1
|
Mikuličić S, Massenberg A, Döring T, Brandenburg K, Lang T, Florin L. HSPG-binding peptide Pep19-2.5 is a potent inhibitor of HPV16 infection. Antimicrob Agents Chemother 2025:e0157524. [PMID: 39807885 DOI: 10.1128/aac.01575-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Peptide-based therapeutics are gaining attention for their potential to target various viral and host cell factors. One notable example is Pep19-2.5 (Aspidasept), a synthetic anti-lipopolysaccharide peptide that binds to heparan sulfate proteoglycans (HSPGs) and has demonstrated inhibitory effects against certain bacteria and enveloped viruses. This study explores, for the first time, the effectiveness of Pep19-2.5 against a non-enveloped virus, using pseudoviruses of the oncogenic human papillomavirus type 16 (HPV16) as a model. HPV16 infects epithelial cells of the skin and mucosa by using multiple cell surface receptors with initial attachment to HSPGs. Pharmacological inhibition with Pep19-2.5 in HeLa and HaCaT cells resulted in a concentration-dependent reduction of HPV16 PsV infection, with near-complete blockade observed at higher concentrations. The half-maximal inhibitory concentration (IC50) was determined to be 116 nM in HeLa cells and 183 nM in HaCaT cells, highlighting its potent antiviral activity. Our results demonstrate that Pep19-2.5 not only inhibits HPV16 PsV binding to the cell surface but also significantly reduces infection when administered post-binding. Imaging analyses revealed Pep19-2.5-dependent release of large cell-associated crowds of viral particles, suggesting interference with the transfer to secondary receptor molecules. This was corroborated by the effectiveness of Pep19-2.5 in an HSPG-negative cell line, indicating that the peptide disrupts virus binding to both primary and secondary interaction partners. Based on these findings, we propose that the antimicrobial effect of Pep19-2.5 is not limited to HSPG-dependent infections. Additionally, Pep19-2.5 may be a valuable tool for dissecting specific steps in the viral entry process.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Annika Massenberg
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Germany
| | - Tatjana Döring
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, Research Center Borstel-Leibniz-Lung Center, Borstel, Germany
| | - Thorsten Lang
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Germany
| | - Luise Florin
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Nahain AA, Li J, Modhiran N, Watterson D, Li JP, Ignjatovic V, Monagle P, Tsanaktsidis J, Vamvounis G, Ferro V. Antiviral Activities of Heparan Sulfate Mimetic RAFT Polymers Against Mosquito-borne Viruses. ACS APPLIED BIO MATERIALS 2024; 7:2862-2871. [PMID: 38699864 DOI: 10.1021/acsabm.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV). The polymers were prepared by RAFT polymerization of various acidic monomers with a target MW of 20 kDa (average Mn ∼ 27 kDa by GPC). Among the polymers, poly(SS), a homopolymer of sodium styrenesulfonate, was identified as a broad spectrum antiviral with activity against all the tested viruses and particularly potent inhibition of YFV (IC50 = 310 pM). Our results further uncovered that poly(SS) exhibited a robust inhibition of ZIKV infection in both mosquito and human cell lines, which points out the potential functions of poly(SS) in preventing mosquito-borne viruses associated diseases by blocking viral transmission in their mosquito vectors and mitigating viral infection in patients.
Collapse
Affiliation(s)
- Abdullah Al Nahain
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Clinical Haematology, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Lü Z, Dai X, Xu J, Liu Z, Guo Y, Gao Z, Meng F. Medicinal chemistry strategies toward broad-spectrum antiviral agents to prevent next pandemics. Eur J Med Chem 2024; 271:116442. [PMID: 38685143 DOI: 10.1016/j.ejmech.2024.116442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
The pandemic and tremendous impact of severe acute respiratory syndrome coronavirus 2 alert us, despite great achievements in prevention and control of infectious diseases, we still lack universal and powerful antiviral strategies to rapidly respond to the potential threat of serious infectious disease. Various highly contagious and pathogenic viruses, as well as other unknown viruses may appear or reappear in human society at any time, causing a catastrophic epidemic. Developing broad-spectrum antiviral drugs with high security and efficiency is of great significance for timely meeting public health emergency and protecting the lives and health of the people. Hence, in this review, we summarized diverse broad-spectrum antiviral targets and corresponding agents from a medicinal chemistry prospective, compared the pharmacological advantages and disadvantages of different targets, listed representative agents, showed their structures, pharmacodynamics and pharmacokinetics characteristics, and conducted a critical discussion on their development potential, in the hope of providing up-to-date guidance for the development of broad-spectrum antivirals and perspectives for applications of antiviral therapy.
Collapse
Affiliation(s)
- Zirui Lü
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiandong Dai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianjie Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Fanhua Meng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
4
|
Ignat MD, Balta AAS, Barbu RE, Draganescu ML, Nechita L, Voinescu DC, Nechita A, Stefanopol IA, Busila C, Baroiu L. Antiviral Therapy of Chronic Hepatitis B Virus between Present and Future. J Clin Med 2024; 13:2055. [PMID: 38610820 PMCID: PMC11012273 DOI: 10.3390/jcm13072055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Background/Objectives: The objective of this study was to analyze the results of clinical trials regarding long-term antiviral therapies in chronic hepatitis with HBV to compare current therapeutic protocols and to analyze the results of preliminary studies with new antiviral therapies for HBV. Methods: Clinical studies and meta-analyses from PubMed, Google Scholar, and Research Gate from 2011 to 2024 were analyzed on patients undergoing chronic antiviral therapy for HBV, and a retrospective observational study performed in our clinic on a group of 76 patients undergoing chronic therapy with entecavir was presented. Also, a summary of the results of preliminary studies with various innovative antiviral molecules for HBV was performed. Results: The results of extensive clinical trials reveal that current therapies for chronic HBV are well tolerated and maintain good viral suppression if the patient is adherent to therapy. Innovative therapies aim to eliminate HBsAg and, thus, significantly shorten the duration of treatment, and the preliminary results of the studies are promising. Conclusions: Being an asymptomatic condition that requires life-long therapy, adherence to therapy is a real problem. Also, the risk of decompensation of liver cirrhosis and adenocarcinoma remains important in these patients. Future research is needed to perfect some antiviral therapy schemes that shorten the treatment period but also decrease the rate of progression towards decompensated cirrhosis and liver adenocarcinoma.
Collapse
Affiliation(s)
- Mariana Daniela Ignat
- Doctoral School of Biomedical Sciences, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.D.I.); (R.E.B.)
| | | | - Raisa Eloise Barbu
- Doctoral School of Biomedical Sciences, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.D.I.); (R.E.B.)
| | - Miruna Luminita Draganescu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| | - Luiza Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania
| | - Doina Carina Voinescu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania
| | - Aurel Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
| | - Ioana Anca Stefanopol
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania
| | - Camelia Busila
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
| | - Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| |
Collapse
|
5
|
Tseng KC, Huang HT, Huang SN, Yang FY, Li WH, Nan FH, Lin YJ. Lactobacillus plantarum isolated from kefir enhances immune responses and survival of white shrimp (Penaeus vannamei) challenged with Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108661. [PMID: 36906049 DOI: 10.1016/j.fsi.2023.108661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Lactobacillus plantarum is known for its probiotics benefit to host, although the effects vary among strains. This study conducted a feeding experiment of three Lactobacillus strains, MRS8, MRS18 and MRS20, which were isolated from kefir and incorporated into the diets of shrimp to evaluate the effects of non-specific immunity, immune-related gene expression, and disease resistance of white shrimp (Penaeus vannamei) against Vibrio alginolyticus. To prepare the experimental feed groups, the basic feed was mixed with different concentrations of L. plantarum strains MRS8, MRS18, and MRS 20, which were incorporated at 0 CFU (control), 1 × 106 CFU (groups 8-6, 18-6, and 20-6), and 1 × 109 CFU (groups 8-9, 18-9, and 20-9) per gram of diet for an in vivo assay. During the rearing period for 28 days of feeding each group, immune responses, namely the total hemocyte count (THC), phagocytic rate (PR), phenoloxidase activity, and respiratory burst were examined on days 0, 1, 4, 7, 14, and 28. The results showed that groups 20-6, 18-9 and 20-9 improved THC, and groups 18-9 and 20-9 improved phenoloxidase activity and respiratory burst as well. The expression of immunity-related genes was also examined. Group 8-9 increased the expression of LGBP, penaeidin 2 (PEN2) and CP, group 18-9 increased the expression of proPO1, ALF, Lysozyme, penaeidin 3 (PEN3) and SOD, and group 20-9 increased the expression of LGBP, ALF, crustin, PEN2, PEN3, penaeidin 4 (PEN4) and CP (p < 0.05). Groups 18-6, 18-9, 2-6, and 20-9 were further used in the challenge test. After feeding for 7 days and 14 days, Vibrio alginolyticus was injected into white shrimp and observed the shrimp survival for 168 h. The results showed that compared to the control, all groups improved the survival rate. Especially, feeding group 18-9 for 14 days improved the survival rate of white shrimp (p < 0.05). After the challenge test for 14 days, the midgut DNA of survival white shrimps was extracted to analyze the colonization of L. plantarum. Among the groups, (6.61 ± 3.58) × 105 CFU/pre shrimp of L. plantarum in feeding group 18-9 and (5.86 ± 2.27) × 105 CFU/pre shrimp in group 20-9 were evaluated by qPCR. Taken together, group 18-9 had the best effects on the non-specific immunity, the immune-related gene expression, and the disease resistance, which might be due to the benefit of the probiotic colonization.
Collapse
Affiliation(s)
- Kuo-Chun Tseng
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Shu-Ning Huang
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Fang-Yi Yang
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, No. 128 Academia Road, Sec. 2, Nan-kang, Taipei, 11529, Taiwan; Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan.
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan.
| |
Collapse
|
6
|
Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023; 15:v15030640. [PMID: 36992349 PMCID: PMC10051592 DOI: 10.3390/v15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.
Collapse
|
7
|
Rybczyńska-Tkaczyk K, Grenda A, Jakubczyk A, Kiersnowska K, Bik-Małodzińska M. Natural Compounds with Antimicrobial Properties in Cosmetics. Pathogens 2023; 12:320. [PMID: 36839592 PMCID: PMC9959536 DOI: 10.3390/pathogens12020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Currently, the cosmetic industry is a very intensively growing part of the economy. Consumer demands are adapted to the current lifestyle, which is based on technological innovations and awareness of the impact of various factors on human health and fitness. There is growing interest in cosmetics based on environmentally friendly natural compounds exerting health-promoting effects. Chemicals with antimicrobial properties used as ingredients in cosmetics ensure their durability and safety. Polyphenolic compounds, peptides, essential oils, and plant extracts characterized by these properties are natural ingredients that can replace synthetic components of cosmetics. The advantage of these compounds is that they exhibit antioxidant, anti-inflammatory, and soothing properties, enhancing the product value in addition to their antimicrobial properties. This review article describes the antimicrobial properties of natural compounds that can protect cosmetics and can replace previously used preservative agents. Various studies indicate that the use of these compounds increases consumer interest in these products and has a positive impact on the environment.
Collapse
Affiliation(s)
- Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, St. Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University in Lublin, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Kaja Kiersnowska
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Marta Bik-Małodzińska
- Institute of Soil Science, Engineering and Environmental Management, University of Life Sciences in Lublin, ul. Leszczyńskiego 7, 20-069 Lublin, Poland
| |
Collapse
|
8
|
Toxicological and Safety Pharmacological Profiling of the Anti-Infective and Anti-Inflammatory Peptide Pep19-2.5. Microorganisms 2022; 10:microorganisms10122412. [PMID: 36557665 PMCID: PMC9782211 DOI: 10.3390/microorganisms10122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Aspidasept (Pep19-2.5) and its derivative Pep19-4LF ("Aspidasept II") are anti-infective and anti-inflammatory synthetic polypeptides currently in development for application against a variety of moderate to severe bacterial infections that could lead to systemic inflammation, as in the case of severe sepsis and septic shock, as well as application to non-systemic diseases in the case of skin and soft tissue infections (SSTI). In the present study, Aspidasept and Aspidasept II and their part structures were analysed with respect to their toxic behavior in different established models against a variety of relevant cells, and in electrophysiological experiments targeting the hERG channel according to ICH S7B. Furthermore, the effects in mouse models of neurobiological behavior and the local lymph node according to OECD test guideline 429 were investigated, as well as a rat model of repeated dose toxicology according to ICH M3. The data provide conclusive information about potential toxic effects, thus specifying a therapeutic window for the application of the peptides. Therefore, these data allow us to define Aspidasept concentrations for their use in clinical studies as parenteral application.
Collapse
|
9
|
Entry Inhibitors of Hepatitis B and D Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:199-205. [DOI: 10.1007/978-981-16-8702-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Zhao H, Yuen KY. Broad-spectrum Respiratory Virus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:137-153. [DOI: 10.1007/978-981-16-8702-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater Sci 2022; 10:4392-4423. [DOI: 10.1039/d2bm00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the...
Collapse
|
12
|
Kuroki A, Tay J, Lee GH, Yang YY. Broad-Spectrum Antiviral Peptides and Polymers. Adv Healthc Mater 2021; 10:e2101113. [PMID: 34599850 DOI: 10.1002/adhm.202101113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Indexed: 12/18/2022]
Abstract
As the human cost of the pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still being witnessed worldwide, the development of broad-spectrum antiviral agents against emerging and re-emerging viruses is seen as a necessity to hamper the spread of infections. Various targets during the viral life-cycle can be considered to inhibit viral infection, from viral attachment to viral fusion or replication. Macromolecules represent a particularly attractive class of therapeutics due to their multivalency and versatility. Although several antiviral macromolecules hold great promise in clinical applications, the emergence of resistance after prolonged exposure urges the need for improved solutions. In the present article, the recent advancement in the discovery of antiviral peptides and polymers with diverse structural features and antiviral mechanisms is reviewed. Future perspectives, such as, the development of virucidal peptides/polymers and their coatings against SARS-CoV-2 infection, standardization of antiviral testing protocols, and use of artificial intelligence or machine learning as a tool to accelerate the discovery of antiviral macromolecules, are discussed.
Collapse
Affiliation(s)
- Agnès Kuroki
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| | - Guan Huei Lee
- Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Ways, The Nanos Singapore 138669 Singapore
| |
Collapse
|
13
|
Gao B, Zhao D, Li L, Cheng Z, Guo Y. Antiviral Peptides with in vivo Activity: Development and Modes of Action. Chempluschem 2021; 86:1547-1558. [PMID: 34755499 DOI: 10.1002/cplu.202100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/28/2021] [Indexed: 12/25/2022]
Abstract
The viral pandemic has resulted in a growing demand for antiviral drugs. The existing small-molecule antiviral drugs are limited, due to their incidence of drug resistance and adverse side effects. As potential drugs, antiviral peptides have the benefits of high activity, high stability, and few side effects. Furthermore, the diversity of acquisition methods allows antiviral peptides to be quickly designed and yielded. The drug properties (such as high bioavailability and in vivo stability) of antiviral peptides can be improved by the developed modifications. Currently, two peptide antiviral drugs have been approved for the treatment of acquired immunodeficiency syndrome (AIDS). Many antiviral peptides have entered clinical trials for the treatment of diseases caused by viruses. In addition, new antiviral peptides are continuously being identified and validated against virus infections. Given the benefits of antiviral peptides, they will become major antiviral drugs to combat new outbreaks caused by unknown viruses in the future. This review provides an overview of recent developments in antiviral peptides with in vivo activity.
Collapse
Affiliation(s)
- Bing Gao
- School of Public Health, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Dongdong Zhao
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Lingmu Li
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Zhigang Cheng
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| | - Ye Guo
- School of Pharmacy, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College, Baotou, 31 Construction Road, Donghe District, Baotou, Inner Mongolia, P. R. China
| |
Collapse
|
14
|
Yin CM, Pan XY, Cao XT, Li T, Zhang YH, Lan JF. A crayfish ALF inhibits the proliferation of microbiota by binding to RPS4 and MscL of E. coli. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104106. [PMID: 33878364 DOI: 10.1016/j.dci.2021.104106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides (AMPs), most of which are small proteins, are necessary for innate immunity against pathogens. Anti-lipopolysaccharide factor (ALF) with a conserved lipopolysaccharide binding domain (LBD) can bind to lipopolysaccharide (LPS) and neutralize LPS activity. The antibacterial mechanism of ALF, especially its role in bacteria, needs to be further investigated. In this study, the antibacterial role of an anti-lipopolysaccharide factor (PcALF5) derived from Procambarus clarkii was analyzed. PcALF5 could inhibit the replication of the microbiota in vitro and enhance the bacterial clearance ability in crayfish in vivo. Far-western blot assay results indicated that PcALF5 bound to two proteins of E. coli (approximately 25 kDa and 15 kDa). Mass spectrometry (MS), far-western blot assay, and pull-down results showed that 30S ribosomal protein S4 (RPS4, 25 kD) interacted with PcALF5. Further studies revealed that another E. coli protein binding to PcALF5 could be the large mechanosensitive channel (MscL), which is reported to participate in the transport of peptides and antibiotics. Additional assays showed that PcALF5 inhibited protein synthesis and promoted the transcription of ribosomal component genes in E. coli. Overall, these results indicate that PcALF5 could transfer into E. coli by binding to MscL and inhibit protein synthesis by interacting with RPS4. This study reveals the mechanism underlying ALF involvement in the antibacterial immune response and provides a new reference for the research on antibacterial drugs.
Collapse
Affiliation(s)
- Cheng-Ming Yin
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Yi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Tong Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying-Hao Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiang-Feng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
15
|
Tsounis EP, Tourkochristou E, Mouzaki A, Triantos C. Toward a new era of hepatitis B virus therapeutics: The pursuit of a functional cure. World J Gastroenterol 2021; 27:2727-2757. [PMID: 34135551 PMCID: PMC8173382 DOI: 10.3748/wjg.v27.i21.2727] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection, although preventable by vaccination, remains a global health problem and a major cause of chronic liver disease. Although current treatment strategies suppress viral replication very efficiently, the optimal endpoint of hepatitis B surface antigen (HBsAg) clearance is rarely achieved. Moreover, the thorny problems of persistent chromatin-like covalently closed circular DNA and the presence of integrated HBV DNA in the host genome are ignored. Therefore, the scientific community has focused on developing innovative therapeutic approaches to achieve a functional cure of HBV, defined as undetectable HBV DNA and HBsAg loss over a limited treatment period. A deeper understanding of the HBV life cycle has led to the introduction of novel direct-acting antivirals that exert their function through multiple mechanisms, including inhibition of viral entry, transcriptional silencing, epigenetic manipulation, interference with capsid assembly, and disruption of HBsAg release. In parallel, another category of new drugs aims to restore dysregulated immune function in chronic hepatitis B accompanied by lethargic cellular and humoral responses. Stimulation of innate immunity by pattern-recognition receptor agonists leads to upregulation of antiviral cytokine expression and appears to contribute to HBV containment. Immune checkpoint inhibitors and adoptive transfer of genetically engineered T cells are breakthrough technologies currently being explored that may elicit potent HBV-specific T-cell responses. In addition, several clinical trials are attempting to clarify the role of therapeutic vaccination in this setting. Ultimately, it is increasingly recognized that elimination of HBV requires a treatment regimen based on a combination of multiple drugs. This review describes the rationale for progressive therapeutic interventions and discusses the latest findings in the field of HBV therapeutics.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| |
Collapse
|
16
|
Madavaraju K, Koganti R, Volety I, Yadavalli T, Shukla D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front Cell Infect Microbiol 2021; 10:617578. [PMID: 33537244 PMCID: PMC7848091 DOI: 10.3389/fcimb.2020.617578] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus (HSV) can infect a broad host range and cause mild to life threating infections in humans. The surface glycoproteins of HSV are evolutionarily conserved and show an extraordinary ability to bind more than one receptor on the host cell surface. Following attachment, the virus fuses its lipid envelope with the host cell membrane and releases its nucleocapsid along with tegument proteins into the cytosol. With the help of tegument proteins and host cell factors, the nucleocapsid is then docked into the nuclear pore. The viral double stranded DNA is then released into the host cell’s nucleus. Released viral DNA either replicates rapidly (more commonly in non-neuronal cells) or stays latent inside the nucleus (in sensory neurons). The fusion of the viral envelope with host cell membrane is a key step. Blocking this step can prevent entry of HSV into the host cell and the subsequent interactions that ultimately lead to production of viral progeny and cell death or latency. In this review, we have discussed viral entry mechanisms including the pH-independent as well as pH-dependent endocytic entry, cell to cell spread of HSV and use of viral glycoproteins as an antiviral target.
Collapse
Affiliation(s)
- Krishnaraju Madavaraju
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Raghuram Koganti
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ipsita Volety
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Tejabhiram Yadavalli
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Deepak Shukla
- Shukla Lab, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 2020; 260:118407. [PMID: 32931796 PMCID: PMC7486823 DOI: 10.1016/j.lfs.2020.118407] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The severe infection is becoming a significant health problem which threaten the lives of patients and the safety and economy of society. In the way of finding new strategy, antimicrobial peptides (AMPs) - an important part of host defense family, emerged with tremendous potential. Up to date, huge numbers of AMPs has been investigated from both natural and synthetic sources showing not only the ability to kill microbial pathogens but also propose other benefits such as wound healing, anti-tumor, immune modulation. In this review, we describe the involvements of AMPs in biological systems and discuss the opportunity in developing AMPs for clinical applications. In the detail, their properties in antibacterial activity is followed by their application in some infection diseases and cancer. The key discussions are the approaches to improve biological activities of AMPs either by modifying chemical structure or incorporating into delivery systems. The new applications and perspectives for the future of AMPs would open the new era of their development.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tung Truong Thanh
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
18
|
Wettengel JM, Burwitz BJ. Innovative HBV Animal Models Based on the Entry Receptor NTCP. Viruses 2020; 12:E828. [PMID: 32751581 PMCID: PMC7472226 DOI: 10.3390/v12080828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B is a major global health problem, with an estimated 257 million chronically infected patients and almost 1 million deaths per year. The causative agent is hepatitis B virus (HBV), a small, enveloped, partially double-stranded DNA virus. HBV has a strict species specificity, naturally infecting only humans and chimpanzees. Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter expressed on hepatocytes, has been shown to be one of the key factors in HBV infection, playing a crucial role in the HBV entry process in vitro and in vivo. Variations in the amino acid sequence of NTCP can inhibit HBV infection and, therefore, contributes, in part, to the species barrier. This discovery has revolutionized the search for novel animal models of HBV. Indeed, it was recently shown that variations in the amino acid sequence of NTCP represent the sole species barrier for HBV infection in macaques. Here, we review what is known about HBV entry through the NTCP receptor and highlight how this knowledge has been harnessed to build new animal models for the study of HBV pathogenesis and curative therapies.
Collapse
Affiliation(s)
- Jochen M. Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstr. 30, 81675 Munich, Germany;
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| | - Benjamin J. Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505 N.W. 185th Avenue Beaverton, Tanasbourne, OR 97006, USA
| |
Collapse
|
19
|
Herrscher C, Roingeard P, Blanchard E. Hepatitis B Virus Entry into Cells. Cells 2020; 9:cells9061486. [PMID: 32570893 PMCID: PMC7349259 DOI: 10.3390/cells9061486] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV), an enveloped partially double-stranded DNA virus, is a widespread human pathogen responsible for more than 250 million chronic infections worldwide. Current therapeutic strategies cannot eradicate HBV due to the persistence of the viral genome in a special DNA structure (covalently closed circular DNA, cccDNA). The identification of sodium taurocholate co-transporting polypeptide (NTCP) as an entry receptor for both HBV and its satellite virus hepatitis delta virus (HDV) has led to great advances in our understanding of the life cycle of HBV, including the early steps of infection in particular. However, the mechanisms of HBV internalization and the host factors involved in this uptake remain unclear. Improvements in our understanding of HBV entry would facilitate the design of new therapeutic approaches targeting this stage and preventing the de novo infection of naïve hepatocytes. In this review, we provide an overview of current knowledge about the process of HBV internalization into cells.
Collapse
Affiliation(s)
- Charline Herrscher
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| | - Emmanuelle Blanchard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France;
- Plate-Forme IBiSA des Microscopies, PPF ASB, Université de Tours and CHRU de Tours, 37032 Tours, France
- Correspondence: (P.R.); (E.B.); Tel.: +33-2-3437-9646 (E.B.)
| |
Collapse
|
20
|
Spyrou E, Smith CI, Ghany MG. Hepatitis B: Current Status of Therapy and Future Therapies. Gastroenterol Clin North Am 2020; 49:215-238. [PMID: 32389360 PMCID: PMC7444867 DOI: 10.1016/j.gtc.2020.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the availability of a protective vaccine for over 3 decades, the number of persons with chronic hepatitis B virus (HBV) infection remains high. These persons are at risk for cirrhosis and hepatocellular carcinoma. Current treatment is effective at inhibiting viral replication and reducing complications of chronic HBV infection, but is not curative. There is a need for novel, finite therapy that can cure chronic HBV infection. Several agents are in early-phase development and can be broadly viewed as agents that target the virus directly or indirectly or the host immune response. This article highlights key developments in antiviral/immunomodulatory therapy, the rationale for these approaches, and possible therapeutic regimens.
Collapse
Affiliation(s)
- Elias Spyrou
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, USA,Nazih Zuhdi Transplant Institute, INTEGRIS Baptist Medical Center, Oklahoma City, OK, USA
| | - Coleman I. Smith
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Marc G. Ghany
- Liver Diseases Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Cysteine Residues in Helicobacter pylori Adhesin HopQ are Required for CEACAM-HopQ Interaction and Subsequent CagA Translocation. Microorganisms 2020; 8:microorganisms8040465. [PMID: 32218315 PMCID: PMC7232459 DOI: 10.3390/microorganisms8040465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
Attachment to the host gastric mucosa is a key step in Helicobacter pylori infection. Recently, a novel adhesin, HopQ, was shown to bind distinct host CEACAM proteins—an interaction that was found to be essential for the translocation of CagA, a key virulence factor of H. pylori. The HopQ–CEACAM1 co-crystal structure revealed a binding mode dependent on loops in HopQ that are clasped by disulfide bonds. In this study, we investigated the importance of these cysteine residues for CEACAM1 engagement by H. pylori. We observed a loss of CEACAM1 binding and CagA translocation upon disruption of the disulfide bond in loop CL1 (connecting C103 to C132 in HopQ). Deletion of the Dsb-like oxidoreductase HP0231 did not affect cell surface expression of HopQ or alter the interaction of H. pylori with target cells. Although HP0231 deletion was previously described to impede CagA translocation, our results indicate that this occurs through a HopQ-independent mechanism. Together, our results open up new avenues to therapeutically target the HopQ–CEACAM1 interaction and reduce the burden of pathogenic H. pylori.
Collapse
|
22
|
In Vitro Systems for Studying Different Genotypes/Sub-Genotypes of Hepatitis B Virus: Strengths and Limitations. Viruses 2020; 12:v12030353. [PMID: 32210021 PMCID: PMC7150782 DOI: 10.3390/v12030353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infects the liver resulting in end stage liver disease, cirrhosis, and hepatocellular carcinoma. Despite an effective vaccine, HBV poses a serious health problem globally, accounting for 257 million chronic carriers. Unique features of HBV, including its narrow virus-host range and its hepatocyte tropism, have led to major challenges in the development of suitable in vivo and in vitro model systems to recapitulate the HBV replication cycle and to test various antiviral strategies. Moreover, HBV is classified into at least nine genotypes and 35 sub-genotypes with distinct geographical distributions and prevalence, which have different natural histories of infection, clinical manifestation, and response to current antiviral agents. Here, we review various in vitro systems used to study the molecular biology of the different (sub)genotypes of HBV and their response to antiviral agents, and we discuss their strengths and limitations. Despite the advances made, no system is ideal for pan-genotypic HBV research or drug development and therefore further improvement is required. It is necessary to establish a centralized repository of HBV-related generated materials, which are readily accessible to HBV researchers, with international collaboration toward advancement and development of in vitro model systems for testing new HBV antivirals to ensure their pan-genotypic and/or customized activity.
Collapse
|
23
|
Synthetic Anti-lipopolysaccharide Peptides (SALPs) as Effective Inhibitors of Pathogen-Associated Molecular Patterns (PAMPs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:111-129. [DOI: 10.1007/978-981-13-3588-4_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Xia Y, Liang TJ. Development of Direct-acting Antiviral and Host-targeting Agents for Treatment of Hepatitis B Virus Infection. Gastroenterology 2019; 156:311-324. [PMID: 30243618 PMCID: PMC6340783 DOI: 10.1053/j.gastro.2018.07.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection affects approximately 300 million people worldwide. Although antiviral therapies have improved the long-term outcomes, patients often require life-long treatment and there is no cure for HBV infection. New technologies can help us learn more about the pathogenesis of HBV infection and develop therapeutic agents to reduce its burden. We review recent advances in development of direct-acting antiviral and host-targeting agents, some of which have entered clinical trials. We also discuss strategies for unbiased high-throughput screens to identify compounds that inhibit HBV and for repurposing existing drugs.
Collapse
Affiliation(s)
- Yuchen Xia
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892.
| |
Collapse
|
25
|
Mitra B, Thapa RJ, Guo H, Block TM. Host functions used by hepatitis B virus to complete its life cycle: Implications for developing host-targeting agents to treat chronic hepatitis B. Antiviral Res 2018; 158:185-198. [PMID: 30145242 PMCID: PMC6193490 DOI: 10.1016/j.antiviral.2018.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Similar to other mammalian viruses, the life cycle of hepatitis B virus (HBV) is heavily dependent upon and regulated by cellular (host) functions. These cellular functions can be generally placed in to two categories: (a) intrinsic host restriction factors and innate defenses, which must be evaded or repressed by the virus; and (b) gene products that provide functions necessary for the virus to complete its life cycle. Some of these functions may apply to all viruses, but some may be specific to HBV. In certain cases, the virus may depend upon the host function much more than does the host itself. Knowing which host functions regulate the different steps of a virus' life cycle, can lead to new antiviral targets and help in developing novel treatment strategies, in addition to improving a fundamental understanding of viral pathogenesis. Therefore, in this review we will discuss known host factors which influence key steps of HBV life cycle, and further elucidate therapeutic interventions targeting host-HBV interactions.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
26
|
Gu HJ, Sun QL, Jiang S, Zhang J, Sun L. First characterization of an anti-lipopolysaccharide factor (ALF) from hydrothermal vent shrimp: Insights into the immune function of deep-sea crustacean ALF. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:382-395. [PMID: 29572135 DOI: 10.1016/j.dci.2018.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Anti-lipopolysaccharide factor (ALF) is a type of antimicrobial peptides (AMPs) with a vital role in antimicrobial defense. Although a large amount of ALFs have been identified from neritic and fresh water crustacean species, no functional investigation of ALFs from deep-sea animals have been documented. In the present study, we characterized the immune function of an ALF molecule (named RspALF1) from the shrimp Rimicaris sp. residing in the deep-sea hydrothermal vent in Desmos, Manus Basin. RspALF1 shares 51.5%-62.4% overall sequence identities with known shrimp ALFs and contains the conserved LPS binding domain (LBD). Both recombinant RspALF1 (rRspALF1) and the LBD-derived peptide (ALF1P1) bound to the cell wall components of Gram-negative and Gram-positive bacteria and killed a wide range of bacteria, especially those from deep-sea hydrothermal field, by damaging bacterial cellular structures. The bactericidal activities of rRspALF1 and ALF1P1 were optimal and stably maintained from 4 °C to 37 °C, which is comparable to the ambient temperature range of the habitat of Rimicaris sp. In addition to bacteria, rRspALF1 and ALF1P1 also exhibited anti-fungal activity. rRspALF1 and ALF1P1 exhibited high killing efficiencies, which, in terms of MIC values, were ranged between 0.25 μM and 4 μM for bacteria and 4 μM-8 μM for fungi. When introduced in vivo, both rRspALF1 and ALF1P1 effectively inhibited bacterial infection in shrimp and reduced the dissemination of bacterial and viral pathogens in fish. Together, these results provide the first insight into the biological property of deep-sea ALF and indicate that RspALF1 very likely plays a significant role in immune defense by functioning as a highly effective antimicrobial with a broad target range.
Collapse
Affiliation(s)
- Han-Jie Gu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Lei Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
27
|
Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr Opin Virol 2018; 30:68-79. [DOI: 10.1016/j.coviro.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
|
28
|
Sharma H, Chinnappan M, Agarwal S, Dalvi P, Gunewardena S, O'Brien-Ladner A, Dhillon NK. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse. FASEB J 2018; 32:5174-5185. [PMID: 29672222 PMCID: PMC6103174 DOI: 10.1096/fj.201701558r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our previous studies consistently demonstrate enhanced pulmonary vascular remodeling in HIV–infected intravenous drug users, and in simian immunodeficiency virus–infected macaques or HIV-transgenic rats exposed to opioids or cocaine. Although we reported an associated increase in perivascular inflammation, the exact role of inflammatory cells in the development of pulmonary vascular remodeling remains unknown. In this study, HIV–infected and cocaine (H+C)–treated human monocyte derived macrophages released a higher number of extracellular vesicles (EVs), compared to HIV-infected or uninfected cocaine-treated macrophages, with a significant increase in the particle size range to 100–150 nm. Treatment of primary human pulmonary arterial smooth muscle cells (HPASMCs) with these EVs resulted in a significant increase in smooth muscle proliferation. We also observed a significant increase in the miRNA-130a level in the EVs derived from H+C-treated macrophages that corresponded with the decrease in the expression of phosphatase and tensin homolog and tuberous sclerosis 1 and 2 and activation of PI3K/protein kinase B signaling in HPASMCs on addition of these EVs. Transfection of HPASMCs with antagomir-130a–ameliorated the EV-induced effect. Thus, we conclude that EVs derived from H+C-treated macrophages promote pulmonary smooth muscle proliferation by delivery of its prosurvival miRNA cargo, which may play a crucial role in the development of PAH.—Sharma, H., Chinnappan, M., Agarwal, S., Dalvi, P., Gunewardena, S., O’Brien-Ladner, A., Dhillon, N. K. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse.
Collapse
Affiliation(s)
- Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amy O'Brien-Ladner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
29
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
30
|
Pachota M, Klysik K, Synowiec A, Ciejka J, Szczubiałka K, Pyrć K, Nowakowska M. Inhibition of Herpes Simplex Viruses by Cationic Dextran Derivatives. J Med Chem 2017; 60:8620-8630. [DOI: 10.1021/acs.jmedchem.7b01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Magdalena Pachota
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Katarzyna Klysik
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aleksandra Synowiec
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Ciejka
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Pyrć
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
31
|
Varnava KG, Ronimus RS, Sarojini V. A review on comparative mechanistic studies of antimicrobial peptides against archaea. Biotechnol Bioeng 2017; 114:2457-2473. [PMID: 28734066 DOI: 10.1002/bit.26387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
Archaea was until recently considered as a third domain of life in addition to bacteria and eukarya but recent studies support the existence of only two superphyla (bacteria and archaea). The fundamental differences between archaeal, bacterial, and eukaryal cells are probably the main reasons for the comparatively lower susceptibility of archaeal strains to current antimicrobial agents. The possible emerging pathogenicity of archaea and the role of archaeal methanogens in methane emissions, a potent greenhouse gas, has led many researchers to examine the sensitivity patterns of archaea and make attempts to find agents that have significant anti-archaeal activity. Even though antimicrobial peptides (AMPs) are well known with several published reviews concerning their mode of action against bacteria and eukarya, to our knowledge, to date no reviews are available that focus on the action of these peptides against archaea. Herein, we present a review on all the peptides that have been tested against archaea. In addition, in an attempt to shed more light on possible future work that needs to be performed we have included a brief overview of the chemical characteristics, spectrum of activity, and the known mechanism of action of each of these peptides against bacteria and/or fungi. We also discuss the nature of and key physiological differences between Archaea, Bacteria, and Eukarya that are relevant to the development of anti-archaeal peptides. Despite our relatively limited knowledge about archaea, available data suggest that AMPs have an even broader spectrum of activity than currently recognized.
Collapse
Affiliation(s)
- Kyriakos G Varnava
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Ron S Ronimus
- Rumen Microbiology, AgResearch Ltd., Palmerston North, New Zealand
| | | |
Collapse
|
32
|
Lv X, Li S, Liu F, Li F, Xiang J. Identification and function analysis of an anti-lipopolysaccharide factor from the ridgetail prawn Exopalaemon carinicauda. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:128-134. [PMID: 28082184 DOI: 10.1016/j.dci.2017.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/06/2017] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
Anti-lipopolysaccharide factor is a kind of antimicrobial peptide (AMP) with broad-spectrum activities against bacteria, virus, and fungi in crustacean. Different isoforms of ALFs showed different activities to virus or bacteria. Therefore, discovery of more ALFs will provide new insights into drug development and disease control. Here we reported an ALF gene, EcALF1, isolated from the ridgetail prawn Exopalaemon carinicauda. Its transcripts was mainly detected in hemocytes. Silencing of EcALF1 caused a lesion of hepatopancreas and finally led to death of the prawn. In vivo bacteria detection to the hepatopancreas showed that the colonies of thiosulphate citrate bile salts (TCBS) cultured bacteria in EcALF1-silenced prawn increased dramatically. We identified the dominant bacteria cultured in TCBS and found that Vibrio alginolyticus and Vibrio parahaemolyticus were dominant bacteria which were pathogenic species to prawn. We further synthesized the functional domain, LPS binding domain (LBD) of EcALF1, and its antibacterial and antiviral activities were detected. The synthetic EcLBD1 peptide showed very strong antibacterial activity against Micrococcus luteus and V. alginolyticus. Pre-incubation of WSSV with EcLBD1 peptide reduced the pathogenicity of WSSV infection to the prawn. The present data showed the important roles of an ALF gene in modulating the in vivo bacterial proliferation in E. carinicauda and provided new insight in disease control in aquaculture.
Collapse
Affiliation(s)
- Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| | - Fei Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, 7 Nanhai Road, Qingdao 266071, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China
| |
Collapse
|
33
|
Anti-hepatitis C virus strategy targeting host entry factor claudin-1. Uirusu 2017; 65:245-254. [PMID: 27760923 DOI: 10.2222/jsv.65.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is a major threat to global public health, because it is significantly correlated with the development of severe liver diseases including cirrhosis and hepatocellular carcinomas. Host molecules as well as viral factors are promising targets for anti-HCV preventive and therapeutic strategies. Multiple host factors such as CD81, SRBI, claudin-1, and occludin are involved in HCV entry into hepatocytes. In this paper, I first introduce our anti-HCV strategy targeting for host tight junction protein claudin-1. And this review also summarizes developments of other entry inhibitors to prevent initiation of HCV infection and spread. Entry inhibitors might be useful in blocking primary infections, such those as after liver transplantation, and in combination therapies with other anti-HCV agents such as direct-acting antivirals.
Collapse
|
34
|
Secreted Interferon-Inducible Factors Restrict Hepatitis B and C Virus Entry In Vitro. J Immunol Res 2017; 2017:4828936. [PMID: 28367455 PMCID: PMC5358466 DOI: 10.1155/2017/4828936] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Interferon-α (IFN-α) has been used for more than 20 years as the first-line therapy for hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, because it has a number of antiviral effects. In this study, we describe a novel mode of its antiviral action. We demonstrate that the supernatant from IFN-α-treated cultured cells restricted HBV and HCV infection by inhibiting viral entry into hepatoma cells. The factors contained in the supernatant competed with the virus for binding to heparan glycosaminoglycans—the nonspecific attachment step shared by HBV and HCV. Secreted factors of high molecular mass that bind to heparin columns elicited the antiviral effect. In conclusion, IFN-α is able to induce soluble factors that can bind to heparan glycosaminoglycans thus leading to the inhibition of viral binding.
Collapse
|
35
|
Franci G, Falanga A, Zannella C, Folliero V, Martora F, Galdiero M, Galdiero S, Morelli G, Galdiero M. Infectivity inhibition by overlapping synthetic peptides derived from the gH/gL heterodimer of herpes simplex virus type 1. J Pept Sci 2017; 23:311-319. [PMID: 28194842 PMCID: PMC7168125 DOI: 10.1002/psc.2979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/27/2023]
Abstract
Herpes simplex virus (HSV) is a human pathogen that infects epithelial cells. The cutaneous lesions, caused by the virus, spread to the nervous system creating several complications. Fusion of host membranes with the viral envelope is mandatory and mediated by a group of glycoproteins conserved in all Herpesviridae subfamilies, such as the glycoproteins B (gB), H (gH), L (gL) and D (gD). We investigated the inhibitory activity mediated by synthetic overlapping peptides spanning the entire ectodomains of gH and gL glycoproteins. We have performed a brute analysis of the complete gH/gL heterodimer in order to explore the inhibitory activity of peptides modelled on these glycoproteins against HSV‐1 infection. Twenty‐four of the gH peptides at a concentration of 150 μM reached the 50% of inhibition cut‐off. Interestingly, they are mainly located in the gH carboxy‐terminal domain. None of the gL peptides had a clear inhibiting effect. No peptide toxicity was observed by lactate dehydrogenase assay at the concentrations used in our experimental conditions. HSV‐1 therapy is based on acyclovir treatment, but some resistant strains are emerging. In this scenario, innovative approaches for HSV‐1 treatment are necessary. Our data support the direct involvement of the described domains in the process of virus penetration; therefore, these results are of relevance to the potential development of novel therapeutic compounds to prevent HSV‐1 infections. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gianluigi Franci
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Annarita Falanga
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
- Department of PharmacyUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Carla Zannella
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Veronica Folliero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Francesca Martora
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Marilena Galdiero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
| | - Stefania Galdiero
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Giancarlo Morelli
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
- Department of PharmacyUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| | - Massimiliano Galdiero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”Via De Crecchio 780138NaplesItaly
- Centro Interuniversitario di Ricerca sui Peptidi BioattiviUniversity of Naples ‘Federico II’Via Mezzocannone 1680134NaplesItaly
| |
Collapse
|
36
|
Lin FY, Gao Y, Wang H, Zhang QX, Zeng CL, Liu HP. Identification of an anti-lipopolysacchride factor possessing both antiviral and antibacterial activity from the red claw crayfish Cherax quadricarinatus. FISH & SHELLFISH IMMUNOLOGY 2016; 57:213-221. [PMID: 27544268 DOI: 10.1016/j.fsi.2016.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 05/06/2023]
Abstract
It is well-known that anti-lipopolysacchride factors (ALFs) are involved in the recognition and elimination of invading pathogens. In this study, the full-length ALF cDNA sequence of the red claw crayfish Cherax quadricarinatus (termed CqALF) was cloned from a suppression subtractive hybridization library constructed using red claw crayfish hematopoietic tissue cell (Hpt cell) cultures following challenge with white spot syndrome virus (WSSV). The full-length cDNA sequence of CqALF was 863 bp, and the open reading frame encoded 123 amino acids with a signal peptide in the N-terminus and a conserved LPS-binding domain. Unlike most ALFs, which are highly expressed in haemocytes, high expression levels of CqALF were detected in epithelium, the stomach and eyestalks, while lower expression was detected in Hpt, nerves, the heart, muscle tissue, gonads, haemocytes, intestines, gills and the hepatopancreas. To further explore the biological activities of CqALF, mature recombinant CqALF protein (rCqALF) was expressed and purified using a eukaryotic expression system, and an antimicrobial activity test was carried out. rCqALF clearly exerted antiviral activity, as evidenced by the severe disruption of the envelope of intact WSSV virions following co-incubation of virions with rCqALF. Additionally, pre-incubation of WSSV with rCqALF resulted in both a significant reduction in WSSV replication in red claw crayfish Hpt cell cultures and an increased survival rate among animals. Furthermore, rCqALF was effective against both Gram-negative bacteria and Gram-positive bacteria, particularly Shigella flexneri and Staphylococcus aureus. A membrane integrity assay suggested that rCqALF was unlikely to disrupt bacterial membrane integrity compared to cecropin P1. Taken together, these data suggest that CqALF may play an important role in immune defence in the crustacean C. quadricarinatus.
Collapse
Affiliation(s)
- Feng-Yu Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Hao Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Qiu-Xia Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Chang-Lin Zeng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources (Xiamen University), State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
37
|
Martin L, Peters C, Heinbockel L, Moellmann J, Martincuks A, Brandenburg K, Lehrke M, Müller-Newen G, Marx G, Schuerholz T. The synthetic antimicrobial peptide 19-2.5 attenuates mitochondrial dysfunction in cardiomyocytes stimulated with human sepsis serum. Innate Immun 2016; 22:612-619. [DOI: 10.1177/1753425916667474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Septic cardiomyopathy affects up to 70% of patients with septic shock and the derangement of cardiac mitochondrial function contributes to the likelihood of death. However, at present, there is no specific therapeutic drug available. The peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) and coactivator-1β (PGC-1β) modulate members of the PPARs, which regulate mitochondrial energy metabolism and the production of mitochondrial reactive oxygen species in the heart. This study investigated the potential of the newly developed synthetic antimicrobial peptide 19-2.5 (Pep2.5) to attenuate mitochondrial dysfunction in murine cardiomyocytes stimulated with serum from septic shock patients. Pep2.5 treatment attenuated the suppression of PPAR-α, PPAR-γ ( P = 0.0004 and P = 0.0001, respectively) and PGC-1α/β ( P = 0.0008 and P = 0.0147, respectively) in cardiomyocytes stimulated with serum from septic shock patients compared with untreated cells. Pep2.5 treatment enhanced the mitochondrial maximum respiration ( P < 0.0001), increased cellular ATP levels ( P < 0.0001) and reduced the production of mitochondrial reactive oxygen species. Thus, the administration of Pep2.5 may have the potential as a promising therapeutic approach in septic cardiomyopathy by attenuating mitochondrial dysfunction in the septic heart.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Carsten Peters
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Lena Heinbockel
- Clinical and Experimental Pathology, Forschungszentrum Borstel, Borstel, Germany
| | - Julia Moellmann
- Department of Cardiology, Pneumology, Angiology and Intensive Care, University Hospital Aachen, Aachen, Germany
| | - Antons Martincuks
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | | | - Michael Lehrke
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
38
|
The Endothelial Glycocalyx: New Diagnostic and Therapeutic Approaches in Sepsis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3758278. [PMID: 27699168 PMCID: PMC5028820 DOI: 10.1155/2016/3758278] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The endothelial glycocalyx is one of the earliest sites involved during sepsis. This fragile layer is a complex network of cell-bound proteoglycans, glycosaminoglycan side chains, and sialoproteins lining the luminal side of endothelial cells with a thickness of about 1 to 3 μm. Sepsis-associated alterations of its structure affect endothelial permeability and result in the liberation of endogenous damage-associated molecular patterns (DAMPs). Once liberated in the circulatory system, DAMPs trigger the devastating consequences of the proinflammatory cascades in sepsis and septic shock. In this way, the injury to the glycocalyx with the consecutive release of DAMPs contributes to a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and septic cardiomyopathy. Moreover, the extent of glycocalyx degradation serves as a marker of endothelial dysfunction and sepsis severity. In this review, we highlight the crucial role of the glycocalyx in sepsis as a diagnostic tool and discuss the potential of members of the endothelial glycocalyx serving as hopeful therapeutic targets in sepsis-associated multiple organ failures.
Collapse
|
39
|
Yang H, Li S, Li F, Yu K, Yang F, Xiang J. Recombinant Expression of a Modified Shrimp Anti-Lipopolysaccharide Factor Gene in Pichia pastoris GS115 and Its Characteristic Analysis. Mar Drugs 2016; 14:md14080152. [PMID: 27517939 PMCID: PMC4999913 DOI: 10.3390/md14080152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022] Open
Abstract
Anti-lipopolysaccharide factors (ALFs) with a LPS-binding domain (LBD) are considered to have broad spectrum antimicrobial activities and certain antiviral properties in crustaceans. FcALF2 was one isoform of ALFs isolated from the Chinese shrimp Fenneropenaeus chinensis. Our previous study showed that a modified LBD domain (named LBDv) of FcALF2 exhibited a highly enhanced antimicrobial activity. In the present study, a modified FcALF2 gene (mFcALF2), in which the LBD was substituted by LBDv, was designed and synthesized. This gene was successfully expressed in yeast Pichia pastoris GS115 eukaryotic expression system, and the characteristics of the recombinant protein mFcALF2 were analyzed. mFcALF2 exhibited apparent antibacterial activities against Gram-negative bacteria, including Escherichia coli, Vibrio alginolyticus, Vibrio harveyi, and Vibrio parahaemolyticus, and Gram-positive bacteria, including Bacillus licheniformis and Staphylococcus epidermidis. In addition, mFcALF2 could reduce the propagation of white spot syndrome virus (WSSV) in vivo by pre-incubation with virus. The present study paves the way for developing antimicrobial drugs in aquaculture.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Kuijie Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Fusheng Yang
- Hangzhou Xiaoshan Donghai Aquaculture Company Limited, Hangzhou 311200, China.
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
40
|
Efficient Inhibition of Hepatitis B Virus Infection by a preS1-binding Peptide. Sci Rep 2016; 6:29391. [PMID: 27384014 PMCID: PMC4935942 DOI: 10.1038/srep29391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022] Open
Abstract
Entry inhibitors are promising novel antivirals against hepatitis B virus (HBV) infection. The existing potential entry inhibitors have targeted the cellular receptor(s). In this study, we aim to develop the first entry inhibitor that inhibits HBV infection via targeting viral particles. The preS1 segment of the large envelope glycoprotein of HBV is essential for virion attachment and infection. Previously, we obtained a preS1-binding short peptide B10 by screening a phage display peptide library using the N-terminal half of preS1 (residues 1 to 60, genotype C). We report here that by means of concatenation of B10, we identified a quadruple concatemer 4B10 that displayed a markedly increased preS1-binding activity. The main binding site of 4B10 in preS1 was mapped to the receptor binding enhancing region. 4B10 blocked HBV attachment to hepatic cells and inhibited HBV infection of primary human and tupaia hepatocytes at low nanomolar concentrations. The 4B10-mediated inhibition of HBV infection is specific as it did not inhibit the infection of vesicular stomatitis virus glycoprotein pseudotyped lentivirus or human immunodeficiency virus type 1. Moreover, 4B10 showed no binding activity to hepatic cells. In conclusion, we have identified 4B10 as a promising candidate for a novel class of HBV entry inhibitors.
Collapse
|
41
|
Hepatitis B virus receptors and molecular drug targets. Hepatol Int 2016; 10:567-73. [DOI: 10.1007/s12072-016-9718-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/18/2016] [Indexed: 12/16/2022]
|
42
|
Liu X, Chen N, Lin S, Liu M. Synthesized peptide 710-725 from HCV subtype 1a E2 glycoprotein blocks HCV infection through competitive binding of CD81. Int J Mol Med 2016; 37:836-42. [PMID: 26796693 DOI: 10.3892/ijmm.2016.2459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/12/2016] [Indexed: 11/05/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a significant public health problem worldwide. However, there is still a lack of effective therapeutic drugs which could be used for the interruption of the disease. In the present study, for the first time, we reported that a synthesized peptide, which was synthesized by solid phase peptide synthesis and derived from the amino acids 710 to 725 of the HCV E2, functioned as an inhibitor of HCV infection. Using an MTT assay, we found that the E2 (710-725) peptide exerted no specific cytotoxicity on Huh7.5 cells and primary human hepatocytes (pHH). Interestingly, E2 (710-725) peptide blocked the entry of cell culture‑derived HCV (HCVcc) into hepatocytes. Moreover, it suppressed HCV RNA replication and HCV-specific protein NS3 and NS5B expression, as shown by western blot analysis. Moreover, E2 (710-725) markedly attenuated the inhibitory effect of HCVcc on hepatocyte viability. Additionally, a co-immunino-precipitation assay demonstrated that E2 (710-725) abrogated the interaction between CD81 and HCV E2 envelope protein through competitive binding of CD81. Overall, our results revealed that the synthesized peptide E2 (710-725) blocked CD81‑mediated HCV entry and possessed the potential to treat HCV infection. Thus, the present study provided novel insights into the development of new drugs for preventing HCV infection.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Na Chen
- Department of Infectious Diseases, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Min Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
43
|
Martin L, De Santis R, Koczera P, Simons N, Haase H, Heinbockel L, Brandenburg K, Marx G, Schuerholz T. The Synthetic Antimicrobial Peptide 19-2.5 Interacts with Heparanase and Heparan Sulfate in Murine and Human Sepsis. PLoS One 2015; 10:e0143583. [PMID: 26600070 PMCID: PMC4658182 DOI: 10.1371/journal.pone.0143583] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/07/2015] [Indexed: 12/29/2022] Open
Abstract
Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains from their proteoglycans. Thereby, heparanase liberates highly potent circulating heparan sulfate-fragments (HS-fragments) and triggers the fatal and excessive inflammatory response in sepsis. As a potential anti-inflammatory agent for sepsis therapy, peptide 19-2.5 belongs to the class of synthetic anti-lipopolysaccharide peptides; however, its activity is not restricted to Gram-negative bacterial infection. We hypothesized that peptide 19-2.5 interacts with heparanase and/or HS, thereby reducing the levels of circulating HS-fragments in murine and human sepsis. Our data indicate that the treatment of septic mice with peptide 19-2.5 compared to untreated control animals lowers levels of plasma heparanase and circulating HS-fragments and reduces heparanase activity. Additionally, mRNA levels of heparanase in heart, liver, lung, kidney and spleen are downregulated in septic mice treated with peptide 19-2.5 compared to untreated control animals. In humans, plasma heparanase level and activity are elevated in septic shock. The ex vivo addition of peptide 19-2.5 to plasma of septic shock patients decreases heparanase activity but not heparanase level. Isothermal titration calorimetry revealed a strong exothermic reaction between peptide 19-2.5 and heparanase and HS-fragments. However, a saturation character has been identified only in the peptide 19-2.5 and HS interaction. In conclusion, the findings of our current study indicate that peptide 19-2.5 interacts with heparanase, which is elevated in murine and human sepsis and consecutively attenuates the generation of circulating HS-fragments in systemic inflammation. Thus, peptide 19-2.5 seems to be a potential anti-inflammatory agent in sepsis.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH, Aachen, Germany
| | - Rebecca De Santis
- Department of Intensive Care and Intermediate Care, University Hospital RWTH, Aachen, Germany
| | - Patrick Koczera
- Department of Intensive Care and Intermediate Care, University Hospital RWTH, Aachen, Germany
| | - Nadine Simons
- Department of Intensive Care and Intermediate Care, University Hospital RWTH, Aachen, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Berlin, Germany
| | - Lena Heinbockel
- Division of Biophysics, Forschungszentrum Borstel, Borstel, Germany
| | | | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH, Aachen, Germany
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital RWTH, Aachen, Germany
- * E-mail:
| |
Collapse
|
44
|
Vanheule V, Vervaeke P, Mortier A, Noppen S, Gouwy M, Snoeck R, Andrei G, Van Damme J, Liekens S, Proost P. Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochem Pharmacol 2015; 100:73-85. [PMID: 26551597 DOI: 10.1016/j.bcp.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Chemokines attract leukocytes to sites of infection in a G protein-coupled receptor (GPCR) and glycosaminoglycan (GAG) dependent manner. Therefore, chemokines are crucial molecules for proper functioning of our antimicrobial defense mechanisms. In addition, some chemokines have GPCR-independent defensin-like antimicrobial activities against bacteria and fungi. Recently, high affinity for GAGs has been reported for the positively charged COOH-terminal region of the chemokine CXCL9. In addition to CXCL9, also CXCL12γ has such a positively charged COOH-terminal region with about 50% positively charged amino acids. In this report, we compared the affinity of COOH-terminal peptides of CXCL9 and CXCL12γ for GAGs and KD values in the low nM range were detected. Several enveloped viruses such as herpesviruses, hepatitis viruses, human immunodeficiency virus (HIV), dengue virus (DENV), etc. are known to bind to GAGs such as the negatively charged heparan sulfate (HS). In this way GAGs are important for the initial contacts between viruses and host cells and for the infection of the cell. Thus, inhibiting the virus-cell interactions, by blocking GAG-binding sites on the host cell, might be a way to target multiple virus families and resistant strains. This article reports that the COOH-terminal peptides of CXCL9 and CXCL12γ have antiviral activity against DENV serotype 2, clinical and laboratory strains of herpes simplex virus (HSV)-1 and respiratory syncytial virus (RSV). Moreover, we show that CXCL9(74-103) competes with DENV envelope protein domain III for binding to heparin. These short chemokine-derived peptides may be lead molecules for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Vincent Vanheule
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Peter Vervaeke
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Anneleen Mortier
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Sam Noppen
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Mieke Gouwy
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Robert Snoeck
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Graciela Andrei
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Jo Van Damme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| | - Sandra Liekens
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium.
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, B-3000 Leuven, Belgium.
| |
Collapse
|
45
|
Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses 2015; 7:5659-85. [PMID: 26540069 PMCID: PMC4664971 DOI: 10.3390/v7112898] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.
Collapse
|
46
|
Yang H, Li S, Li F, Lv X, Xiang J. Recombinant expression and functional analysis of an isoform of anti-lipopolysaccharide factors (FcALF5) from Chinese shrimp Fenneropenaeus chinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:47-54. [PMID: 26123888 DOI: 10.1016/j.dci.2015.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
Antimicrobial peptides (AMPs) have a great potential to be used as a substitute for antibiotics since AMPs don't lead to bacteria's drug resistance. Anti-lipopolysaccharide factors (ALFs) are one type of AMPs and exist in crustaceans. In the present study, we produced a recombinant protein (rFcALF5) of an ALF isoform (FcALF5) from Chinese shrimp Fenneropenaeus chinensis through a prokaryotic expression system. The rFcALF5 exhibited varied antibacterial activities against different bacteria. Besides its antibacterial activities, it could also inhibit the infection of white spot syndrome virus (WSSV) to shrimp after pre-incubation with this virus. In order to learn the antiviral mechanism on how rFcALF5 influences WSSV infection, the interaction between the total proteins of WSSV and rFcALF5 was analyzed and the data showed that rFcALF5 had direct interaction with the envelope protein VP24 of WSSV. The LPS binding domain (LBD) of FcALF5 also showed direct interaction with VP24 of WSSV. Therefore we inferred that the antiviral activity of FcALF5 might be achieved through the binding of its LBD to VP24 of WSSV. These findings provided more information to develop new strategies for the control of shrimp disease in aquaculture.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| | - Xinjia Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
47
|
Skalickova S, Heger Z, Krejcova L, Pekarik V, Bastl K, Janda J, Kostolansky F, Vareckova E, Zitka O, Adam V, Kizek R. Perspective of Use of Antiviral Peptides against Influenza Virus. Viruses 2015; 7:5428-42. [PMID: 26492266 PMCID: PMC4632391 DOI: 10.3390/v7102883] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 01/13/2023] Open
Abstract
The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.
Collapse
Affiliation(s)
- Sylvie Skalickova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
| | - Karel Bastl
- Wool and Knitting Research Institute, Brno, Sujanovo namesti 3, Brno CZ-602 00, Czech Republic.
| | - Jozef Janda
- Laboratory of Tumour Biology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov CZ-277 21, Czech Republic.
| | - Frantisek Kostolansky
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Eva Vareckova
- Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, Brno CZ-616 00, Czech Republic.
| |
Collapse
|
48
|
Alfaiate D, Dény P, Durantel D. Hepatitis delta virus: From biological and medical aspects to current and investigational therapeutic options. Antiviral Res 2015; 122:112-29. [PMID: 26275800 DOI: 10.1016/j.antiviral.2015.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
|
49
|
Martin L, van Meegern A, Doemming S, Schuerholz T. Antimicrobial Peptides in Human Sepsis. Front Immunol 2015; 6:404. [PMID: 26347737 PMCID: PMC4542572 DOI: 10.3389/fimmu.2015.00404] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
Nearly 100 years ago, antimicrobial peptides (AMPs) were identified as an important part of innate immunity. They exist in species from bacteria to mammals and can be isolated in body fluids and on surfaces constitutively or induced by inflammation. Defensins have anti-bacterial effects against Gram-positive and Gram-negative bacteria as well as anti-viral and anti-yeast effects. Human neutrophil peptides (HNP) 1-3 and human beta-defensins (HBDs) 1-3 are some of the most important defensins in humans. Recent studies have demonstrated higher levels of HNP 1-3 and HBD-2 in sepsis. The bactericidal/permeability-increasing protein (BPI) attenuates local inflammatory response and decreases systemic toxicity of endotoxins. Moreover, BPI might reflect the severity of organ dysfunction in sepsis. Elevated plasma lactoferrin is detected in patients with organ failure. HNP 1-3, lactoferrin, BPI, and heparin-binding protein are increased in sepsis. Human lactoferrin peptide 1-11 (hLF 1-11) possesses antimicrobial activity and modulates inflammation. The recombinant form of lactoferrin [talactoferrin alpha (TLF)] has been shown to decrease mortality in critically ill patients. A phase II/III study with TLF in sepsis did not confirm this result. The growing number of multiresistant bacteria is an ongoing problem in sepsis therapy. Furthermore, antibiotics are known to promote the liberation of pro-inflammatory cell components and thus augment the severity of sepsis. Compared to antibiotics, AMPs kill bacteria but also neutralize pathogenic factors such as lipopolysaccharide. The obstacle to applying naturally occurring AMPs is their high nephro- and neurotoxicity. Therefore, the challenge is to develop peptides to treat septic patients effectively without causing harm. This overview focuses on natural and synthetic AMPs in human and experimental sepsis and their potential to provide significant improvements in the treatment of critically ill with severe infections.
Collapse
Affiliation(s)
- Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Anne van Meegern
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Sabine Doemming
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| | - Tobias Schuerholz
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen , Aachen , Germany
| |
Collapse
|
50
|
McClain L, Zhi Y, Cheng H, Ghosh A, Piazza P, Yee MB, Kumar S, Milosevic J, Bloom DC, Arav-Boger R, Kinchington PR, Yolken R, Nimgaonkar V, D'Aiuto L. Broad-spectrum non-nucleoside inhibitors of human herpesviruses. Antiviral Res 2015; 121:16-23. [PMID: 26079681 DOI: 10.1016/j.antiviral.2015.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 01/06/2023]
Abstract
Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of 'quiescent' HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo.
Collapse
Affiliation(s)
- Lora McClain
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun Zhi
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hoyee Cheng
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ayantika Ghosh
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Paolo Piazza
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael B Yee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Santosh Kumar
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jadranka Milosevic
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ravit Arav-Boger
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Molecular Genetics & Biochemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Yolken
- Stanley Division of Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vishwajit Nimgaonkar
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, WPIC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|