1
|
Cao M, Jia Q, Li J, Zhao L, Zhu L, Zhang Y, Li S, Deng T. Naturally occurring PA E206K point mutation in 2009 H1N1 pandemic influenza viruses impairs viral replication at high temperatures. Virol Sin 2024; 39:71-80. [PMID: 37979619 PMCID: PMC10877435 DOI: 10.1016/j.virs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The emergence of influenza virus A pandemic H1N1 in April 2009 marked the first pandemic of the 21st century. In this study, we observed significant differences in the polymerase activities of two clinical 2009 H1N1 influenza A virus isolates from Chinese and Japanese patients. Sequence comparison of the three main protein subunits (PB2, PB1, and PA) of the viral RNA-dependent RNA polymerase complex and subsequent mutational analysis revealed that a single amino acid substitution (E206K) was responsible for the observed impaired replication phenotype. Further in vitro experiments showed that presence of PAE206K decreased the replication of influenza A/WSN/33 virus in mammalian cells and a reduction in the virus's pathogenicity in vivo. Mechanistic studies revealed that PAE206K is a temperature-sensitive mutant associated with the inability to transport PB1-PA complex to the nucleus at high temperature (39.5 °C). Hence, this naturally occurring variant in the PA protein represents an ideal candidate mutation for the development of live attenuated influenza vaccines.
Collapse
Affiliation(s)
- Mengmeng Cao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Qiannan Jia
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jinghua Li
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lili Zhao
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yufan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Deng
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Lin RW, Chen GW, Sung HH, Lin RJ, Yen LC, Tseng YL, Chang YK, Lien SP, Shih SR, Liao CL. Naturally occurring mutations in PB1 affect influenza A virus replication fidelity, virulence, and adaptability. J Biomed Sci 2019; 26:55. [PMID: 31366399 PMCID: PMC6668090 DOI: 10.1186/s12929-019-0547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022] Open
Abstract
Background Mutations in the PB1 subunit of RNA-dependent RNA polymerase (RdRp) of influenza A virus can affect replication fidelity. Before the influenza A/H1N1 pandemic in 2009, most human influenza A/H1N1 viruses contained the avian-associated residue, serine, at position 216 in PB1. However, near the onset of the 2009 pandemic, human viruses began to acquire the mammalian-associated residue, glycine, at PB1–216, and PB1–216G became predominant in human viruses thereafter. Methods Using entropy-based analysis algorithm, we have previously identified several host-specific amino-acid signatures that separated avian and swine viruses from human influenza viruses. The presence of these host-specific signatures in human influenza A/H1N1 viruses suggested that these mutations were the result of adaptive genetic evolution that enabled these influenza viruses to circumvent host barriers, which resulted in cross-species transmission. We investigated the biological impact of this natural avian-to-mammalian signature substitution at PB1–216 in human influenza A/H1N1 viruses. Results We found that PB1–216G viruses had greater mutation potential, and were more sensitive to ribavirin than PB1–216S viruses. In oseltamivir-treated HEK293 cells, PB1–216G viruses generated mutations in viral neuraminidase at a higher rate than PB1–216S viruses. By contrast, PB1–216S viruses were more virulent in mice than PB1–216G viruses. These results suggest that the PB1-S216G substitution enhances viral epidemiological fitness by increasing the frequency of adaptive mutations in human influenza A/H1N1 viruses. Conclusions Our results thus suggest that the increased adaptability and epidemiological fitness of naturally arising human PB1–216G viruses, which have a canonical low-fidelity replicase, were the biological mechanisms underlying the replacement of PB1–216S viruses with a high-fidelity replicase following the emergence of pdmH1N1. We think that continued surveillance of such naturally occurring PB1–216 variants among others is warranted to assess the potential impact of changes in RdRp fidelity on the adaptability and epidemiological fitness of human A/H1N1 influenza viruses. Electronic supplementary material The online version of this article (10.1186/s12929-019-0547-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruey-Wen Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161 Section 6, Minquan E. Road, Taipei, 114, Taiwan
| | - Guang-Wu Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, No. 5 Fu Hsing Street, Kwei-Shan, Taoyuan, 333, Taiwan.,Department of Computer Science and Information Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, No. 259, Wen Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Hsiang-Hsuan Sung
- National Laboratory Animal Center, Nation Applied Research Laboratory, No.106, Sec. 2, Heping E. Rd., Taipei, 10622, Taiwan
| | - Ren-Jye Lin
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, 10 F, Bldg F, 3 Yuanqu Street, Taipei, 11503, Taiwan
| | - Li-Chen Yen
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chaun E. Road, Taipei, 114, Taiwan
| | - Yu-Ling Tseng
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chaun E. Road, Taipei, 114, Taiwan
| | - Yung-Kun Chang
- Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chaun E. Road, Taipei, 114, Taiwan
| | - Shu-Pei Lien
- National institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, No. 5 Fu Hsing Street, Kwei-Shan, Taoyuan, 333, Taiwan.,Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Ching-Len Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161 Section 6, Minquan E. Road, Taipei, 114, Taiwan. .,National Mosquito-Borne Diseases Control Research Center, National Health Research Institute, 10 F, Bldg F, 3 Yuanqu Street, Taipei, 11503, Taiwan. .,Department of Microbiology and Immunology, National Defense Medical Center, No. 161 Section 6, Ming Chaun E. Road, Taipei, 114, Taiwan. .,National institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli County, 35053, Taiwan.
| |
Collapse
|
3
|
Gong YN, Tsao KC, Chen GW, Wu CJ, Chen YH, Liu YC, Yang SL, Huang YC, Shih SR. Population dynamics at neuraminidase position 151 of influenza A (H1N1)pdm09 virus in clinical specimens. J Gen Virol 2019; 100:752-759. [PMID: 30994443 DOI: 10.1099/jgv.0.001258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus mutates rapidly, allowing it to escape natural and vaccine-induced immunity. Neuraminidase (NA) is a surface protein capable of cleaving the glycosidic linkages of neuraminic acids to release newly formed virions from infected cells. Genetic variants within a viral population can influence the emergence of pandemic viruses as well as drug susceptibility and vaccine effectiveness. In the present study, 55 clinical specimens from patients infected with the 2009 pandemic influenza A/H1N1 virus, abbreviated as A(H1N1)pdm09, during the 2015-2016 outbreak season in Taiwan were collected. Whole genomes were obtained through next-generation sequencing. Based on the published sequences from A(H1N1)pdm09 strains worldwide, a mixed population of two distinct variants at NA position 151 was revealed. We initially reasoned that such a mixed population may have emerged during cell culture. However, additional investigations confirmed that these mixed variants were detectable in the specimens of patients. To further investigate the role of the two NA-151 variants in a dynamic population, a reverse genetics system was employed to generate recombinant A(H1N1)pdm09 viruses. It was observed that the mixture of the two distinct variants was characterized by a higher replication rate compared to the recombinant viruses harbouring a single variant. Moreover, an NA inhibition assay revealed that a high frequency of the minor NA-151 variant in A(H1N1)pdm09 was associated with a reduced susceptibility to NA inhibitors. We conclude that two distinct NA-151 variants can be identified in patient specimens and that such variants may increase viral replication and NA activity.
Collapse
Affiliation(s)
- Yu-Nong Gong
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Kuo-Chien Tsao
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,3Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Guang-Wu Chen
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,4Department of Computer Science and Information Engineering, School of Electrical and Computer Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chung-Jung Wu
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yi-Hsiang Chen
- 1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yi-Chun Liu
- 2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Shu-Li Yang
- 2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,3Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yhu-Chering Huang
- 5Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,6College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Shin-Ru Shih
- 2Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC.,7Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC.,1Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,3Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| |
Collapse
|
4
|
Sonnberg S, Ducatez MF, DeBeauchamp J, Crumpton JC, Rubrum A, Sharp B, Hall RJ, Peacey M, Huang S, Webby RJ. Pandemic Seasonal H1N1 Reassortants Recovered from Patient Material Display a Phenotype Similar to That of the Seasonal Parent. J Virol 2016; 90:7647-56. [PMID: 27279619 PMCID: PMC4988147 DOI: 10.1128/jvi.00772-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. IMPORTANCE Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen.
Collapse
Affiliation(s)
| | | | | | | | - Adam Rubrum
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Hall
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Matthew Peacey
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Sue Huang
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Richard J Webby
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb Pathog 2015; 89:62-72. [PMID: 26344393 DOI: 10.1016/j.micpath.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
Influenza A virus (IAV) is characterized by eight single-stranded, negative sense RNA segments, which allows for gene reassortment among different IAV subtypes when they co-infect a single host cell simultaneously. Genetic reassortment is an important way to favor the evolution of influenza virus. Novel reassortant virus may pose a pandemic among humans. In history, three human pandemic influenza viruses were caused by genetic reassortment between avian, human and swine influenza viruses. Since 2009, pandemic (H1N1) 2009 (pdm/09 H1N1) influenza virus composed of two swine influenza virus genes highlighted the genetic reassortment again. Due to wide host species and high transmission of the pdm/09 H1N1 influenza virus, many different avian, human or swine influenza virus subtypes may reassert with it to generate novel reassortant viruses, which may result in a next pandemic among humans. So, it is necessary to understand the potential threat of current reassortant viruses between the pdm/09 H1N1 and other influenza viruses to public health. This study summarized the status of the reassortant viruses between the pdm/09 H1N1 and other influenza viruses of different species origins in natural and experimental conditions. The aim of this summarization is to facilitate us to further understand the potential threats of novel reassortant influenza viruses to public health and to make effective prevention and control strategies for these pathogens.
Collapse
|
6
|
Abstract
Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.
Collapse
Affiliation(s)
- B H Janke
- DVM, PhD, Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
7
|
Huang CH, Chen CJ, Yen CT, Yu CP, Huang PN, Kuo RL, Lin SJ, Chang CK, Shih SR. Caspase-1 deficient mice are more susceptible to influenza A virus infection with PA variation. J Infect Dis 2013; 208:1898-905. [PMID: 23901080 DOI: 10.1093/infdis/jit381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Reassortment within polymerase genes causes changes in the pathogenicity of influenza A viruses. We previously reported that the 2009 pH1N1 PA enhanced the pathogenicity of seasonal H1N1. We examined the effects of the PA gene from the HPAI H5N1 following its introduction into currently circulating seasonal influenza viruses. METHODS To evaluate the role of H5N1 PA in altering the virulence of seasonal influenza viruses, we generated a recombinant seasonal H3N2 (3446) that expressed the H5N1 PA protein (VPA) and evaluated the RNP activity, growth kinetics, and pathogenicity of the reassortant virus in mice. RESULTS Compared with the wild-type 3446 virus, the substitution of the H5N1 PA gene into the 3446 virus (VPA/3446) resulted in increased RNP activity and an increased replication rate in A549 cells. The recombinant VPA/3446 virus also caused more severe pneumonia in Casp 1(-/-) mice than in IL1β(-/-) and wild-type B6 mice. CONCLUSIONS Although the PA from H5N1 is incidentally compatible with a seasonal H3N2 backbone, the H5N1 PA affected the virulence of seasonal H3N2, particularly in inflammasome-related innate immunity deficient mice. These findings highlight the importance of monitoring PA reassortment in seasonal flu, and confirm the role of the Caspase-1 gene in influenza pathogenesis.
Collapse
|