1
|
Alsanea MS, Al-Qahtani AA, Almaghrabi RS, AlAbdulkareem MA, Alahideb BM, Obeid D, Alsuwairi FA, Alhamlan FS. Diagnosis of Human Cytomegalovirus Drug Resistance Mutations in Solid Organ Transplant Recipients-A Review. Diagnostics (Basel) 2024; 14:203. [PMID: 38248079 PMCID: PMC10814084 DOI: 10.3390/diagnostics14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 01/23/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection may be asymptomatic in healthy individuals but can cause severe complications in immunocompromised patients, including transplant recipients. Breakthrough and drug-resistant HCMV infections in such patients are major concerns. Clinicians are first challenged to accurately diagnose HCMV infection and then to identify the most effective antiviral drug and determine when to initiate therapy, alter drug dosage, or switch medication. This review critically examines HCMV diagnostics approaches, particularly for immunocompromised patients, and the development of genotypic techniques to rapidly diagnose drug resistance mutations. The current standard method to identify prevalent and well-known resistance mutations involves polymerase chain reaction amplification of UL97, UL54, and UL56 gene regions, followed by Sanger sequencing. This method can confirm clinical suspicion of drug resistance as well as determine the level of drug resistance and range of cross-resistance with other drugs. Despite the effectiveness of this approach, there remains an urgent need for more rapid and point-of-care HCMV diagnosis, allowing for timely lifesaving intervention.
Collapse
Affiliation(s)
- Madain S. Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia;
| | - Maha A. AlAbdulkareem
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
| | - Basma M. Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
| | - Dalia Obeid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia;
| | - Feda A. Alsuwairi
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; (M.S.A.); (A.A.A.-Q.); (M.A.A.); (B.M.A.); (D.O.); (F.A.A.)
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
2
|
To EE. Cell and Tissue Specific Metabolism of Nucleoside and Nucleotide Drugs: Case Studies and Implications for Precision Medicine. Drug Metab Dispos 2023; 51:360-368. [PMID: 36446610 DOI: 10.1124/dmd.122.000856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Many clinically used antiviral drugs are nucleoside or nucleotide analog drugs, which have a unique mechanism of action that requires intracellular phosphorylation. This dependence on intracellular activation presents novel challenges for the discovery and development of nucleoside/nucleotide analog drugs. Contrary to many small molecule drug development programs that rely on plasma pharmacokinetics and systemic exposures, the precise mechanisms that result in efficacious intracellular nucleoside triphosphate concentrations must be understood in the process of nucleoside/nucleotide drug development. The importance is highlighted here, using the following as case studies: the herpes treatment acyclovir, the cytomegalovirus therapy ganciclovir, and human immunodeficiency virus (HIV) treatments based on tenofovir, which are also in use for HIV prophylaxis. For each drug, the specificity of metabolism that results in its activation in different cells or tissues is discussed, and the implications explored. Acyclovir's dependence on a viral enzyme for activation provides selective pressure for resistance mutations. Ganciclovir is also dependent on a viral enzyme for activation, and suicide gene therapy capitalizes on that for a novel oncology treatment. The tissue of most relevance for tenofovir activation depends on its use as treatment or as prophylaxis, and the pharmacogenomics and drug-drug interactions in those tissues must be considered. Finally, differential metabolism of different tenofovir prodrugs and its effects on toxicity risk are explored. Taken together, these examples highlight the importance of understanding tissue specific metabolism for optimal use of nucleoside/nucleotide drugs in the clinic. SIGNIFICANCE STATEMENT: Nucleoside and nucleotide analogue drugs are cornerstones in current antiviral therapy and prevention efforts that require intracellular phosphorylation for activity. Understanding their cell and tissue specific metabolism enables their rational, precision use for maximum efficacy.
Collapse
Affiliation(s)
- Elaine E To
- Gilead Sciences, Inc., Foster City, California, USA
| |
Collapse
|
3
|
Choudhary MC, Chew KW, Deo R, Flynn JP, Regan J, Crain CR, Moser C, Hughes MD, Ritz J, Ribeiro RM, Ke R, Dragavon JA, Javan AC, Nirula A, Klekotka P, Greninger AL, Fletcher CV, Daar ES, Wohl DA, Eron JJ, Currier JS, Parikh UM, Sieg SF, Perelson AS, Coombs RW, Smith DM, Li JZ. Emergence of SARS-CoV-2 escape mutations during Bamlanivimab therapy in a phase II randomized clinical trial. Nat Microbiol 2022; 7:1906-1917. [PMID: 36289399 PMCID: PMC9675946 DOI: 10.1038/s41564-022-01254-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/19/2022] [Indexed: 11/08/2022]
Abstract
SARS-CoV-2 mutations that cause resistance to monoclonal antibody (mAb) therapy have been reported. However, it remains unclear whether in vivo emergence of SARS-CoV-2 resistance mutations alters viral replication dynamics or therapeutic efficacy in the immune-competent population. As part of the ACTIV-2/A5401 randomized clinical trial (NCT04518410), non-hospitalized participants with symptomatic SARS-CoV-2 infection were given bamlanivimab (700 mg or 7,000 mg) or placebo treatment. Here¸ we report that treatment-emergent resistance mutations [detected through targeted Spike (S) gene next-generation sequencing] were significantly more likely to be detected after bamlanivimab 700 mg treatment compared with the placebo group (7% of 111 vs 0% of 112 participants, P = 0.003). No treatment-emergent resistance mutations among the 48 participants who received 7,000 mg bamlanivimab were recorded. Participants in which emerging mAb resistant virus mutations were identified showed significantly higher pretreatment nasopharyngeal and anterior nasal viral loads. Daily respiratory tract viral sampling through study day 14 showed the dynamic nature of in vivo SARS-CoV-2 infection and indicated a rapid and sustained viral rebound after the emergence of resistance mutations. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest that are associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment that results in prolonged high-level respiratory tract viral loads. Assessment of viral resistance should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.
Collapse
Affiliation(s)
- Manish C Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kara W Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Flynn
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Regan
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles R Crain
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Justin Ritz
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Joan A Dragavon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Ajay Nirula
- Lilly Research Laboratories, San Diego, CA, USA
| | | | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Courtney V Fletcher
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Urvi M Parikh
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Scott F Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Robert W Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, CA, USA.
| | - Jonathan Z Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Santos Bravo M, Plault N, Sánchez-Palomino S, Rodríguez C, Navarro Gabriel M, Mosquera MM, Fernández Avilés F, Suarez-Lledó M, Rovira M, Bodro M, Moreno A, Linares L, Cofan F, Berengua C, Esteva C, Cordero E, Martin-Davila P, Aranzamendi M, Pérez Jiménez AB, Vidal E, Fernández Sabé N, Len O, Hantz S, Alain S, Marcos MÁ. Genotypic and phenotypic study of antiviral resistance mutations in refractory cytomegalovirus infection. J Infect Dis 2022; 226:1528-1536. [PMID: 35993155 DOI: 10.1093/infdis/jiac349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
This study describes the genotypic and phenotypic characterisation of novel human cytomegalovirus (HCMV) genetic variants of a cohort of 94 clinically-resistant HCMV patients. Antiviral-resistant mutations were detected in the UL97, UL54 and UL56 target genes of 25/94 (26.6%) patients. The genotype-phenotype correlation study resolved the status of 5 uncharacterised UL54 DNA polymerase (G441S, A543V, F460S, R512C, A928T) and 2 UL56 terminase (F345L, P800L) mutations found in clinical isolates. A928T conferred high triple-resistance to ganciclovir, foscarnet and cidofovir, and A543V had 10-fold reduced susceptibility to cidofovir. Viral growth assays showed G441S, A543V, F345L and P800L impaired viral growth capacities compared with wild-type AD169 HCMV. 3D modelling predicted A543V and A928T phenotypes but not R512C, reinforcing the need for individual characterisation of mutations by recombinant phenotyping. Extending mutation databases is crucial to optimize treatments and to improve the assessment of patients with resistant/refractory HCMV infection.
Collapse
Affiliation(s)
- Marta Santos Bravo
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Nicolas Plault
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - Sonsoles Sánchez-Palomino
- AIDS Research Group, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic I Provincial de Barcelona, University of Barcelona, Barcelona, Spain
| | - Cristina Rodríguez
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Mireia Navarro Gabriel
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - María Mar Mosquera
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Francesc Fernández Avilés
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - María Suarez-Lledó
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Montserrat Rovira
- Bone Marrow Transplant Unit, Hematology Department, Clinical Institute of Hematological and Oncological Diseases (ICMHO) Hospital Clinic of Barcelona, , Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Marta Bodro
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Asunción Moreno
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Laura Linares
- Infectious Diseases Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Frederic Cofan
- Renal Transplantation Unit, Department of Nephrology. Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carla Berengua
- Microbiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Cristina Esteva
- Molecular Microbiology Unit, Hospital Universitari Sant Joan de Déu, Barcelona, Spain. Malalties Prevenibles amb Vacunes, Institut de Recerca Sant Joan de Déu, Universitat de Barcelona. Centre of Biomedical Research for Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Elisa Cordero
- Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine. Viral and Infectious Diseases in Immunodeficient Group. Institute of Biomedicine of Seville (IBiS). Virgen del Rocio University Hospital. University of Seville. Seville, Spain
| | | | - Maitane Aranzamendi
- Microbiology Department. Hospital Universitario de Cruces, Donostia, Gipuzkoa, Spain
| | - Ana Belén Pérez Jiménez
- Microbiology Unit, Hospital Universitario Reina Sofía, Intituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Intitute of Carlos III, Madrid, Spain
| | - Elisa Vidal
- Microbiology Unit, Hospital Universitario Reina Sofía, Intituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain. Centre of Biomedical Research for Infectious Diseases (CIBERINFEC), Intitute of Carlos III, Madrid, Spain
| | - Nuria Fernández Sabé
- Department of Infectious Diseases, Bellvitge University Hospital, Insitut D'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Oscar Len
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebrón, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Sebastien Hantz
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - Sophie Alain
- National Reference Center for Herpesviruses, Microbiology Department, CHU Limoges, Limoges, France.,UMR Inserm 1092, University of Limoges, Limoges, France
| | - María Ángeles Marcos
- Microbiology Department, Hospital Clinic of Barcelona, University of Barcelona. Institute for Global Health (ISGlobal), Barcelona, Spain
| | | |
Collapse
|
5
|
Märtson AG, Edwina AE, Kim HY, Knoester M, Touw DJ, Sturkenboom MGG, Alffenaar JWC. Therapeutic Drug Monitoring of Ganciclovir: Where Are We? Ther Drug Monit 2022; 44:138-147. [PMID: 34610621 PMCID: PMC8746890 DOI: 10.1097/ftd.0000000000000925] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/07/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ganciclovir is the mainstay of therapy for the prophylaxis and treatment of Cytomegalovirus. However, therapy with this antiviral agent is hindered by side effects such as myelosuppression, which often leads to therapy cessation. Underdosing, as an attempt to prevent side effects, can lead to drug resistance and therapy failure. Therapeutic drug monitoring (TDM) has been used to overcome these problems. The purpose of this narrative review was to give an overview of ganciclovir TDM, available assays, population pharmacokinetic models, and discuss the current knowledge gaps. METHODS For this narrative review, a nonsystematic literature search was performed on the PubMed database in April 2021. The following search terms were used: ganciclovir, valganciclovir, pharmacokinetics, pharmacodynamics, population pharmacokinetics, therapeutic drug monitoring, bioassay, liquid chromatography coupled with tandem mass spectrometry, liquid chromatography, chromatography, spectrophotometry, and toxicity. In addition, the reference lists of the included articles were screened. RESULTS The most common bioanalysis method identified was liquid chromatography coupled with tandem mass spectrometry. There are different models presenting ganciclovir IC50; however, establishing a pharmacokinetic/pharmacodynamic target for ganciclovir based on preclinical data is difficult because there are no studies combining dynamic drug exposure in relation to inhibition of viral replication. The data on ganciclovir TDM show large interindividual variability, indicating that TDM may play a role in modifying the dose to reduce toxicity and prevent treatment failure related to low concentrations. The main hurdle for implementing TDM is the lack of robust data to define a therapeutic window. CONCLUSIONS Although the pharmacokinetics (PK) involved is relatively well-described, both the pharmacodynamics (PD) and pharmacokinetic/pharmacodynamic relationship are not. This is because the studies conducted to date have mainly focused on estimating ganciclovir exposure, and owing to the limited therapeutic options for CMV infections, future studies on ganciclovir are warranted.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Angela E. Edwina
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Marjolein Knoester
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marieke G. G. Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
6
|
Choudhary MC, Chew KW, Deo R, Flynn JP, Regan J, Crain CR, Moser C, Hughes M, Ritz J, Ribeiro RM, Ke R, Dragavon JA, Javan AC, Nirula A, Klekotka P, Greninger AL, Fletcher CV, Daar ES, Wohl DA, Eron JJ, Currier JS, Parikh UM, Sieg SF, Perelson AS, Coombs RW, Smith DM, Li JZ. Emergence of SARS-CoV-2 Resistance with Monoclonal Antibody Therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.03.21263105. [PMID: 34545376 PMCID: PMC8452115 DOI: 10.1101/2021.09.03.21263105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Resistance mutations to monoclonal antibody (mAb) therapy has been reported, but in the non-immunosuppressed population, it is unclear if in vivo emergence of SARS-CoV-2 resistance mutations alters either viral replication dynamics or therapeutic efficacy. In ACTIV-2/A5401, non-hospitalized participants with symptomatic SARS-CoV-2 infection were randomized to bamlanivimab (700mg or 7000mg) or placebo. Treatment-emergent resistance mutations were significantly more likely detected after bamlanivimab 700mg treatment than placebo (7% of 111 vs 0% of 112 participants, P=0.003). There were no treatment-emergent resistance mutations among the 48 participants who received bamlanivimab 7000mg. Participants with emerging mAb resistant virus had significantly higher pre-treatment nasopharyngeal and anterior nasal viral load. Intensive respiratory tract viral sampling revealed the dynamic nature of SARS-CoV-2 evolution, with evidence of rapid and sustained viral rebound after emergence of resistance mutations, and worsened symptom severity. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest and associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment, resulting in prolonged high level respiratory tract viral loads and clinical worsening. Careful virologic assessment should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.
Collapse
|
7
|
Tamura S, Osawa S, Ishida N, Miyazu T, Tani S, Yamade M, Iwaizumi M, Hamaya Y, Kosugi I, Furuta T, Sugimoto K. Prevalence of UL97 gene mutations and polymorphisms in cytomegalovirus infection in the colon associated with or without ulcerative colitis. Sci Rep 2021; 11:13676. [PMID: 34211066 PMCID: PMC8249415 DOI: 10.1038/s41598-021-93168-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation in the colon is common in patients with severe ulcerative colitis (UC). Ganciclovir (GCV) resistance conferring CMV UL97 gene mutations have been reported in recent years. However, the prevalence of UL97 gene mutations in GCV-naive CMV infection in the colon remains unknown. We investigated the prevalence of CMV UL97 gene mutations in patients with colonic CMV infection associated with or without UC. Twenty-two GCV-naive patients with colonic CMV infection, 15 with UC and 7 with other diseases, were enrolled. Frozen biopsy samples or formalin-fixed paraffin-embedded samples were used for nested polymerase chain reaction (PCR) amplification of the UL97 gene. Sanger DNA sequencing was performed. In comparison with AD169 reference strain, natural polymorphisms were frequently detected in codons N68D (100%), I244V (100%), and D605E (86.4%). Seven polymorphisms were detected infrequently (< 10%) outside the kinase domain. However, no known GCV resistance mutations were found. There seemed to be no difference between the ratio of polymorphisms in patients with and without UC. In conclusions, we did not detect UL97 gene mutations associated with GCV resistance in GCV-naive patients with or without UC. Consistent with previous reports, D605E polymorphism may be used as a genetic marker for CMV in East Asian countries.
Collapse
Affiliation(s)
- Satoshi Tamura
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Satoshi Osawa
- Department of Endoscopic and Photodynamic Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| | - Natsuki Ishida
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takahiro Miyazu
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Shinya Tani
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Mihoko Yamade
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Moriya Iwaizumi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takahisa Furuta
- Center for Clinical Research, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
8
|
Global estimate of phenotypic and genotypic ganciclovir resistance in cytomegalovirus infections among HIV and organ transplant patients; A systematic review and meta-analysis. Microb Pathog 2020; 141:104012. [PMID: 32004622 DOI: 10.1016/j.micpath.2020.104012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 11/21/2022]
Abstract
Human cytomegalovirus (CMV), an opportunistic pathogen belonging to Herpesviridae family, is considered as one of the major causes of morbidity and mortality among wide variety of patients, particularly in transplant recipients and HIV positive patients. As this virus can be resistant to treatment, frequency of CMV in patients who receive organ transplantation and people suffering from AIDS was studied between 1980 and 2019. Medline (via PubMed), Embase, Web of Science, and the Iranian Database were reviewed, and Comprehensive Meta-Analysis (V2.0, Biostat) software analyzed all data. Finally, we used Cochran's Q-statistic to encounter heterogeneity between different studies. Meta-analyses indicated, GCV resistance was 14.1% (95% CI 11.2-17.7); however, in patients suffering from AIDS and organ transplantation were 19.5% (95% CI 14.7-25.4) and 11.4% (95% CI 8.1-15.8), respectively. There were increasing rates in the prevalence of GCV resistance in CMV among transplant recipients, and HIV positive patients. Therefore, evaluation of these refractory infections is beneficial.
Collapse
|
9
|
Ishtiaq R, Wilhelm DM, Ahmad S. CMV gastric ulcer in a patient with pauci immune crescentic glomerulonephritis on rituximab - a rare combination. Postgrad Med 2019; 131:619-622. [PMID: 31506001 DOI: 10.1080/00325481.2019.1667211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cytomegalovirus (CMV) infections are asymptomatic in immunocompetent patients but in immunocompromised patients, CMV infections have varying manifestations depending on their location. Patient who are organ transplant recipients, taking immunosuppressive therapy for a long time are at increased risk of CMV infections. CMV-induced gastric ulcer is very rare but many cases have been reported in the literature. No case describing association between CMV-related gastric ulcer and glomerulonephritis has been reported in the literature so far. In this article, we describe a case of pauci immune crescentic glomerulonephritis in a patient who was on rituximab and long-term steroid therapy and found to have CMV-related gastric ulcer. The association of small vessel vasculitis and CMV-related gastrointestinal infection has not been studied in the literature. Pauci immune crescentic glomerulonephritis is a subtype of rapidly progressive glomerulonephritis manifested by continuous loss of renal functions with features of dysmorphic red blood cells and glomerular proteinuria. Treatment of such condition is a genetically engineered chimeric murine/human monoclonal IgG1 kappa antibody directed against the CD20 antigen known as Rituximab. We also discussed the pathogenesis of CMV- induced gastric ulcer after rituximab therapy. This case emphasizes the importance of opportunistic infections in glomerulonephritis patients and raises the awareness that glomerunephritis patients are at increased risk of opportunistic infections as well. Rituximab was considered to be a safer drug but over the years, the incidence if opportunistic infections in patients on rituximab has been increasing.
Collapse
Affiliation(s)
- Rizwan Ishtiaq
- Internal Medicine Residency Program, Mercy St. Vincent Medical Center, Toledo, OH, USA
| | | | - Sumair Ahmad
- Gastroenterology, Mercy St. Vincent Medical Center, Toledo, OH, USA
| |
Collapse
|
10
|
Campos AB, Ribeiro J, Pinho Vaz C, Campilho F, Branca R, Campos A, Baldaque I, Medeiros R, Boutolleau D, Sousa H. Genotypic resistance of cytomegalovirus to antivirals in hematopoietic stem cell transplant recipients from Portugal: A retrospective study. Antiviral Res 2017; 138:86-92. [DOI: 10.1016/j.antiviral.2016.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/24/2016] [Indexed: 01/22/2023]
|
11
|
The D-form of a novel heparan binding peptide decreases cytomegalovirus infection in vivo and in vitro. Antiviral Res 2016; 135:15-23. [PMID: 27678155 DOI: 10.1016/j.antiviral.2016.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022]
Abstract
Human cytomegalovirus (HCMV) infection in utero can lead to congenital sensory neural hearing loss and mental retardation. Reactivation or primary infection can increase the morbidity and mortality in immune suppressed transplant recipients and AIDS patients. The current standard of care for HCMV disease is nucleoside analogs, which can be nephrotoxic. In addition resistance to current treatments is becoming increasingly common. In an effort to develop novel CMV treatments, we tested the effectiveness of the D-form of a novel heparan sulfate binding peptide, p5RD, at reducing infection of ganciclovir (GCV) resistant HCMVs in vitro and MCMV in vivo. HCMV infection was reduced by greater than 90% when cells were pretreated with p5RD. Because p5RD acts by a mechanism unrelated to those used by current antivirals, it was effective at reducing GCV resistant HCMVs by 85%. We show that p5RD is resistant to common proteases and serum inactivation, which likely contributed to its ability to significantly reduced infection of peritoneal exudate cells and viral loads in the spleen and the lungs in vivo. The ability of p5RD to reduce HCMV infectivity in vitro including GCV resistant HCMVs and MCMV infection in vivo suggests that this peptide could be a novel anti-CMV therapeutic.
Collapse
|
12
|
Identification of resistance-associated HCMV UL97- and UL54-mutations and a UL97-polymporphism with impact on phenotypic drug-resistance. Antiviral Res 2016; 131:1-8. [DOI: 10.1016/j.antiviral.2016.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
|
13
|
Campos AB, Ribeiro J, Boutolleau D, Sousa H. Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: current state of the art. Rev Med Virol 2016; 26:161-82. [DOI: 10.1002/rmv.1873] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/09/2016] [Accepted: 02/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ana Bela Campos
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - David Boutolleau
- Sorbonne Universités; UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Paris France
- INSERM, U1135, CIMI-Paris; Paris France
- AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles Foix; Service de Virologie; Paris France
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
| |
Collapse
|
14
|
Fischer L, Sampaio KL, Jahn G, Hamprecht K, Göhring K. Identification of newly detected, drug-related HCMV UL97- and UL54-mutations using a modified plaque reduction assay. J Clin Virol 2015. [DOI: 10.1016/j.jcv.2015.06.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Chen XF, Li TR, Yang H, Shao Y, Zhang J, Zhang W, Yu B, Wei Z, Wu B, Yu L. Detection of Two Drug-Resistance Mutants of the Cytomegalovirus by High-Resolution Melting Analysis. J Clin Lab Anal 2015; 30:319-25. [PMID: 25968338 DOI: 10.1002/jcla.21858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/07/2015] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (CMV) is an opportunistic pathogen that can be treated with ganciclovir. Mutations in the UL97 gene of CMV render the virus ganciclovir resistance. These include H520Q and C603W mutations, against which we developed a novel genotyping assay for their identification. METHODS PCR reactions were performed to amplify fragments of the UL97 gene containing H520Q or C603W mutations. High resolution melting analysis (HRMA) coupled with unlabeled DNA probes was employed to identify the shift in melting temperature of the probe-template complex, which reflexes the presence of point mutations. RESULTS Melting point analysis performed on the dimeric DNA of PCR products of UL97 gene could not identify mutations in the gene. When coupled to unlabeled probes, point mutations in UL97 can be identified by analyzing the melting curve of probe-template complex. When WT and mutant UL97 DNAs were mixed together to mimic heterogeneous viral population in clinical samples, the genotyping assay is sensitive enough to detect H520Q and C603W mutants that constitute 10% of total DNA input. CONCLUSION Probe-based HRMA is effective in detecting H520Q and C603W mutations in the UL97 gene of CMV.
Collapse
Affiliation(s)
- Xiao-Fan Chen
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.,Department of Dermatology, Shenzhen Hospital Peking University, Shenzhen, Guangdong, China.,Shenzhen Key Lab for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Tian-Run Li
- Department of Intervention and Vascular Surgery, Peking University Third Hospital, Beijing, China
| | - Hong Yang
- Department of Clinical Laboratory, Shenzhen Hospital Peking University, Shenzhen, Guangdong, China
| | - Yong Shao
- Department of Dermatology, Shenzhen Hospital Peking University, Shenzhen, Guangdong, China.,Shenzhen Key Lab for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Jie Zhang
- Department of Dermatology, Shenzhen Hospital Peking University, Shenzhen, Guangdong, China.,Shenzhen Key Lab for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.,Shenzhen Key Lab for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Bo Yu
- Department of Dermatology, Shenzhen Hospital Peking University, Shenzhen, Guangdong, China.,Shenzhen Key Lab for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zhun Wei
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.,Shenzhen Key Lab for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Bo Wu
- Department of Dermatology, Shenzhen Hospital Peking University, Shenzhen, Guangdong, China.,Shenzhen Key Lab for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Lin Yu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Göhring K, Hamprecht K, Jahn G. Antiviral Drug- and Multidrug Resistance in Cytomegalovirus Infected SCT Patients. Comput Struct Biotechnol J 2015; 13:153-9. [PMID: 25750703 PMCID: PMC4348572 DOI: 10.1016/j.csbj.2015.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
In pediatric and adult patients after stem cell transplantation (SCT) disseminated infections caused by human cytomegalovirus (HCMV) can cause life threatening diseases. For treatment, the three antivirals ganciclovir (GCV), foscarnet (PFA) and cidofovir (CDV) are approved and most frequently used. Resistance to all of these antiviral drugs may induce a severe problem in this patient cohort. Responsible for resistance phenomena are mutations in the HCMV phosphotransferase-gene (UL97) and the polymerase-gene (UL54). Most frequently mutations in the UL97-gene are associated with resistance to GCV. Resistance against all three drugs is associated to mutations in the UL54-gene. Monitoring of drug resistance by genotyping is mostly done by PCR-based Sanger sequencing. For phenotyping with cell culture the isolation of HCMV is a prerequisite. The development of multidrug resistance with mutation in both genes is rare, but it is often associated with a fatal outcome. The manifestation of multidrug resistance is mostly associated with combined UL97/UL54-mutations. Normally, mutations in the UL97 gene occur initially followed by UL54 mutation after therapy switch. The appearance of UL54-mutation alone without any detection of UL97-mutation is rare. Interestingly, in a number of patients the UL97 mutation could be detected in specific compartments exclusively and not in blood.
Collapse
Affiliation(s)
- Katharina Göhring
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital of Tübingen, 72076 Tübingen, Germany
| | | | | |
Collapse
|
17
|
Resolution of Mild Ganciclovir-Resistant Cytomegalovirus Disease with Reduced-Dose Cidofovir and CMV-Hyperimmune Globulin. J Transplant 2014; 2014:342319. [PMID: 24991428 PMCID: PMC4058803 DOI: 10.1155/2014/342319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/19/2014] [Indexed: 01/23/2023] Open
Abstract
Ganciclovir-resistant cytomegalovirus (CMV) is associated with significant morbidity in solid organ transplant recipients. Management of ganciclovir-resistant CMV may be complicated by nephrotoxicity which is commonly observed with recommended therapies and/or rejection induced by “indirect” viral effects or reduction of immunosuppression. Herein, we report a series of four high serologic risk (donor CMV positive/recipient CMV negative) kidney transplant patients diagnosed with ganciclovir-resistant CMV disease. All patients initially developed “breakthrough” viremia while still receiving valganciclovir prophylaxis after transplant and were later confirmed to exhibit UL97 mutations after failing to eradicate virus on adequate dosages of valganciclovir. The patients were subsequently and successfully treated with reduced-dose (1-2 mg/kg) cidofovir and CMV-hyperimmune globulin, given in 2-week intervals. In addition, all patients exhibited stable renal function after completion of therapy, and none experienced acute rejection. The combination of reduced-dose cidofovir and CMV-hyperimmune globulin appeared to be a safe and effective regimen in patients with mild disease due to ganciclovir-resistant CMV.
Collapse
|
18
|
Florescu DF, Langnas AN, Sandkovsky U. Opportunistic viral infections in intestinal transplantation. Expert Rev Anti Infect Ther 2014; 11:367-81. [DOI: 10.1586/eri.13.25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Hsu JW, Wingard JR. Advances in the management of viral infections. Cancer Treat Res 2014; 161:157-180. [PMID: 24706224 DOI: 10.1007/978-3-319-04220-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viral infections are common in cancer patients. The risk and severity of infection are influenced by patient, disease, treatment, and viral factors. Severe viral infections are more likely to occur in treatment regimens that are more immunosuppressive. Historically, the most frequent severe infections have been due to herpesviruses, but more recently, other pathogens, especially community respiratory and hepatitis viruses, have received increasing attention as major viral pathogens in cancer patients. Because of the new diagnostic assays and the introduction of better therapeutic options, knowledge of viral infections is important in optimizing antineoplastic therapies.
Collapse
Affiliation(s)
- Jack W Hsu
- Department of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100277, Gainesville, FL, 32610, USA,
| | | |
Collapse
|
20
|
Choi KY, Sharon B, Balfour HH, Belani K, Pozos TC, Schleiss MR. Emergence of antiviral resistance during oral valganciclovir treatment of an infant with congenital cytomegalovirus (CMV) infection. J Clin Virol 2013; 57:356-60. [PMID: 23688863 DOI: 10.1016/j.jcv.2013.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 01/11/2023]
Abstract
Congenital infection with human cytomegalovirus (CMV) is a major cause of morbidity, including sensorineural hearing loss (SNHL), in newborns. Antiviral therapy with ganciclovir (GCV) and its oral prodrug, valganciclovir (VAL-GCV) are increasingly being administered to infected infants, toward the goal of improving neurodevelopmental and auditory outcomes. In this case report, we describe a symptomatic congenitally infected infant treated with VAL-GCV in whom GCV resistance was suspected, based on a 50-fold increase in viral load after 6 weeks of oral therapy. Analyses of CMV sequences from both blood and urine demonstrated populations of viruses with M460V and L595F mutations in the UL97 phosphotransferase gene. In contrast, analysis of viral DNA retrieved from the newborn dried blood spot demonstrated wild-type UL97 sequences. DNAemia resolved after the discontinuation of VAL-GCV. Long-term VAL-GCV therapy in congenitally infected infants can select for resistant viral variants, and anticipatory virological monitoring may be warranted.
Collapse
Affiliation(s)
- K Yeon Choi
- Division of Pediatric Infectious Diseases and Immunology, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
21
|
Successful ganciclovir treatment of primary cytomegalovirus infection containing the UL97 mutation N510S in an intestinal graft recipient. Infection 2013; 41:875-9. [PMID: 23546999 DOI: 10.1007/s15010-013-0458-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
In solid organ transplantation, human cytomegalovirus (HCMV) is considered to be the most important viral pathogen. We report a case of a CMV R-/D+ small intestine transplant recipient with a primary CMV infection on valganciclovir prophylaxis. Sequencing of the HCMV DNA for drug resistance-associated mutations revealed the UL97 mutation N510S. This mutation has been initially reported to confer ganciclovir resistance. Based on in vitro recombinant phenotyping, this assumption has recently been questioned. Switching the antiviral treatment to an intravenous regimen of ganciclovir eliminated HCMV DNAemia, showing the in vivo efficacy of ganciclovir for the UL97 mutation N510S. Hence, knowledge of drug efficacy is crucial for an adequate choice of antiviral medication, carefully balancing antiviral potency versus the risk of harmful side effects.
Collapse
|
22
|
Tang YW. Laboratory diagnosis of CNS infections by molecular amplification techniques. ACTA ACUST UNITED AC 2013; 1:489-509. [PMID: 23496356 DOI: 10.1517/17530059.1.4.489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The initial presentation of symptoms and clinical manifestations of CNS infectious diseases often makes a specific diagnosis difficult and uncertain, and the emergence of polymerase chain reaction-led molecular techniques have been used in improving organism-specific diagnosis. These techniques have not only provided rapid, non-invasive detection of microorganisms causing CNS infections, but also demonstrated several neurologic disorders linked to infectious pathogens. Molecular methods performed on cerebrospinal fluid are recognized as the new 'gold standard' for some of these infections caused by microorganisms that are difficult to detect and identify. Although molecular techniques are predicted to be widely used in diagnosing and monitoring CNS infections, the limitations as well as strengths of these techniques must be clearly understood by both clinicians and laboratory personnel.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Vanderbilt University Medical Center, 4605 TVC, Nashville, TN 37232-5310, USA +1 615 322 2035 ; +1 615 343 8420 ;
| |
Collapse
|
23
|
Human Cytomegalovirus (CMV) UL97 D605E Mutation Has a Higher Prevalence in Infants With Primary CMV Infection Compared With Transplant Recipients With CMV Recurrence. Transplant Proc 2012. [DOI: 10.1016/j.transproceed.2012.06.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Cytomegalovirus retinitis successfully treated with ganciclovir implant in a patient with blood ganciclovir resistance and ocular ganciclovir sensitivity. Eye (Lond) 2012; 26:759-60. [PMID: 22322999 DOI: 10.1038/eye.2012.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
25
|
Genotyping cytomegalovirus UL97 mutations by high-resolution melting analysis with unlabeled probe. Arch Virol 2011; 157:475-81. [PMID: 22205145 DOI: 10.1007/s00705-011-1173-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022]
Abstract
Human cytomegalovirus (CMV) is an opportunistic pathogen, and infections with this virus can be treated with ganciclovir (GCV). Most GCV-resistant clinical CMV isolates contain a mutation in the UL97 gene. Genotypic assays for diagnostic screening of GCV-resistant CMV have been developed. High-resolution melting analysis (HRMA) with unlabeled probe is considered a perfect tool for this purpose. In this study, we have developed an HRMA-based genotypic test for the detection of UL97 mutations. Wild type and M460V/I mutants of UL97 were constructed. HRMA with unlabeled probe was used as a genotyping method for the detection of M460V/I mutations. The melting peaks obtained directly from PCR products did not enable us to distinguish the wild type from M460 mutants. The sensitivity and accuracy of HRMA were dramatically improved by using unlabeled probe. HRMA with unlabeled probe successfully distinguished M460V from M460I and served well for the detection of M460V/I mutations in clinical samples. HRMA with unlabeled probe proves to be a sensitive and cost-effective genotyping method for the detection of M460 mutations.
Collapse
|
26
|
Boutolleau D, Burrel S, Agut H. Genotypic characterization of human cytomegalovirus UL97 phosphotransferase natural polymorphism in the era of ganciclovir and maribavir. Antiviral Res 2011; 91:32-5. [PMID: 21570426 DOI: 10.1016/j.antiviral.2011.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/12/2011] [Accepted: 04/27/2011] [Indexed: 01/17/2023]
Abstract
The molecular mechanisms of human cytomegalovirus (CMV) resistance to both ganciclovir and maribavir reported so far rely predominantly on the presence of mutations within UL97 phosphotransferase. The accurate interpretation of genotypic antiviral resistance assay results requires the clear distinction between resistance mutations and natural interstrain sequence variations. The objective of this work was to extend the catalog of CMV UL97 phosphotransferase natural polymorphisms. The full-length UL97 gene sequence analysis from 4 laboratory strains and 35 clinical samples from patients who had not received any previous anti-CMV treatment was performed. At the nucleotide level, the interstrain identity was >98%. At the amino acid level, ten natural polymorphisms never previously described were identified. Together with all previous results reported in the literature, a new map of UL97 phosphotransferase natural polymorphism could be settled in the era of ganciclovir and maribavir.
Collapse
|
27
|
Abstract
The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Confirmation of resistance mutations requires phenotypic analysis; however, phenotypic assays are too time-consuming for diagnostic purposes. Genotypic assays based on sequencing provide more rapid results but are dependent on prior validation by phenotypic methods. Reports from many laboratories have produced an evolving list of confirmed resistance mutations, although differences in interpretation have led to some confusion. Recombinant phenotyping methods performed in a few research laboratories have resolved some of the conflicting results. Treatment options for drug-resistant HCMV infections are complex and have not been subjected to controlled clinical trials, although consensus guidelines have been proposed. This review summarizes the virological and clinical data pertaining to HCMV antiviral drug resistance.
Collapse
|
28
|
Shannon-Lowe CD, Emery VC. The effects of maribavir on the autophosphorylation of ganciclovir resistant mutants of the cytomegalovirus UL97 protein. HERPESVIRIDAE 2010; 1:4. [PMID: 21429239 PMCID: PMC3050433 DOI: 10.1186/2042-4280-1-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/07/2010] [Indexed: 11/21/2022]
Abstract
Background The UL97 protein kinase of human cytomegalovirus phosphorylates the antiviral drug ganciclovir and is the target of maribavir action. A detailed enzyme kinetic analysis of maribavir on the various enzymatic functions of wild type and ganciclovir resistant forms of UL97 is required. Methods Wild type and site directed mutant forms of the human cytomegalovirus UL97 gene product were expressed using recombinant baculoviruses and the purified products used to assess the effects of maribavir on the ganciclovir (GCV) kinase and protein kinase (PK) activities. Results Maribavir was a potent inhibitor of the autophosporylation of the wild type and all the major GCV resistant UL97 mutants analysed (M460I, H520Q, A594V and L595F) with a mean IC50 of 35 nM. The M460I mutation resulted in hypersensitivity to maribavir with an IC50 of 4.8 nM. A maribavir resistant mutant of UL97 (L397R) was functionally compromised as both a GCV kinase and a protein kinase (~ 10% of wild type levels). Enzyme kinetic experiments demonstrated that maribavir was a competitive inhibitor of ATP with a Ki of 10 nM. Discussion Maribavir is a potent competitive inhibitor of the UL97 protein kinase function and shows increased activity against the M460I GCV-resistant mutant which may impact on the management of GCV drug resistance in patients.
Collapse
Affiliation(s)
- Claire D Shannon-Lowe
- Department of Infection, Centre for Virology, UCL (Royal Free Campus Campus), Rowland Hill Street, Hampstead, London NW3 2QG, UK.
| | | |
Collapse
|
29
|
Chevillotte M, von Einem J, Meier BM, Lin FM, Kestler HA, Mertens T. A new tool linking human cytomegalovirus drug resistance mutations to resistance phenotypes. Antiviral Res 2010; 85:318-27. [DOI: 10.1016/j.antiviral.2009.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/02/2009] [Accepted: 10/10/2009] [Indexed: 11/25/2022]
|
30
|
Sanchez Puch SI, Mathet VL, Porta M, Cuestas ML, Oubiña JR, Videla CM, Salomón HE. Single and multiple mutations in the human cytomegalovirus UL97 gene and their relationship to the enzymatic activity of UL97 kinase for ganciclovir phosphorylation. Antiviral Res 2009; 84:194-8. [PMID: 19712701 DOI: 10.1016/j.antiviral.2009.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 08/10/2009] [Accepted: 08/19/2009] [Indexed: 11/17/2022]
Abstract
In this study we determined that the double mutant M460V/D605E in the UL97 gene of an HCMV isolate from an immunocompromised patient (MMT isolate) is related to resistance to ganciclovir (GCV) therapy. Our results suggest that the aspartic acid-to-glutamic acid substitution at codon 605 may be associated with a natural polymorphism of the UL97 gene, and not with positive selection pressure exerted by the antiviral drug. We also determined that GCV resistance due to the M460V mutation in the HCMV UL97 gene is not offset by a second mutation (D605E) at codon 605. Furthermore, we showed that when the two mutations related to GCV resistance were simultaneously detected in the same HCMV construct, virus-drug resistance might be enhanced in comparison to that of the single mutants studied separately. To our knowledge for the first time, seven of 12 amino acid changes (F102L, D118V, M330T, T400A, R507P and C511R and I533V) in the UL97 gene of an isolate are herein reported.
Collapse
Affiliation(s)
- Silvia I Sanchez Puch
- Centro de Referencia para el SIDA, Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina-Universidad de Buenos Aires, Paraguay 2155, piso 11, (C1121ABG)-CABA, Argentina.
| | | | | | | | | | | | | |
Collapse
|
31
|
Resistance pattern of cytomegalovirus (CMV) after oral valganciclovir therapy in transplant recipients at high-risk for CMV infection. Antiviral Res 2008; 81:174-9. [PMID: 19063923 DOI: 10.1016/j.antiviral.2008.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/24/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
In transplant recipients, cytomegalovirus (CMV) resistance to antivirals causes an increasing problem. Here we report the clinical, therapeutic, and virological characteristics of 11 cases of CMV resistance among transplant recipients at high-risk for CMV infection and receiving valganciclovir as a prophylactic, preemptive or maintenance therapy. Active CMV infection was monitored by viral DNA quantification in whole blood, and CMV resistance was assessed by UL97 and UL54 viral gene sequencing. For 10 patients, ganciclovir resistance detected after valganciclovir therapy was associated with one mutation within UL97 phosphotransferase located at codons 460 and 592-603, which constitutes a similar pattern of resistance to what has been reported previously in AIDS patients treated with valganciclovir. For the last patient, two mutations in UL97 and UL54 genes were identified. The start of valganciclovir maintenance treatment after an intravenous curative treatment while CMV DNA is still detectable in peripheral blood might represent a risk factor for the emergence of CMV resistance. The possible emergence of CMV resistance in transplant recipients at high-risk for CMV infection who receive valganciclovir therapy should be taken into account. Among those patients, CMV infection has to be closely monitored in order to detect promptly the emergence of drug-resistance.
Collapse
|
32
|
West P, Schmiedeskamp M, Neeley H, Oberholzer J, Benedetti E, Kaplan B. Use of high-dose ganciclovir for a resistant cytomegalovirus infection due to UL97 mutation. Transpl Infect Dis 2008; 10:129-32. [PMID: 17605740 DOI: 10.1111/j.1399-3062.2007.00249.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytomegalovirus (CMV) infection is a major complication following solid organ transplantation resulting in significant morbidity and mortality. The guidelines published in 2004 have recommendations for therapy; however, the frequency of resistant CMV infection is increasing and therapy is not clearly defined. There are a few alternatives to ganciclovir such as foscarnet, cidofovir, and leflunomide; however, their use is limited by adverse effects. This report summarizes the successful use of high-dose ganciclovir for the treatment of a resistant CMV caused by UL97 mutation.
Collapse
Affiliation(s)
- P West
- Transplant Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
33
|
Liu JB, Zhang Z. Development of SYBR Green I-based real-time PCR assay for detection of drug resistance mutations in cytomegalovirus. J Virol Methods 2008; 149:129-35. [PMID: 18280587 DOI: 10.1016/j.jviromet.2007.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Revised: 12/06/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
Ganciclovir (GCV) is an antiviral drug that is used to treat cytomegalovirus (CMV) infection. However, long-term monotherapy does not commonly result in complete suppression of viral replication and is associated with the emergence of resistant mutants. In this study, a method for detecting CMV resistance mutations was carried out by real-time amplification refractory mutation system PCR (real-time ARMS PCR) using SYBR Green I fluorescent dye. Three recombinant plasmids were constructed by overlapping extension PCR to be used as standard mutation or wild-type models. Four pairs of primers were used to amplify the approximately 150 bp of the UL97 gene spanning codon 460, where mutations associated with resistance to GCV invariably occur. As little as 20% mutants DNA in 10(7)copies/ml mixture DNA were detected. Though this approach was not more sensitive than PCR-restriction fragment length polymorphism (RFLP) for the detection of the presence of mixtures, it was a high-throughput and automation method, and the specific mutation type can be deduced by the real-time ARMS PCR data. Overall, this study has demonstrated an approach that could be a sensitive and rapid method for the detection of GCV resistance-associated mutation in CMV.
Collapse
Affiliation(s)
- Jing-bo Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Road, Xicheng District, Beijing 100044, China
| | | |
Collapse
|
34
|
Expression of the human cytomegalovirus UL97 gene in a chimeric guinea pig cytomegalovirus (GPCMV) results in viable virus with increased susceptibility to ganciclovir and maribavir. Antiviral Res 2008; 78:250-9. [PMID: 18325607 DOI: 10.1016/j.antiviral.2008.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 11/21/2022]
Abstract
In lieu of a licensed vaccine, antivirals are being considered as an intervention to prevent congenital human cytomegalovirus (HCMV) infection. Ideally, antiviral therapies should undergo pre-clinical evaluation in an animal model prior to human use. Guinea pig cytomegalovirus (GPCMV) is the only small animal model for congenital CMV. However, GPCMV is not susceptible to the most commonly used HCMV antiviral, ganciclovir (GCV), rendering in vivo study of this agent problematic in the guinea pig model. Human cytomegalovirus (HCMV) susceptibility to GCV is linked to the UL97 gene. We hypothesized that GPCMV susceptibility to GCV could be improved by inserting the HCMV (Towne) UL97 gene into the GPCMV genome in place of the homolog, GP97. A chimeric GPCMV (GPCMV::UL97) expressed UL97 protein, and replicated efficiently in cell culture, with kinetics similar to wild-type GPCMV. In contrast, deletion of GP97 resulted in a virus (GPCMVdGP97) that grew poorly in culture. GPCMV::UL97 had substantially improved susceptibility to the inhibitory effects of GCV in comparison to wild-type GPCMV. Additionally, GPCMV::UL97 exhibited improved susceptibility to another antiviral undergoing clinical trials, maribavir (MBV; benzimidazole riboside 1263W94), which also acts through UL97.
Collapse
|
35
|
Rodriguez J, Casper K, Smallwood G, Stieber A, Fasola C, Lehneman J, Heffron T. Resistance to combined ganciclovir and foscarnet therapy in a liver transplant recipient with possible dual-strain cytomegalovirus coinfection. Liver Transpl 2007; 13:1396-400. [PMID: 17902124 DOI: 10.1002/lt.21245] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We present a case report of a cytomegalovirus (CMV)-seronegative, 58-year-old male who received a CMV-seropositive donor liver transplant without CMV prophylaxis. On postoperative day 30, the patient developed primary CMV disease that responded to ganciclovir. On postoperative day 114, however, he was diagnosed with recurrent CMV infection. Despite aggressive, combined antiviral treatment with ganciclovir and foscarnet and reduction of immunosuppression, viral clearance was never achieved. Serum samples were collected throughout the infectious process for viral DNA analysis. Portions of the UL97 and UL54 genes were amplified and compared to the AD169 wild-type strain. Sequencing studies revealed the presence of mutations in viral isolates obtained after clinical resistance was observed. These mutations were not present in samples obtained during the primary CMV infection. Our findings suggest the presence of coinfection with at least 2 different strains of CMV rather than induction of mutations after ganciclovir therapy.
Collapse
Affiliation(s)
- John Rodriguez
- Department of Surgery, Emory University School of Medicine, and Liver Transplant, Children's Healthcare of Atlanta, GA 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Ozaki KS, Câmara NOS, Nogueira E, Pereira MG, Granato C, Melaragno C, Camargo LFA, Pacheco-Silva A. The use of sirolimus in ganciclovir-resistant cytomegalovirus infections in renal transplant recipients. Clin Transplant 2007; 21:675-80. [PMID: 17845644 DOI: 10.1111/j.1399-0012.2007.00699.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The widespread use of prophylactic ganciclovir and anti-lymphocyte/thymocyte therapies are associated with increased induction of ganciclovir-resistant cytomegalovirus (CMV) strains. The use of sirolimus has been associated with a lower incidence of CMV infection in transplant recipients. We questioned whether it could also be effective as a therapeutic treatment of resistant CMV infection. METHODS Patients with ganciclovir-resistant CMV infections determined clinically and by DNA sequencing analysis were enrolled. Antigenaemia and DNA sequencing were used to diagnosis and follow the mutations. RESULTS Nine transplant patients were given sirolimus plus mycophenolate mofetil (n = 4) or a calcineurin inhibitor (n = 5). Seven out of nine recipients were CMV IgG negative before transplantation. We observed a rapid decrease in antigenaemia levels, reaching zero in eight out of nine (88.9%) patients within a median of 20.3 +/- 10.1 d. Graft function remained stable and no patient presented acute rejection or recurrence of the CMV infection. CONCLUSIONS This suggests that the use of sirolimus plus ganciclovir therapy could be useful in ganciclovir-resistant CMV infections.
Collapse
Affiliation(s)
- Kikumi Suzete Ozaki
- Laboratório de Imunologia Clínica e Experimental, Division of Nephrology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Marfori JE, Exner MM, Marousek GI, Chou S, Drew WL. Development of new cytomegalovirus UL97 and DNA polymerase mutations conferring drug resistance after valganciclovir therapy in allogeneic stem cell recipients. J Clin Virol 2007; 38:120-5. [PMID: 17157554 DOI: 10.1016/j.jcv.2006.11.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 11/07/2006] [Accepted: 11/11/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND We report on two allogeneic stem cell transplant recipients who developed cytomegalovirus disease associated with new viral mutations that conferred antiviral drug resistance. METHODS Blood specimens obtained during symptomatic disease were analyzed for mutations in the CMV UL97 and DNA polymerase genes and new mutations were assessed by recombinant phenotyping. RESULTS Rising cytomegalovirus (CMV) antigenemia occurred after 4-5 months of preemptive valganciclovir therapy, followed by symptomatic CMV disease including fatal pneumonia in one case. In one case, a new viral UL97 mutation (deletion of codons 601-603) was found which conferred 15-fold increased ganciclovir resistance. In the other case, a known UL97 resistance mutation M460V and a new DNA polymerase (pol) mutation D413A were found. D413A conferred ganciclovir and cidofovir resistance. CONCLUSIONS Known and newly discovered drug resistance mutations arising during preemptive therapy may complicate post-transplant CMV disease in stem cell recipients. Improved recombinant phenotyping methods enable the rapid quantitation of the resistance conferred by newly identified UL97 and pol mutations.
Collapse
Affiliation(s)
- Jennifer E Marfori
- Medical and Research Services, VA Medical Center and Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | |
Collapse
|
38
|
Nogueira E, Ozaki KS, Tomiyama H, Granato CFH, Camara NOS, Pacheco-Silva A. The emergence of cytomegalovirus resistance to ganciclovir therapy in kidney transplant recipients. Int Immunopharmacol 2006; 6:2031-7. [PMID: 17161359 DOI: 10.1016/j.intimp.2006.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 07/22/2006] [Indexed: 11/21/2022]
Abstract
Transplant recipients that have not been previously exposed to the cytomegalovirus (CMV) are highly susceptible to viral diseases while under immunosuppression therapy. CMV disease requires prolonged therapy, facilitating the emergence of resistant strains. Persistence of positive antigenemia represents clinical evidence of the presence of resistant strains, although its frequency is unknown. These strains may present amino acid deletions or substitutions in conserved regions of the UL97 protein, point mutations in the DNA polymerase (UL54), or both. In this study we aimed to analyze the prevalence of mutations associated with ganciclovir resistance in transplant recipients. Fifteen kidney transplant recipients and four kidney-pancreas transplant recipients, with a positive and oscillating CMV viremia detected by sequential antigenemia test, were enrolled. The UL97 gene was amplified by Nested-PCR and enzymatically digested in samples of these patients in order to detect mutations in the most common codons, such as 460 (M460V), 594 (A594V) and 595(L595S/F). The end-product fragments were further sequenced. Nine (47.4%) out of 19 patients presented with mutations in UL97 at codons L595S (55.6%), A594V (11.1%), A595F/A594V (11.1%) and L595S/A594V (22.2%). None presented with mutation at the M460V codon. Renal transplant patients with oscillation in viral load for more than 2 weeks might have developed viral resistance to anti-drug therapy. Its detection might aid physicians in their clinical plan of tapering the patient's immunosuppression.
Collapse
Affiliation(s)
- Eliana Nogueira
- Laboratório de Imunologia Clínica e Experimental, Nephrology Division, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Kosobucki BR, Freeman WR. Retinal Disease in HIV-infected Patients. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Fiegl M, Gerbitz A, Gaeta A, Campe H, Jaeger G, Kolb HJ. Recovery from CMV esophagitis after allogeneic bone marrow transplantation using non-myeloablative conditioning: The role of immunosuppression. J Clin Virol 2005; 34:219-23. [PMID: 16129661 DOI: 10.1016/j.jcv.2005.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/01/2005] [Accepted: 07/06/2005] [Indexed: 11/28/2022]
Abstract
Cytomegalovirus (CMV) positive recipients of CMV negative bone marrow bear a significantly higher risk of developing CMV disease compared to all other constellations. Here, we report a case of severe CMV induced esophagitis after allogeneic bone marrow transplantation for paroxysmal nocturnal hemoglobinuria. The patient developed the first symptoms between day 10 and 20 after dose reduced conditioning and HLA-matched unrelated stem cell transplantation. Esophageal tissue biopsies as well as peripheral blood proved positive for CMV DNA by PCR. Treatment with acyclovir, ganciclovir, foscarnet, cidofovir, and immunoglobulines resulted in elimination of CMV in peripheral blood but not in clinical improvement. Only tapering of cyclosporine at day +120 eventually led to the development of CMV-specific T-cells and resolution of esophagitis.
Collapse
Affiliation(s)
- Michael Fiegl
- Clinical Cooperative Group Hematopoietic Cell Transplantation, Department of Internal Medicine III, Ludwig Maximilians University (LMU), Marchioninistr. 15, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Kitagawa R, Hagihara K, Uhara M, Matsutani K, Kirita A, Tanaka J. Inhibitory effect of hexamethylene bisacetamide on replication of human cytomegalovirus. Arch Virol 2005; 150:1977-91. [PMID: 15959837 DOI: 10.1007/s00705-005-0556-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 04/14/2005] [Indexed: 11/24/2022]
Abstract
The effect of hexamethylane bisacetamide (HMBA), a hybrid polar compound, on gene expression and replication of human cytomegalovirus (HCMV) was studied. When HCMV-infected human thyroid papillary carcinoma (TPC-1) and human embryonic lung (HEL) fibroblast cells were maintained with medium containing 2.5 and 5 mM HMBA for 10 days, there was a greater than 2- to 3-log reduction in virus yield compared to that in untreated cells. Infection of TPC-1 cells with HCMV resulted in an establishment of persistent infection and the cells continuously produced virus with titer of over 10(5) PFU/ml, whereas HMBA prevented the infected cells from entering into the persistent infection. Moreover, treatment of the persistently infected cultures with HMBA reduced production of infectious HCMV more efficiently than did ganciclovir, and eventually ceased HCMV production. Western blotting analysis revealed that HMBA blocks accumulation of the immediate early 2 (IE2) protein in TPC-1 cells and delays synthesis of this protein in HEL cells, but has little effect on the level of the IE1 protein during the early times after infection. Synthesis of the viral early and late proteins in both cells was also substantially blocked by HMBA. The results indicate that the inhibition or the delay of the critical IE2 protein synthesis in the presence of HMBA would actually be a process that fails to proceed beyond the IE stages in HCMV replication cycle.
Collapse
Affiliation(s)
- R Kitagawa
- Division of Virology, Department of Laboratory Science, School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Avery RK, Bolwell BJ, Yen-Lieberman B, Lurain N, Waldman WJ, Longworth DL, Taege AJ, Mossad SB, Kohn D, Long JR, Curtis J, Kalaycio M, Pohlman B, Williams JW. Use of leflunomide in an allogeneic bone marrow transplant recipient with refractory cytomegalovirus infection. Bone Marrow Transplant 2005; 34:1071-5. [PMID: 15489872 DOI: 10.1038/sj.bmt.1704694] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ganciclovir-resistant cytomegalovirus (CMV) infection is an emerging problem in transplant recipients. Foscarnet resistance and cidofovir resistance have also been described, but no previous reports have suggested treatment regimens for patients with CMV refractory to all three of these drugs. Leflunomide, an immunosuppressive drug used in rheumatoid arthritis and in rejection in solid-organ transplantation, has been reported to have novel anti-CMV activity. However, its clinical utility in CMV treatment has not been described previously. We report an allogeneic bone marrow transplant recipient who developed CMV infection refractory to sequential therapy with ganciclovir, foscarnet, and cidofovir. The patient was ultimately treated with a combination of leflunomide and foscarnet. Both phenotypic and genotypic virologic analysis was performed on sequential CMV isolates. The patient's high CMV-DNA viral load became undetectable on leflunomide and foscarnet, but the patient, who had severe graft-versus-host disease (GVHD) of the liver, expired with progressive liver failure and other complications. We concluded that leflunomide is a new immunosuppressive agent with anti-CMV activity, which may be useful in the treatment of multiresistant CMV. However, the toxicity profile of leflunomide in patients with underlying GVHD remains to be defined.
Collapse
Affiliation(s)
- R K Avery
- Department of Infectious Disease, Cleveland Clinic Foundation, Desk S-32, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Benson CA, Kaplan JE, Masur H, Pau A, Holmes KK. Treating Opportunistic Infections among HIV-Infected Adults and Adolescents: Recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association/Infectious Diseases Society of America. Clin Infect Dis 2005; 40:S131-S235. [DOI: 10.1086/427906] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
45
|
Springer KL, Chou S, Li S, Giller RH, Quinones R, Shira JE, Weinberg A. How evolution of mutations conferring drug resistance affects viral dynamics and clinical outcomes of cytomegalovirus-infected hematopoietic cell transplant recipients. J Clin Microbiol 2005; 43:208-13. [PMID: 15634973 PMCID: PMC540138 DOI: 10.1128/jcm.43.1.208-213.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with cytomegalovirus (CMV) remains a significant cause of morbidity and mortality among hematopoietic cell transplant (HCT) recipients. We describe two pediatric HCT recipients who developed persistent and severe drug-resistant CMV infections. CMV resistance to foscarnet and ganciclovir was detected after only 6 and 11 weeks of therapy, respectively. Viral pol mutations associated with drug resistance in these patients included T838A (a novel mutation) and D588N, which were shown by marker transfer to confer foscarnet and multidrug resistance, respectively. Each of these mutations significantly reduced in vitro replication of CMV, suggesting that they may decrease viral fitness. This finding was further supported by the disappearance of mutations upon withdrawal of antiviral pressure in one patient. Novel antivirals or combination therapy may be required for the treatment of drug-resistant CMV in HCT recipients and perhaps in other severely immunocompromised patients.
Collapse
Affiliation(s)
- Kathryn L Springer
- Division of Infectious Diseases, University of Colorado Health Sciences Center, 4200 E. 9th Ave., C-227, Denver, CO 80220, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Scott GM, Isaacs MA, Zeng F, Kesson AM, Rawlinson WD. Cytomegalovirus antiviral resistance associated with treatment induced UL97 (protein kinase) and UL54 (DNA polymerase) mutations. J Med Virol 2005; 74:85-93. [PMID: 15258973 DOI: 10.1002/jmv.20150] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HCMV-related illness due to infections with antiviral resistant virus was verified by phenotypic and genotypic assays in 17% (8/47) of high-risk immunocompromised Australian patients. Selective PCR-sequencing of UL97 (protein kinase; PK) and UL54 (DNA polymerase; DNApol) regions important for antiviral sensitivity, identified the majority (6/8) of resistant strains through detection of mutations known to confer antiviral resistance. Additionally, eight UL54 (DNApol) mutations (N408K, T691S, A692V, S695T, L737M, A834P, V955I, and A972V) of unknown phenotype were identified in six specimens from patients with clinical evidence of antiviral resistant infections. One isolate was resistant to ganciclovir (GCV) and another resistant to PFA on phenotypic testing where mutations in UL97 (PK) or UL54 (DNApol) were not detected, suggesting a loss of correlation between phenotype and genotype. Selective PCR-sequencing of UL97 (PK) and UL54 (DNApol) provided rapid and comprehensive results, but missed some resistance detected by phenotypic assays. A combination of phenotypic and genotypic assays is recommended for complete analysis of CMV antiviral resistance, as well as further definition of the clinical relationship between novel UL54 (DNApol) mutations and antiviral resistance.
Collapse
Affiliation(s)
- G M Scott
- Virology Division, Department of Microbiology, SEALS, Prince of Wales Hospital, Randwick, and School of Medicial Sciences, University of New South Wales, Kensington, Australia
| | | | | | | | | |
Collapse
|
47
|
Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, Tanaka J. Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir Chem Chemother 2005; 16:135-46. [PMID: 15889536 DOI: 10.1177/095632020501600206] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of geldanamycin (GA), a specific inhibitor of heat shock protein 90 (Hsp90), on gene expression and replication of human cytomegalovirus (HCMV) was studied in human embryonic lung (HEL) fibroblasts. Kinetic analysis indicated that GA delayed synthesis of major immediate early (MIE), early and late viral proteins, and blocked a second tier of the synthesis of these proteins that occurred in untreated cells after 48 h post-infection (pi). Moreover, when HCMV-infected HEL cells were maintained with medium containing 40 nM GA for 6 days, with medium changes at 2-day intervals, the virus yield was reduced to an undetectable level. On a molecular level, the cellular kinase Akt and the transcription factor NFkappaB were activated in HCMV-infected cells within 30 min pi. NFkappaB was shown to be essential for MIE gene expression. However, in GA-treated cells, activation of both Akt and NFkappaB was greatly inhibited. Because LY294002, an inhibitor of cellular phosphatidylinositol 3-kinase (PI3-K), also prohibited HCMV-mediated activation of Akt and NFkappaB and synthesis of the MIE proteins, PI3-K signalling was necessary for expressing the MIE genes. These results suggest that the inhibitory effect of GA on HCMV replication is primarily caused by the disruption of the PI3-K signalling pathway, leading to the activation of NFkappaB, which plays a crucial role in expression of the critical MIE genes.
Collapse
Affiliation(s)
- Walid Basha
- Department of Laboratory Science, School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Sánchez Puch S, Ochoa C, Carballal G, Zala C, Cahn P, Brunet R, Salomón H, Videla C. Cytomegalovirus UL97 mutations associated with ganciclovir resistance in immunocompromised patients from Argentina. J Clin Virol 2004; 30:271-5. [PMID: 15135748 DOI: 10.1016/j.jcv.2003.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/25/2003] [Accepted: 11/04/2003] [Indexed: 11/24/2022]
Abstract
BACKGROUND Prolonged therapy with ganciclovir (GCV) can result in the development of GCV-resistant strains due to mutations in the viral phosphotransferase (UL97 gene) and/or in the viral DNA polymerase (UL54 gene). OBJECTIVES The purpose of this study was to detect by molecular methods the most prevalent UL97 mutants which confer ganciclovir-resistance in immunocompromised populations. STUDY DESIGN Patients from two populations were selected: (a) renal transplant patients with active cytomegalovirus (CMV) infection and more than one cycle of GCV; (b) HIV-infected patients with retinitis due to CMV, who were under GCV induction, maintenance therapy or withdrawal. Patients were followed up by pp65 antigenemia and by viral isolation from blood or/and urine samples. Two fragments (133 and 255pb) of the UL97 gene were amplified by polymerase chain reaction (PCR) from CMV isolates. RESULTS Nine from 12 isolates obtained were sequenced, three from two renal transplant patients and six from five HIV-infected patients. A UL97 mutation, known to confer GCV resistance, was found in two isolates from a renal transplant patient. A methionine to valine mutation at codon 460 (M460V) was detected. These isolates exhibited another mutation at codon 605, whose amino acid changed from aspartic acid (D) to glutamic acid (E). These findings were observed after treatment with IV-GCV/ O-GCV/ IV-GCV for 151 days. The 605 mutation was also detected in leukocytes from the same patient previous to the beginning of the treatment with GCV. CONCLUSIONS Although a known resistant mutation appeared in a renal transplant patient, it was not associated with CMV disease. We suggest that the D605E mutation could "partially or totally compensate" for the effect of GCV resistance conferred by the 460 mutation. Further studies should be performed to confirm this hypothesis.
Collapse
Affiliation(s)
- Silvia Sánchez Puch
- Clinical Virology Laboratory, CEMIC University Hospital, Galván 4102, C1431FWN Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Michel D, Mertens T. The UL97 protein kinase of human cytomegalovirus and homologues in other herpesviruses: impact on virus and host. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:169-80. [PMID: 15023359 DOI: 10.1016/j.bbapap.2003.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2003] [Accepted: 11/12/2003] [Indexed: 11/16/2022]
Abstract
The human herpesviruses, herpes simplex virus 1 (HSV-1), HSV-2, varicella zoster virus (VZV), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV), human herpesvirus 6A (HHV-6A), HHV-6B, HHV-7 and HHV-8, establish persistent infections with possible recurrence during immunosuppression. HCMV replication is inhibited by the nucleoside analogue ganciclovir (GCV), the compound of choice for the treatment of HCMV diseases and preemptive treatment of infections. The viral UL97 protein (pUL97) which shares homologies with protein kinases and bacterial phosphotransferases is able to monophosphorylate GCV. Homologues of pUL97 are found in HSV (UL13), VZV (ORF47), EBV (BGLF4), HHV-6 (U69), HHV-8 (ORF36) as well as in murine CMV (M97) or rat CMV (R97). Several indolocarbazoles have been reported to be specific inhibitors of pUL97. The protein is important for efficient replication of the virus. Autophosphorylation of pUL97 was observed using different experimental systems. Most recently, it has been shown that pUL97 interacts with the DNA polymerase processivity factor pUL44. Indolocarbazole protein kinase inhibitors are promising lead compounds for the development of more specific inhibitors of HCMV.
Collapse
Affiliation(s)
- Detlef Michel
- Universitätsklinikum Ulm, Abteilung Virologie, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | |
Collapse
|
50
|
Ducancelle A, Belloc S, Alain S, Scieux C, Malphettes M, Petit F, Brouet JC, Sanson Le Pors MJ, Mazeron MC. Comparison of sequential cytomegalovirus isolates in a patient with lymphoma and failing antiviral therapy. J Clin Virol 2004; 29:241-7. [PMID: 15018851 DOI: 10.1016/s1386-6532(03)00163-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Revised: 06/02/2003] [Accepted: 06/18/2003] [Indexed: 10/27/2022]
Abstract
BACKGROUND Long-term anti-cytomegalovirus (CMV) treatments in immunocompromised patients are hampered by resistance to antiviral drugs. Longitudinal changes in the resistance genotype may depend on changes in selective pressure and the complexity of CMV isolates. OBJECTIVE To evaluate longitudinal changes in the CMV resistance genotype and phenotype along with strain-specific variability in a patient with non-Hodgkin's lymphoma in whom successive anti-CMV treatments failed. STUDY DESIGN The resistance phenotype and genotype of seven CMV isolates collected from one patient during a 2-year follow-up period were retrospectively analysed. In parallel, we used glycoprotein B (gB) genotyping, and a- and UL10-13-sequence analysis to study CMV interstrain variability. RESULTS The patient was infected by at least three CMV strains plus variants of the parental strains. Resistance to ganciclovir, cidofovir and foscarnet was successively detected during the follow-up period. UL97 protein kinase changes responsible for resistance to ganciclovir were initially detected at residues 591 and 592, and then at position 594. Decreased sensitivity to foscarnet coincided with the appearance of amino acid substitution N495K in DNA polymerase, whereas cross-resistance to ganciclovir and cidofovir was due to the L501I substitution. CONCLUSIONS The CMV isolates obtained from our patient were complex mixtures of strains. Changes in resistance genotypes depended on resistance selective pressure and were not linked to interstrain variation.
Collapse
Affiliation(s)
- Alexandra Ducancelle
- Service de Bactériologie-Virologie, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | |
Collapse
|