1
|
Liu WD, Lin MS, Sun HY, Shih MC, Chuang YC, Huang YS, Lin KY, Li GC, Wu PY, Chen LY, Liu WC, Su YC, He PC, Chen YT, Lin CY, Cheng YC, Yao Y, Yeh YC, Liu CC, Pan MY, Luo YZ, Chang HY, Wang JT, Sheng WH, Hsieh SM, Chang SY, Hung CC. Effectiveness and evolution of anti-SARS-CoV-2 spike protein titers after three doses of COVID-19 vaccination in people with HIV. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:554-563. [PMID: 38429206 DOI: 10.1016/j.jmii.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Real-world vaccine effectiveness following the third dose of vaccination against SARS-CoV-2 remains less investigated among people with HIV (PWH). METHODS PWH receiving the third dose of BNT162b2 and mRNA-1273 (either 50- or 100-μg) were enrolled. Participants were followed for 180 days until the fourth dose of COVID-19 vaccination, SARS-CoV-2 infection, seroconversion of anti-nucleocapsid IgG, death, or loss to follow-up. Anti-spike IgG was determined every 1-3 months. RESULTS Of 1427 participants undergoing the third-dose COVID-19 vaccination, 632 (44.3%) received 100-μg mRNA-1273, 467 (32.8%) 50-μg mRNA-1273, and 328 (23.0%) BNT162b2 vaccine and the respective rate of SARS-CoV-2 infection or seroconversion of anti-nucleocapsid IgG was 246.1, 280.8 and 245.2 per 1000 person-months of follow-up (log-rank test, p = 0.28). Factors associated with achieving anti-S IgG titers >1047 BAU/mL included CD4 count <200 cells/mm3 (adjusted odds ratio [aOR], 0.11; 95% CI, 0.04-0.31), plasma HIV RNA >200 copies/mL (aOR, 0.27; 95% CI, 0.09-0.80), having achieved anti-spike IgG >141 BAU/mL within 3 months after primary vaccination (aOR, 3.69; 95% CI, 2.68-5.07), receiving BNT162b2 vaccine as the third dose (aOR, 0.20; 95% CI, 0.10-0.41; reference, 100-μg mRNA-1273), and having previously received two doses of mRNA vaccine in primary vaccination (aOR, 2.46; 95% CI, 1,75-3.45; reference, no exposure to mRNA vaccine). CONCLUSIONS PWH receiving different types of the third dose of COVID-19 vaccine showed similar vaccine effectiveness against SARS-CoV-2 infection. An additional dose with 100-μg mRNA-1273 could generate a higher antibody response than with 50-μg mRNA-1273 and BNT162b2 vaccine.
Collapse
Affiliation(s)
- Wang-Da Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan.
| | - Meng-Shuan Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ming-Chieh Shih
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yu-Chung Chuang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Kuan-Yin Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Guei-Chi Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pei-Ying Wu
- Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ling-Ya Chen
- Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Wen-Chun Liu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Ching Su
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pu-Chi He
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Ting Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chia-Yi Lin
- Department of Nursing, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Chen Cheng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi Yao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yi-Chen Yeh
- Department of Nursing, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chia-Chi Liu
- Department of Nursing, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Mei-Yan Pan
- Department of Nursing, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Zhen Luo
- Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Hsi-Yen Chang
- Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Szu-Min Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chien-Ching Hung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin County, Taiwan; Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Cherneha M, Zydek I, Braß P, Korth J, Jansen S, Esser S, Karsten CB, Meyer F, Kraiselburd I, Dittmer U, Lindemann M, Horn PA, Witzke O, Thümmler L, Krawczyk A. Immunogenicity of the Monovalent Omicron XBB.1.5-Adapted BNT162b2 COVID-19 Vaccine in People Living with HIV (PLWH). Vaccines (Basel) 2024; 12:785. [PMID: 39066423 PMCID: PMC11281445 DOI: 10.3390/vaccines12070785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
While SARS-CoV-2 has transitioned to an endemic phase, infections caused by newly emerged variants continue to result in severe, and sometimes fatal, outcomes or lead to long-term COVID-19 symptoms. Vulnerable populations, such as PLWH, face an elevated risk of severe illness. Emerging variants of SARS-CoV-2, including numerous Omicron subvariants, are increasingly associated with breakthrough infections. Adapting mRNA vaccines to these new variants may offer improved protection against Omicron for vulnerable individuals. In this study, we examined humoral and cellular immune responses before and after administering adapted booster vaccinations to PLWH, alongside a control group of healthy individuals. Four weeks following booster vaccination, both groups exhibited a significant increase in neutralizing antibodies and cellular immune responses. Notably, there was no significant difference in humoral immune response between PLWH and the healthy controls. Immune responses declined rapidly in both groups three months post vaccination. However, PLWH still showed significantly increased neutralizing antibody titers even after three months. These findings demonstrate the efficacy of the adapted vaccination regimen. The results suggest that regular booster immunizations may be necessary to sustain protective immunity.
Collapse
Affiliation(s)
- Maxim Cherneha
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.C.); (I.Z.); (P.B.); (O.W.); (L.T.)
| | - Isabel Zydek
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.C.); (I.Z.); (P.B.); (O.W.); (L.T.)
| | - Peer Braß
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.C.); (I.Z.); (P.B.); (O.W.); (L.T.)
| | - Johannes Korth
- Department of Nephrology, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Practice for Kidney Diseases, Dialysis and Apheresis, 44789 Bochum, Germany
| | - Sarah Jansen
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.C.); (I.Z.); (P.B.); (O.W.); (L.T.)
| | - Stefan Esser
- Institute for the Research on HIV and AIDS-Associated Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (S.E.); (C.B.K.)
| | - Christina B. Karsten
- Institute for the Research on HIV and AIDS-Associated Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (S.E.); (C.B.K.)
| | - Folker Meyer
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (F.M.); (I.K.)
| | - Ivana Kraiselburd
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (F.M.); (I.K.)
| | - Ulf Dittmer
- Institute for Virology, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Monika Lindemann
- Institute for Transfusion Medicine, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.C.); (I.Z.); (P.B.); (O.W.); (L.T.)
| | - Laura Thümmler
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.C.); (I.Z.); (P.B.); (O.W.); (L.T.)
- Institute for Transfusion Medicine, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.L.); (P.A.H.)
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.C.); (I.Z.); (P.B.); (O.W.); (L.T.)
- Institute for Virology, University Medicine Essen, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
3
|
Jacobson JM, Felber BK, Chen H, Pavlakis GN, Mullins JI, De Rosa SC, Kuritzkes DR, Tomaras GD, Kinslow J, Bao Y, Olefsky M, Rosati M, Bear J, Heptinstall JR, Zhang L, Sawant S, Hannaman D, Laird GM, Cyktor JC, Heath SL, Collier AC, Koletar SL, Taiwo BO, Tebas P, Wohl DA, Belaunzaran-Zamudio PF, McElrath MJ, Landay AL. The immunogenicity of an HIV-1 Gag conserved element DNA vaccine in people with HIV and receiving antiretroviral therapy. AIDS 2024; 38:963-973. [PMID: 38051788 PMCID: PMC11062837 DOI: 10.1097/qad.0000000000003804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
OBJECTIVE The primary objective of the study was to assess the immunogenicity of an HIV-1 Gag conserved element DNA vaccine (p24CE DNA) in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). DESIGN AIDS Clinical Trials Group A5369 was a phase I/IIa, randomized, double-blind, placebo-controlled study of PWH receiving ART with plasma HIV-1 RNA less than 50 copies/ml, current CD4 + T-cell counts greater than 500 cells/μl, and nadir CD4 + T-cell counts greater than 350 cells/μl. METHODS The study enrolled 45 participants randomized 2 : 1 : 1 to receive p24CE DNA vaccine at weeks 0 and 4, followed by p24CE DNA admixed with full-length p55 Gag DNA vaccine at weeks 12 and 24 (arm A); full-length p55 Gag DNA vaccine at weeks 0, 4, 12, and 24 (arm B); or placebo at weeks 0, 4, 12, and 24 (arm C). The active and placebo vaccines were administered by intramuscular electroporation. RESULTS There was a modest, but significantly greater increase in the number of conserved elements recognized by CD4 + and/or CD8 + T cells in arm A compared with arm C ( P = 0.014). The percentage of participants with an increased number of conserved elements recognized by T cells was also highest in arm A (8/18, 44.4%) vs. arm C (0/10, 0.0%) ( P = 0.025). There were no significant differences between treatment groups in the change in magnitude of responses to total conserved elements. CONCLUSION A DNA-delivered HIV-1 Gag conserved element vaccine boosted by a combination of this vaccine with a full-length p55 Gag DNA vaccine induced a new conserved element-directed cellular immune response in approximately half the treated PWH on ART.
Collapse
Affiliation(s)
- Jeffrey M Jacobson
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Huichao Chen
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - James I Mullins
- Departments of Microbiology, Medicine, and Global Health, University of Washington, Seattle, WA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Georgia D Tomaras
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Jennifer Kinslow
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| | - Yajing Bao
- Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD
| | - Jack R Heptinstall
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Lu Zhang
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | - Sheetal Sawant
- Duke Center for Human Systems Immunology, Departments of Surgery, Immunology, Molecular Genetics and Microbiology, Durham, NC
| | | | | | - Joshua C Cyktor
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Sonya L Heath
- Division of Infectious Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Ann C Collier
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Susan L Koletar
- Division of Infectious Diseases, College of Medicine, The Ohio State University, Columbus, OH
| | - Babafemi O Taiwo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pablo Tebas
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A Wohl
- Division of Infectious Diseases, Department of Medicine, The University of North Carolina School of Medicine, Chapel Hill, NC
| | - Pablo F Belaunzaran-Zamudio
- Contractor, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL
| |
Collapse
|
4
|
Skrzat-Klapaczyńska A, Kowalska J, Fijołek F, Paciorek M, Bieńkowski C, Krogulec D, Horban A. Vaccination against COVID-19 among healthcare workers as a cocoon strategy for people living with HIV. J Virus Erad 2024; 10:100377. [PMID: 38983868 PMCID: PMC11228949 DOI: 10.1016/j.jve.2024.100377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Healthcare professionals working in infectious disease units are often engaged in the care of patients with HIV infection. A cocoon vaccination strategy may protect those who are immunocompromised from a severe course of COVID-19. Methods The research was conducted between January 2021 and June 2022. The study participants were 450 healthcare workers (HCWs) from the Hospital for Infectious Diseases in Warsaw who were vaccinated against COVID-19 with the BNT162b2 mRNA vaccine (Pfizer-BioNTech) -, thefirst available type of vaccine in Poland. Sera were collected according to the schedule of the study. Statistical analyses were performed with non-parametric tests: Wilcoxon's test was used to compare dependent numerical variables, and Fisher's exact test and the Chi-squared test to compare categorical variables. A p value of <0.05 was considered statistically significant. Results Among the 450 HCWs working in the Hospital for Infectious Diseases in Warsaw 412 (91,5 %) were vaccinated against COVID-19. In total 170 (41,3 %) vaccinated HCWs were included in the final analysis. Their median age was 51 years [interquartile range (IQR): 41-60 years] and median body mass index (BMI) was 25.10 [IQR: 22.68-29.03]. Most of the cohort consisted of women (n = 137, 80.59 %), with the majority working directly with patients (n = 137, 73.21 %). It was found that as early as 14 days after the second dose of the vaccine, 100 % of the study participants achieved a positive result for SARS CoV-2 S-RBD antibodies. There were 168 subjects who had had a COVID-19 diagnosis before entering study and after vaccination 65 HCWs was diagnosed with COVID-19. Conclusions Due to the fact that people living with HIV with severe immunodeficiency may have an incomplete immune response to COVID vaccination and be at risk of a severe course of the disease, the cocoon strategy of vaccinating medical personnel may be beneficial for these patients.
Collapse
Affiliation(s)
- Agata Skrzat-Klapaczyńska
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Justyna Kowalska
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Filip Fijołek
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Marcin Paciorek
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Carlo Bieńkowski
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Dominika Krogulec
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| | - Andrzej Horban
- Department of Adults' Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Poland
- Ward 7, Hospital for Infectious Diseases, 01-201, Warsaw, Poland
| |
Collapse
|
5
|
Datwani S, Kalikawe R, Waterworth R, Mwimanzi FM, Liang R, Sang Y, Lapointe HR, Cheung PK, Omondi FH, Duncan MC, Barad E, Speckmaier S, Moran-Garcia N, DeMarco ML, Hedgcock M, Costiniuk CT, Hull M, Harris M, Romney MG, Montaner JSG, Brumme ZL, Brockman MA. T-Cell Responses to COVID-19 Vaccines and Breakthrough Infection in People Living with HIV Receiving Antiretroviral Therapy. Viruses 2024; 16:661. [PMID: 38793543 PMCID: PMC11125792 DOI: 10.3390/v16050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
People living with HIV (PLWH) can exhibit impaired immune responses to vaccines. Accumulating evidence indicates that PLWH, particularly those receiving antiretroviral therapy, mount strong antibody responses to COVID-19 vaccines, but fewer studies have examined cellular immune responses to the vaccinations. Here, we used an activation-induced marker (AIM) assay to quantify SARS-CoV-2 spike-specific CD4+ and CD8+ T cells generated by two and three doses of COVID-19 vaccines in 50 PLWH receiving antiretroviral therapy, compared to 87 control participants without HIV. In a subset of PLWH, T-cell responses were also assessed after post-vaccine breakthrough infections and/or receipt of a fourth vaccine dose. All participants remained SARS-CoV-2 infection-naive until at least one month after their third vaccine dose. SARS-CoV-2 infection was determined by seroconversion to a Nucleocapsid (N) antigen, which occurred in 21 PLWH and 38 control participants after the third vaccine dose. Multivariable regression analyses were used to investigate the relationships between sociodemographic, health- and vaccine-related variables, vaccine-induced T-cell responses, and breakthrough infection risk. We observed that a third vaccine dose boosted spike-specific CD4+ and CD8+ T-cell frequencies significantly above those measured after the second dose (all p < 0.0001). Median T-cell frequencies did not differ between PLWH and controls after the second dose (p > 0.1), but CD8+ T-cell responses were modestly lower in PLWH after the third dose (p = 0.02), an observation that remained significant after adjusting for sociodemographic, health- and vaccine-related variables (p = 0.045). In PLWH who experienced a breakthrough infection, median T-cell frequencies increased even higher than those observed after three vaccine doses (p < 0.03), and CD8+ T-cell responses in this group remained higher even after a fourth vaccine dose (p = 0.03). In multivariable analyses, the only factor associated with an increased breakthrough infection risk was younger age, which is consistent with the rapid increase in SARS-CoV-2 seropositivity that was seen among younger adults in Canada after the initial appearance of the Omicron variant. These results indicate that PLWH receiving antiretroviral therapy mount strong T-cell responses to COVID-19 vaccines that can be enhanced by booster doses or breakthrough infection.
Collapse
Affiliation(s)
- Sneha Datwani
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Rebecca Kalikawe
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Rachel Waterworth
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Francis M. Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Richard Liang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Yurou Sang
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
| | - Hope R. Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Peter K. Cheung
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Fredrick Harrison Omondi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Maggie C. Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Evan Barad
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Sarah Speckmaier
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Nadia Moran-Garcia
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC V6Z 1Y6, Canada (M.G.R.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Cecilia T. Costiniuk
- Division of Infectious Diseases Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Mark Hull
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marianne Harris
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marc G. Romney
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC V6Z 1Y6, Canada (M.G.R.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julio S. G. Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V6A 1S6, Canada; (S.D.); (R.K.); (R.W.); (F.M.M.); (Y.S.); (P.K.C.); (F.H.O.); (M.C.D.); (E.B.)
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada; (R.L.); (H.R.L.); (N.M.-G.); (M.H.); (M.H.); (J.S.G.M.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V6A 1S6, Canada
| |
Collapse
|
6
|
Ngare I, Tan TS, Toyoda M, Kuwata T, Takahama S, Nakashima E, Yamasaki N, Motozono C, Fujii T, Minami R, Barabona G, Ueno T. Factors Associated with Neutralizing Antibody Responses following 2-Dose and 3rd Booster Monovalent COVID-19 Vaccination in Japanese People Living with HIV. Viruses 2024; 16:555. [PMID: 38675897 PMCID: PMC11053946 DOI: 10.3390/v16040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
People living with HIV (PLWH) could be at risk of blunted immune responses to COVID-19 vaccination. We investigated factors associated with neutralizing antibody (NAb) responses against SARS-CoV-2 and variants of concern (VOCs), following two-dose and third booster monovalent COVID-19 mRNA vaccination in Japanese PLWH. NAb titers were assessed in polyclonal IgG fractions by lentiviral-based pseudovirus assays. Overall, NAb titers against Wuhan, following two-dose vaccination, were assessed in 82 PLWH on treatment, whereby 17/82 (20.73%) were classified as low-NAb participants. Within the low-NAb participants, the third booster vaccination enhanced NAb titers against Wuhan and VOCs, albeit to a significantly lower magnitude than the rest. In the multivariate analysis, NAb titers against Wuhan after two-dose vaccination correlated with age and days since vaccination, but not with CD4+ count, CD4+/CD8+ ratio, and plasma high-sensitivity C-Reactive protein (hsCRP). Interestingly, an extended analysis within age subgroups revealed NAb titers to correlate positively with the CD4+ count and negatively with plasma hsCRP in younger, but not older, participants. In conclusion, a third booster vaccination substantially enhances NAb titers, but the benefit may be suboptimal in subpopulations of PLWH exhibiting low titers at baseline. Considering clinical and immune parameters could provide a nuanced understanding of factors associated with vaccine responses in PLWH.
Collapse
Affiliation(s)
- Isaac Ngare
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Toong Seng Tan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Mako Toyoda
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Takeo Kuwata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Soichiro Takahama
- NHO, Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan; (S.T.); (E.N.); (R.M.)
| | - Eriko Nakashima
- NHO, Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan; (S.T.); (E.N.); (R.M.)
| | - Naoya Yamasaki
- Division of Transfusion Medicine, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (N.Y.); (T.F.)
| | - Chihiro Motozono
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Teruhisa Fujii
- Division of Transfusion Medicine, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (N.Y.); (T.F.)
| | - Rumi Minami
- NHO, Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan; (S.T.); (E.N.); (R.M.)
| | - Godfrey Barabona
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
7
|
Höft MA, Burgers WA, Riou C. The immune response to SARS-CoV-2 in people with HIV. Cell Mol Immunol 2024; 21:184-196. [PMID: 37821620 PMCID: PMC10806256 DOI: 10.1038/s41423-023-01087-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
This review examines the intersection of the HIV and SARS-CoV-2 pandemics. People with HIV (PWH) are a heterogeneous group that differ in their degree of immune suppression, immune reconstitution, and viral control. While COVID-19 in those with well-controlled HIV infection poses no greater risk than that for HIV-uninfected individuals, people with advanced HIV disease are more vulnerable to poor COVID-19 outcomes. COVID-19 vaccines are effective and well tolerated in the majority of PWH, though reduced vaccine efficacy, breakthrough infections and faster waning of vaccine effectiveness have been demonstrated in PWH. This is likely a result of suboptimal humoral and cellular immune responses after vaccination. People with advanced HIV may also experience prolonged infection that may give rise to new epidemiologically significant variants, but initiation or resumption of antiretroviral therapy (ART) can effectively clear persistent infection. COVID-19 vaccine guidelines reflect these increased risks and recommend prioritization for vaccination and additional booster doses for PWH who are moderately to severely immunocompromised. We recommend continued research and monitoring of PWH with SARS-CoV-2 infection, especially in areas with a high HIV burden.
Collapse
Affiliation(s)
- Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Wang Y, Lan X, Qiao Y, Huo Y, Wang L, Liang S, Yu M, Song M, Yan Y, Su B, Xu J. Safety and immunogenicity of homologous prime-boost CoronaVac vaccine in people living with HIV in China: A multicenter prospective cohort study. J Med Virol 2024; 96:e29395. [PMID: 38235782 DOI: 10.1002/jmv.29395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
People living with HIV (PLWH) are particularly vulnerable to SARS-CoV-2. This multicentre prospective cohort study evaluated the long-term immunogenicity and safety of a third homologous dose of Sinovac CoronaVac in PLWH in China. A total of 228 PLWH and 127 HIV-negative controls were finally included and followed up for 6 months. Fewer participants reported mild or moderate adverse reactions, and no serious adverse events were observed. The median levels of neutralizing antibodies (nAbs) and immunoglobulin G against the receptor-binding domain of the spike protein (S-IgG) in PLWH (655.92 IU/mL, IQR: 175.76-1663.55; 206.83 IU/mL, IQR: 85.20-397.82) were comparable to those in control group (1067.16 IU/mL, IQR: 239.85-1670.83; 261.70 IU/mL, IQR: 77.13-400.75), and reached their peak at 4 weeks, exhibiting a delayed peak pattern compared to the 2-week peak in control group. After then, the immune titres gradually decreased over time, but most participants still maintained positive seroconversion at the 6-month mark. Multivariable generalized estimating equation analysis indicated that CD4+T cell count, HIV viral load, and antiretroviral therapy (ART) were independent factors strongly associated with immune response (each p < 0.05). We suggested that PLWH should maintain well-controlled HIV status through ART and receive timely administration of the second booster dose for optimal protection.
Collapse
Affiliation(s)
- Yuxiao Wang
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, People's Republic of China
| | - Xinquan Lan
- Department of Epidemiology, China Medical University, Shenyang, People's Republic of China
| | - Ying Qiao
- Department of infection, The Second Hospital of Huhhot, Huhhot, People's Republic of China
| | - Yuqi Huo
- Translational Medicine Research Center, The Sixth People's Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Li Wang
- Department of Infection, Heilongjiang Provincial Hospital, Heilongjiang, People's Republic of China
| | - Shijie Liang
- Department of Infectious Disease Prevention, Zhengzhou Centers for Disease Control and Prevention, Zhengzhou, People's Republic of China
| | - Maohe Yu
- Department of HIV Prevention, Tianjin Centers for Disease Control and Prevention, Tianjin, People's Republic of China
| | - Moxin Song
- Department of Epidemiology, China Medical University, Shenyang, People's Republic of China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital/National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junjie Xu
- Clinical Research Academy, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
9
|
Lv Y, Huang L, Wang J, He H, Song L, He J, Xu L, Yu C, Mei Y, Gao Q. A community study of neutralizing antibodies against SARS-CoV-2 in China. Front Immunol 2023; 14:1282612. [PMID: 38143749 PMCID: PMC10748485 DOI: 10.3389/fimmu.2023.1282612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background The immune background of the overall population before and after the outbreak of SARS-CoV-2 in China remains unexplored. And the level of neutralizing antibodies is a reliable indicator of individual immunity. Objectives This study aimed to assess the immune levels of different population groups during a viral outbreak and identify the factors influencing these levels. Methods We measured the levels of neutralizing antibodies in 12,137 participants using the COVID19 Neutralizing Antibody Detection kit. The dynamics of neutralizing antibodies were analyzed using a generalized additive model, while a generalized linear model and multi-factor analysis of variance were employed to investigate the influencing factors. Additionally, statistical methods were used to compare neutralizing antibody levels among subgroups of the real-world population. Results Participants who received booster doses exhibited significantly higher levels of neutralizing antibodies compared to those who received only one or two doses (p<0.001). Both elderly [22.55 (5.12, 62.03) IU/mL, 55%] and minors [21.41 (8.15, 45.06) IU/mL, 56%] showed lower positivity rates and neutralizing antibody levels compared to young adults [29.30 (9.82, 188.08) IU/mL, 62%] (p<0.001). Furthermore, the HIV-positive group demonstrated a slightly lower seropositivity rate compared to the healthy group across the three vaccination time points. Notably, three months after the large-scale infection, both the neutralizing antibody level and positivity rate in real-world populations were higher than the previous record [300 (300, 300) IU/mL, 89%; 27.10 (8.77, 139.28) IU/mL, 60%], and this difference was statistically significant. Conclusions Increasing vaccine dosage enhances neutralizing antibody levels, resulting in greater and longer-lasting immunity. Monitoring immune levels in older individuals and those with AIDS is crucial. Additionally, the neutralizing antibodies generated from vaccination have not yet reached the threshold for achieving herd immunity, while individuals exhibit higher immune levels following a large-scale infection. These findings provide valuable insights for guiding new strategies in vaccine administration.
Collapse
Affiliation(s)
- Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junhu Wang
- Health Management Center, AnQing Municipal Hospital, Anqing, Anhui, China
| | - Hui He
- Health Management Department, Shenzhen People’s Hospital, Shenzhen, China
| | - Libo Song
- Health Examination Center, Central Hospital of Jin Zhou, Jinzhou, Liaoning, China
| | - Jia He
- Health Service Center, Shulan (Hang Zhou) Hospital, Hangzhou, Zhejiang, China
| | - Lida Xu
- Beijing Hotgen Biotech Co., Ltd, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ying Mei
- Health Management (Medical Examination) Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Gao
- Beijing Hotgen Biotech Co., Ltd, Beijing, China
| |
Collapse
|
10
|
Tan Y, Wu S, Guo W, Liu J, Ming F, Zou S, Tang W, Liang K, Yang J. Are people living with HIV have a low vulnerability to omicron variant infection: results from a cross-sectional study in China. BMC Infect Dis 2023; 23:795. [PMID: 37964230 PMCID: PMC10647165 DOI: 10.1186/s12879-023-08768-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND A surge of more than 80 million Omicron variant infected cases was reported in China less than a month after the "zero COVID" strategy ended on December 7, 2022. In this circumstance, whether people living with HIV (PLWH) in China experience a similar risk is not clear. METHODS A cross-sectional study was conducted in the Wuchang District of Wuhan between December 20, 2022, and January 18, 2023 through a self-administered online survey. PLWH and HIV-negative people aged ≥ 18 years old who volunteered for this survey were eligible. The prevalence of Omicron variant infection between PLWH and HIV-negative people was compared, and the factors associated with the Omicron variant infection among PLWH and HIV-negative people were further evaluated, respectively. RESULTS In total, 890 PLWH and 1,364 HIV-negative adults from Wuchang District were enrolled. Among these participants, 690 PLWH (77.5%) and 1163 HIV-negative people (85.3%) reported SARS-CoV-2 infection. Gender, chronic disease conditions, and COVID-19 vaccination status significantly differed between the two groups. After adjusting gender, age, comorbidities, and COVID-19 vaccination status, the risk of SARS-CoV-2 infection among PLWH was significantly lower than among HIV-negative people (aOR 0.56, 95%CI 0.42-0.76). Multivariable logistic regression analysis showed that PLWH with older age and detectable HIV-viral load (HIV-VL) had decreased risk of SARS-CoV-2 infection (aOR 0.98, 95%CI 0.96-0.99; aOR 0.59, 95%CI 0.36-0.97). Compared with PLWH receiving one/two doses of COVID-19 vaccines, no significant differences in the risk of SARS-CoV-2 infection were observed among PLWH receiving three doses of inactivated vaccines and four doses of vaccines (three doses of inactivated vaccines plus one dose of inhaled recombinant adenovirus type 5 (AD5)-vectored vaccine). Among HIV-negative people, those receiving four doses of COVID-19 vaccines had a lower risk of SARS-CoV-2 infection than those receiving one/two doses (aOR 0.14, 95%CI 0.08-0.25). CONCLUSIONS Our study proves that PLWH have a lower risk of Omicron variant infection than HIV-negative people. However, even PLWH with younger age and virological suppression should strengthen the prevention against SARS-CoV-2 infection. Three doses of inactivated vaccines plus one dose of inhaled recombinant AD5-vectored COVID-19 vaccine may provide better protection for HIV-negative people.
Collapse
Affiliation(s)
- Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Songjie Wu
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fangzhao Ming
- Wuchang District Center for Disease Control and Prevention, Wuhan, China
| | - Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Weiming Tang
- University of North Carolina Project-China, Guangzhou, China
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China.
| | - Junjun Yang
- Jiangnan University Medical Center, Wuxi, 214122, China.
| |
Collapse
|
11
|
Matveev VA, Mihelic EZ, Benko E, Budylowski P, Grocott S, Lee T, Korosec CS, Colwill K, Stephenson H, Law R, Ward LA, Sheikh-Mohamed S, Mailhot G, Delgado-Brand M, Pasculescu A, Wang JH, Qi F, Tursun T, Kardava L, Chau S, Samaan P, Imran A, Copertino DC, Chao G, Choi Y, Reinhard RJ, Kaul R, Heffernan JM, Jones RB, Chun TW, Moir S, Singer J, Gommerman J, Gingras AC, Kovacs C, Ostrowski M. Immunogenicity of COVID-19 vaccines and their effect on HIV reservoir in older people with HIV. iScience 2023; 26:107915. [PMID: 37790281 PMCID: PMC10542941 DOI: 10.1016/j.isci.2023.107915] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. Our study on 68 PWH and 23 HIV-negative participants aged 55 and older post-three vaccine doses showed equally strong anti-spike IgG responses in serum and saliva through week 48 from baseline, while PWH salivary IgA responses were low. PWH had diminished live-virus neutralization responses after two vaccine doses, which were 'rescued' post-booster. Spike-specific T cell immunity was enhanced in PWH with normal CD4+ T cell count, suggesting Th1 imprinting. The frequency of detectable HIV viremia increased post-vaccination, but vaccines did not affect the size of the HIV reservoir in most PWH, except those with low-level viremia. Thus, older PWH require three doses of COVID-19 vaccine for maximum protection, while individuals with unsuppressed viremia should be monitored for adverse reactions from HIV reservoirs.
Collapse
Affiliation(s)
- Vitaliy A. Matveev
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Erik Z. Mihelic
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto ON M5G 1K2, Canada
| | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Institute of Medical Science, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Sebastian Grocott
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Microbiology and Immunology, McGill University, Montreal QC H3A 2B4, Canada
| | - Terry Lee
- CIHR Canadian HIV Trials Network (CTN), Vancouver BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver BC V6Z IY6, Canada
| | - Chapin S. Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Henry Stephenson
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Bioengineering, McGill University, Montreal QC H3A 0E9, Canada
| | - Ryan Law
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Lesley A. Ward
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | | | - Geneviève Mailhot
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | | | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Jenny H. Wang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Tulunay Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Serena Chau
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Annam Imran
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Dennis C. Copertino
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Gary Chao
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Yoojin Choi
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Robert J. Reinhard
- Independent Public/Global Health Consultant, San Francisco, CA 94114, USA
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Jane M. Heffernan
- Modelling Infection and Immunity Lab, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
- Centre for Disease Modelling, Mathematics and Statistics Department, York University, Toronto ON M3J 1P3, Canada
| | - R. Brad Jones
- Infectious Diseases, Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Singer
- CIHR Canadian HIV Trials Network (CTN), Vancouver BC V6Z 1Y6, Canada
- Centre for Health Evaluation and Outcome Sciences (CHÉOS), Vancouver BC V6Z IY6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | - Jennifer Gommerman
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto ON M5G 1K2, Canada
- Department of Internal Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto ON M5S 1A8, Canada
- Department of Immunology, University of Toronto, Toronto ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health, Toronto ON M5B 1W8, Canada
| |
Collapse
|
12
|
Cheng MQ, Li R, Weng ZY, Song G. Immunogenicity and effectiveness of COVID-19 booster vaccination among people living with HIV: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1275843. [PMID: 37877024 PMCID: PMC10591097 DOI: 10.3389/fmed.2023.1275843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Background The effect of booster vaccinations with the coronavirus virus disease (COVID-19) vaccine on people living with HIV (PLWH) remains unknown. In this study, we aimed to investigate the immunogenicity and effectiveness of booster doses of the COVID-19 vaccine in PLWH. Methods Literature research was done through the PubMed, Embase, Cochrane Review, and Web of Science databases up to 4 July 2023. Pooled estimates were calculated and compared using the DerSimonian and Laird method for a random effects model. Randomized control trials and observational studies were both considered for inclusion. Results We included 35 eligible studies covering 30,154 PLWH. The pooled immune response rate (IRR) of PLWH after the COVID-19 booster vaccination was 97.25% (95% confidence interval [CI], 93.81-99.49), and similar to healthy control (HC) (risk ratio [RR] = 0.98, 95% CI, 0.96-1.00). The pooled IRR for PLWH with CD4+ T-cell counts ≤ 200 was 86.27 (95% CI, 65.35-99.07). For Omicron variants, the pooled IRR for PLWH after booster dose was 74.07% (95% CI, 58.83-89.30), and the risk of IRR was reduced by 10% in PLWH compared with HC (RR = 0.90, 95% CI, 0.80-1.00). The T-cell immune response of PLWH was found to be comparable to HC (p ≥ 0.05). Subgroup analyses revealed that mRNA vaccines produced a relatively high IRR in PLWH compared to other vaccines. In addition, the results showed that booster vaccination appeared to further reduce the risk of COVID-19-related infections, hospitalizations, and deaths compared with the primary vaccination. Conclusion It was shown that booster vaccination with the COVID-19 vaccine provided a high IRR in PLWH and still produced a desirable moderate IRR in PLWH with a CD4+ T-cell count of ≤ 200. Importantly, the humoral and T-cell responses to booster vaccination in PLWH were comparable to HC, and similar results were observed with the SARS-CoV-2 Omicron variant. Our review strongly emphasizes the effect of mRNA vaccine booster vaccination in PLWH on eliciting desirable protective IRR. Furthermore, booster vaccination appears to further reduce the risk of COVID-19 infection, hospitalization, and death in PLWH compared to primary vaccination. However, more evidence is needed to confirm its effectiveness.
Collapse
Affiliation(s)
- Meng-Qun Cheng
- Department of Reproductive Medicine, The Puer People's Hospital, Pu'er, China
| | - Rong Li
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| | - Zhi-Ying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Gao Song
- Department of Pharmacy, The Puer People's Hospital, Pu'er, China
| |
Collapse
|
13
|
Motsoeneng BM, Manamela NP, Kaldine H, Kgagudi P, Hermanus T, Ayres F, Makhado Z, Moyo-Gwete T, van der Mescht MA, Abdullah F, Boswell MT, Ueckermann V, Rossouw TM, Madhi SA, Moore PL, Richardson SI. Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination. Front Immunol 2023; 14:1231276. [PMID: 37600825 PMCID: PMC10435738 DOI: 10.3389/fimmu.2023.1231276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)-naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH.
Collapse
Affiliation(s)
- Boitumelo M. Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Haajira Kaldine
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Prudence Kgagudi
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Tandile Hermanus
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Frances Ayres
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Zanele Makhado
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
- South African Medical Research Council Office of AIDS and TB Research, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Simone I. Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
14
|
Tau L, Hagin D, Freund T, Halperin T, Adler A, Marom R, Ahsanov S, Matus N, Levi I, Gerber G, Lev S, Ziv-Baran T, Turner D. Humoral and Cellular Immune Responses of People Living With Human Immunodeficiency Virus After 3 Doses of Messenger RNA BNT162b2 Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine: A Prospective Cohort Study. Open Forum Infect Dis 2023; 10:ofad347. [PMID: 37539062 PMCID: PMC10394980 DOI: 10.1093/ofid/ofad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Background Recent studies have shown good serological and cellular immune responses in people living with human immunodeficiency virus (PLWH) after receipt of 2 doses of messenger RNAA (mRNA) severe acute respiratory syndrome coronavirus 2 vaccine. Data are missing regarding the response after 3 vaccine doses. Methods We followed up a group of PLWH who received 3 doses of the mRNA BNT162b2 vaccine and for whom data of humoral immune response after 2 vaccine doses were available. Patients provided a blood sample 4-6 months after the booster dose. The aim of the study was to measure the serological and cellular response after the third dose and to evaluate factors associated with the vaccine response. Results Fifty patients have provided a serum sample for serological evaluation after the booster. The anti-receptor-binding domain (RBD) immunoglobulin (Ig) G titers were higher after the booster with a median delta of 3240 arbitrary units/mL. The median CD4+ T-cell count was 660/μL (interquartile range, 515-958/μL) and had no influence on the antibody level. Factors associated with lower delta included higher CD8+ T-cell count (P = .02) and longer time between the third dose and the blood test (P = .01). Higher anti-RBD IgG titer after the second vaccine (P = .03), as well as a longer interval between second and third doses (P = .031) were associated with higher delta. There was no increase in the median number of activated interferon γ+ and tumor necrosis factor α+ CD4+ T cells after the booster (n = 8). Conclusions The anti-RBD IgG level after 3 doses of mRNA BNT162b2 vaccine was higher than the level after 2 doses, suggesting additional value of the booster. Cellular response did not further increase after a booster.
Collapse
Affiliation(s)
- Luba Tau
- Crusaid Kobler AIDS Center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David Hagin
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Allergy and Clinical Immunology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Tal Freund
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Allergy and Clinical Immunology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Tamar Halperin
- Microbiological Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Amos Adler
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Microbiological Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Rotem Marom
- Microbiological Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Svetlana Ahsanov
- Microbiological Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Natasha Matus
- Microbiological Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Inbar Levi
- Microbiological Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Gal Gerber
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shir Lev
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Dan Turner
- Crusaid Kobler AIDS Center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Heftdal LD, Pérez-Alós L, Hasselbalch RB, Hansen CB, Hamm SR, Møller DL, Pries-Heje M, Fogh K, Gerstoft J, Grønbæk K, Ostrowski SR, Frikke-Schmidt R, Sørensen E, Hilsted L, Bundgaard H, Garred P, Iversen K, Sabin C, Nielsen SD. Humoral and cellular immune responses eleven months after the third dose of BNT162b2 an mRNA-based COVID-19 vaccine in people with HIV - a prospective observational cohort study. EBioMedicine 2023; 93:104661. [PMID: 37331161 PMCID: PMC10272831 DOI: 10.1016/j.ebiom.2023.104661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND We investigated long-term durability of humoral and cellular immune responses to third dose of BNT162b2 in people with HIV (PWH) and controls. METHODS In 378 PWH with undetectable viral replication and 224 matched controls vaccinated with three doses of BNT162b2, we measured IgG-antibodies against the receptor binding domain of SARS-CoV-2 spike protein three months before third dose of BNT162b2, and four and eleven months after. In 178 PWH and 135 controls, the cellular response was assessed by interferon-γ (IFN-γ) release in whole blood four months after third dose. Differences in antibody or IFN-γ concentrations were assessed by uni- and multivariable linear regressions. FINDINGS Before the third dose the concentration of SARS-CoV-2 antibodies was lower in PWH than in controls (unadjusted geometric mean ratio (GMR): 0.68 (95% CI: 0.54-0.86, p = 0.002). We observed no differences in antibody concentrations between PWH and controls after four (0.90 (95% CI: 0.75-1.09), p = 0.285) or eleven months (0.89 (95% CI: 0.69-1.14), p = 0.346) after the third dose. We found no difference in IFN-γ concentrations four months after the third dose between PWH and controls (1.06 (95% CI: 0.71-1.60), p = 0.767). INTERPRETATION We found no differences in antibody concentrations or cellular response between PWH and controls up to eleven months after third dose of BNT162b2. Our findings indicate that PWH with undetectable viral replication and controls have comparable immune responses to three doses of the BNT162b2 vaccine. FUNDING This work was funded by the Novo Nordisk Foundation (NFF205A0063505, NNF20SA0064201), the Carlsberg Foundation (CF20-476 0045), the Svend Andersen Research Foundation (SARF2021), and Bio- and Genome Bank Denmark.
Collapse
Affiliation(s)
- Line Dam Heftdal
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloeesvej 5, 2200 Copenhagen N, Denmark
| | - Laura Pérez-Alós
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Ole Maaloeesvej 26, 2200 Copenhagen N, Denmark
| | - Rasmus Bo Hasselbalch
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark
| | - Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Ole Maaloeesvej 26, 2200 Copenhagen N, Denmark
| | - Sebastian Rask Hamm
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Dina Leth Møller
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Mia Pries-Heje
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Kamille Fogh
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jan Gerstoft
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kirsten Grønbæk
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloeesvej 5, 2200 Copenhagen N, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Clinical Immunology, Section 2034, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Section 2034, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Linda Hilsted
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Ole Maaloeesvej 26, 2200 Copenhagen N, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Kasper Iversen
- Department of Cardiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Emergency Medicine, Copenhagen University Hospital, Herlev and Gentofte Hospital, Borgmester Ib Juuls Vej 11, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Caroline Sabin
- National Institute for Health Research (NIHR) Health Protection Research Unit (HPRU) in Blood Borne and Sexually Transmitted Infections at UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom; Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Susanne Dam Nielsen
- Viro-Immunology Research Unit, Department of Infectious Diseases, Section 8632, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Surgical Gastroenterology and Transplantation, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Oe, Denmark.
| |
Collapse
|
16
|
Tan Y, Zou S, Ming F, Wu S, Guo W, Wu M, Tang W, Liang K. A tale of two conditions: when people living with HIV meet three doses of inactivated COVID-19 vaccines. Front Immunol 2023; 14:1174379. [PMID: 37404815 PMCID: PMC10315467 DOI: 10.3389/fimmu.2023.1174379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Background Currently, data on long-term immune responses to a homogenous booster dose of the inactivated COVID-19 vaccine are still limited among people living with HIV (PLWH). Methods A prospective cohort study with a 13-month follow-up was conducted in China between March 2021 and August 2022 to evaluate the dynamics of SARS-CoV-2 specific humoral and cellular immunity against three doses of the inactivated COVID-19 vaccine from before the first dose until 6 months after the booster dose vaccination among PLWH in comparison to healthy controls (HC). Results 43 PLWH on antiretroviral therapy (ART) and 23 HC were enrolled. Compared with HC, the neutralizing antibodies (nAbs) levels among PLWH were significantly lower on days 14, 30, 60, 90, and 120 after the booster dose vaccination. Among PLWH, the nAbs titers on days 14, 30, and 60 after the booster dose were significantly higher than the peak of the second dose. However, on day 180 after the booster dose, the nAbs titers were similar to the peak of the second dose vaccination. Compared with HC, the frequencies of IFN-γ-secreting and TNF-α-secreting CD4+ and CD8+ T cells among PLWH were lower on days 14 and 180 after the booster dose vaccination. Among PLWH, increased T cell immunity was induced by the booster dose of the vaccine and kept stable on day 180 after the booster dose vaccination. Conclusion Although a homogenous booster dose following two doses of the inactivated COVID-19 vaccine among PLWH could elicit higher nAb titers, reduce antibody decay, and maintain T cell responses even 6 months after vaccination, the overall immunogenicity of the booster dose was found to be lower among PLWH than among healthy controls. Further strategies are needed to improve immunogenicity to the inactivated COVID-19 vaccine among PLWH.
Collapse
Affiliation(s)
- Yuting Tan
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shi Zou
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Fangzhao Ming
- Wuchang District Center for Disease Control and Prevention, Wuhan, China
| | - Songjie Wu
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Guo
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Mengmeng Wu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Weiming Tang
- Institute for Healthcare Artificial Intelligence, Guangdong No.2 Provincial People's Hospital, Guangzhou, China
- The University of North Carolina at Chapel Hill Project-China, Guangzhou, China
| | - Ke Liang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Nosocomial Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
17
|
Zhou Q, Zeng F, Meng Y, Liu Y, Liu H, Deng G. Serological response following COVID-19 vaccines in patients living with HIV: a dose-response meta-analysis. Sci Rep 2023; 13:9893. [PMID: 37336939 DOI: 10.1038/s41598-023-37051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
To quantify the pooled rate and risk ratio of seroconversion following the uncomplete, complete, or booster dose of COVID-19 vaccines in patients living with HIV. PubMed, Embase and Cochrane library were searched for eligible studies to perform a systematic review and meta-analysis based on PRIMSA guidelines. The pooled rate and risk ratio of seroconversion were assessed using the Freeman-Tukey double arcsine method and Mantel-Haenszel approach, respectively. Random-effects model was preferentially used as the primary approach to pool results across studies. A total of 50 studies involving 7160 patients living with HIV were analyzed. We demonstrated that only 75.0% (56.4% to 89.9%) patients living with HIV achieved a seroconversion after uncomplete vaccination, which improved to 89.3% (84.2% to 93.5%) after complete vaccination, and 98.4% (94.8% to 100%) after booster vaccination. The seroconversion rates were significantly lower compared to controls at all the stages, while the risk ratios for uncomplete, complete, and booster vaccination were 0.87 (0.77 to 0.99), 0.95 (0.92 to 0.98), and 0.97 (0.94 to 0.99), respectively. We concluded that vaccine doses were associated with consistently improved rates and risk ratios of seroconversion in patients living with HIV, highlighting the significance of booster vaccination for patients living with HIV.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yu Meng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yihuang Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Guangtong Deng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
18
|
Yi Y, Han X, Cui X, Wang P, Wang X, Liu H, Wang Y, Zhu N, Li Y, Lin Y, Li X. Safety and Immunogenicity of the Inactivated COVID-19 Vaccine Booster in People Living with HIV in China. Vaccines (Basel) 2023; 11:1019. [PMID: 37376408 DOI: 10.3390/vaccines11061019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Current knowledge regarding the long-term humoral response of people infected with human immunodeficiency virus to the third dose of inactivated coronavirus disease (COVID-19) vaccine is incomplete. As a result, concerns remain about the safety and efficacy of the vaccination. To improve our understanding of the safety and immunogenicity of the COVID-19 inactivated vaccine booster in people living with HIV (PLWH), a prospective study was conducted on participants who had not yet received a third dose of the COVID-19 inactivated vaccine, had no history of SARS-CoV-2 infection, and had received a second dose of the vaccine more than six months prior. The primary safety outcomes included the incidence of adverse reactions, changes in CD4+ T-cell count, viral load, blood routine examination, liver and kidney function examination, blood sugar, and blood lipid examination. The pseudovirus-neutralizing antibody responses to the D614G variant, Delta variant, and Omicron variants BA.5 and BF.7 were evaluated before vaccination, 14 days, 28 days, 3 months, and 6 months after vaccination to evaluate the immune response of PLWH to the injection of inactivated vaccine booster and the safety of the vaccine. In conclusion, COVID-19 vaccine booster shots were effective in PLWH, resulting in an increase in the number of CD4+ T-cells, neutralizing antibodies that lasted up to six months, and higher levels of neutralizing antibodies lasting approximately 3 months. However, the vaccine protection against the two variants of BA.5 and BF.7 was significantly lower than that of D614G and Delta.
Collapse
Affiliation(s)
- Yunyun Yi
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xinyu Cui
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Peng Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xin Wang
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, China
| | - Hui Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yuqi Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Na Zhu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yanyan Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yingying Lin
- Center of Integrative Medicine, Peking University Ditan Teaching Hospital, Beijing 100015, China
| | - Xin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
19
|
Antibody response durability following three-dose coronavirus disease 2019 vaccination in people with HIV receiving suppressive antiretroviral therapy. AIDS 2023; 37:709-721. [PMID: 36545783 PMCID: PMC9994797 DOI: 10.1097/qad.0000000000003469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN Longitudinal observational cohort. METHODS We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.
Collapse
|
20
|
Augello M, Bono V, Rovito R, Tincati C, Marchetti G. Immunologic Interplay Between HIV/AIDS and COVID-19: Adding Fuel to the Flames? Curr HIV/AIDS Rep 2023; 20:51-75. [PMID: 36680700 PMCID: PMC9860243 DOI: 10.1007/s11904-023-00647-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW HIV/AIDS and COVID-19 have been the major pandemics overwhelming our times. Given the enduring immune disfunction featuring people living with HIV (PLWH) despite combination antiretroviral therapy (cART), concerns for higher incidence and severity of SARS-CoV-2 infection as well as for suboptimal responses to the newly developed vaccines in this population arose early during the pandemics. Herein, we discuss the complex interplay between HIV and SARS-CoV-2, with a special focus on the immune responses to SARS-CoV-2 natural infection and vaccination in PLWH. RECENT FINDINGS Overall, current literature shows that COVID-19 severity and outcomes may be worse and immune responses to infection or vaccination lower in PLWH with poor CD4 + T-cell counts and/or uncontrolled HIV viremia. Data regarding the risk of post-acute sequelae of SARS-CoV-2 infection (PASC) among PLWH are extremely scarce, yet they seem to suggest a higher incidence of such condition. Scarce immunovirological control appears to be the major driver of weak immune responses to SARS-CoV-2 infection/vaccination and worse COVID-19 outcomes in PLWH. Therefore, such individuals should be prioritized for vaccination and should receive additional vaccine doses. Furthermore, given the potentially higher risk of developing long-term sequelae, PLWH who experienced COVID-19 should be ensured a more careful and prolonged follow-up.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
21
|
SARS-CoV-2 live virus neutralization after four COVID-19 vaccine doses in people with HIV receiving suppressive antiretroviral therapy. AIDS 2023; 37:F11-F18. [PMID: 36789806 PMCID: PMC9994812 DOI: 10.1097/qad.0000000000003519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
OBJECTIVE Limited data exist regarding the immune benefits of fourth COVID-19 vaccine doses in people with HIV (PWH) receiving antiretroviral therapy (ART), particularly now that most have experienced a SARS-CoV-2 infection. We quantified wild-type, Omicron-BA.5 and Omicron-BQ.1-specific neutralization up to 1 month post-fourth COVID-19 vaccine dose in 63 (19 SARS-CoV-2-naive and 44 SARS-CoV-2-experienced) PWH. DESIGN A longitudinal observational cohort. METHODS Quantification of wild-type-, Omicron-BA.5, and Omicron-BQ.1-specific neutralization using live virus assays. RESULTS Participants received monovalent (44%) and bivalent (56%) mRNA fourth doses. In COVID-19-naive PWH, fourth doses enhanced wild-type and Omicron-BA.5-specific neutralization modestly above three-dose levels ( P = 0.1). In COVID-19-experienced PWH, fourth doses enhanced wild-type specific neutralization modestly ( P = 0.1) and BA.5-specific neutralization substantially ( P = 0.002). Consistent with humoral benefits of 'hybrid' immunity, COVID-19-experienced PWH exhibited the highest neutralization post-fourth dose, wherein those with Omicron-era infections displayed higher wild-type specific ( P = 0.04) but similar BA.5 and BQ.1-specific neutralization than those with pre-Omicron-era infections. Nevertheless, BA.5-specific neutralization was significantly below wild-type in everyone regardless of COVID-19 experience, with BQ.1-specific neutralization lower still (both P < 0.0001). In multivariable analyses, fourth dose valency did not affect neutralization magnitude. Rather, an mRNA-1273 fourth dose (versus a BNT162b2 one) was the strongest correlate of wild-type specific neutralization, while prior COVID-19, regardless of pandemic era, was the strongest correlate of BA.5 and BQ.1-specific neutralization post-fourth dose. CONCLUSION Fourth COVID-19 vaccine doses, irrespective of valency, benefit PWH regardless of prior SARS-CoV-2 infection. Results support recommendations that all adults receive a fourth COVID-19 vaccine dose within 6 months of their third dose (or their most recent SARS-CoV-2 infection).
Collapse
|
22
|
López-Cortés LF, Saborido-Alconchel A, Trujillo-Rodríguez M, Serna-Gallego A, Llaves-Flores S, Muñoz-Muela E, Pérez-Santos MJ, Lozano C, Mejias-Trueba M, Roca C, Espinosa N, Gutiérrez-Valencia A. Humoral and cellular immunity to SARS-COV-2 after vaccination with mRNA vaccines in PLWH with discordant immune response. Influence of the vaccine administered. Front Immunol 2023; 14:1129753. [PMID: 37006309 PMCID: PMC10050444 DOI: 10.3389/fimmu.2023.1129753] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundData on SARS-CoV-2 mRNA vaccine immunogenicity in people living with human immunodeficiency virus (PLWH) and discordant immune response (DIR) are currently limited. Therefore, we compare the immunogenicity of these vaccines in DIR and immunological responders (IR).MethodsA prospective cohort that enrolled 89 participants. Finally, 22 IR and 24 DIR were analyzed before vaccination (T0), one (T1) and six months (T2) after receiving BNT162b2 or mRNA-1273 vaccine. Additionally, 10 IR and 16 DIR were evaluated after a third dose (T3). Anti-S-RBD IgG, neutralizing antibodies (nAb), neutralization activity, and specific memory B cells were quantified. Furthermore, specific CD4+ and CD8+ responses were determined by intracellular cytokine staining and polyfunctionality indexes (Pindex).ResultsAt T1, all participants developed anti-S-RBD. 100% IR developed nAb compared to 83.3% DIR. Spike-specific B cells were detected in all IR and 21/24 DIR. Memory CD4+ T cells responded in 5/9 IR and 7/9 DIR, mainly based on the expression of IFN-γ and TNF-α, with a higher Pindex in DIR. Memory CD8+ T cells responded in only four participants in each group. At T2, anti-S-RBD and nAb titers were higher in DIR than in IR. In both groups, there was an increase in specific B memory cells, higher in DIR. Six IR and five DIR maintained a specific memory CD4+ response. Memory CD8+ response was preserved in IR but was lost in DIR. In a multivariate linear regression analysis, receiving mRNA-1273 instead of BNT162b2 played a prominent role in the results.ConclusionsOur data suggest that PLWH with DIR can mount an immune response similar to those with higher CD4+, provided they receive the mRNA-1273 vaccine instead of others less immunogenic.
Collapse
Affiliation(s)
- Luis F. López-Cortés
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- *Correspondence: Luis F. López-Cortés,
| | - Abraham Saborido-Alconchel
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - María Trujillo-Rodríguez
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - Ana Serna-Gallego
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - Silvia Llaves-Flores
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - Esperanza Muñoz-Muela
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - María Jesús Pérez-Santos
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - Carmen Lozano
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - Marta Mejias-Trueba
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Pharmacy Service, Virgen del Rocío University Hospital, Seville, ;Spain
| | - Cristina Roca
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - Nuria Espinosa
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| | - Alicia Gutiérrez-Valencia
- Infectious Diseases and Clinic Microbiology Unit. Biomedicine Institute of Seville/Virgen del Rocío University Hospital/Consejo Superior de Investigaciones Científicas/University of Seville, Seville, Spain
| |
Collapse
|
23
|
Cossu MV, Mileto D, Giacomelli A, Oreni L, Bracchitta F, Pellicciotta M, Salari F, Petri F, Meraviglia P, Antinori S, Rizzardini G, Ridolfo AL. Comorbidity Burden and Suboptimal Immunological Responses to Coronavirus Disease 2019 Vaccination in People Living with Human Immunodeficiency Virus. J Infect Dis 2023; 227:733-735. [PMID: 35796710 PMCID: PMC9278213 DOI: 10.1093/infdis/jiac286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Maria Vittoria Cossu
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Andrea Giacomelli
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Letizia Oreni
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Fiorenza Bracchitta
- Laboratory of Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Martina Pellicciotta
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Federica Salari
- Laboratory of Clinical Microbiology, Virology and Bioemergency Diagnostics, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Francesco Petri
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Paola Meraviglia
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Spinello Antinori
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy.,Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuliano Rizzardini
- I Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| | - Anna Lisa Ridolfo
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Milan, Italy
| |
Collapse
|
24
|
Jongkees MJ, Geers D, Hensley KS, Huisman W, GeurtsvanKessel CH, Bogers S, Gommers L, Papageorgiou G, Jochems SP, den Hollander JG, Schippers EF, Ammerlaan HSM, Bierman WFW, van der Valk M, Berrevoets MAH, Soetekouw R, Langebeek N, Bruns AHW, Leyten EMS, Sigaloff KCE, van Vonderen MGA, Delsing CE, Branger J, Katsikis PD, Mueller YM, de Vries RD, Rijnders BJA, Brinkman K, Rokx C, Roukens AHE. Immunogenicity of an Additional mRNA-1273 SARS-CoV-2 Vaccination in People With HIV With Hyporesponse After Primary Vaccination. J Infect Dis 2023; 227:651-662. [PMID: 36402141 PMCID: PMC9978319 DOI: 10.1093/infdis/jiac451] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The COVIH study is a prospective coronavirus disease 2019 (COVID-19) vaccination study in 1154 people with HIV (PWH), of whom 14% showed reduced antibody levels after primary vaccination. We evaluated whether an additional vaccination boosts immune responses in these hyporesponders. METHODS The primary end point was the increase in antibodies 28 days after additional mRNA-1273 vaccination. Secondary end points included neutralizing antibodies, S-specific T-cell and B-cell responses, and reactogenicity. RESULTS Of the 66 participants, 40 previously received 2 doses ChAdOx1-S, 22 received 2 doses BNT162b2, and 4 received a single dose Ad26.COV2.S. The median age was 63 years (interquartile range [IQR], 60-66), 86% were male, and median CD4+ T-cell count was 650/μL (IQR, 423-941). The mean S1-specific antibody level increased from 35 binding antibody units (BAU)/mL (95% confidence interval [CI], 24-46) to 4317 BAU/mL (95% CI, 3275-5360) (P < .0001). Of all participants, 97% showed an adequate response and the 45 antibody-negative participants all seroconverted. A significant increase in the proportion of PWH with ancestral S-specific CD4+ T cells (P = .04) and S-specific B cells (P = .02) was observed. CONCLUSIONS An additional mRNA-1273 vaccination induced a robust serological response in 97% of PWH with a hyporesponse after primary vaccination. Clinical Trials Registration. EUCTR2021-001054-57-N.
Collapse
Affiliation(s)
- Marlou J Jongkees
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Kathryn S Hensley
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Wesley Huisman
- Department of Parasitology, Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Susanne Bogers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Lennert Gommers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Grigorios Papageorgiou
- Department of Biostatistics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Simon P Jochems
- Department of Parasitology, Leiden University Centre for Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jan G den Hollander
- Department of Internal Medicine, Maasstad Hospital, Rotterdam, the Netherlands
| | - Emile F Schippers
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Internal Medicine, Haga Teaching Hospital, the Hague, the Netherlands
| | - Heidi S M Ammerlaan
- Department of Internal Medicine, Catharina Hospital, Eindhoven, the Netherlands
| | - Wouter F W Bierman
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Groningen, Groningen, the Netherlands
| | - Marc van der Valk
- Department of Internal Medicine and Infectious Diseases, DC Klinieken, Amsterdam, the Netherlands.,Department of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Marvin A H Berrevoets
- Department of Internal Medicine, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Robert Soetekouw
- Department of Internal Medicine and Infectious Diseases, Spaarne Gasthuis, Haarlem, the Netherlands
| | - Nienke Langebeek
- Department of Internal Medicine and Infectious Diseases, Rijnstate Hospital, Arnhem, the Netherlands
| | - Anke H W Bruns
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Eliane M S Leyten
- Department of Internal Medicine and Infectious Diseases, Haaglanden Medical Centre, the Hague, the Netherlands
| | - Kim C E Sigaloff
- Department of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | | | - Corine E Delsing
- Department of Internal Medicine and Infectious Diseases, Medisch Spectrum Twente, Enschede, the Netherlands
| | - Judith Branger
- Department of Internal Medicine, Flevo Hospital, Almere, the Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG Hospital, Amsterdam, the Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anna H E Roukens
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
25
|
Touizer E, Alrubayyi A, Ford R, Hussain N, Gerber PP, Shum HL, Rees-Spear C, Muir L, Gea-Mallorquí E, Kopycinski J, Jankovic D, Jeffery-Smith A, Pinder CL, Fox TA, Williams I, Mullender C, Maan I, Waters L, Johnson M, Madge S, Youle M, Barber TJ, Burns F, Kinloch S, Rowland-Jones S, Gilson R, Matheson NJ, Morris E, Peppa D, McCoy LE. Attenuated humoral responses in HIV after SARS-CoV-2 vaccination linked to B cell defects and altered immune profiles. iScience 2023; 26:105862. [PMID: 36590902 PMCID: PMC9788849 DOI: 10.1016/j.isci.2022.105862] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
We assessed a cohort of people living with human immunodeficiency virus (PLWH) (n = 110) and HIV negative controls (n = 64) after 1, 2 or 3 SARS-CoV-2 vaccine doses. At all timepoints, PLWH had significantly lower neutralizing antibody (nAb) titers than HIV-negative controls. We also observed a delayed development of neutralization in PLWH that was underpinned by a reduced frequency of spike-specific memory B cells (MBCs). Improved neutralization breadth was seen against the Omicron variant (BA.1) after the third vaccine dose in PLWH but lower nAb responses persisted and were associated with global MBC dysfunction. In contrast, SARS-CoV-2 vaccination induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, individuals with low or absent neutralization had detectable functional T cell responses. These PLWH had reduced numbers of circulating T follicular helper cells and an enriched population of CXCR3+CD127+CD8+T cells after two doses of SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Emma Touizer
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Aljawharah Alrubayyi
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rosemarie Ford
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Noshin Hussain
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hiu-Long Shum
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Chloe Rees-Spear
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Luke Muir
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | | | - Jakub Kopycinski
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dylan Jankovic
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Anna Jeffery-Smith
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Christopher L. Pinder
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Thomas A. Fox
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Ian Williams
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Claire Mullender
- Institute for Global Health, University College London, London, UK
| | - Irfaan Maan
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- Institute for Global Health, University College London, London, UK
| | - Laura Waters
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
| | - Margaret Johnson
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sara Madge
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Michael Youle
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Tristan J. Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | | | - Richard Gilson
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- Institute for Global Health, University College London, London, UK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Emma Morris
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
- Mortimer Market Centre, Department of HIV, Central and North West London NHS Trust, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Laura E. McCoy
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
26
|
Yin J, Chen Y, Li Y, Wang C, Zhang X. Immunogenicity and efficacy of COVID-19 vaccines in people living with HIV: a systematic review and meta-analysis. Int J Infect Dis 2022; 124:212-223. [PMID: 36241168 PMCID: PMC9553964 DOI: 10.1016/j.ijid.2022.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Available data show that COVID-19 vaccines may be less effective in people living with HIV (PLWH) who are at increased risk for severe COVID-19. This meta-analysis aimed to compare the immunogenicity and efficacy of COVID-19 vaccines in PLWH with healthy individuals. METHODS Pubmed/Medline, EMBASE, and the Cochrane Library were searched. Risk ratios of seroconversion were separately pooled using random-effects meta-analysis, and a systematic review without meta-analysis of SARS-CoV-2 antibody titer levels was performed after the first and second doses of a COVID-19 vaccine. RESULTS A total of 22 studies with 6522 subjects met the inclusion criteria. After the first vaccine dose, seroconversion in PLWH was comparable to that in healthy individuals. After a second dose, seroconversion was slightly lower in PLWH compared with healthy controls, and antibody titers did not seem to be significantly affected or reduced among participants of both groups. CONCLUSION COVID-19 vaccines show favorable immunogenicity and efficacy in PLWH. A second dose is associated with consistently improved seroconversion, although it is slightly lower in PLWH than in healthy individuals. Additional strategies, such as a booster vaccination with messenger RNA COVID-19 vaccines, might improve seroprotection for these patients.
Collapse
Affiliation(s)
- Juntao Yin
- Department of Pharmacy, Huaihe Hospital, Henan University, Henan, China.
| | - Yangyang Chen
- Cardiology, Huaihe Hospital, Henan University, Henan, China.
| | - Yang Li
- Department of Pharmacy, Huaihe Hospital, Henan University, Henan, China.
| | - Chaoyang Wang
- Institute of Evidence-based Medicine and Translational Medicine, Department of Medicine, Henan University, Henan, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, School of Pharmacy, Jinan University, Guangdong, China.
| |
Collapse
|
27
|
Hensley KS, Jongkees MJ, Geers D, GeurtsvanKessel CH, Mueller YM, Dalm VASH, Papageorgiou G, Steggink H, Gorska A, Bogers S, den Hollander JG, Bierman WFW, Gelinck LBS, Schippers EF, Ammerlaan HSM, van der Valk M, van Vonderen MGA, Delsing CE, Gisolf EH, Bruns AHW, Lauw FN, Berrevoets MAH, Sigaloff KCE, Soetekouw R, Branger J, de Mast Q, Lammers AJJ, Lowe SH, de Vries RD, Katsikis PD, Rijnders BJA, Brinkman K, Roukens AHE, Rokx C. Immunogenicity and reactogenicity of SARS-CoV-2 vaccines in people living with HIV in the Netherlands: A nationwide prospective cohort study. PLoS Med 2022; 19:e1003979. [PMID: 36301821 PMCID: PMC9612532 DOI: 10.1371/journal.pmed.1003979] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Vaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. In this study we set out to investigate, for the vaccines currently approved in the Netherlands, the immunogenicity and reactogenicity of SARS-CoV-2 vaccinations in PLWH. METHODS AND FINDINGS We conducted a prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S, and Ad26.COV2.S vaccines in adult PLWH without prior COVID-19, and compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response, and reactogenicity. Between 14 February and 7 September 2021, 1,154 PLWH (median age 53 [IQR 44-60] years, 85.5% male) and 440 controls (median age 43 [IQR 33-53] years, 28.6% male) were included in the final analysis. Of the PLWH, 884 received BNT162b2, 100 received mRNA-1273, 150 received ChAdOx1-S, and 20 received Ad26.COV2.S. In the group of PLWH, 99% were on antiretroviral therapy, 97.7% were virally suppressed, and the median CD4+ T-cell count was 710 cells/μL (IQR 520-913). Of the controls, 247 received mRNA-1273, 94 received BNT162b2, 26 received ChAdOx1-S, and 73 received Ad26.COV2.S. After mRNA vaccination, geometric mean antibody concentration was 1,418 BAU/mL in PLWH (95% CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV status remained associated with a decreased response (0.607, 95% CI 0.508-0.725, p < 0.001). All controls receiving an mRNA vaccine had an adequate response, defined as >300 BAU/mL, whilst in PLWH this response rate was 93.6%. In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+ T-cell count 250-500 cells/μL (2.845, 95% CI 1.876-4.314, p < 0.001) or >500 cells/μL (2.936, 95% CI 1.961-4.394, p < 0.001), whilst a viral load > 50 copies/mL was associated with a reduced response (0.454, 95% CI 0.286-0.720, p = 0.001). Increased IFN-γ, CD4+ T-cell, and CD8+ T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation-induced marker assays, comparable to controls. Reactogenicity was generally mild, without vaccine-related serious adverse events. Due to the control of vaccine provision by the Dutch National Institute for Public Health and the Environment, there were some differences between vaccine groups in the age, sex, and CD4+ T-cell counts of recipients. CONCLUSIONS After vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH compared to HIV-negative controls. To reach and maintain the same serological responses as HIV-negative controls, additional vaccinations are probably required. TRIAL REGISTRATION The trial was registered in the Netherlands Trial Register (NL9214). https://www.trialregister.nl/trial/9214.
Collapse
Affiliation(s)
- Kathryn S. Hensley
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Marlou J. Jongkees
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Yvonne M. Mueller
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Virgil A. S. H. Dalm
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Hanka Steggink
- Department of Internal Medicine and Infectious Diseases, OLVG Hospital, Amsterdam, Netherlands
| | - Alicja Gorska
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Wouter F. W. Bierman
- Department of Internal Medicine, Section Infectious Diseases, University of Groningen, Groningen, Netherlands
| | - Luc B. S. Gelinck
- Department of Internal Medicine and Infectious Diseases, Haaglanden Medical Centre, The Hague, Netherlands
| | - Emile F. Schippers
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, Netherlands
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden Netherlands
| | | | - Marc van der Valk
- Department of Internal Medicine and Infectious Diseases, DC Klinieken, Amsterdam, Netherlands
- Department of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Corine E. Delsing
- Department of Internal Medicine and Infectious Diseases, Medisch Spectrum Twente, Enschede, Netherlands
| | - Elisabeth H. Gisolf
- Department of Internal Medicine and Infectious Diseases, Rijnstate Hospital, Arnhem, Netherlands
| | - Anke H. W. Bruns
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Fanny N. Lauw
- Department of Internal Medicine and Infectious Diseases, Medical Centre Jan van Goyen, Amsterdam, Netherlands
| | | | - Kim C. E. Sigaloff
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Robert Soetekouw
- Department of Internal Medicine and Infectious Diseases, Spaarne Gasthuis, Haarlem, Netherlands
| | - Judith Branger
- Department of Internal Medicine, Flevo Hospital, Almere, Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Adriana J. J. Lammers
- Department of Internal Medicine and Infectious Diseases, Isala Hospital, Zwolle, Netherlands
| | - Selwyn H. Lowe
- Department of Internal Medicine and Infectious Diseases, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Peter D. Katsikis
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Bart J. A. Rijnders
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG Hospital, Amsterdam, Netherlands
| | - Anna H. E. Roukens
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
28
|
Moussaoui ME, Desmecht S, Tashkeev A, Lambert N, Maes N, Braghini J, Marechal N, Quintana C, Briquet K, Gofflot S, Toussaint F, Hayette MP, Vermeersch P, Lutteri L, Grégoire C, Beguin Y, Rahmouni S, Moutschen M, Desmecht D, Darcis G. Reduced T-cell response following a third dose of SARS-CoV-2 vaccine in infection-naïve people living with HIV. J Infect 2022; 85:702-769. [PMID: 36096313 PMCID: PMC9458764 DOI: 10.1016/j.jinf.2022.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Majdouline El Moussaoui
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium.
| | - Salomé Desmecht
- Laboratory of Animal Genomics, GIGA-Medical Genomics. GIGA-Institute, University of Liege, Belgium
| | - Aleksandr Tashkeev
- Laboratory of Animal Genomics, GIGA-Medical Genomics. GIGA-Institute, University of Liege, Belgium
| | - Nicolas Lambert
- Department of Neurology, University Hospital of Liège, Belgium
| | - Nathalie Maes
- Department of Biostatistics and Medico-Economic Information, University Hospital of Liège, Belgium
| | - Joachim Braghini
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Nicole Marechal
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Céline Quintana
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Karine Briquet
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Stéphanie Gofflot
- Department of Biothèque Hospitalo-Universitaire de Liège (BHUL), University Hospital of Liège, Belgium
| | | | | | - Pieter Vermeersch
- Department of Laboratory Medicine, University Hospital of Leuven, Leuven, Belgium
| | - Laurence Lutteri
- Department of Clinical Chemistry, University Hospital of Liège, Belgium
| | - Céline Grégoire
- Department of Haematology, University Hospital of Liège, University of Liège, Belgium
| | - Yves Beguin
- Department of Biothèque Hospitalo-Universitaire de Liège (BHUL), University Hospital of Liège, Belgium; Department of Haematology, University Hospital of Liège, University of Liège, Belgium
| | - Souad Rahmouni
- Laboratory of Animal Genomics, GIGA-Medical Genomics. GIGA-Institute, University of Liege, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| | - Daniel Desmecht
- Department of Animal Pathology, Fundamental and Applied Research for Animals and Health, University of Liège, Liège 4000, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, Avenue de l'Hôpital, 1, 4000 Liège, Belgium
| |
Collapse
|
29
|
Immunogenicity and Safety of BNT162b2 Homologous Booster Vaccination in People Living with HIV under Effective cART. Vaccines (Basel) 2022; 10:vaccines10081243. [PMID: 36016131 PMCID: PMC9414483 DOI: 10.3390/vaccines10081243] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023] Open
Abstract
Data on COVID-19 boosting vaccination in people living with HIV (PLWH) are scant. We investigated the immunogenicity and safety of the BNT162b2 homologous boosting vaccination. Anti-SARS-CoV-2 spike antibodies (LIAISON® SARS-CoV-2 S1/S2 IgG test, DiaSorin®), CD4+, CD8+ and viraemia were monitored at T0 (pre-vaccination), T1 (4 weeks after the second dose), T2 (pre-booster) and T3 (4 weeks after the booster dose). Humoral responses were evaluated according to sex, age, BMI, nadir and baseline CD4+ counts, as well as type of cART regimen. Forty-two subjects were included: the median age was 53 years (IQR: 48−61); the median time since HIV was 12.4 years (IQR: 6.5−18.3); the median nadir and baseline CD4+ counts were 165 (IQR: 104−291) and 687 cells/mm3 (IQR: 488−929), respectively. The booster dose was administered at a median of 5.5 months after the second dose. Median anti-SARS-CoV-2 IgG concentration had significantly decreased at T2 compared to T1 (107 vs. 377, p < 0.0001). Antibody levels elicited by the booster dose (median: 1580 AU/mL) were significantly higher compared with those of all the other time points (p < 0.0001). None of the investigated variables significantly affected antibody response induced by the booster dose. Local and systemic side-effects were referred by 23.8% and 14.3% of the subjects, respectively. One patient developed sensorineural hearing loss (SNHL) 24 h after boosting. He recovered auditory function upon endothympanic administration of corticosteroids. The BNT162b2 boosting vaccination in PLWH is safe and greatly increased the immune response with respect to the primary vaccination.
Collapse
|