response that results in multiorgan damage. This process is mainly mediated through cytokines, which amplify graft immunogenicity. We investigated the immunological response in a brain death liver donor model and analysed the effects of thalidomide, a drug with powerful immunomodulatory properties. Brain death was induced in male Lewis rats. We studied three groups: Control (sham-operated rats in which trepanation was performed without inserting the balloon catheter), BD (rats subjected to brain death by increasing intracranial pressure) and BD + Thalid (BD rats receiving thalidomide after brain death). After 6 h, serum levels of AST, ALT, LDH, and ALP as well as systemic and hepatic levels of TNF-α, IL1-β, IL-6, and IL-10 were analysed. We also determined the mRNA expression of MHC Class I and Class II, NF-κB, and macrophage infiltration. NF-κB was also examined by electrophoretic mobility shift assay. Thalidomide treatment significantly reduced serum levels of hepatic enzymes and TNF-α, IL-1-β, and IL-6. These cytokines were evaluated at either the mRNA expression or protein level in liver tissue. In addition, thalidomide administration resulted in a significant reduction in macrophages, MHC Class I and Class II, and NF-κB activation. This study reveals that thalidomide significantly inhibited the immunologic response and graft immunogenicity, possibly through suppression of NF-κB activation.
Collapse
Affiliation(s)
- Alexandre Chagas Santana
- Neurological Surgery Department, University of Sao Paulo School of Medicine, Av. Dr. Enéas Carvalho de Aguiar, 255, 5th Floor, São Paulo, CEP: 05402-000, Brazil. .,Organ Procurement Organization Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| | - Wellington Andraus
- Gastroenterology Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Humberto Dellê
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Rafael Pepineli
- Medical Science Department, Nove de Julho University, São Paulo, Brazil
| | - Edvaldo Leal de Moraes
- Organ Procurement Organization Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristoforo Scavone
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Larissa de Sá Lima
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Sabrina Degaspari
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Sergio Brasil
- Neurological Surgery Department, University of Sao Paulo School of Medicine, Av. Dr. Enéas Carvalho de Aguiar, 255, 5th Floor, São Paulo, CEP: 05402-000, Brazil
| | - Davi Jorge Fontoura Solla
- Neurological Surgery Department, University of Sao Paulo School of Medicine, Av. Dr. Enéas Carvalho de Aguiar, 255, 5th Floor, São Paulo, CEP: 05402-000, Brazil
| | - Liliane Moreira Ruiz
- Cardiopneumology Department, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Stefan Gunther Tullius
- Department of Surgery, Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eberval Gadelha Figueiredo
- Neurological Surgery Department, University of Sao Paulo School of Medicine, Av. Dr. Enéas Carvalho de Aguiar, 255, 5th Floor, São Paulo, CEP: 05402-000, Brazil
| |
Collapse
|
7
|
Uhelski ML, Li Y, Fonseca MM, Romero-Snadoval EA, Dougherty PM. Role of innate immunity in chemotherapy-induced peripheral neuropathy. Neurosci Lett 2021; 755:135941. [PMID: 33961945 DOI: 10.1016/j.neulet.2021.135941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/18/2023]
Abstract
It has become increasingly clear that the innate immune system plays an essential role in the generation of many types of neuropathic pain including that which accompanies cancer treatment. In this article we review current findings of the role of the innate immune system in contributing to cancer treatment pain at the distal endings of peripheral nerve, in the nerve trunk, in the dorsal root ganglion and in the spinal dorsal horn.
Collapse
Affiliation(s)
- Megan L Uhelski
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States
| | - Yan Li
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States
| | - Miriam M Fonseca
- The Department of Anesthesiology, Wake Forest School of Medicine, United States
| | | | - Patrick M Dougherty
- The Department of Pain Medicine Research, The Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, United States.
| |
Collapse
|
8
|
Vilani-Moreno FR, Brito-de-Souza VN, Silva SMUR, Barbosa ASAA, Sartori BGC, Campanelli AP, Barreto JA, Virmond MDCL. Increased serum levels of interleukin-6 in erythema nodosum leprosum suggest its use as a biomarker. Indian J Dermatol Venereol Leprol 2021; 87:190-198. [PMID: 33769734 DOI: 10.25259/ijdvl_143_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Erythema nodosum leprosum (ENL) is a frequent complication of multibacillary leprosy that can result in significant morbidity, including peripheral nerve damage and physical disability. The identification of possible serum markers could be a valuable tool for the early detection of ENL. AIMS The purpose of this study was to evaluate selected serum mediators involved in the innate and adaptive immune responses to identify possible immunomarkers for ENL. METHODS The levels of interleukin-2, interleukin-4, interleukin-6, interleukin-10, interleukin-17, interferon-γ, tumor necrosis factor, nitric oxide and anti-phenolic glycolipid-I antibodies were measured in the sera of leprosy patients with ENL [at the beginning of reaction (M0) and 1 month later (M1)], and then compared with the levels of the same markers in patients with untreated multibacillary leprosy without ENL (controls with leprosy: CTRL) and healthy individuals (healthy controls: CTRH). RESULTS Significantly higher levels of serum interleukin-6 were observed in M0 than in CTRL. In addition, pairwise comparisons showed higher levels of interleukin-6 in M0 compared to M1. Levels of tumor necrosis factor were higher in M0 than in CTRL, with no significant difference between M0 and M1. There were no differences in the levels of interleukin-2, interleukin-4, interleukin-10, interleukin-17 or interferon-γ between groups. The CTRL group had higher levels of nitric oxide compared to M0 and M1. High levels of anti-phenolic glycolipid-I were observed in M0, M1 and CTRL than in CTRH. LIMITATIONS Three patients were not assessed at M1, decreasing the number of evaluated patients from 14 to 11. CONCLUSION High-serum levels of interleukin-6 were observed during ENL, primarily in patients with more severe reactions; levels decreased after specific therapy, suggesting a role for this cytokine in pathogenesis and its utility as an ENL biomarker. Further studies should explore whether interleukin-6 could also be used as a predictive marker for ENL or as a specific target for its treatment.
Collapse
|
9
|
Nguyen KM, Busino L. Targeting the E3 ubiquitin ligases DCAF15 and cereblon for cancer therapy. Semin Cancer Biol 2020; 67:53-60. [DOI: 10.1016/j.semcancer.2020.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
|
10
|
Mechanism of Action and Novel IMiD-Based Compounds and Combinations in Multiple Myeloma. ACTA ACUST UNITED AC 2020; 25:19-31. [PMID: 30694856 DOI: 10.1097/ppo.0000000000000354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last 2 decades, thalidomide analogs have induced significant antimyeloma effects via immune-modulation, antiangiogenesis and antiproliferative effects. While the exact molecular mechanism of the targets or the mediators of thalidomide activity were not known, a seminal discovery of cereblon as a thalidomide-binding protein led to explaining the mechanistic basis of antimyeloma activity for this class of agents. Identification of the mechanisms of resistance for immunomodulatory agents (IMiDs), which will have significant clinical implications, remains poorly understood. Newer cereblon modulators with differential effects and improved increased efficacy in cell lines resistant to the current IMiDs are in development with encouraging preclinical data. In this review, we have summarized the mechanisms of action of IMiDs, clinical development, and potential mechanisms of resistance. We also describe novel IMiD-based combinations and the newer cereblon modulators as well.
Collapse
|
11
|
Kumar R, Kolloli A, Singh P, Vinnard C, Kaplan G, Subbian S. Thalidomide and Phosphodiesterase 4 Inhibitors as Host Directed Therapeutics for Tuberculous Meningitis: Insights From the Rabbit Model. Front Cell Infect Microbiol 2020; 9:450. [PMID: 32010638 PMCID: PMC6972508 DOI: 10.3389/fcimb.2019.00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/12/2019] [Indexed: 01/15/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most devastating form of extrapulmonary Mycobacterium tuberculosis infection in humans. Severe inflammation and extensive tissue damage drive the morbidity and mortality of this manifestation of tuberculosis (TB). Antibiotic treatment is ineffective at curing TBM due to variable and incomplete drug penetration across the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barriers. Adjunctive corticosteroid therapy, used to dampen the inflammation, and the pathologic manifestation of TBM, improves overall survival but does not entirely prevent the morbidity of the disease and has significant toxicities, including immune-suppression. The rabbit has served as a fit for purpose experimental model of human TBM since the early 1900s due to the similarity in the developmental processes of the brain, including neuronal development, myelination, and microglial functions between humans and rabbits. Consistent with the observations made in humans, proinflammatory cytokines, including TNF-α, play a critical role in the pathogenesis of TBM in rabbits focusing the attention on the utility of TNF-α inhibitors in treating the disease. Thalidomide, an inhibitor of monocyte-derived TNF-α, was evaluated in the rabbit model of TBM and shown to improve survival and reduce inflammation of the brain and the meninges. Clinical studies in humans have also shown a beneficial response to thalidomide. However, the teratogenicity and T-cell activation function of the drug limit the use of thalidomide in the clinic. Thus, new drugs with more selective anti-inflammatory properties and a better safety profile are being developed. Some of these candidate drugs, such as phosphodiesterase-4 inhibitors, have been shown to reduce the morbidity and increase the survival of rabbits with TBM. Future studies are needed to assess the beneficial effects of these drugs for their potential to improve the current treatment strategy for TBM in humans.
Collapse
Affiliation(s)
- Ranjeet Kumar
- New Jersey Medical School, Rutgers, Public Health Research Institute, The State University of New Jersey, Newark, NJ, United States
| | - Afsal Kolloli
- New Jersey Medical School, Rutgers, Public Health Research Institute, The State University of New Jersey, Newark, NJ, United States
| | - Pooja Singh
- New Jersey Medical School, Rutgers, Public Health Research Institute, The State University of New Jersey, Newark, NJ, United States
| | - Christopher Vinnard
- New Jersey Medical School, Rutgers, Public Health Research Institute, The State University of New Jersey, Newark, NJ, United States
| | - Gilla Kaplan
- University of Cape Town, Cape Town, South Africa
| | - Selvakumar Subbian
- New Jersey Medical School, Rutgers, Public Health Research Institute, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
12
|
da Silva CO, Dias AA, da Costa Nery JA, de Miranda Machado A, Ferreira H, Rodrigues TF, Sousa Santos JP, Nadaes NR, Sarno EN, Saraiva EM, Schmitz V, Pessolani MCV. Neutrophil extracellular traps contribute to the pathogenesis of leprosy type 2 reactions. PLoS Negl Trop Dis 2019; 13:e0007368. [PMID: 31504035 PMCID: PMC6736252 DOI: 10.1371/journal.pntd.0007368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
Up to 50% of patients with the multibacillary form of leprosy are expected to develop acute systemic inflammatory episodes known as type 2 reactions (T2R), thus aggravating their clinical status. Thalidomide rapidly improves T2R symptoms. But, due to its restricted use worldwide, novel alternative therapies are urgently needed. The T2R triggering mechanisms and immune-inflammatory pathways involved in its pathology remain ill defined. In a recent report, we defined the recognition of nucleic acids by TLR9 as a major innate immunity pathway that is activated during T2R. DNA recognition has been described as a major inflammatory pathway in several autoimmune diseases, and neutrophil DNA extracellular traps (NETs) have been shown to be a prime source of endogenous DNA. Considering that neutrophil abundance is a marked characteristic of T2R lesions, the objective of this study was to investigate NETs production in T2R patients based on the hypothesis that the excessive NETs formation would play a major role in T2R pathogenesis. Abundant NETs were found in T2R skin lesions, and increased spontaneous NETs formation was observed in T2R peripheral neutrophils. Both the M. leprae whole-cell sonicate and the CpG-Hlp complex, mimicking a mycobacterial TLR9 ligand, were able to induce NETs production in vitro. Moreover, TLR9 expression was shown to be higher in T2R neutrophils, suggesting that DNA recognition via TLR9 may be one of the pathways triggering this process during T2R. Finally, treatment of T2R patients with thalidomide for 7 consecutive days resulted in a decrease in all of the evaluated in vivo and ex vivo NETosis parameters. Altogether, our findings shed light on the pathogenesis of T2R, which, it is hoped, will contribute to the emergence of novel alternative therapies and the identification of prognostic reactional markers in the near future. Leprosy is caused by a mycobacterium that has a predilection for skin and nerve cells. The chronic course of the disease may be interrupted by acute inflammatory episodes known as reactions, despite effective bacterial killing with antibiotics. Reactions aggravate the patient’s clinical status and may become a medical emergency. Type 2 reactions (T2R) only occur in patients with high bacterial burden and are treated with thalidomide and/or corticosteroids. We are interested in understanding how inflammation is triggered and amplified during T2R. In this study we investigated the potential role of extracellular DNA released by neutrophils (known as NETs) in T2R, since they have been shown to cause inflammation. Abundant NETs were found in T2R skin lesions, and increased spontaneous NETs formation was observed in neutrophils present in the blood of T2R patients. Moreover, bacterial constituents were able to induce NETs production. Finally, treatment of T2R patients with thalidomide resulted in decreased NET formation. Altogether, our findings shed light on the pathogenesis of T2R, which, it is hoped, will contribute to the identification of biomarkers for early diagnosis and emergence of novel alternative therapies in the near future.
Collapse
Affiliation(s)
- Camila Oliveira da Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto da Costa Nery
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alice de Miranda Machado
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Fernanda Rodrigues
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Pedro Sousa Santos
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Rocha Nadaes
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira Maria Saraiva
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica Schmitz
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Vidal Pessolani
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
13
|
Mendes MA, de Carvalho DS, Amadeu TP, Silva BJDA, Prata RBDS, da Silva CO, Ferreira H, Hacker MDA, Nery JAC, Pinheiro RO, Sampaio EP, Sarno EN, Schmitz V. Elevated Pentraxin-3 Concentrations in Patients With Leprosy: Potential Biomarker of Erythema Nodosum Leprosum. J Infect Dis 2019; 216:1635-1643. [PMID: 29272525 DOI: 10.1093/infdis/jix267] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/30/2017] [Indexed: 11/12/2022] Open
Abstract
Background Leprosy, the leading infectious cause of disability worldwide, remains a major public health challenge in the most severely affected countries despite the sharp decline in new cases in recent years. The search for biomarkers is essential to achieve a better understanding of the molecular and cellular mechanisms underlying the disease. Methods Pentraxin-3 (PTX3) analyses of sera from 87 leprosy patients with or without reactions were conducted via enzyme-linked immunosorbent assay. In situ identification of PTX3 in skin lesion was confirmed by quantitative reverse-transcription polymerase chain reaction, immunohistochemistry, and immunofluorescence assays. Results We found that PTX3 serum levels were higher in multibacillary patients when evaluated before the onset of acute erythema nodosum leprosum (ENL) and persistently elevated during reaction. Thalidomide treatment reduced PTX3 in the serum 7 days after starting treatment. In situ analyses have also demonstrated enhancement of PTX3 in ENL lesions and showed that treatment with thalidomide reduced its expression and the prominent neutrophilic infiltrate, a hallmark of the disease. Conclusions In summary, our study provides in vivo evidence that PTX3 is enhanced during ENL but not in reversal reaction and provides a new molecular target in ENL pathogenesis.
Collapse
Affiliation(s)
- Mayara Abud Mendes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Daniel Serra de Carvalho
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Thaís Porto Amadeu
- Laboratório de Imunopatologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rhana Berto da Silva Prata
- Laboratório de Inflamação e Imunidade, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Oliveira da Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mariana de Andrea Hacker
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - José Augusto Costa Nery
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Euzenir Nunes Sarno
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Schmitz V, Tavares IF, Pignataro P, Machado ADM, Pacheco FDS, dos Santos JB, da Silva CO, Sarno EN. Neutrophils in Leprosy. Front Immunol 2019; 10:495. [PMID: 30949168 PMCID: PMC6436181 DOI: 10.3389/fimmu.2019.00495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/25/2019] [Indexed: 01/13/2023] Open
Abstract
Leprosy is an infectious disease caused by the intracellular bacillus Mycobacterium leprae that mainly affects the skin and peripheral nerves. One of the most intriguing aspects of leprosy is the diversity of its clinical forms. Paucibacillary patients are characterized as having less than five skin lesions and rare bacilli while the lesions in multibacillary patients are disseminated with voluminous bacilli. The chronic course of leprosy is often interrupted by acute episodes of an inflammatory immunological response classified as either reversal reaction or erythema nodosum leprosum (ENL). Although ENL is considered a neutrophilic immune-complex mediated condition, little is known about the direct role of neutrophils in ENL and leprosy disease overall. Recent studies have shown a renewed interest in neutrophilic biology. One of the most interesting recent discoveries was that the neutrophilic population is not homogeneous. Neutrophilic polarization leads to divergent phenotypes (e.g., a pro- and antitumor profile) that are dynamic subpopulations with distinct phenotypical and functional abilities. Moreover, there is emerging evidence indicating that neutrophils expressing CD64 favor systemic inflammation during ENL. In the present review, neutrophilic involvement in leprosy is discussed with a particular focus on ENL and the potential of neutrophils as clinical biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Veronica Schmitz
- Leprosy Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Patricia Pignataro
- Leprosy Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Synthesis and Biological Evaluation of Thalidomide Derivatives as Potential Anti-Psoriasis Agents. Int J Mol Sci 2018; 19:ijms19103061. [PMID: 30301277 PMCID: PMC6212999 DOI: 10.3390/ijms19103061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022] Open
Abstract
Several thalidomide derivatives were synthesized and evaluated for their anti-inflammatory activity. Introduction of the benzyl group to the parent thalidomide is unfavorable in which 2-(1-benzyl-2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (4a) was inactivated. However, the inhibitory activities on TNF-α and IL-6 expression in HaCaT cells were improved by the substitution of a chloro- or methoxy- group at the phenyl position of 4a. The IL-6 inhibitory activity decreased in an order of 5c (69.44%) > 4c (48.73%) > 6c (3.19%) indicating the 3-substituted derivative is more active than the 4-substituted counterpart, which in turn is more active than the 2-substituted counterpart. Among them, 2-[1-(3-chlorobenzyl)-2,6-dioxopiperidin-3-yl]isoindoline-1,3-dione (5c) was found to inhibit TNF-α and IL-6 expression in HaCaT cells with a higher potency than thalidomide and no significant cell cytotoxicity was detected at 10 μM. In psoriasis, Compound 5c reduced IL-6, IL-8, IL-1β and IL-24 in imiquimod-stimulated models. Our results indicated that compound 5c is a potential lead of novel anti-psoriasis agents. Structural optimization of compound 5c and its in vivo assay are ongoing.
Collapse
|
16
|
Choudhury MR, Hassan MM, Kabir ME, Rabbani MG, Haq SA, Rahman MK. An open label clinical trial of thalidomide in NSAIDs refractory ankylosing spondylitis. Mod Rheumatol 2018; 28:730-732. [PMID: 29327635 DOI: 10.1080/14397595.2018.1427430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Minhaj Rahim Choudhury
- a Department of Rheumatology , Bangabandhu Sheikh Mujib Medical University , Dhaka , Bangladesh
| | - M Masudul Hassan
- a Department of Rheumatology , Bangabandhu Sheikh Mujib Medical University , Dhaka , Bangladesh
| | - M Ekramul Kabir
- b Department of Medicine , Kurmitola General Hospital, Dhaka Cantonment , Dhaka , Bangladesh
| | - M Golam Rabbani
- c Department of Statistics, Biostatistics and Informatics , University of Dhaka , Dhaka , Bangladesh
| | - Syed Atiqul Haq
- a Department of Rheumatology , Bangabandhu Sheikh Mujib Medical University , Dhaka , Bangladesh
| | | |
Collapse
|
17
|
Costa PDSS, Fraga LR, Kowalski TW, Daxbacher ELR, Schuler-Faccini L, Vianna FSL. Erythema Nodosum Leprosum: Update and challenges on the treatment of a neglected condition. Acta Trop 2018; 183:134-141. [PMID: 29474830 DOI: 10.1016/j.actatropica.2018.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 01/25/2023]
Abstract
Erythema Nodosum Leprosum (ENL) occurs due to the immunological complication of multibacillary leprosy and is characterized by painful nodules and systemic compromising. It is usually recurrent and/or chronic and has both physical and economic impact on the patient, being a very important cause of disability. In addition, ENL is a major health problem in countries where leprosy is endemic. Therefore, adequate control of this condition is important. The management of ENL aims to control acute inflammation and neuritis and prevent the onset of new episodes. However, all currently available treatment modalities have one or two drawbacks and are not effective for all patients. Corticosteroid is the anti-inflammatory of choice in ENL but may cause dependence, especially for chronic patients. Thalidomide has a rapid action but its use is limited due the teratogenicity and neurotoxicity. Clofazimine and pentoxifylline have slow action and have important adverse effects. Finally, there is no pattern or guidelines for treating these patients, becoming more difficult to evaluate and to control this condition. This review aims to show the main drugs used in the treatment of ENL and the challenges in the management of the reaction.
Collapse
|
18
|
Geluk A. Correlates of immune exacerbations in leprosy. Semin Immunol 2018; 39:111-118. [PMID: 29950273 DOI: 10.1016/j.smim.2018.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/13/2023]
Abstract
Leprosy is still a considerable health threat in pockets of several low and middle income countries worldwide where intense transmission is witnessed, and often results in irreversible disabilities and deformities due to delayed- or misdiagnosis. Early detection of leprosy represents a substantial hurdle in present-day leprosy health care. The dearth of timely diagnosis has, however, particularly severe consequences in the case of inflammatory episodes, designated leprosy reactions, which represent the major cause of leprosy-associated irreversible neuropathy. There is currently no accurate, routine diagnostic test to reliably detect leprosy reactions, or to predict which patients will develop these immunological exacerbations. Identification of host biomarkers for leprosy reactions, particularly if correlating with early onset prior to development of clinical symptoms, will allow timely interventions that contribute to decreased morbidity. Development of a point-of-care (POC) test based on such correlates would be a definite game changer in leprosy health care. In this review, proteomic-, transcriptomic and metabolomic research strategies aiming at identification of host biomarker-based correlates of leprosy reactions are discussed, next to external factors associated with occurrence of these episodes. The vast diversity in research strategies combined with the variability in patient- and control cohorts argues for harmonisation of biomarker discovery studies with geographically overarching study sites. This will improve identification of specific correlates associated with risk of these damaging inflammatory episodes in leprosy and subsequent application to rapid field tests.
Collapse
Affiliation(s)
- Annemieke Geluk
- Dept. of Infectious Diseases, LUMC, PO Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
19
|
Pinheiro RO, Schmitz V, Silva BJDA, Dias AA, de Souza BJ, de Mattos Barbosa MG, de Almeida Esquenazi D, Pessolani MCV, Sarno EN. Innate Immune Responses in Leprosy. Front Immunol 2018; 9:518. [PMID: 29643852 PMCID: PMC5882777 DOI: 10.3389/fimmu.2018.00518] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management.
Collapse
Affiliation(s)
- Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Veronica Schmitz
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - André Alves Dias
- Cellular Microbiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Khan MI, Momeny M, Ostadhadi S, Jahanabadi S, Ejtemaei-Mehr S, Sameem B, Zarrinrad G, Dehpour AR. Thalidomide attenuates development of morphine dependence in mice by inhibiting PI3K/Akt and nitric oxide signaling pathways. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:39-48. [PMID: 29223784 DOI: 10.1016/j.pnpbp.2017.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Morphine dependence and the subsequent withdrawal syndrome restrict its clinical use in management of chronic pain. The precise mechanism for the development of dependence is still elusive. Thalidomide is a glutamic acid derivative, recently has been reconsidered for its clinical use due to elucidation of different clinical effects. Phosphoinositide 3-kinase (PI3K) is an intracellular transducer enzyme which activates Akt which in turns increases the level of nitric oxide. It is well established that elevated levels of nitric oxide has a pivotal role in the development of morphine dependence. In the present study, we aimed to explore the effect of thalidomide on the development of morphine dependence targeting PI3K/Akt (PKB) and nitric oxide (NO) pathways. Male NMRI mice and human glioblastoma T98G cell line were used to study the effect of thalidomide on morphine dependence. In both models the consequent effect of thalidomide on PI3K/Akt and/or NO signaling in morphine dependence was determined. Thalidomide alone or in combination with PI3K inhibitor, Akt inhibitor or nitric oxide synthase (NOS) inhibitors significantly reduced naloxone induced withdrawal signs in morphine dependent mice. Also, the levels of nitrite in hippocampus of morphine dependent mice were significantly reduced by thalidomide in compared to vehicle treated morphine dependent mice. In T98G human glioblastoma cells, thalidomide alone or in combination with PI3K and Akt inhibitors significantly reduced iNOS expression in comparison to the morphine treated cells. Also, morphine-induced p-Akt was suppressed when T98G cells were pretreated with thalidomide. Our results suggest that morphine induces Akt, which has a crucial role in the induction of NOS activity, leading to morphine dependence. Moreover, these data indicate that thalidomide attenuates the development of morphine dependence in vivo and in vitro by inhibition of PI3K/Akt and nitric oxide signaling pathways.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Pharmacology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacy, Kohat University of Science and Technology, 26000 Kohat, KPK, Pakistan
| | - Majid Momeny
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Ostadhadi
- Department of Pharmacology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Jahanabadi
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran (g)
| | - Shahram Ejtemaei-Mehr
- Department of Pharmacology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bilqees Sameem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Zarrinrad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
22
|
Liu T, Guo F, Zhu X, He X, Xie L. Thalidomide and its analogues: A review of the potential for immunomodulation of fibrosis diseases and opthalmopathy. Exp Ther Med 2017; 14:5251-5257. [PMID: 29285050 DOI: 10.3892/etm.2017.5209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
The US Food and Drug Administration approved thalidomide and its analogues for the treatment of erythema nodosum leprosum, in spite of the notoriety of reports of severe birth defects in the middle of the last century. As immunomodulatory drugs, thalidomide and its analogues have been used to effectively treat various diseases. In the present review, preclinical data about the effects of thalidomide and its analogues on the immune system are integrated, including the effects of cytokines on transdifferentiation, the anti-inflammatory effect, immune cell function regulation and angiogenesis. The present review also investigates the latest developments of thalidomide as a therapeutic option for the treatment of idiopathic pulmonary fibrosis, skin fibrosis, and ophthalmopathies.
Collapse
Affiliation(s)
- Ting Liu
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Feng Guo
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Xiaomin Zhu
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Xiangge He
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| | - Lin Xie
- Department of Ophthalmology, Daping Hospital and Research Institute of Surgery, The Third Military Medical University, People's Liberation Army, Chongqing 400042, P.R. China
| |
Collapse
|
23
|
Vergara TRC, Samer S, Santos-Oliveira JR, Giron LB, Arif MS, Silva-Freitas ML, Cherman LA, Treitsman MS, Chebabo A, Sucupira MCA, Da-Cruz AM, Diaz RS. Thalidomide is Associated With Increased T Cell Activation and Inflammation in Antiretroviral-naive HIV-infected Individuals in a Randomised Clinical Trial of Efficacy and Safety. EBioMedicine 2017; 23:59-67. [PMID: 28822719 PMCID: PMC5605327 DOI: 10.1016/j.ebiom.2017.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 01/13/2023] Open
Abstract
Trial Design Open-label, randomised, controlled, pilot proof-of-concept clinical trial. Methods Participants: Antiretroviral naïve adult males with CD4 count ≥ 350 cells/mm3. Interventions: Patients were randomised to receive thalidomide 200 mg QD for 3 weeks (Thalidomide group) or not (Control group) and followed for 48 weeks. Objective: We hypothesized that short-term Thalidomide use would reduce HIV related inflammation and HIV replication among antiretroviral naïve HIV infected individuals. Outcome: Viral loads, CD4/CD8 counts, ultra-sensitive C-reactive protein (US-CRP), cell activation markers, and plasma lipopolysaccharide (LPS) were analyzed. Randomisation: Unrestricted randomisation. Blinding: No blinding was used. Results Numbers randomised: Thirty recruited individuals were randomised to Thalidomide (16 patients) or Control (14 patients) groups. Recruitment: Patients were recruited from April 2011 to January 2013. Outcome: Viral loads remained stable in both groups. During thalidomide treatment, a decrease in CD4/CD8 ratio (p = 0.04), a decrease in CD4 count (p = 0.04), an increase in cell activation calculated by the percentage of CD38 +/HLA-DR+ CD8 cells (p < 0.05) and an increase in US-CRP (p < 0.01) were observed in the Thalidomide group, with all parameters returning to baseline levels after thalidomide interruption. We confirmed that thalidomide increased HIV replication in vitro of 6 of 7 samples from long-term antiretroviral suppressed individuals. Harms: No class 3/4 adverse events occurred. Conclusions Short-term use of thalidomide led to an intense transient increase in T cell activation and inflammation, with a decrease in the CD4+ cell count without changes to the CD8+ cell count. We confirmed that thalidomide acts in vitro as a latency reversal agent and speculate that the in vivo results obtained were due to an increase in HIV replication. Short-term Thalidomide use lead to intense increase in inflammatory markers among HIV+ antiretroviral naïve individuals. Thalidomide use lead to a transitory decrease in CD4+ T cells and CD4/CD8 ratios. In vitro complementary studies revealed that Thalidomide acts as an HIV Latency Reversal Agent.
Thalidomide in general presents a potent anti-inflammatory effect, and is still being used for a number of inflammatory diseases and infection. Therefore, Thalidomide investigated here in a randomised clinical trial aiming to mitigate HIV related inflammation among antiretroviral naïve individuals. Surprisingly, the HIV related inflammation increased during Thalidomide use, and in vitro studies demonstrated that Thalidomide is efficient in interrupting HIV latency, one of the major's obstacles for the cure of HIV chronic infection.
Collapse
Affiliation(s)
- Tânia R C Vergara
- Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil; Oncohiv, Rio de Janeiro, Brazil
| | - Sadia Samer
- Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Joanna R Santos-Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Leila B Giron
- Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Muhammad Shoaib Arif
- Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Lia A Cherman
- Secretaria Municipal de Saúde Antônio Ribeiro Neto, Rio de Janeiro, Brazil
| | | | - Alberto Chebabo
- Oncohiv, Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alda M Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Ricardo Sobhie Diaz
- Laboratório de Retrovirologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
24
|
Polycarpou A, Walker SL, Lockwood DNJ. A Systematic Review of Immunological Studies of Erythema Nodosum Leprosum. Front Immunol 2017; 8:233. [PMID: 28348555 PMCID: PMC5346883 DOI: 10.3389/fimmu.2017.00233] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/17/2017] [Indexed: 01/04/2023] Open
Abstract
Erythema nodosum leprosum (ENL) is a painful inflammatory complication of leprosy occurring in 50% of lepromatous leprosy patients and 5-10% of borderline lepromatous patients. It is a significant cause of economic hardship, morbidity and mortality in leprosy patients. Our understanding of the causes of ENL is limited. We performed a systematic review of the published literature and critically evaluated the evidence for the role of neutrophils, immune complexes (ICs), T-cells, cytokines, and other immunological factors that could contribute to the development of ENL. Searches of the literature were performed in PubMed. Studies, independent of published date, using samples from patients with ENL were included. The search revealed more than 20,000 articles of which 146 eligible studies were included in this systematic review. The studies demonstrate that ENL may be associated with a neutrophilic infiltrate, but it is not clear whether it is an IC-mediated process or that the presence of ICs is an epiphenomenon. Increased levels of tumor necrosis factor-α and other pro-inflammatory cytokines support the role of this cytokine in the inflammatory phase of ENL but not necessarily the initiation. T-cell subsets appear to be important in ENL since multiple studies report an increased CD4+/CD8+ ratio in both skin and peripheral blood of patients with ENL. Microarray data have identified new molecules and whole pathophysiological pathways associated with ENL and provides new insights into the pathogenesis of ENL. Studies of ENL are often difficult to compare due to a lack of case definitions, treatment status, and timing of sampling as well as the use of different laboratory techniques. A standardized approach to some of these issues would be useful. ENL appears to be a complex interaction of various aspects of the immune system. Rigorous clinical descriptions of well-defined cohorts of patients and a systems biology approach using available technologies such as genomics, epigenomics, transcriptomics, and proteomics could yield greater understanding of the condition.
Collapse
Affiliation(s)
- Anastasia Polycarpou
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| | - Stephen L Walker
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| | - Diana N J Lockwood
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
25
|
Fonseca ABDL, Simon MDV, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS, Reed SG, de Jesus AR. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty 2017; 6:5. [PMID: 28162092 PMCID: PMC5292790 DOI: 10.1186/s40249-016-0229-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae. According to official reports from 121 countries across five WHO regions, there were 213 899 newly diagnosed cases in 2014. Although leprosy affects the skin and peripheral nerves, it can present across a spectrum of clinical and histopathological forms that are strongly influenced by the immune response of the infected individuals. These forms comprise the extremes of tuberculoid leprosy (TT), with a M. leprae-specific Th1, but also a Th17, response that limits M. leprae multiplication, through to lepromatous leprosy (LL), with M. leprae-specific Th2 and T regulatory responses that do not control M. leprae replication but rather allow bacterial dissemination. The interpolar borderline clinical forms present with similar, but less extreme, immune biases. Acute inflammatory episodes, known as leprosy reactions, are complications that may occur before, during or after treatment, and cause further neurological damages that can cause irreversible chronic disabilities. This review discusses the innate and adaptive immune responses, and their interactions, that are known to affect pathogenesis and influence the clinical outcome of leprosy.
Collapse
Affiliation(s)
- Adriana Barbosa de Lima Fonseca
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marise do Vale Simon
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Rodrigo Anselmo Cazzaniga
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Tatiana Rodrigues de Moura
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Roque Pacheco de Almeida
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.,Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia, CNPq, São Paulo, SP, Brazil
| | | | | | - Amelia Ribeiro de Jesus
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil. .,Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia, CNPq, São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Ishii N, Ishida Y, Okano Y, Ozaki M, Gidoh M, Kumano K, Goto M, Nogami R, Hatano K, Yamada A, Yamaguchi S, Yotsu RR. Guideline for clinical use of thalidomide for management of erythema nodosum leprosum in Japan. ACTA ACUST UNITED AC 2017. [DOI: 10.5025/hansen.86.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases
| | | | | | - Motoaki Ozaki
- Department of Dermatology, Kyoto University Graduate School of Medicine
| | | | | | | | | | | | | | | | - Rie Roselyne Yotsu
- National Sanatorium Suruga, Shizuoka/Department of Dermatology, National Center for Global Health and Medicine
| |
Collapse
|
27
|
Thalidomide attenuates the development and expression of antinociceptive tolerance to μ-opioid agonist morphine through l-arginine-iNOS and nitric oxide pathway. Biomed Pharmacother 2016; 85:493-502. [PMID: 27899254 DOI: 10.1016/j.biopha.2016.11.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
Morphine is a μ-opioid analgesic drug which is used in the treatment and management of chronic pain. However, due to development of antinociceptive tolerance its clinical use is limited. Thalidomide is an old glutamic acid derivative which recently reemerged because of its potential to counteract a number of disorders including neurodegenerative disorders. The potential underlying mechanisms and effects of thalidomide on morphine-induced antinociceptive tolerance is still elusive. Hence, the present study was designed to explore the effect of thalidomide on the development and expression of morphine antinociceptive tolerance targeting l-arginine-nitric oxide (NO) pathway in mice and T98G human glioblastoma cell line. When thalidomide was administered in a dose of 17.5mg/kg before each dose of morphine chronically for 5days it prevented the development of antinociceptive tolerance. Also, a single dose of thalidomide 20mg/kg attenuated the expression phase of antinociceptive tolerance. The protective effect of thalidomide was augmented in development phase when co-administration with NOS inhibitors like L-NAME (non- selective NOS inhibitor; 2mg/kg) or aminoguanidine (selective inducible NOS inhibitor; 50mg/kg). Also, the reversal effect of thalidomide in expression phase was potentiated when concomitantly administrated with L-NAME (5mg/kg) or aminoguanidine (100mg/kg). Co-administration of ODQ (a guanylyl cyclase inhibitor) 10mg/kg in developmental phase or 20mg/kg in expression phase also progressively increased the pain threshold. In addition, thalidomide (20μM) also significantly inhibited the overexpression of iNOS gene induced by morphine (2.5μM) in T98G cell line. Hence, our findings suggest that thalidomide has protective effect both in the development and expression phases of morphine antinociceptive tolerance. It is also evident that this effect of thalidomide is induced by the inhibition of NOS enzyme predominantly iNOS.
Collapse
|
28
|
Chhokar V, Tucker AL. Angiogenesis: Basic Mechanisms and Clinical Applications. Semin Cardiothorac Vasc Anesth 2016. [DOI: 10.1177/108925320300700304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The development and maintenance of an adequate vascular supply is critical for the viability of normal and neoplastic tissues. Angiogenesis, the development of new blood vessels from preexisting capillary networks, plays an important role in a number of physiologic and pathologic processes, including reproduction, wound repair, inflammatory diseases, and tumor growth. Angiogenesis involves sequential steps that are triggered in response to angiogenic growth factors released by inflammatory, mesenchymal, or tumor cells that act as ligands for endothelial cell receptor tyrosine kinases. Stimulated endothelial cells detach from neighboring cells and migrate, proliferate, and form tubes. The immature tubes are subsequently invested and stabilized by pericytes or smooth muscle cells. Angiogenesis depends upon complex interactions among various classes of molecules, including adhesion molecules, proteases, structural proteins, cell surface receptors, and growth factors. The therapeutic manipulation of angiogenesis targeted against ischemic and neoplastic diseases has been investigated in preclinical animal models and in clinical trials. Proangiogenic trials that have stimulated vessel growth in ischemic coronary or peripheral tissues through expression, delivery, or stimulated release of growth factors have shown efficacy in animal models and mixed results in human clinical trials. Antiangiogenic trials have used strategies to block the function of molecules critical for new vessel growth or maturation in the treatment of a variety of malignancies, mostly with results less encouraging than those seen in preclinical models. Pro-and antiangiogenic clinical trials demonstrate that strategies for optimal drug delivery, dosing schedules, patient selection, and endpoint measurements need further investigation and refinement before the therapeutic manipulation of angiogenesis will realize its full clinical potential.
Collapse
Affiliation(s)
- Vikram Chhokar
- Department of Internal Medicine, Salem VA Health System, Roanoke, Virginia
| | - Amy L. Tucker
- Department of Internal Medicine, Cardiovascular Division; Cardiovascular Research Center; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
29
|
Criado RFJ, Criado PR, Vasconcellos C, Szajubok JCM, Michalany NS, Kadunc BV, Costa Martins JE. Urticaria as a Cutaneous Sign of Adult-Onset Still's Disease. J Cutan Med Surg 2016; 10:99-103. [PMID: 17241583 DOI: 10.2310/7750.2006.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: The cardinal signs and symptoms of adult-onset Still's disease (AOSD) include periodic fever, arthralgia and arthritis, lymphadenopathy, hepatosplenomegaly, an evanescent rash accompanied by neutrophilic granulocytosis, and a negative rheumatoid factor and antinuclear antibody test. Objective: To alert clinicians and dermatologists to internal diseases such as AOSD when assisting patients with urticarial eruptions and systemic symptoms. Methods: A case report of a 52-year-old white woman who received conventional therapy for urticaria for 3 years, with no improvement. Following this period, a diagnosis of AOSD was performed based on the presence of systemic symptoms. Results: The inflammatory activity markers decreased by the second month of methotrexate therapy; however, the cutaneous lesions failed to disappear. Thalidomide was initiated, and total improvement of the cutaneous lesions was observed after 2 weeks. Conclusion: Urticarial rash is an uncommon presentation of AOSD, and clinicians must be alert to the possibility of a misdiagnosis in these cases.
Collapse
Affiliation(s)
- Roberta F J Criado
- Allergy Unit, Dermatology Department of Faculdade de Medicina do ABC, Santo André, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Casal JJ, Bollini M, Lombardo ME, Bruno AM. Thalidomide analogues: Tumor necrosis factor-alpha inhibitors and their evaluation as anti-inflammatory agents. Eur J Pharm Sci 2015; 83:114-9. [PMID: 26692341 DOI: 10.1016/j.ejps.2015.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/28/2015] [Accepted: 12/11/2015] [Indexed: 11/28/2022]
Abstract
A series of related thalidomide derivatives (2-9) were synthesized by microwave irradiation and evaluated for anti-inflammatory activity. Such activity was assessed in vivo and ex vivo. Compounds 2, 8 and 9 showed the highest levels of inhibition of TNF-α production. On rat paw edema and hyperalgesia assays, compound 9, (1,4-phthalazinedione) demonstrated the highest in vivo anti-inflammatory activity. Thus, compound 9 can be considered as a promising compound to be subjected to further modification to obtain new agents for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Juan José Casal
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113. Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Bollini
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113. Ciudad Autónoma de Buenos Aires, Argentina
| | - María Elisa Lombardo
- Centro de Investigaciones sobre Porfirias y Porfirinas (CIPYP, UBA-CONICET), Hospital de Clínicas José de San Martín, Avenida Córdoba 2351, 1120. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ana María Bruno
- Departamento de Química Orgánica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
31
|
Abstract
The presence of fever in malignancy usually indicates infection, though transfusion, thrombosis and drugs are also culprits. However, particularly in some tumour types, fever can also be a paraneoplastic syndrome, caused by the malignancy itself. This can be a difficult diagnosis to establish and presents a therapeutic challenge to the physician when the underlying malignancy is not easily treated.
Collapse
Affiliation(s)
| | - Jamie Cavenagh
- professor of haematology, St Bartholomew's Hospital, London, UK
| |
Collapse
|
32
|
Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur J Med Chem 2015; 96:491-503. [PMID: 25942060 DOI: 10.1016/j.ejmech.2015.04.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 11/22/2022]
Abstract
The present work reports the synthesis and evaluation of the antitumour and immunomodulatory properties of new phthalimides derivatives designed to explore molecular hybridization and bioisosterism approaches between thalidomide, thiosemicarbazone, thiazolidinone and thiazole series. Twenty-seven new molecules were assessed for their immunosuppressive effect toward TNFα, IFNγ, IL-2 and IL-6 production and antiproliferative activity. The best activity profile was observed for the (6a-f) series, which presents phthalyl and thiazolidinone groups.
Collapse
|
33
|
|
34
|
Noguchi-Yachide T, Sakai T, Hashimoto Y, Yamaguchi T. Discovery and structure-activity relationship studies of N6-benzoyladenine derivatives as novel BRD4 inhibitors. Bioorg Med Chem 2015; 23:953-9. [PMID: 25678016 DOI: 10.1016/j.bmc.2015.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 01/12/2023]
Abstract
Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that bind to acetylated lysines in histones. Among them, BRD4 is a candidate target molecule of therapeutic agents for diverse diseases, including cancer and inflammatory disease. As a part of our continuing structural development studies of thalidomide to obtain a broad spectrum of biological modifiers based on the 'multi-template' approach, in this work we focused on BRD4-inhibitory activity, and discovered that N6-benzoyladenine derivatives exhibit this activity. Structure-activity relationship studies led to N6-(2,4,5-trimethoxybenzoyl)adenine (29), which exhibits potent BRD4 bromodomain1 inhibitory activity with an IC50 value of 0.427μM. N6-Benzoyladenine appears to be a new chemical scaffold for development of BRD4 inhibitors.
Collapse
Affiliation(s)
- Tomomi Noguchi-Yachide
- Institute of Molecular and Cellular, Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Taki Sakai
- Institute of Molecular and Cellular, Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular, Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takao Yamaguchi
- Institute of Molecular and Cellular, Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
35
|
von Haehling S, Anker SD. Treatment of cachexia: an overview of recent developments. J Am Med Dir Assoc 2014; 15:866-72. [PMID: 25455531 DOI: 10.1016/j.jamda.2014.09.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
Abstract
Body wasting in the context of chronic illness is associated with reduced quality of life and impaired survival. Recent clinical trials have investigated different approaches to improve patients' skeletal muscle mass and strength, exercise capacity, and survival in the context of cachexia and body wasting, many of them in patients with cancer. The aim of this article was to summarize clinical trials published over the past 2 years. Therapeutic approaches discussed include appetite stimulants, such as megestrol acetate, L-carnitine, or melatonin, anti-inflammatory drugs, such as thalidomide, pentoxyphylline, or a monoclonal antibody against interleukin-1α as well as ghrelin and the ghrelin agonist anamorelin; nutritional support, and anabolics, such as enobosarm and testosterone.
Collapse
Affiliation(s)
- Stephan von Haehling
- Division of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany; Applied Cachexia Research, Department of Cardiology, Charité Medical School, Campus Virchow-Klinikum, Berlin, Germany.
| | - Stefan D Anker
- Division of Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany
| |
Collapse
|
36
|
Yamasaki PR, do Nascimento DC, Chelucci RC, de Faria Fernandes Belone A, Rosa PS, Diório SM, de Melo TRF, Barbieri KP, Placeres MCP, Carlos IZ, Chung MC, dos Santos JL. Synthesis and evaluation of novel dapsone–thalidomide hybrids for the treatment of type 2 leprosy reactions. Bioorg Med Chem Lett 2014; 24:3084-7. [DOI: 10.1016/j.bmcl.2014.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/30/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
37
|
Ordi-Ros J, Cosiglio FJ. Indicaciones terapéuticas actuales de la talidomida y la lenalidomida. Med Clin (Barc) 2014; 142:360-4. [DOI: 10.1016/j.medcli.2013.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
|
38
|
Argilés JM, López-Soriano FJ, Busquets S. Mechanisms and treatment of cancer cachexia. Nutr Metab Cardiovasc Dis 2013; 23 Suppl 1:S19-S24. [PMID: 22749678 DOI: 10.1016/j.numecd.2012.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 04/12/2012] [Accepted: 04/12/2012] [Indexed: 11/30/2022]
Abstract
According to a recent consensus, cachexia is a complex metabolic syndrome associated with underlying illness and characterised by loss of muscle with or without loss of fat mass. The prominent clinical feature of cachexia is weight loss. Cachexia occurs in the majority of terminal cancer patients and it is responsible for the deaths of 22% of cancer patients. Although body weight is, indeed, an important factor to be taken into consideration in any cachexia treatment, body composition, physical performance and quality of life should be monitored. From the results presented here, one can speculate that a single therapy may not be completely successful in the treatment of cachexia. From this point of view, treatments involving different combinations are more likely to be successful. The objectives of any therapeutical combination are two: an anticatabolic aim directed towards both fat and muscle catabolism and an anabolic objective leading to the synthesis of macromolecules such as contractile proteins.
Collapse
Affiliation(s)
- J M Argilés
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain.
| | - F J López-Soriano
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - S Busquets
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Thalidomide corrects impaired mesenchymal stem cell function in inducing tolerogenic DCs in patients with immune thrombocytopenia. Blood 2013; 122:2074-82. [PMID: 23926306 DOI: 10.1182/blood-2013-03-491555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Thalidomide (THD) is an immunomodulatory agent used to treat immune-mediated diseases. Immune thrombocytopenia (ITP) is an autoimmune disorder in which impaired mesenchymal stem cells (MSCs) are potentially involved. We demonstrated that MSCs in ITP patients had reduced proliferative capacity and lost their immunosuppressive function, which could be corrected with THD treatment. According to the gene profile, the downregulation of caspase-8 and caspase-10, and upregulation of oct3/4 and tgf-β1, may be associated with THD modulation. Dendritic cells (DCs) played an important role in mediating the inhibitory activity of MSCs. To study the functional alteration of DCs elicited by MSCs, we sorted DCs after incubation with MSCs and performed T-lymphocyte reaction assays. The THD-modulated MSCs from ITP patients induced mature DCs to become tolerogenic DCs, whereas unmodulated MSCs had no effect. The induction of tolerogenicity in DCs by MSCs was dependent on the expression of TIEG1 in DCs. The study reveals the inability of MSCs from ITP patients to induce tolerogenic ability in DCs. THD could restore the regulatory effect of MSCs on DCs. These findings will help us understand the pathogenesis of ITP, and with appropriate safeguards, THD may benefit patients with ITP.
Collapse
|
40
|
Santana AC, Degaspari S, Catanozi S, Dellê H, de Sá Lima L, Silva C, Blanco P, Solez K, Scavone C, Noronha IL. Thalidomide suppresses inflammation in adenine-induced CKD with uraemia in mice. Nephrol Dial Transplant 2013; 28:1140-9. [PMID: 23345625 DOI: 10.1093/ndt/gfs569] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Persistent systemic inflammation has been widely recognized in patients with chronic kidney disease (CKD), and is associated with increased risk of morbidity and mortality. Intervention therapies aiming for the blockade of inflammatory cytokines are considered attractive approaches for CKD patients with signs of chronic inflammation. In this context, thalidomide, due to its potent anti-inflammatory and immunomodulatory properties, may represent an alternative strategy of treatment. In the present study, we developed an experimental model of CKD with uraemia in mice, induced by a diet rich in adenine, which causes progressive renal dysfunction, resembling the human uraemic features. Inflammatory parameters were analysed in this model of CKD and the potential beneficial effects of thalidomide as an anti-inflammatory drug was also investigated. METHODS C57/BL-6 mice were fed with an adenine-containing diet during a period of 6 weeks. Thirty mice were divided into three groups: Control group (animals receiving normal diet), ADE group (mice receiving adenine-containing diet) and ADE + TLD group (CKD mice receiving thalidomide, 30 mg/kg/day, by gavage). Besides biochemical and histopathological changes, local and systemic inflammatory parameters were also analysed, including expression of cytokines interleukin (IL)-1β, tumour necrosis factor-α, IL-6, IL-4 and IL-10 in kidney samples by real-time RT-PCR and quantification of serum levels of cytokines. Finally, the electrophoretic mobility shift assay (EMSA) for NF-κB was also examined. RESULTS Adenine-fed mice developed advanced CKD characterized by a marked increase in serum urea, creatinine, phosphorus and intact parathyroid hormone (iPTH) levels. In addition, histological changes of tubulointerstitial injury, characterized by deposition of crystals in the kidney, accompanied by tubular dilatation, degeneration of proximal tubular epithelium with loss of the brush border, inflammatory cellular infiltration, foreign-body granuloma formation and interstitial fibrosis were also evident. By immunohistochemistry, Mac-2- and α-SMA-positive cells were identified in the tubulointerstitial compartment. Treatment with thalidomide significantly reduced serum urea, creatinine, phosphorus and iPTH levels and protected against tubulointerstitial injury. Local and systemic inflammation in the mice model of adenine-induced CKD was confirmed by the findings of significantly high expression of cytokine mRNA levels and NF-κB activation in the kidney tissue as well as marked increased serum levels of inflammatory cytokines. Thalidomide treatment significantly reduced gene expression of these cytokines and the activation of the NF-κB in the renal tissue and the circulating levels of cytokines. CONCLUSIONS Dietary adenine caused advanced CKD with uraemia in mice providing a useful experimental model to study molecular and morphological changes associated with this disease. The negative impact of inflammation in this CKD model was overcome by the marked anti-inflammatory effects of thalidomide, promoting renal protection.
Collapse
Affiliation(s)
- Alexandre C Santana
- Laboratory of Cellular and Molecular Nephrology, Division of Nephrology, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nagarajan S, Majumder S, Sharma U, Rajendran S, Kumar N, Chatterjee S, Singh B. Synthesis and anti-angiogenic activity of benzothiazole, benzimidazole containing phthalimide derivatives. Bioorg Med Chem Lett 2013. [DOI: 10.1016/j.bmcl.2012.10.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Abstract
Leprous neuropathy, which is due to infection of nerve cells by Mycobacterium leprae, still affects millions of people in many developing countries. The clinical and pathological manifestations are determined by the natural resistance of the host to invasion of M. Leprae. Failure of early detection of leprosy often leads to severe disability in spite of eradication of mycobacterium at a later date. In the lepromatous type, bacilli are easily found in the skin and in nerve cells including Schwann cells, endothelial cells, and macrophages. In the tuberculoid type, a strong cell-mediated immune reaction leads to formation of granulomas and destruction of cells harboring bacilli and neighboring nerve fibers. In many cases, treatment of patients with the multibacillary leprosy is complicated by reversal reaction and further nerve damage. Nerve lesions lead to a symmetrical, pseudo-polyneuritic pattern in most cases of lepromatous leprosy, which is usually associated with typical skin lesions, but pure neuritic forms occur in up to 10% of patients with lepromatous leprosy. In the pure neuropathic cases, only nerve biopsy permits diagnosis. The multifocal pattern is more common in tuberculoid leprosy. Treatment is currently based on multidrug therapy with dapsone, rifampicin, and clofazimine. The use of corticosteroids can reduce or prevent nerve damage in reversal reactions. It is important to remember that sequelae, especially sensory loss, are extremely common, which can lead to secondary trophic changes due to repeated trauma in painless areas.
Collapse
Affiliation(s)
- Marcos R G de Freitas
- Hospital Universitário Antonio Pedro, Universidade Federal Fluminense, Niterói, Brazil.
| | | |
Collapse
|
43
|
Miranda AM, Antunes SLG, Nery JAC, Sales AM, Pereira MJDS, Sarno EN. Erythema multiforme in leprosy. Mem Inst Oswaldo Cruz 2012; 107 Suppl 1:34-42. [DOI: 10.1590/s0074-02762012000900007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/11/2012] [Indexed: 11/22/2022] Open
|
44
|
Abstract
Thalidomide is a drug that, since its development, has made history in the world of medicine--having been withdrawn and now has returned with a boom as an anticancer and immunomodulatory drug. However, its mode of action in various diseases (i.e. different types of hematologic malignancies, solid tumors) as well as in various infections (i.e. pneumonia, tuberculosis, HIV infection etc.) and related inflammatory conditions is not well understood. As the immune system plays an important role in the pathogenesis of both infection-related as well as noninfectious (i.e. cancer) inflammatory diseases, much research has been done in the past few years to discover and design better immunomodulatory agents. Such immunomodulatory agents should be able to target the immune system in such a way that host suffers minimum damage and normal function of the immune system remains intact. In the present review an attempt is made to highlight the immunomodulatory action of thalidomide in various pathologic conditions.
Collapse
Affiliation(s)
- V Kumar
- Department of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
45
|
Mazzoccoli L, Cadoso SH, Amarante GW, de Souza MV, Domingues R, Machado MA, de Almeida MV, Teixeira HC. Novel thalidomide analogues from diamines inhibit pro-inflammatory cytokine production and CD80 expression while enhancing IL-10. Biomed Pharmacother 2012; 66:323-9. [DOI: 10.1016/j.biopha.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 05/17/2012] [Indexed: 10/28/2022] Open
|
46
|
Abstract
The development of an infection involves interplay between the host's immune system and the virulence of the infecting microorganism. The traditional treatment of an infection involves antimicrobial chemotherapy to kill the organism. The use of immunotherapies in infections includes treatment options that modulate the immune response and can lead to control of infections. These therapies are expected to become more important therapeutic options with the increase in infections due to multidrug-resistant organisms and the increasing number of immunocompromised patients.
Collapse
Affiliation(s)
- Vivek Kak
- Allegiance Health, 1100 East Michigan Avenue, #305, Jackson, MI 49201, USA.
| | | | | | | |
Collapse
|
47
|
Hurtado-Sánchez M, Durán-Merás I, Rodríguez-Cáceres M, Jiménez-Girón A, Olivieri A. Comparison of the predictive ability of several second-order multivariate methods in the simultaneous determination of two therapeutic drugs in human urine. Talanta 2012; 88:609-16. [DOI: 10.1016/j.talanta.2011.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 11/28/2022]
|
48
|
Hernandez MDO, Fulco TDO, Pinheiro RO, Pereira RDMS, Redner P, Sarno EN, Lopes UG, Sampaio EP. Thalidomide modulates Mycobacterium leprae-induced NF-κB pathway and lower cytokine response. Eur J Pharmacol 2011; 670:272-9. [PMID: 21925494 DOI: 10.1016/j.ejphar.2011.08.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/16/2011] [Accepted: 08/27/2011] [Indexed: 11/30/2022]
Abstract
It is widely accepted that tumor necrosis factor alpha (TNF-α) plays a critical role in the development of tissue and nerve damage in leprosy and during the reactional episodes of acute inflammation. Thalidomide (N-α-phthalimidoglutarimide), a drug used to treat leprosy reaction, modulates immune response, inhibits inflammation and NF-κB activity. Here we investigated whether thalidomide inhibits NF-κB activation induced by Mycobacterium leprae, p38 and ERK1/2 MAPK activation. EMSA and supershift assays were performed to investigate NF-κB activation in response to M. leprae and its modulation following in vitro treatment with thalidomide. Luciferase assay was assayed in transfected THP-1 cells to determine NF-κB transcriptional activity. Flow cytometry and immunofluorescence were used to investigate p65 accumulation in the nucleus. Immunoblotting was used to investigate p38 and ERK1/2 phosphorylation. Following activation of PBMC and monocytes with M. leprae, the formation and nuclear localization of NF-κB complexes composed mainly of p65/p50 and p50/p50 dimers was observed. Induction of NF-κB activation and DNA binding activity was inhibited by thalidomide. The drug also reduced M. leprae-induced TNF-α production and inhibited p38 and ERK1/2 activation. Definition of the activation mechanisms in cells stimulated with M. leprae can lead to the development of new therapy applications to modulate NF-κB activation and to control the inflammatory manifestations due to enhanced TNF-α response as observed in leprosy and in leprosy reactions.
Collapse
|
49
|
Abstract
IMiDs belong to a new pharmalogical class, whose principal therapeutic agents are the thalidomide and the lenalidomide. They have immunomodulatory and antiangiogenic properties, as well as a direct effect on tumor cells. Thalidomide and lenalidomide were first approved for multiple myeloma, and in 5q-myelodysplastic syndrome for lenalidomide. Several studies have shown the efficacy of these drugs in others hematologic malignancies. A third component has been developed, the pomalidomide, which may be more effective in certain indications. Here we present an overview of IMiDs in hematology, including mechanisms of action and known significant side effects.
Collapse
|
50
|
Anti-inflammatory therapies in cancer cachexia. Eur J Pharmacol 2011; 668 Suppl 1:S81-6. [PMID: 21835173 DOI: 10.1016/j.ejphar.2011.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/24/2022]
Abstract
Disease progression in cancer is dependent on the complex interaction between the tumor and the host inflammatory response. Indeed, both the tumor and the patient produce cytokines that act on multiple target sites such as bone marrow, myocytes, hepatocytes, adipocytes, endothelial cells and neurons, where they produce a complex cascade of biological responses leading to the wasting associated with cachexia. The cytokines that have been involved in this cachectic response are TNF-alpha, IL-1, IL-6 and interferon-gamma. Interestingly, these cytokines share the same metabolic effects and their activities are closely interrelated. In many cases these cytokines exhibit synergic effects when administered together. Therefore, therapeutic strategies - either nutritional or pharmacological - have been based on either blocking their synthesis or their action.
Collapse
|