1
|
Li C, Zhang C, Li X. Clonal hematopoiesis of indeterminate potential: contribution to disease and promising interventions. Mol Cell Biochem 2025:10.1007/s11010-025-05261-8. [PMID: 40140229 DOI: 10.1007/s11010-025-05261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/16/2025] [Indexed: 03/28/2025]
Abstract
In clonal hematopoiesis of indeterminate potential (CHIP), subpopulations of blood cells carrying somatic mutations expand as the individual ages, and this expansion may elevate risk of blood cancers as well as cardiovascular disease. Individuals at higher risk of CHIP and therefore of CHIP-associated disease can be identified through mutational profiling, and the apparently central role of inflammation in CHIP-associated disease has emerged as a potential therapeutic target. While CHIP is often associated with negative health outcomes, emerging evidence suggests that some CHIP-related mutations may also exert beneficial effects, indicating a more complex role in human health. This review examines current understanding of the epidemiology and clinical significance of CHIP and the role of inflammation in driving its association with disease risk. It explores the mechanisms linking CHIP to inflammation and risk of cardiovascular and other diseases, as well as the potential of personalizing therapies against those diseases for individuals with CHIP.
Collapse
Affiliation(s)
- Chongjie Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China
| | - Chunxiang Zhang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China.
| | - Xiuying Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- School of Pharmacy, Southwest Medical University, LuZhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Chong JH, Chuah CTH, Lee CG. Revolutionising Cardio-Oncology Care with Precision Genomics. Int J Mol Sci 2025; 26:2052. [PMID: 40076674 PMCID: PMC11900203 DOI: 10.3390/ijms26052052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular disease is the worldwide leading cause of mortality among survivors of cancer due in part to the cardiotoxicity of anticancer therapies. This paper explores the progress in precision cardio-oncology, particularly in genetic testing and therapeutics, and its impact on cardiovascular diseases in clinical and laboratory settings. These advancements enable clinicians to better assess risk, diagnose conditions, and deliver personalised, cost-effective therapeutics. Through case studies of cancer-therapy-related cardiac dysfunction, clonal haematopoiesis of indeterminate potential, and polygenic risk scoring, we demonstrate the benefits of incorporating precision genomics in individualised care in cardio-oncology. Furthermore, leveraging real-world genomic data in clinical settings can advance our understanding of long noncoding RNAs and microRNAs, which play important regulatory roles in cardio-oncology. Additionally, employing human-induced pluripotent stem cells to stratify risk and guide prevention strategies represents a promising avenue for modelling precision cardio-oncology. While these advancements showcase the significant progress in genetic approaches, they also raise substantial ethical, legal, and societal concerns. Regulatory oversight of genetic and genomic technologies should therefore evolve suitably to keep up with rapid advancements in technology and analysis. Provider education is crucial for the appropriate use of new genetic and genomic applications, including on the existing protection available for patients regarding genetic information. This can provide confidence for diverse study groups to advance genetic studies looking to develop a comprehensive understanding and effective clinical applications for heterogeneous populations. In clinical settings, the implementation of genetic and genomic applications within electronic medical records can offer point-of-care clinical decision support, thus providing timely information to guide clinical management decisions.
Collapse
Affiliation(s)
- Jun Hua Chong
- National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Charles T. H. Chuah
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Caroline G. Lee
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, C/O MD7, Level 2, 8 Medical Drive, Singapore 117597, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| |
Collapse
|
3
|
Załęski A, Lembas A, Dyda T, Osińska J, Jabłońska J, Stempkowska-Rejek J, Orzechowska J, Wiercińska-Drapało A. No Association Between HIV-1 Subtype and Primary Resistance Mutations with CD4 Reconstitution During Effective Antiretroviral Treatment: An Observational, Cohort Study. Int J Mol Sci 2025; 26:1410. [PMID: 40003876 PMCID: PMC11855707 DOI: 10.3390/ijms26041410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Some people with Human Immunodeficiency Virus (HIV) on effective antiretroviral therapy have persistent low lymphocyte CD4 counts and remain at an increased risk of Acquired Immunodeficiency Syndrome (AIDS). We investigated whether primary drug resistance mutations (DRMs) and HIV-1 subtype could be related to immunologic reconstitution in these people. In a multicenter, observational cohort study among treatment-naïve patients, we analyzed HIV-1 subtype, primary drug resistance mutations, CD4 counts, and CD4:CD8 ratios during effective antiretroviral therapy. We compared these variables between patients with different HIV subtypes and between those with or without drug-resistance mutations up to 48 weeks post-baseline. In 156 patients, CD4 count normalization (≥500 cells/µL) was observed in 39% of patients, while CD4:CD8 ratio ≥ 1 in 27% after treatment implementation. HIV-1 subtype B was present in 75% of the patients and subtype A in 22%. Primary resistance mutations were found in 57% of the individuals. The percentage of immunological nonrespondents did not differ significantly between those with different HIV subtypes or between those with or without primary resistance mutations (p > 0.05). In conclusion, there was no significant coincidence between the HIV subtype and primary drug resistance mutations with immunological reconstitution in patients receiving effective antiretroviral therapy.
Collapse
Affiliation(s)
- Andrzej Załęski
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Agnieszka Lembas
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz Dyda
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Molecular Diagnostics Laboratory, Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland
| | - Joanna Osińska
- Infectious Diseases Clinical Ward in Ostróda, Department of Family Medicine and Infectious Diseases, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Joanna Jabłońska
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Justyna Stempkowska-Rejek
- Department of Infectious Diseases and Hepatology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Justyna Orzechowska
- Medical Center in Łańcut, Clinical Department of Infectious Diseases, College of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Alicja Wiercińska-Drapało
- Hospital for Infectious Diseases in Warsaw, 01-201 Warsaw, Poland; (A.Z.)
- Department of Infectious Diseases, Tropical Diseases and Hepatology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
4
|
Sheets K, Baker JV. HIV and Inflamm-Aging: How Do We Reach the Summit of Healthy Aging? TOPICS IN ANTIVIRAL MEDICINE 2024; 32:589-596. [PMID: 39765238 PMCID: PMC11737810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
People with HIV (PWH) are living longer and experiencing a greater burden of morbidity from non-AIDS-defining conditions. Chronically treated HIV disease is associated with ongoing systemic inflammation that contributes to the development of chronic conditions (eg, cardiovascular disease) and geriatric syndromes (eg, frailty). Apart from HIV disease, a progressive increase in systemic inflammation is a characteristic feature of biologic aging, a process described as "inflammaging." Inflamm-aging is driven by persistent antigen stimulation and stress, leading to an immune profile characterized by elevated levels of blood inflammatory markers and cellular activation and senescence. Chronic HIV disease is hypothesized to accentuate the immune profile of inflamm-aging, in part through viral persistence in lymphatic tissues, permanent injury impairing immune recovery, the presence of copathogens, gut dysbiosis and microbial translocation, and chromosomal and genetic alterations associated with immune activation. Few strategies exist for safe and effective modulation of systemic inflammation among older PWH. The strongest current evidence supports aggressive management of modifiable risk factors such as lipids, blood pressure, and levels of physical activity. Future inflamm-aging research should be directed toward advancing the implementation of proven approaches, such as physical activity, as well as studying novel mechanisms of, and treatments for, inflamm-aging among PWH.
Collapse
Affiliation(s)
- Kerry Sheets
- Hennepin Healthcare, Minneapolis, Minnesota, and University of Minnesota, Minneapolis
| | - Jason V. Baker
- Hennepin Healthcare, Minneapolis, Minnesota, and University of Minnesota, Minneapolis
| |
Collapse
|
5
|
Han WM, Sazzad HMS, Bloch M, Baker DA, Roth N, Bowden-Reid E, Smith DE, Hoy JF, Woolley I, Finlayson R, Templeton DJ, Matthews GV, Costello J, Dawson MA, Dawson SJ, Polizzotto MN, Petoumenos K, Yeh P, Dharan NJ. Age-related clonal hematopoiesis and HIV infection are associated with geriatric outcomes: The ARCHIVE study. Cell Rep Med 2024; 5:101835. [PMID: 39626674 PMCID: PMC11722090 DOI: 10.1016/j.xcrm.2024.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
While HIV infection and clonal hematopoiesis (CH) have been linked with inflammatory dysregulation and an increased risk of aging-related comorbidities, their relationship with clinical geriatric syndromes has not been well defined. In the Age-related Clonal Haematopoiesis in an HIV Evaluation Cohort (ARCHIVE) study (NCT04641013), we measure associations between HIV and CH and geriatric syndromes. Of 345 participants (176 with HIV and 169 without HIV), 23% had at least one mutation associated with CH: 27% with HIV and 18% without HIV (p = 0.048). In adjusted analyses, HIV infection is independently associated with increased phenotypic age acceleration (coefficient 1.73, 95% confidence interval [CI] 0.3, 3.16) and CH is independently associated with being frail (vs. pre-frail/robust; odds ratio 2.38, 95% CI 1.01, 5.67) and with having reduced quality of life (coefficient -2.18, 95% CI -3.92, -0.44). Our findings suggest that HIV is associated with increased biological age and that CH may be used as a biomarker for adverse geriatric outcomes.
Collapse
Affiliation(s)
- Win Min Han
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW 2033, Australia.
| | - Hossain M S Sazzad
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW 2033, Australia
| | - Mark Bloch
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW 2033, Australia; Holdsworth House Medical Practice, Sydney, NSW 2010, Australia
| | | | - Norman Roth
- Prahran Market Clinic, Melbourne, VIC 3181, Australia
| | - Ellen Bowden-Reid
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW 2033, Australia
| | - Don E Smith
- Albion Centre, South Eastern Sydney Local Health District, Sydney, NSW 2010, Australia; School of Population Health, University of New South Wales Sydney, Sydney, NSW 2033, Australia
| | - Jennifer F Hoy
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC 3004, Australia
| | - Ian Woolley
- Monash Infectious Diseases, Monash Health, Clayton, VIC 3168, Australia; Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | | | - David J Templeton
- Department of Sexual Health Medicine and Sexual Assault Medical Service, Sydney Local Health District, Sydney, NSW 2050, Australia; Discipline of Medicine, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Gail V Matthews
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW 2033, Australia; St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | | | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Mark N Polizzotto
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW 2033, Australia; Australian National University, Canberra, ACT 2601, Australia
| | - Kathy Petoumenos
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW 2033, Australia
| | - Paul Yeh
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; Monash Haematology, Monash Health, Clayton, VIC 3168, Australia
| | - Nila J Dharan
- Kirby Institute, University of New South Wales Sydney, Sydney, NSW 2033, Australia.
| |
Collapse
|
6
|
Dregoesc MI, Tercan H, Țigu AB, Bekkering S, Joosten LAB, Netea MG, van Deuren RC, Hoischen A, Riksen NP, Iancu AC. Clonal hematopoiesis is associated with cardiovascular events in patients with stable coronary artery disease. iScience 2024; 27:109472. [PMID: 38558938 PMCID: PMC10981089 DOI: 10.1016/j.isci.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Clonal hematopoiesis (CH) is a risk factor for atherosclerotic cardiovascular disease, but the impact of smaller clones and the effect on inflammatory parameters is largely unknown. Using ultrasensitive single-molecule molecular inversion probe sequencing, we evaluated the association between CH and a first major adverse cardiovascular event (MACE) in patients with angiographically documented stable coronary artery disease (CAD) and no history of acute ischemic events. CH was associated with an increased rate of MACE at four years follow-up. The size of the clone predicted MACE at an optimal cut-off value of 1.07% variant allele frequency (VAF). Mutation carriers had no change in monocytes subsets or cytokine production capacity but had higher levels of circulating tissue factor, matrilysin, and proteinase-activated receptor-1. Our study identified CH driver mutations with a VAF as small as 1.07% as a residual cardiovascular risk factor and identified potential biomarkers and therapeutic targets for patients with stable CAD.
Collapse
Affiliation(s)
- Mihaela I. Dregoesc
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Cardiology –“Niculae Stăncioiu” Heart Institute, 19-21 Calea Moților, 400001 Cluj-Napoca, Romania
| | - Helin Tercan
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
| | - Adrian B. Țigu
- MEDFUTURE Research Center for Advanced Medicine, Department of Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 4-6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Siroon Bekkering
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
| | - Leo AB. Joosten
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 4-6 Louis Pasteur, 400349 Cluj-Napoca, Romania
| | - Mihai G. Netea
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rosanne C. van Deuren
- Radboud University Medical Center, Department of Human Genetics, Geert Grooteplein Zuid 855, 6525 GA Nijmegen, the Netherlands
| | - Alexander Hoischen
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
- Radboud University Medical Center, Department of Human Genetics, Geert Grooteplein Zuid 855, 6525 GA Nijmegen, the Netherlands
- Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Niels P. Riksen
- Radboud University Medical Center, Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, the Netherlands
| | - Adrian C. Iancu
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Department of Cardiology –“Niculae Stăncioiu” Heart Institute, 19-21 Calea Moților, 400001 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Rocco JM, Zhou Y, Liu NS, Laidlaw E, Galindo F, Anderson MV, Rupert A, Lage SL, Ortega-Villa AM, Yu S, Lisco A, Manion M, Vassiliou GS, Dunbar CE, Sereti I. Clonal hematopoiesis in people with advanced HIV and associated inflammatory syndromes. JCI Insight 2024; 9:e174783. [PMID: 38564303 PMCID: PMC11141903 DOI: 10.1172/jci.insight.174783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
People with HIV (PWH) have a higher age-adjusted mortality due to chronic immune activation and age-related comorbidities. PWH also have higher rates of clonal hematopoiesis (CH) than age-matched non-HIV cohorts; however, risk factors influencing the development and expansion of CH in PWH remain incompletely explored. We investigated the relationship between CH, immune biomarkers, and HIV-associated risk factors (CD4+ and CD8+ T cells, nadir CD4+ count, opportunistic infections [OIs], and immune reconstitution inflammatory syndrome [IRIS]) in a diverse cohort of 197 PWH with median age of 42 years, using a 56-gene panel. Seventy-nine percent had a CD4+ nadir below 200 cells/μL, 58.9% had prior OIs, and 34.5% had a history of IRIS. The prevalence of CH was high (27.4%), even in younger individuals, and CD8+ T cells and nadir CD4+ counts strongly associated with CH after controlling for age. A history of IRIS was associated with CH in a subgroup analysis of patients 35 years of age and older. Inflammatory biomarkers were higher in CH carriers compared with noncarriers, supporting a dysregulated immune state. These findings suggest PWH with low nadir CD4+ and/or inflammatory complications may be at high risk of CH regardless of age and represent a high-risk group that could benefit from risk reduction and potentially targeted immunomodulation.
Collapse
Affiliation(s)
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nicholas S. Liu
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
- Department of Biology, Brown University, Providence, Rhode Island, USA
| | | | | | | | - Adam Rupert
- Leidos Biomedical Research, Inc, Frederick, Maryland, USA
| | - Silvia L. Lage
- National Institute of Allergy and Infectious Diseases, and
| | | | - Shiqin Yu
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, and
| | - Maura Manion
- National Institute of Allergy and Infectious Diseases, and
| | - George S. Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust (CUH), Cambridge, United Kingdom
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, and
| |
Collapse
|
8
|
Knudsen AD, Eskelund CW, Benfield T, Zhao Y, Gelpi M, Køber L, Trøseid M, Kofoed KF, Ostrowski SR, Reilly C, Borges ÁH, Grønbæk K, Nielsen SD. Clonal hematopoiesis of indeterminate potential in persons with HIV. AIDS 2024; 38:487-495. [PMID: 37976039 DOI: 10.1097/qad.0000000000003788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) has been associated with older age, inflammation and with risk of coronary artery disease (CAD). We aimed to characterize the burden of CHIP, and to explore the association between CHIP, inflammatory markers, and CAD in older persons with HIV (PWH). METHODS From the Copenhagen Comorbidity in HIV Infection (COCOMO) study, we included 190 individuals older than 55 years of age. We defined CHIP as variant allele fraction at least 2%. CAD was categorized according to the most severe coronary artery lesion on coronary computed tomography (CT) angiography as no coronary atherosclerosis; any atherosclerosis defined as at least 1% stenosis and obstructive CAD defined as at least 50% stenosis. RESULTS In the entire population (median age 66 years, 87% men), we identified a total of 62 mutations distributed among 49 (26%) participants. The three most mutated genes were DNMT3A , TET2 , and ASXL1 , accounting for 49, 25, and 16% of mutations, respectively. Age and sex were the only variables associated with CHIP. IL-1β, IL-1Ra, IL-2, IL-6, IL-10, soluble CD14, soluble CD163 and TNF-α were not associated with CHIP, and CHIP was not associated with any atherosclerosis or with obstructive CAD in adjusted analyses. CONCLUSION In older, well treated, Scandinavian PWH, more than one in four had at least one CHIP mutation. We did not find evidence of an association between CHIP and inflammatory markers or between CHIP and CAD. CHIP is an unlikely underlying mechanism to explain the association between inflammation and CAD in treated HIV disease.
Collapse
Affiliation(s)
- Andreas D Knudsen
- Department of Infectious Diseases 8632
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
| | | | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University Hospital - Amager and Hvidovre
| | | | | | - Lars Køber
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
| | - Marius Trøseid
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Center, Rigshospitalet, University of Copenhagen
- Department of Radiology, Rigshospitalet, University of Copenhagen
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Cavan Reilly
- Division of Biostatistics, School of Public Health, University of Minnesota, MN, USA
| | - Álvaro H Borges
- Department of Infectious Disease Immunology, Statens Serum Institut
- Centre of Excellence for Health, Immunity and Infections (CHIP), Rigshospitalet, University of Copenhagen
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Bhattacharya R, Uddin MM, Patel AP, Niroula A, Finneran P, Bernardo R, Fitch KV, Lu MT, Bloomfield GS, Malvestutto C, Aberg JA, Fichtenbaum CJ, Hornsby W, Ribaudo HJ, Libby P, Ebert BL, Zanni MV, Douglas PS, Grinspoon SK, Natarajan P. Risk factors for clonal hematopoiesis of indeterminate potential in people with HIV: a report from the REPRIEVE trial. Blood Adv 2024; 8:959-967. [PMID: 38197863 PMCID: PMC10877123 DOI: 10.1182/bloodadvances.2023011324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
ABSTRACT Clonal hematopoiesis of indeterminate potential (CHIP), the clonal expansion of myeloid cells with leukemogenic mutations, results in increased coronary artery disease (CAD) risk. CHIP is more prevalent among people with HIV (PWH), but the risk factors are unknown. CHIP was identified among PWH in REPRIEVE (Randomized Trial to Prevent Vascular Events in HIV) using whole-exome sequencing. Logistic regression was used to associate sociodemographic factors and HIV-specific factors with CHIP adjusting for age, sex, and smoking status. In the studied global cohort of 4486 PWH, mean age was 49.9 (standard deviation [SD], 6.4) years; 1650 (36.8%) were female; and 3418 (76.2%) were non-White. CHIP was identified in 223 of 4486 (4.97%) and in 38 of 373 (10.2%) among those aged ≥60 years. Age (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.05-1.09; P < .0001) and smoking (OR, 1.37; 95% CI, 1.14-1.66; P < .001) associated with increased odds of CHIP. Globally, participants outside of North America had lower odds of CHIP including sub-Saharan Africa (OR, 0.57; 95% CI, 0.4-0.81; P = .0019), South Asia (OR, 0.45; 95% CI, 0.23-0.80; P = .01), and Latin America/Caribbean (OR, 0.56; 95% CI, 0.34-0.87; P = .014). Hispanic/Latino ethnicity (OR, 0.38; 95% CI, 0.23-0.54; P = .002) associated with significantly lower odds of CHIP. Among HIV-specific factors, CD4 nadir <50 cells/mm3 associated with a 1.9-fold (95%CI, 1.21-3.05; P = .006) increased odds of CHIP, with the effect being significantly stronger among individuals with short duration of antiretroviral therapy (ART; OR, 4.15; 95% CI, 1.51-11.1; P = .005) (Pinteraction= .0492). Among PWH at low-to-moderate CAD risk on stable ART, smoking, CD4 nadir, North American origin, and non-Hispanic ethnicity associated with increased odds of CHIP. This trial was registered at www.ClinicalTrials.gov as NCT02344290.
Collapse
Affiliation(s)
- Romit Bhattacharya
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medicine, Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Md Mesbah Uddin
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Aniruddh P. Patel
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medicine, Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Abhishek Niroula
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Phoebe Finneran
- Department of Medicine, Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Rachel Bernardo
- Department of Medicine, Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Kathleen V. Fitch
- Department of Medicine, Harvard Medical School, Boston, MA
- Metabolism Unit, Massachusetts General Hospital, Boston, MA
| | - Michael T. Lu
- Cardiovascular Imaging Research Center and Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Gerald S. Bloomfield
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | | | - Judy A. Aberg
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Whitney Hornsby
- Department of Medicine, Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Heather J. Ribaudo
- Department of Biostatistics, Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, MA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medicine, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Markella V. Zanni
- Department of Medicine, Harvard Medical School, Boston, MA
- Metabolism Unit, Massachusetts General Hospital, Boston, MA
| | - Pamela S. Douglas
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Steven K. Grinspoon
- Department of Medicine, Harvard Medical School, Boston, MA
- Metabolism Unit, Massachusetts General Hospital, Boston, MA
| | - Pradeep Natarajan
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Department of Medicine, Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
10
|
Tercan H, Cossins BC, van Deuren RC, Rutten JHW, Joosten LAB, Netea MG, Hoischen A, Bekkering S, Riksen NP. Association Between Clonal Hematopoiesis Driver Mutations, Immune Cell Function, and the Vasculometabolic Complications of Obesity. J Am Heart Assoc 2024; 13:e031665. [PMID: 38214284 PMCID: PMC10926828 DOI: 10.1161/jaha.123.031665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Obesity is accompanied by dysregulated inflammation, which can contribute to vasculometabolic complications including metabolic syndrome and atherosclerosis. Recently, clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a risk factor for cardiovascular diseases. We aimed to determine how CHIP is related to immune cell function, systemic inflammation, and vasculometabolic complications in obese individuals. METHODS AND RESULTS Two hundred ninety-seven individuals with overweight and obesity, between the ages of 54 and 81 years, were recruited in a cross-sectional study. Clonal hematopoiesis driver mutations (CHDMs) were identified with an ultrasensitive targeted assay. Assessment of carotid artery atherosclerosis was performed with ultrasound. Detailed immunological parameters, including cytokine production capacity of peripheral blood mononuclear cells, and targeted plasma proteomics analysis, were studied. Adipose tissue inflammation was determined in subcutaneous fat biopsies. Individuals with CHIP had higher concentrations of circulating IL (interleukin)-6. Total number of leukocytes and neutrophils were higher in individuals with CHIP. In contrast, ex vivo cytokine production capacity of peripheral blood mononuclear cells was significantly lower in individuals with CHIP. Sex-stratified analysis showed that men with CHDMs had significantly higher leukocyte and neutrophil counts, and ex vivo cytokine production capacity was lower in women with CHDMs. Surprisingly, the presence of atherosclerotic plaques was significantly lower in individuals with CHDMs. There was no relation between CHIP and metabolic syndrome. CONCLUSIONS In individuals with overweight or obesity, CHDMs are not associated with vasculometabolic complications, but rather with a lower presence of carotid plaques. CHDMs associate with increased circulating inflammatory markers and leukocyte numbers, but a lower peripheral blood mononuclear cell cytokine production capacity.
Collapse
Affiliation(s)
- Helin Tercan
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| | - Benjamin C. Cossins
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| | - Rosanne C. van Deuren
- Radboud University Medical CenterDepartment of Human GeneticsNijmegenthe Netherlands
| | - Joost H. W. Rutten
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| | - Leo A. B. Joosten
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
- Department of Medical GeneticsIuliu Haţieganu University of Medicine and PharmacyCluj‐NapocaRomania
| | - Mihai G. Netea
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES)University of BonnGermany
| | - Alexander Hoischen
- Radboud University Medical CenterDepartment of Human GeneticsNijmegenthe Netherlands
| | - Siroon Bekkering
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| | - Niels P. Riksen
- Radboud University Medical CenterDepartment of Internal MedicineNijmegenthe Netherlands
| |
Collapse
|
11
|
Lembas A, Załęski A, Peller M, Mikuła T, Wiercińska-Drapało A. Human Immunodeficiency Virus as a Risk Factor for Cardiovascular Disease. Cardiovasc Toxicol 2024; 24:1-14. [PMID: 37982976 PMCID: PMC10838226 DOI: 10.1007/s12012-023-09815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The developments in HIV treatments have increased the life expectancy of people living with HIV (PLWH), a situation that makes cardiovascular disease (CVD) in that population as relevant as ever. PLWH are at increased risk of CVD, and our understanding of the underlying mechanisms is continually increasing. HIV infection is associated with elevated levels of multiple proinflammatory molecules, including IL-6, IL-1β, VCAM-1, ICAM-1, TNF-α, TGF-β, osteopontin, sCD14, hs-CRP, and D-dimer. Other currently examined mechanisms include CD4 + lymphocyte depletion, increased intestinal permeability, microbial translocation, and altered cholesterol metabolism. Antiretroviral therapy (ART) leads to decreases in the concentrations of the majority of proinflammatory molecules, although most remain higher than in the general population. Moreover, adverse effects of ART also play an important role in increased CVD risk, especially in the era of rapid advancement of new therapeutical options. Nevertheless, it is currently believed that HIV plays a more significant role in the development of metabolic syndromes than treatment-associated factors. PLWH being more prone to develop CVD is also due to the higher prevalence of smoking and chronic coinfections with viruses such as HCV and HBV. For these reasons, it is crucial to consider HIV a possible causal factor in CVD occurrence, especially among young patients or individuals without common CVD risk factors.
Collapse
Affiliation(s)
- Agnieszka Lembas
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| | - Andrzej Załęski
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland.
- Hospital for Infectious Diseases, Warsaw, Poland.
| | - Michał Peller
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mikuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| |
Collapse
|
12
|
Nathan DI, Dougherty M, Bhatta M, Mascarenhas J, Marcellino BK. Clonal hematopoiesis and inflammation: A review of mechanisms and clinical implications. Crit Rev Oncol Hematol 2023; 192:104187. [PMID: 37879493 DOI: 10.1016/j.critrevonc.2023.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined by the presence of somatic mutations in hematopoietic stem and progenitor cells (HSPC). CH is associated primarily with advancing age and confers an elevated risk of progression to overt hematologic malignancy and cardiovascular disease. Increasingly, CH is associated with a wide range of diseases driven by, and sequelae of, inflammation. Accordingly, there is great interest in better understanding the pathophysiologic and clinical relationship between CH, aging, and disease. Both observational and experimental findings support the concept that CH is a potential common denominator in the inflammatory outcomes of aging. However, there is also evidence that local and systemic inflammatory states promote the growth and select for CH clones. In this review, we aim to provide an up-to-date summary of the nature of the relationship between inflammation and CH, which is central to unlocking potential therapeutic opportunities to prevent progression to myeloid malignancy.
Collapse
Affiliation(s)
- Daniel I Nathan
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Max Dougherty
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manasa Bhatta
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Sikking MA, Stroeks SLVM, Henkens MTHM, Raafs AG, Cossins B, van Deuren RC, Steehouwer M, Riksen NP, van den Wijngaard A, Brunner HG, Hoischen A, Verdonschot JAJ, Heymans SRB. Clonal Hematopoiesis Has Prognostic Value in Dilated Cardiomyopathy Independent of Age and Clone Size. JACC. HEART FAILURE 2023:S2213-1779(23)00509-7. [PMID: 37638520 DOI: 10.1016/j.jchf.2023.06.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Clonal hematopoiesis (CH) gives rise to mutated leukocyte clones that induce cardiovascular inflammation and thereby impact the disease course in atherosclerosis and ischemic heart failure. CH of indeterminate potential refers to a variant allele frequency (VAF; a marker for clone size) in blood of ≥2%. The impact of CH clones-including small clone sizes (VAF <0.5%)-in nonischemic dilated cardiomyopathy (DCM) remains largely undetermined. OBJECTIVES The authors sought to establish the prognostic impact of CH in DCM including small clones. METHODS CH is determined using an ultrasensitive single-molecule molecular inversion probe technique that allows detection of clones down to a VAF of 0.01%. Cardiac death and all-cause mortality were analyzed using receiver-operating characteristic curve-optimized VAF cutoff values. RESULTS A total of 520 DCM patients have been included. One hundred and nine patients (21%) had CH driver mutations, of which 45 had a VAF of ≥2% and 31 <0.5%. The median follow-up duration was 6.5 years [IQR: 4.7-9.7 years]. DCM patients with CH have a higher risk of cardiac death (HR: 2.33 using a VAF cutoff of 0.36%, 95% CI: 1.24-4.40) and all-cause mortality (HR: 1.72 using a VAF cutoff of 0.06%, 95% CI: 1.10-2.69), independent of age, sex, left ventricular ejection fraction, and New York Heart Association classification. CONCLUSIONS CH predicts cardiac death and all-cause mortality in DCM patients with optimal thresholds for clone size of 0.36% and 0.06%, respectively. Therefore, CH is prognostically relevant, independent of clone size in patients with DCM.
Collapse
Affiliation(s)
- Maurits A Sikking
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - Sophie L V M Stroeks
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Michiel T H M Henkens
- Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands; Netherlands Heart Institute (NLHI), Utrecht, the Netherlands
| | - Anne G Raafs
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - Benjamin Cossins
- Radboud University Medical Center, Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosanne C van Deuren
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marlies Steehouwer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Han G Brunner
- Department of Clinical Genetics, Maastricht University, Maastricht, the Netherlands; GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Human Genetics and Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Hoischen
- Radboud University Medical Center, Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University, Maastricht, the Netherlands.
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands; Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| |
Collapse
|
14
|
Sikking MA, Stroeks SLVM, Waring OJ, Henkens MTHM, Riksen NP, Hoischen A, Heymans SRB, Verdonschot JAJ. Clonal Hematopoiesis of Indeterminate Potential From a Heart Failure Specialist's Point of View. J Am Heart Assoc 2023; 12:e030603. [PMID: 37489738 PMCID: PMC10492961 DOI: 10.1161/jaha.123.030603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common bone marrow abnormality induced by age-related DNA mutations, which give rise to proinflammatory immune cells. These immune cells exacerbate atherosclerotic cardiovascular disease and may induce or accelerate heart failure. The mechanisms involved are complex but point toward a central role for proinflammatory macrophages and an inflammasome-dependent immune response (IL-1 [interleukin-1] and IL-6 [interleukin-6]) in the atherosclerotic plaque or directly in the myocardium. Intracardiac inflammation may decrease cardiac function and induce cardiac fibrosis, even in the absence of atherosclerotic cardiovascular disease. The pathophysiology and consequences of CHIP may differ among implicated genes as well as subgroups of patients with heart failure, based on cause (ischemic versus nonischemic) and ejection fraction (reduced ejection fraction versus preserved ejection fraction). Evidence is accumulating that CHIP is associated with cardiovascular mortality in ischemic and nonischemic heart failure with reduced ejection fraction and involved in the development of heart failure with preserved ejection fraction. CHIP and corresponding inflammatory pathways provide a highly potent therapeutic target. Randomized controlled trials in patients with well-phenotyped heart failure, where readily available anti-inflammatory therapies are used to intervene with clonal hematopoiesis, may pave the way for a new area of heart failure treatment. The first clinical trials that target CHIP are already registered.
Collapse
Affiliation(s)
- Maurits A. Sikking
- Department of CardiologyCardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC)Maastrichtthe Netherlands
| | - Sophie L. V. M. Stroeks
- Department of CardiologyCardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC)Maastrichtthe Netherlands
| | - Olivia J. Waring
- Department of PathologyCardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC)Maastrichtthe Netherlands
| | - Michiel T. H. M. Henkens
- Department of PathologyCardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC)Maastrichtthe Netherlands
- Netherlands Heart Institute (NLHI)Utrechtthe Netherlands
| | - Niels P. Riksen
- Department of Internal MedicineRadboud University Medical CenterNijmegenthe Netherlands
| | - Alexander Hoischen
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - Stephane R. B. Heymans
- Department of CardiologyCardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC)Maastrichtthe Netherlands
- Department of Cardiovascular ResearchUniversity of LeuvenBelgium
| | - Job A. J. Verdonschot
- Department of CardiologyCardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC)Maastrichtthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center (MUMC)Maastrichtthe Netherlands
| |
Collapse
|
15
|
Premeaux TA, Ndhlovu LC. Decrypting biological hallmarks of aging in people with HIV. Curr Opin HIV AIDS 2023:01222929-990000000-00054. [PMID: 37421383 DOI: 10.1097/coh.0000000000000810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW HIV infection adds further complexity to the heterogenous process of aging. In this focused review, we examine and discuss recent advances to better elucidate mechanisms of biological aging perturbed and accelerated in the context of HIV, particularly among those with viral suppression through the benefits of antiretroviral therapy (ART). New hypotheses from these studies are poised to provide an improved understanding of multifaceted pathways that converge and likely form the basis for effective interventions toward successful aging. RECENT FINDINGS Evidence to date suggests multiple mechanisms of biological aging impact people living with HIV (PLWH). Recent literature delves and expands on how epigenetic alterations, telomere attrition, mitochondrial perturbations, and intercellular communications may underpin accelerated or accentuated aging phenotypes and the disproportionate prevalence of age-related complications among PLWH. Although most hallmarks of aging are likely exacerbated in the setting of HIV, ongoing research efforts are providing new insight on the collective impact these conserved pathways may have in the aging disease processes. SUMMARY New knowledge on underlying molecular disease mechanisms impacting people aging with HIV are reviewed. Also examined are studies that may facilitate the development and implementation of effective therapeutics and guidance on improving geriatric HIV clinical care.
Collapse
Affiliation(s)
- Thomas A Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
16
|
Vorri SC, Christodoulou I, Karanika S, Karantanos T. Human Immunodeficiency Virus and Clonal Hematopoiesis. Cells 2023; 12:686. [PMID: 36899822 PMCID: PMC10001188 DOI: 10.3390/cells12050686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
The evolution of antiretroviral therapies (ART) has tremendously improved the life expectancy of people living with human immunodeficiency virus (HIV) (PLWH), which is currently similar to the general population. However, as PLWH are now living longer, they exhibit various comorbidities such as a higher risk of cardiovascular disease (CVD) and non-acquired immunodeficiency syndrome (AIDS)-defined malignancies. Clonal hematopoiesis (CH) is the acquisition of somatic mutations by the hematopoietic stem cells, rendering them survival and growth benefit, thus leading to their clonal dominance in the bone marrow. Recent epidemiologic studies have highlighted that PLWH have a higher prevalence of CH, which in turn is associated with increased CVD risk. Thus, a link between HIV infection and a higher risk for CVD might be explained through the induction of inflammatory signaling in the monocytes carrying CH mutations. Among the PLWH, CH is associated with an overall poorer control of HIV infection; an association that requires further mechanistic evaluation. Finally, CH is linked to an increased risk of progression to myeloid neoplasms including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), which are associated with particularly poor outcomes among patients with HIV infection. These bidirectional associations require further molecular-level understanding, highlighting the need for more preclinical and prospective clinical studies. This review summarizes the current literature on the association between CH and HIV infection.
Collapse
Affiliation(s)
- Stamatia C. Vorri
- Division of Pediatric Oncology, Department of Oncology, Johns Hopkins University Hospital, Baltimore, MD 21287, USA
| | - Ilias Christodoulou
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Styliani Karanika
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Theodoros Karantanos
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
17
|
Natarajan P. Genomic Aging, Clonal Hematopoiesis, and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:3-14. [PMID: 36353993 PMCID: PMC9780188 DOI: 10.1161/atvbaha.122.318181] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Chronologic age is the dominant risk factor for coronary artery disease but the features of aging promoting coronary artery disease are poorly understood. Advances in human genetics and population-based genetic profiling of blood cells have uncovered the surprising role of age-related subclinical leukemogenic mutations in blood cells, termed "clonal hematopoiesis of indeterminate potential," in coronary artery disease. Such mutations typically occur in DNMT3A, TET2, ASXL1, and JAK2. Murine and human studies prioritize the role of key inflammatory pathways linking clonal hematopoiesis with coronary artery disease. Increasingly larger, longitudinal, multiomics analyses are enabling further dissection into mechanistic insights. These observations expand the genetic architecture of coronary artery disease, now linking hallmark features of hematologic neoplasia with a much more common cardiovascular condition. Implications of these studies include the prospect of novel precision medicine paradigms for coronary artery disease.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Abstract
OBJECTIVES People with HIV (PWH) are at increased risk for premature cardiovascular disease (CVD). Clonal hematopoiesis is a common age-related condition that may be associated with increased CVD risk. The goal of this study was to determine the prevalence of clonal hematopoiesis and its association with chronic inflammation and CVD in PWH. DESIGN Cross-sectional study utilizing archived specimens and data from 118 men (86 PWH and 32 HIV-uninfected) from the Baltimore-Washington DC center of the Multicenter AIDS Cohort Study (MACS) who had had coronary computed tomography angiography (CTA) and measurement of 34 serologic inflammatory biomarkers. METHODS Clonal hematopoiesis was assessed on peripheral blood mononuclear cells utilizing targeted error-corrected next generation sequencing (NGS) focused on 92 genes frequently mutated in hematologic malignancies. Clinical and laboratory data were obtained from the MACS database. RESULTS Clonal hematopoiesis with a variant allele frequency (VAF) greater than 1% was significantly more common in PWH [20/86 (23.3%)] than in HIV-uninfected men [2/32 (6.3%)] ( P = 0.035). PWH with clonal hematopoiesis (VAF > 1%) were more likely to have coronary artery stenosis of at least 50% than those without clonal hematopoiesis [6/20 (30%) vs. 6/64 (9%); P = 0.021]. Presence of clonal hematopoiesis was not significantly associated with serological inflammatory markers, except for significantly lower serum leptin levels; this was not significant after adjustment for abdominal or thigh subcutaneous fat area. CONCLUSION Clonal hematopoiesis was more common in PWH and among PWH was associated with the extent of coronary artery disease. Larger studies are needed to further examine the biological and clinical consequences of clonal hematopoiesis in PWH.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW HIV and antiretroviral therapy (ART) use are linked to an increased incidence of atherosclerotic cardiovascular disease (ASCVD). Immune activation persists in ART-treated people with HIV (PWH), and markers of inflammation (i.e. IL-6, C-reactive protein) predict mortality in this population. This review discusses underlying mechanisms that likely contribute to inflammation and the development of ASCVD in PWH. RECENT FINDINGS Persistent inflammation contributes to accelerated ASCVD in HIV and several new insights into the underlying immunologic mechanisms of chronic inflammation in PWH have been made (e.g. clonal haematopoiesis, trained immunity, lipidomics). We will also highlight potential pro-inflammatory mechanisms that may differ in vulnerable populations, including women, minorities and children. SUMMARY Mechanistic studies into the drivers of chronic inflammation in PWH are ongoing and may aid in tailoring effective therapeutic strategies that can reduce ASCVD risk in this population. Focus should also include factors that lead to persistent disparities in HIV care and comorbidities, including sex as a biological factor and social determinants of health. It remains unclear whether ASCVD progression in HIV is driven by unique mediators (HIV itself, ART, immunodeficiency), or if it is an accelerated version of disease progression seen in the general population.
Collapse
Affiliation(s)
- Sahera Dirajlal-Fargo
- Rainbow Babies and Children’s Hospital, Cleveland, OH
- Case Western Reserve University, Cleveland, OH
| | - Nicholas Funderburg
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH
| |
Collapse
|
20
|
HIV accelerates clonal hematopoiesis and cardiovascular aging. AIDS 2022; 36:1599-1601. [PMID: 35979832 DOI: 10.1097/qad.0000000000003330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Hoermann G. Clinical Significance of Clonal Hematopoiesis of Indeterminate Potential in Hematology and Cardiovascular Disease. Diagnostics (Basel) 2022; 12:1613. [PMID: 35885518 PMCID: PMC9317488 DOI: 10.3390/diagnostics12071613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/15/2023] Open
Abstract
Liquid profiling uses circulating tumor DNA (ctDNA) for minimal invasive tumor mutational profiling from peripheral blood. The presence of somatic mutations in peripheral blood cells without further evidence of a hematologic neoplasm defines clonal hematopoiesis of indeterminate potential (CHIP). CHIP-mutations can be found in the cell-free DNA (cfDNA) of plasma, are a potential cause of false positive results in liquid profiling, and thus limit its usage in screening settings. Various strategies are in place to mitigate the effect of CHIP on the performance of ctDNA assays, but the detection of CHIP also represents a clinically significant incidental finding. The sequelae of CHIP comprise the risk of progression to a hematologic neoplasm including therapy-related myeloid neoplasms. While the hematological risk increases with the co-occurrence of unexplained blood count abnormalities, a number of non-hematologic diseases have independently been associated with CHIP. In particular, CHIP represents a major risk factor for cardiovascular disease such as atherosclerosis or heart failure. The management of CHIP requires an interdisciplinary setting and represents a new topic in the field of cardio-oncology. In the future, the information on CHIP may be taken into account for personalized therapy of cancer patients.
Collapse
|