1
|
Kuse N, Noyori O, Takahashi N, Zhang Y, Suzu S, Takiguchi M. Recognition of HIV-1-infected fibrocytes lacking Nef-mediated HLA-B downregulation by HIV-1-specific T cells. J Virol 2024; 98:e0079124. [PMID: 38940584 PMCID: PMC11264601 DOI: 10.1128/jvi.00791-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Fibrocytes were reported to be host cells for HIV-1, but the immunological recognition of HIV-1-infected fibrocytes has not been studied. Here, we investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific CD8+ T cells. CD8+ T cells specific for five HIV-1 epitopes (HLA-A*24:02-restricted, HLA-B*52:01-restricted, and HLA-C*12:02-restricted epitopes) produced IFN-γ and expressed CD107a after coculture with HIV-1-infected fibrocytes. HIV-1-infected fibrocytes were effectively killed by HIV-1-specific CD8+ T cells. Although it is well known that HIV-1 Nef-mediated downregulation of HLA-A and HLA-B critically affects the T cell recognition of HIV-1-infected CD4+ T cells and HIV-1-infected macrophages, Nef downregulated HLA-A, but not HLA-B, in HIV-1-infected fibrocytes. These findings suggested that HIV-1-specific CD8+ T cells could recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells or HIV-1-infected macrophages. HIV-1-infected fibrocytes were also recognized by HIV-1-specific HLA-DR-restricted T cells, indicating that HIV-1-infected fibrocytes can present HIV-1 epitopes to helper T cells. Collectively, these findings suggest that fibrocytes have an important role as antigen-presenting cells during HIV-1 infection. The present study demonstrates effective recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells and suggests possible roles of fibrocytes in the induction and maintenance of HIV-1-specific T cells. IMPORTANCE Fibrocytes were identified as unique hematopoietic cells with the features of both macrophages and fibroblasts and were demonstrated to be host cells for HIV-1. However, T cell recognition of HIV-1-infected fibrocytes has not been studied. We investigated the recognition of HIV-1-infected fibrocytes by HIV-1-specific T cells. HIV-1-infected fibrocytes were effectively recognized and killed by CD8+ T cells specific for HIV-1 epitopes presented by HLA-A, HLA-B, or HLA-C and were recognized by HIV-1-specific HLA-DR-restricted CD4+ T cells. HIV-1 Nef-mediated downregulation of HLA-A and HLA-B was found in HIV-1-infected CD4+ T cells, whereas Nef did not downregulate HLA-B in HIV-1-infected fibrocytes. These results suggest that HIV-1-specific CD8+ T cells recognize HIV-1-infected fibrocytes more strongly than HIV-1-infected CD4+ T cells. The present study suggests the importance of fibrocytes in the induction and maintenance of HIV-1-specific T cells.
Collapse
Affiliation(s)
- Nozomi Kuse
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Osamu Noyori
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Naofumi Takahashi
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yu Zhang
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Division of Infection and Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masafumi Takiguchi
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Tassaneetrithep B, Phuphuakrat A, Pasomsub E, Bhukhai K, Wongkummool W, Priengprom T, Khamaikawin W, Chaisavaneeyakorn S, Anurathapan U, Apiwattanakul N, Hongeng S. HIV-1 proviral DNA in purified peripheral blood CD34 + stem and progenitor cells in individuals with long-term HAART; paving the way to HIV gene therapy. Heliyon 2024; 10:e26613. [PMID: 38434025 PMCID: PMC10906414 DOI: 10.1016/j.heliyon.2024.e26613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Human immunodeficiency virus (HIV)-1 infection is an important public health problem worldwide. After primary HIV-1 infection, transcribed HIV-1 DNA is integrated into the host genome, serving as a reservoir of the virus and hindering a definite cure. Although highly active antiretroviral therapy suppresses active viral replication, resulting in undetectable levels of HIV RNA in the blood, a viral rebound can be detected after a few weeks of treatment interruption. This supports the concept that there is a stable HIV-1 reservoir in people living with HIV-1. Recently, a few individuals with HIV infection were reported to be probably cured by hematopoietic stem transplantation (HSCT). The underlying mechanism for this success involved transfusion of uninfected hematopoietic stem and progenitor cells (HSPCs) from CCR5-mutated donors who were naturally resistant to HIV infection. Thus, gene editing technology to provide HIV-resistant HSPC has promise in the treatment of HIV infections by HSCT. In this study, we aimed to find HIV-infected individuals likely to achieve a definite cure via gene editing HSCT. We screened for total HIV proviral DNA by Alu PCR in peripheral blood mononuclear cells (PBMCs) of 20 HIV-infected individuals with prolonged viral suppression. We assessed the amount of intact proviral DNA via a modified intact proviral DNA assay (IPDA) in purified peripheral CD34+ HSPCs. PBMCs from all 20 individuals were positive for the gag gene in Alu PCR, and peripheral CD34+ HSPCs were IPDA-negative for six individuals. Our results suggested that these six HIV-infected individuals could be candidates for further studies into the ability of gene editing HSCT to lead to a definite HIV cure.
Collapse
Affiliation(s)
- Boonrat Tassaneetrithep
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Thailand
| | | | - Thongkoon Priengprom
- Center of Research Excellence in Immunoregulation, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Wannisa Khamaikawin
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Thailand
| | | | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thailand
| |
Collapse
|
3
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
4
|
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has become a heavy burden of disease and an important public health problem in the world. Although current antiretroviral therapy (ART) is effective at suppressing the virus in the blood, HIV still remains in two different types of reservoirs-the latently infected cells (represented by CD4+ T cells) and the tissues containing those cells, which may block access to ART, HIV-neutralizing antibodies and latency-reversing agents. The latter is the focus of our review, as blood viral load drops below detectable levels after ART, a deeper and more systematic understanding of the HIV tissue reservoirs is imperative. In this review, we take the lymphoid system (including lymph nodes, gut-associated lymphoid tissue, spleen and bone marrow), nervous system, respiratory system, reproductive system (divided into male and female), urinary system as the order, focusing on the particularity and importance of each tissue in HIV infection, the infection target cell types of each tissue, the specific infection situation of each tissue quantified by HIV DNA or HIV RNA and the evidence of compartmentalization and pharmacokinetics. In summary, we found that the present state of HIV in different tissues has both similarities and differences. In the future, the therapeutic principle we need to follow is to respect the discrepancy on the basis of grasping the commonality. The measures taken to completely eliminate the virus in the whole body cannot be generalized. It is necessary to formulate personalized treatment strategies according to the different characteristics of the HIV in the various tissues, so as to realize the prospect of curing AIDS as soon as possible.
Collapse
Affiliation(s)
- Kangpeng Li
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Ma
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Chetty C, Musekwa E, Chapanduka ZC. The value of bone marrow examinations performed in the investigation of HIV infected patients with cytopenias. Int J Lab Hematol 2023. [PMID: 37129086 DOI: 10.1111/ijlh.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Bone marrow examination (BME) is a reliable and effective tool in the diagnosis of many haematological and non-haematological diseases and may be used to investigate unexplained cytopenia in human immunodeficiency virus (HIV) infected patients. The objective of this study was to determine the diagnoses made, diagnostic yield and unique diagnostic yield of BMEs performed to investigate cytopenias in HIV infected patients. METHOD A retrospective cross-sectional descriptive study was performed involving all BMEs performed on HIV-infected adult patients with the main indication of unexplained cytopenia over a period of 5 years and 4 months. Data was extracted from the National Health Laboratory Service's laboratory information system and clinicians' BME request forms. RESULTS The study included 128 BMEs, performed on 124 patients. The diagnostic yield was 32% and the unique diagnostic yield was 30.5%. The most common diagnosis was pure red cell aplasia (10.9%), followed by immune thrombocytopenic purpura (ITP) (7%), iron deficiency anaemia (6.3%), malignancy (4.7%) and disseminated infection (3.9%). CONCLUSION BME is a useful investigation for unexplained cytopenia in HIV-infected patients. Less invasive investigations to exclude haematinic deficiencies, haemolysis and sepsis are recommended on an individualised basis prior to BME. In HIV-infected patients with therapy refractory ITP or ITP with atypical clinicopathological findings, BME is strongly recommended. As Mycobacterial and other infections are common in this group of patients, staining and culture of specimens are advised if BME is undertaken.
Collapse
Affiliation(s)
- Carissa Chetty
- Division of Haematological Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, South Africa
| | - Ernest Musekwa
- Division of Haematological Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, South Africa
| | - Zivanai Cuthbert Chapanduka
- Division of Haematological Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, South Africa
| |
Collapse
|
6
|
Renelt S, Schult-Dietrich P, Baldauf HM, Stein S, Kann G, Bickel M, Kielland-Kaisen U, Bonig H, Marschalek R, Rieger MA, Dietrich U, Duerr R. HIV-1 Infection of Long-Lived Hematopoietic Precursors In Vitro and In Vivo. Cells 2022; 11:cells11192968. [PMID: 36230931 PMCID: PMC9562211 DOI: 10.3390/cells11192968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Latent reservoirs in human-immunodeficiency-virus-1 (HIV-1)-infected individuals represent a major obstacle in finding a cure for HIV-1. Hematopoietic stem and progenitor cells (HSPCs) have been described as potential HIV-1 targets, but their roles as HIV-1 reservoirs remain controversial. Here we provide additional evidence for the susceptibility of several distinct HSPC subpopulations to HIV-1 infection in vitro and in vivo. In vitro infection experiments of HSPCs were performed with different HIV-1 Env-pseudotyped lentiviral particles and with replication-competent HIV-1. Low-level infection/transduction of HSPCs, including hematopoietic stem cells (HSCs) and multipotent progenitors (MPP), was observed, preferentially via CXCR4, but also via CCR5-mediated entry. Multi-lineage colony formation in methylcellulose assays and repetitive replating of transduced cells provided functional proof of susceptibility of primitive HSPCs to HIV-1 infection. Further, the access to bone marrow samples from HIV-positive individuals facilitated the detection of HIV-1 gag cDNA copies in CD34+ cells from eight (out of eleven) individuals, with at least six of them infected with CCR5-tropic HIV-1 strains. In summary, our data confirm that primitive HSPC subpopulations are susceptible to CXCR4- and CCR5-mediated HIV-1 infection in vitro and in vivo, which qualifies these cells to contribute to the HIV-1 reservoir in patients.
Collapse
Affiliation(s)
- Sebastian Renelt
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Patrizia Schult-Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377 Munich, Germany
- Institute of Medical Virology, Goethe University, 60596 Frankfurt, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Gerrit Kann
- Department of Medicine II/Infectious Diseases, Goethe University Hospital, 60596 Frankfurt, Germany
- Infektiologikum, Center for Infectious Diseases, 60596 Frankfurt, Germany
| | - Markus Bickel
- Infektiologikum, Center for Infectious Diseases, 60596 Frankfurt, Germany
| | | | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University, 60528 Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, 60438 Frankfurt, Germany
| | - Michael A. Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
- Cardio-Pulmonary Institute, 60596 Frankfurt, Germany
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Ralf Duerr
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
7
|
Extensive characterization of HIV-1 reservoirs reveals links to plasma viremia before and during analytical treatment interruption. Cell Rep 2022; 39:110739. [PMID: 35476994 PMCID: PMC9745684 DOI: 10.1016/j.celrep.2022.110739] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/01/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
The HIV-1 reservoir is composed of cells harboring latent proviruses that have the potential to contribute to viremia upon antiretroviral treatment (ART) interruption. While this reservoir is known to be maintained by clonal expansion of infected cells, the contribution of these cell clones to residual viremia and viral rebound remains underexplored. Here, we conducted an extensive analysis on four ART-treated individuals who underwent an analytical treatment interruption (ATI), characterizing the proviral genomes and associated integration sites of large infected clones and phylogenetically linking these to plasma viremia. We show discrepancies between different assays in their ability to assess clonal expansion. Furthermore, we demonstrate that proviruses could phylogenetically be linked to plasma virus obtained before or during an ATI. This study highlights a role for HIV-infected cell clones in the maintenance of the replication-competent reservoir and suggests that infected cell clones can directly contribute to rebound viremia upon ATI.
Collapse
|
8
|
Abstract
The introduction of antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART) has transformed human immunodeficiency virus (HIV)-1 into a chronic, well-managed disease. However, these therapies do not eliminate all infected cells from the body despite suppressing viral load. Viral rebound is largely due to the presence of cellular reservoirs which support long-term persistence of HIV-1. A thorough understanding of the HIV-1 reservoir will facilitate the development of new strategies leading to its detection, reduction, and elimination, ultimately leading to curative therapies for HIV-1. Although immune cells derived from lymphoid and myeloid progenitors have been thoroughly studied as HIV-1 reservoirs, few studies have examined whether mesenchymal stromal/stem cells (MSCs) can assume this function. In this review, we evaluate published studies which have assessed whether MSCs contribute to the HIV-1 reservoir. MSCs have been found to express the receptors and co-receptors required for HIV-1 entry, albeit at levels of expression and receptor localisation that vary considerably between studies. Exposure to HIV-1 and HIV-1 proteins alters MSC properties in vitro, including their proliferation capacity and differentiation potential. However, in vitro and in vivo experiments investigating whether MSCs can become infected with and harbour latent integrated proviral DNA are lacking. In conclusion, MSCs appear to have the potential to contribute to the HIV-1 reservoir. However, further studies are needed using techniques such as those used to prove that cluster of differentiation (CD)4+ T cells constitute an HIV-1 reservoir before a reservoir function can definitively be ascribed to MSCs.
Collapse
|
9
|
HIV-1 Nef Induces Hck/Lyn-Dependent Expansion of Myeloid-Derived Suppressor Cells Associated with Elevated Interleukin-17/G-CSF Levels. J Virol 2021; 95:e0047121. [PMID: 34106001 PMCID: PMC8354241 DOI: 10.1128/jvi.00471-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection causes myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+) through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14+ CD16+ cells are CD11b+ Gr1+ myeloid-derived suppressor cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely, CD4C/Nef Tg mice expressing nef in dendritic cells (DC), pDC, CD4+ T, and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC. Both Tg strains showed expansion of granulocytic and CD11b+ Gr1low/int cells with MDSC characteristics. Fetal liver cell transplantation revealed that this expansion was stroma-independent and abrogated in mixed Tg/non-Tg 50% chimera. Tg bone marrow (BM) erythroid progenitors were decreased and myeloid precursors increased, suggesting an aberrant differentiation likely driving CD11b+ Gr1+ cell expansion, apparently cell autonomously in CD4C/Nef Tg mice and likely through a bystander effect in CD11c/Nef Tg mice. Hck was activated in Tg spleen, and Nef-mediated CD11b+ Gr1+ cell expansion was abrogated in Hck/Lyn-deficient Nef Tg mice, indicating a requirement of Hck/Lyn for this Nef function. IL-17 and granulocyte colony-stimulating factor (G-CSF) were elevated in Nef Tg mice. Increased G-CSF levels were normalized in Tg mice treated with anti-IL-17 antibodies. Therefore, Nef expression in myeloid precursors causes severe BM failure, apparently cell autonomously. More cell-restricted expression of Nef in DC and pDC appears sufficient to induce BM differentiation impairment, granulopoiesis, and expansion of MDSC at the expense of erythroid maturation, with IL-17→G-CSF as one likely bystander contributor. IMPORTANCE HIV-1 and SIV infection often lead to myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+), with the latter likely involved in neuroAIDS. We found that some transgenic (Tg) mouse models of AIDS also develop accumulation of mature and immature cells of the granulocytic lineage, decreased erythroid precursors, and expansion of MDSC (equivalent to human CD14+ CD16+ cells). We identified Nef as being responsible for these phenotypes, and its expression in mouse DC appears sufficient for their development through a bystander mechanism. Nef expression in myeloid progenitors may also favor myeloid cell expansion, likely in a cell-autonomous way. Hck/Lyn is required for the Nef-mediated accumulation of myeloid cells. Finally, we identified G-CSF under the control of IL-17 as one bystander mediator of MDSC expansion. Our findings provide a framework to determine whether the Nef>Hck/Lyn>IL-17>G-CSF pathway is involved in human AIDS and whether it represents a valid therapeutic target.
Collapse
|
10
|
CpG Methylation Profiles of HIV-1 Pro-Viral DNA in Individuals on ART. Viruses 2021; 13:v13050799. [PMID: 33946976 PMCID: PMC8146454 DOI: 10.3390/v13050799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
The latent HIV-1 reservoir is comprised of stably integrated and intact proviruses with limited to no viral transcription. It has been proposed that latent infection may be maintained by methylation of pro-viral DNA. Here, for the first time, we investigate the cytosine methylation of a replication competent provirus (AMBI-1) found in a T cell clone in a donor on antiretroviral therapy (ART). Methylation profiles of the AMBI-1 provirus were compared to other proviruses in the same donor and in samples from three other individuals on ART, including proviruses isolated from lymph node mononuclear cells (LNMCs) and peripheral blood mononuclear cells (PBMCs). We also evaluated the apparent methylation of cytosines outside of CpG (i.e., CpH) motifs. We found no evidence for methylation in AMBI-1 or any other provirus tested within the 5' LTR promoter. In contrast, CpG methylation was observed in the env-tat-rev overlapping reading frame. In addition, we found evidence for differential provirus methylation in cells isolated from LNMCs vs. PBMCs in some individuals, possibly from the expansion of infected cell clones. Finally, we determined that apparent low-level methylation of CpH cytosines is consistent with occasional bisulfite reaction failures. In conclusion, our data do not support the proposition that latent HIV infection is associated with methylation of the HIV 5' LTR promoter.
Collapse
|
11
|
Tong O, Duette G, O’Neil TR, Royle CM, Rana H, Johnson B, Popovic N, Dervish S, Brouwer MAE, Baharlou H, Patrick E, Ctercteko G, Palmer S, Lee E, Hunter E, Harman AN, Cunningham AL, Nasr N. Plasmacytoid dendritic cells have divergent effects on HIV infection of initial target cells and induce a pro-retention phenotype. PLoS Pathog 2021; 17:e1009522. [PMID: 33872331 PMCID: PMC8084337 DOI: 10.1371/journal.ppat.1009522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/29/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023] Open
Abstract
Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, pDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFNα by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance. IFNs constitute one of the first and most important innate immune controls to restrict initial viral replication and spread. As HIV has evolved mechanisms to block IFN-I induction in its target cells, but not in infiltrating pDCs, understanding how pDCs influence HIV infection of target cells upon initial transmission is critical to prevent or control initial infection. Therefore, we modelled the early events occurring immediately as HIV enters the human genital mucosa. We showed that IFNα secreting pDC compensated for HIV inhibition of IFN-I production in its target cells in two different ways: i) reduced infection in DCs and macrophages which would limit viral spread to resident or newly infiltrating memory CD4 T cells; ii) reactivation of latent HIV in all subsets of resting memory CD4 T cell subsets, accompanied by limited viral spread, upregulation of MHC-I and induction of a tissue retention phenotype. The increased HIV protein, MHC-I expression and retention may enhance exposure to CD8 T cell surveillance. This model suggests that IFNα reactivation of latent HIV combined with adoptive immunotherapy using CD8 T cells or those expressing chimeric antigen receptors (CAR) could provide a novel ‘kick and kill’ approach to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Caroline M. Royle
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Blake Johnson
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Nicole Popovic
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Suat Dervish
- Westmead research Hub, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Michelle A. E. Brouwer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Department of Internal Medicine, Radboud Centre for Infectious Diseases, Radboud Institute of Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, School of Mathematics and Statistics, Faculty of Science, Sydney, New South Wales, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eric Hunter
- Emory Vaccine Centre, Atlanta, Georgia, United States of America
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- * E-mail: (ALC); (NN)
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- * E-mail: (ALC); (NN)
| |
Collapse
|
12
|
Lima NS, Takata H, Huang SH, Haregot A, Mitchell J, Blackmore S, Garland A, Sy A, Cartwright P, Routy JP, Michael NL, Appay V, Jones RB, Trautmann L. CTL Clonotypes with Higher TCR Affinity Have Better Ability to Reduce the HIV Latent Reservoir. THE JOURNAL OF IMMUNOLOGY 2020; 205:699-707. [PMID: 32591402 DOI: 10.4049/jimmunol.1900811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/23/2020] [Indexed: 01/09/2023]
Abstract
The success of the shock and kill strategy for the HIV cure depends both on the reactivation of the latent reservoir and on the ability of the immune system to eliminate infected cells. As latency reversal alone has not shown any impact in the size of the latent reservoir, ensuring that effector CTLs are able to recognize and kill HIV-infected cells could contribute to reservoir reduction. In this study, we investigated which functional aspects of human CTLs are associated with a better capacity to kill HIV-infected CD4+ T cells. We isolated Gag- and Nef-specific CTL clones with different TCR sequences from the PBMC of donors in acute and chronic infection. High-affinity clonotypes that showed IFN-γ production preserved even when the CD8 coreceptor was blocked, and clones with high Ag sensitivity exhibited higher efficiency at reducing the latent reservoir. Although intrinsic cytotoxic capacity did not differ according to TCR affinity, clonotypes with high TCR affinity showed a better ability to kill HIV-infected CD4+ T cells obtained from in vivo-infected PBMC and subjected to viral reactivation. Strategies aiming to specifically boost and maintain long-living memory CTLs with high TCR affinity in vivo prior to latency-reversing treatment might improve the efficacy of the shock and kill approach to reduce the latent reservoir.
Collapse
Affiliation(s)
- Noemia S Lima
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Hiroshi Takata
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Szu-Han Huang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Alexander Haregot
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Julie Mitchell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Stephen Blackmore
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Ayanna Garland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Aaron Sy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | | | - Jean-Pierre Routy
- Division of Hematology and Chronic Viral Illness Service, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, INSERM, Paris 75005, France; and.,International Research Center of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - R Brad Jones
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10021.,Department of Microbiology, Immunology, and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910; .,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
13
|
Tsukamoto T. Hematopoietic Stem/Progenitor Cells and the Pathogenesis of HIV/AIDS. Front Cell Infect Microbiol 2020; 10:60. [PMID: 32154191 PMCID: PMC7047323 DOI: 10.3389/fcimb.2020.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
The interaction between human immunodeficiency virus (HIV) and hematopoietic stem/progenitor cells (HSPCs) has been of great interest. However, it remains unclear whether HSPCs can act as viral reservoirs. Many studies have reported the presence of latently infected HSPCs in the bone marrow of HIV-infected patients, whereas many other investigators have reported negative results. Hence, further evidence is required to elucidate this controversy. The other arm of HSPC investigations of HIV infection involves dynamics analysis in the early and late stages of infection to understand the impact on the pathogenesis of acquired immunodeficiency syndrome. Several recent studies have suggested reduced amounts and/or functional impairment of multipotent, myeloid, and lymphoid progenitors in HIV infection that may contribute to hematological manifestations, including anemia, pancytopenia, and T-cell depletion. In addition, ongoing and future studies on the senescence of HSPCs are expected to further the understanding of HIV pathogenesis. This mini review summarizes reports describing the basic aspects of hematopoiesis in response to HIV infection and offers insights into the association of HIV infection/exposure of the host HSPCs and hematopoietic potential.
Collapse
Affiliation(s)
- Tetsuo Tsukamoto
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
14
|
Impact of Antiretroviral Therapy Duration on HIV-1 Infection of T Cells within Anatomic Sites. J Virol 2020; 94:JVI.01270-19. [PMID: 31723024 PMCID: PMC7000983 DOI: 10.1128/jvi.01270-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/02/2019] [Indexed: 12/23/2022] Open
Abstract
Understanding the impact of antiretroviral therapy (ART) duration on HIV-infected cells is critical for developing successful curative strategies. To address this issue, we conducted a cross-sectional/inter-participant genetic characterization of HIV-1 RNA from pre- and on-therapy plasmas and HIV-1 DNA from CD4+ T cell subsets derived from peripheral blood (PB), lymph node (LN), and gut tissues of 26 participants after 3 to 17.8 years of ART. Our studies revealed in four acute/early participants who had paired PB and LN samples a substantial reduction in the proportion of HIV-infected cells per year on therapy within the LN. Extrapolation to all 12 acute/early participants estimated a much smaller reduction in the proportion of HIV-1-infected cells within LNs per year on therapy that was similar to that in the participants treated during chronic infection. LN-derived effector memory T (TEM) cells contained HIV-1 DNA that was genetically identical to viral sequences derived from pre- and on-therapy plasma samples. The proportion of identical HIV-1 DNA sequences increased within PB-derived TEM cells. However, the infection frequency of TEM cells in PB was stable, indicating that cellular proliferation that compensates for T cell loss over time contributes to HIV-1 persistence. This study suggests that ART reduces HIV-infected T cells and that clonal expansion of HIV-infected cells maintains viral persistence. Importantly, LN-derived TEM cells are a probable source of HIV-1 genomes capable of producing infectious HIV-1 and should be targeted by future curative strategies.IMPORTANCE HIV-1 persists as an integrated genome in CD4+ memory T cells during effective therapy, and cessation of current treatments results in resumption of viral replication. To date, the impact of antiretroviral therapy duration on HIV-infected CD4+ T cells and the mechanisms of viral persistence in different anatomic sites is not clearly elucidated. In the current study, we found that treatment duration was associated with a reduction in HIV-infected T cells. Our genetic analyses revealed that CD4+ effector memory T (TEM) cells derived from the lymph node appeared to contain provirus that was genetically identical to plasma-derived virions. Moreover, we found that cellular proliferation counterbalanced the decay of HIV-infected cells throughout therapy. The contribution of cellular proliferation to viral persistence is particularly significant in TEM cells. Our study emphasizes the importance of HIV-1 intervention and provides new insights into the location of memory T cells infected with HIV-1 DNA, which is capable of contributing to viremia.
Collapse
|
15
|
Falcinelli SD, Ceriani C, Margolis DM, Archin NM. New Frontiers in Measuring and Characterizing the HIV Reservoir. Front Microbiol 2019; 10:2878. [PMID: 31921056 PMCID: PMC6930150 DOI: 10.3389/fmicb.2019.02878] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
A cure for HIV infection remains elusive due to the persistence of replication-competent HIV proviral DNA during suppressive antiretroviral therapy (ART). With the exception of rare elite or post-treatment controllers of viremia, withdrawal of ART invariably results in the rebound of viremia and progression of HIV disease. A thorough understanding of the reservoir is necessary to develop new strategies in order to reduce or eliminate the reservoir. However, there is significant heterogeneity in the sequence composition, genomic location, stability, and expression of the HIV reservoir both within and across individuals, and a majority of proviral sequences are replication-defective. These factors, and the low frequency of persistently infected cells in individuals on suppressive ART, make understanding the reservoir and its response to experimental reservoir reduction interventions challenging. Here, we review the characteristics of the HIV reservoir, state-of-the-art assays to measure and characterize the reservoir, and how these assays can be applied to accurately detect reductions in reservoir during efforts to develop a cure for HIV infection. In particular, we highlight recent advances in the development of direct measures of provirus, including intact proviral DNA assays and full-length HIV DNA sequencing with integration site analysis. We also focus on novel techniques to quantitate persistent and inducible HIV, including RNA sequencing and RNA/gag protein staining techniques, as well as modified viral outgrowth methods that seek to improve upon throughput, sensitivity and dynamic range.
Collapse
Affiliation(s)
- Shane D Falcinelli
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Cristina Ceriani
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David M Margolis
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nancie M Archin
- UNC HIV Cure Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
16
|
Lee E, Bacchetti P, Milush J, Shao W, Boritz E, Douek D, Fromentin R, Liegler T, Hoh R, Deeks SG, Hecht FM, Chomont N, Palmer S. Memory CD4 + T-Cells Expressing HLA-DR Contribute to HIV Persistence During Prolonged Antiretroviral Therapy. Front Microbiol 2019; 10:2214. [PMID: 31611857 PMCID: PMC6775493 DOI: 10.3389/fmicb.2019.02214] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
To date, most assays for measuring the human immunodeficiency virus (HIV-1) reservoir do not include memory CD4+ T-cells expressing the activation marker, human leukocyte antigen-antigen D related (HLA-DR). However, little is known concerning the role these cells play in maintaining persistent HIV-1 during effective antiretroviral therapy (ART). To address this issue, we examined, cellular activation/exhaustion markers (Ki67, CCR5, PD-1, Lag-3 and Tim-3) and viral gag-pol DNA sequences within HLA-DR− and HLA-DR+ memory CD4+ T-cell subsets longitudinally from the peripheral blood of six participants over 3 to ≥15 years of effective therapy. HLA-DR expression was readily detected during the study period in all participants. The average expression levels of CCR5, PD-1 and Tim-3 were higher on the HLA-DR+ T-cell subset whereas the average of LAG-3 expression was higher on their HLA-DR− counterpart. The proportion of HIV-infected cells increased within the HLA-DR+ subset by an average of 18% per year of ART whereas the frequency of infected HLA-DR− T-cells slightly decreased over time (5% per year). We observed that 20–33% of HIV-DNA sequences from the early time points were genetically identical to viral sequences from the last time point within the same cell subset during ART. This indicates that a fraction of proviruses persists within HLA-DR+ and HLA-DR− T-cell subsets during prolonged ART. Our HIV-DNA sequence analyses also revealed that cells transitioned between the HLA-DR+ and HLA-DR− phenotypes. The Ki67 expression, a marker for cellular proliferation, and the combined markers of Ki67/PD-1 averaged 19-fold and 22-fold higher on the HLA-DR+ T-cell subset compared to their HLA-DR− counterpart. Moreover, cellular proliferation, as reflected by the proportion of genetically identical HIV-DNA sequences, increased within both T-cell subsets over the study period; however, this increase was greater within the HLA-DR+ T-cells. Our research revealed that cellular transition and proliferation contribute to the persistence of HIV in HLA-DR+ and HLA-DR− T-cell subsets during prolonged therapy. As such, the HIV reservoir expands during effective ART when both the HLA-DR+ and HLA-DR− cell subsets are included, and therapeutic interventions aimed at reducing the HIV-1 reservoir should target HLA-DR+ and HLA-DR− T-cells.
Collapse
Affiliation(s)
- Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffery Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Wei Shao
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Eli Boritz
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - Remi Fromentin
- Centre de Recherche du CHUM et Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, QC, Canada
| | - Teri Liegler
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Steve G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Frederick M Hecht
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nicolas Chomont
- Centre de Recherche du CHUM et Département de Microbiologie, Infectiologie et Immunologie, Université de Montreal, Montreal, QC, Canada
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
De Scheerder MA, Vrancken B, Dellicour S, Schlub T, Lee E, Shao W, Rutsaert S, Verhofstede C, Kerre T, Malfait T, Hemelsoet D, Coppens M, Dhondt A, De Looze D, Vermassen F, Lemey P, Palmer S, Vandekerckhove L. HIV Rebound Is Predominantly Fueled by Genetically Identical Viral Expansions from Diverse Reservoirs. Cell Host Microbe 2019; 26:347-358.e7. [PMID: 31471273 PMCID: PMC11021134 DOI: 10.1016/j.chom.2019.08.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/16/2019] [Accepted: 07/31/2019] [Indexed: 02/01/2023]
Abstract
Viral rebound upon stopping combined antiretroviral therapy poses a major barrier toward an HIV cure. Cellular and anatomical sources responsible for reinitiating viral replication remain a subject of ardent debate, despite extensive research efforts. To unravel the source of rebounding viruses, we conducted a large-scale HIV-STAR (HIV-1 sequencing before analytical treatment interruption to identify the anatomically relevant HIV reservoir) clinical trial. We collected samples from 11 participants and compared the genetic composition of (pro)viruses collected under treatment from different cellular and anatomical compartments with that of plasma viruses sampled during analytical treatment interruption. We found a remarkably heterogeneous source of viral rebound. In addition, irrespective of the compartment or cell subset, genetically identical viral expansions played a significant role in viral rebound. Our study suggests that although there does not seem to be a primary source for rebound HIV, cellular proliferation is an important driver of HIV persistence and should therefore be considered in future curative strategies.
Collapse
Affiliation(s)
- Marie-Angélique De Scheerder
- HIV Cure Research Center, Department of General Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| | - Bram Vrancken
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Herestraat 49, Leuven 3000 Belgium
| | - Simon Dellicour
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Herestraat 49, Leuven 3000 Belgium; Spatial Epidemiology Laboratory (SpELL), Université Libre de Bruxelles, CP160/12 50, av. FD Roosevelt, 1050 Bruxelles, Belgium
| | - Timothy Schlub
- University of Sydney, Faculty of Medicine and Health, Sydney School of Public Health, Sydney 2000, NSW, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, NSW, Australia
| | - Wei Shao
- Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of General Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Ghent University Hospital, Ghent 9000, Belgium
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent 9000, Belgium
| | - Thomas Malfait
- Department of Pulmonology, Ghent University Hospital, Ghent 9000, Belgium
| | - Dimitri Hemelsoet
- Department of Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Marc Coppens
- Department of Anesthesiology, Ghent University Hospital, Ghent 9000, Belgium
| | - Annemieke Dhondt
- Department of Nephrology, Ghent University Hospital, Ghent 9000, Belgium
| | - Danny De Looze
- Department of Gastro-Enterology, Ghent University Hospital, Ghent 9000, Belgium
| | - Frank Vermassen
- Department of Vascular Surgery, Ghent University Hospital, Ghent 9000, Belgium
| | - Philippe Lemey
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Herestraat 49, Leuven 3000 Belgium
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, NSW, Australia
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of General Internal Medicine, Ghent University Hospital, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
18
|
Vanhamel J, Bruggemans A, Debyser Z. Establishment of latent HIV-1 reservoirs: what do we really know? J Virus Erad 2019; 5:3-9. [PMID: 30800420 PMCID: PMC6362902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite our ability to suppress HIV-1 replication indefinitely in people on optimal combined antiretroviral therapy (cART), HIV-1 persists as a stably integrated and replication-competent provirus in a heterogeneous collection of long-lived cells (often referred to as 'latent reservoirs') in all individuals on treatment. Reactivation of these latent proviruses is believed to be responsible for the rebound viraemia that can be seen in nearly all people following treatment cessation. Hence, the persistence of HIV-1 in latent reservoirs remains one of the greatest challenges in current HIV cure research. Latent HIV-1 reservoirs are established early during the acute phase of the infection, possibly before the virus appears in the systemic circulation. As well as the issue of timing, we review the proposed hypotheses on the mechanisms by which this latent state is believed to be established early in the course of the infection and the effect of early initiation of cART on the size and stability of these reservoirs. We conclude that prevention of the establishment of latent HIV-1 reservoirs by even extremely early initiation of cART proves to be practically impossible. However, early treatment initiation remains one of the crucial interventions needed to achieve the ultimate goal of a functional cure for HIV-1 infection because of its ability to reduce the overall size of HIV-1 reservoirs. Together with other interventions, early cART initiation may thus eventually lead to a state of better control over the residual amount of virus in the body, allowing people to stay off treatment for prolonged periods of time.
Collapse
Affiliation(s)
- Jef Vanhamel
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| | - Anne Bruggemans
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| | - Zeger Debyser
- Center for Molecular Medicine,
University of Leuven,
Leuven,
Belgium
| |
Collapse
|
19
|
|
20
|
Jean MJ, Fiches G, Hayashi T, Zhu J. Current Strategies for Elimination of HIV-1 Latent Reservoirs Using Chemical Compounds Targeting Host and Viral Factors. AIDS Res Hum Retroviruses 2019; 35:1-24. [PMID: 30351168 DOI: 10.1089/aid.2018.0153] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the implementation of combination antiretroviral therapy (cART), rates of HIV type 1 (HIV-1) mortality, morbidity, and newly acquired infections have decreased dramatically. In fact, HIV-1-infected individuals under effective suppressive cART approach normal life span and quality of life. However, long-term therapy is required because the virus establish a reversible state of latency in memory CD4+ T cells. Two principle strategies, namely "shock and kill" approach and "block and lock" approach, are currently being investigated for the eradication of these HIV-1 latent reservoirs. Actually, both of these contrasting approaches are based on the use of small-molecule compounds to achieve the cure for HIV-1. In this review, we discuss the recent progress that has been made in designing and developing small-molecule compounds for both strategies.
Collapse
Affiliation(s)
- Maxime J. Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tsuyoshi Hayashi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
21
|
Anderson EM, Maldarelli F. The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology 2018; 15:71. [PMID: 30352600 PMCID: PMC6199739 DOI: 10.1186/s12977-018-0448-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Integration of viral DNA into the host genome is a central event in the replication cycle and the pathogenesis of retroviruses, including HIV. Although most cells infected with HIV are rapidly eliminated in vivo, HIV also infects long-lived cells that persist during combination antiretroviral therapy (cART). Cells with replication competent HIV proviruses form a reservoir that persists despite cART and such reservoirs are at the center of efforts to eradicate or control infection without cART. The mechanisms of persistence of these chronically infected long-lived cells is uncertain, but recent research has demonstrated that the presence of the HIV provirus has enduring effects on infected cells. Cells with integrated proviruses may persist for many years, undergo clonal expansion, and produce replication competent HIV. Even proviruses with defective genomes can produce HIV RNA and may contribute to ongoing HIV pathogenesis. New analyses of HIV infected cells suggest that over time on cART, there is a shift in the composition of the population of HIV infected cells, with the infected cells that persist over prolonged periods having proviruses integrated in genes associated with regulation of cell growth. In several cases, strong evidence indicates the presence of the provirus in specific genes may determine persistence, proliferation, or both. These data have raised the intriguing possibility that after cART is introduced, a selection process enriches for cells with proviruses integrated in genes associated with cell growth regulation. The dynamic nature of populations of cells infected with HIV during cART is not well understood, but is likely to have a profound influence on the composition of the HIV reservoir with critical consequences for HIV eradication and control strategies. As such, integration studies will shed light on understanding viral persistence and inform eradication and control strategies. Here we review the process of HIV integration, the role that integration plays in persistence, clonal expansion of the HIV reservoir, and highlight current challenges and outstanding questions for future research.
Collapse
Affiliation(s)
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
22
|
Hiener B, Horsburgh BA, Eden JS, Barton K, Schlub TE, Lee E, von Stockenstrom S, Odevall L, Milush JM, Liegler T, Sinclair E, Hoh R, Boritz EA, Douek D, Fromentin R, Chomont N, Deeks SG, Hecht FM, Palmer S. Identification of Genetically Intact HIV-1 Proviruses in Specific CD4 + T Cells from Effectively Treated Participants. Cell Rep 2018; 21:813-822. [PMID: 29045846 DOI: 10.1016/j.celrep.2017.09.081] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023] Open
Abstract
Latent replication-competent HIV-1 persists in individuals on long-term antiretroviral therapy (ART). We developed the Full-Length Individual Proviral Sequencing (FLIPS) assay to determine the distribution of latent replication-competent HIV-1 within memory CD4+ T cell subsets in six individuals on long-term ART. FLIPS is an efficient, high-throughput assay that amplifies and sequences near full-length (∼9 kb) HIV-1 proviral genomes and determines potential replication competency through genetic characterization. FLIPS provides a genome-scale perspective that addresses the limitations of other methods that also genetically characterize the latent reservoir. Using FLIPS, we identified 5% of proviruses as intact and potentially replication competent. Intact proviruses were unequally distributed between T cell subsets, with effector memory cells containing the largest proportion of genetically intact HIV-1 proviruses. We identified multiple identical intact proviruses, suggesting a role for cellular proliferation in the maintenance of the latent HIV-1 reservoir.
Collapse
Affiliation(s)
- Bonnie Hiener
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia.
| | - Bethany A Horsburgh
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - John-Sebastian Eden
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kirston Barton
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Timothy E Schlub
- Sydney School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Susanne von Stockenstrom
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Lina Odevall
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Jeffrey M Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Teri Liegler
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Elizabeth Sinclair
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20814, USA
| | - Daniel Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD 20814, USA
| | - Rémi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Frederick M Hecht
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
23
|
Wang XQ, Palmer S. Single-molecule techniques to quantify and genetically characterise persistent HIV. Retrovirology 2018; 15:3. [PMID: 29316955 PMCID: PMC5761141 DOI: 10.1186/s12977-017-0386-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/23/2017] [Indexed: 12/21/2022] Open
Abstract
Antiretroviral therapy effectively suppresses, but does not eradicate HIV-1 infection. Persistent low-level HIV-1 can still be detected in plasma and cellular reservoirs even after years of effective therapy, and cessation of current treatments invariably results in resumption of viral replication. Efforts to eradicate persistent HIV-1 require a comprehensive examination of the quantity and genetic composition of HIV-1 within the plasma and infected cells located in the peripheral blood and tissues throughout the body. Single-molecule techniques, such as the single-copy assay and single-genome/proviral sequencing assays, have been employed to further our understanding of the source and viral dynamics of persistent HIV-1 during long-term effective therapy. The application of the single-copy assay, which quantifies plasma HIV-1 RNA down to a single copy, has revealed that viremia persists in the plasma and CSF after years of effective therapy. This low-level HIV-1 RNA also persists in the plasma following treatment intensification, treatment with latency reversing agents, cancer-related therapy, and bone marrow transplantation. Single-genome/proviral sequencing assays genetically characterise HIV-1 populations after passing through different selective pressures related to cell type, tissue type, compartment, or therapy. The application of these assays has revealed that the intracellular HIV-1 reservoir is stable and mainly located in CD4+ memory T cells. Moreover, this intracellular HIV-1 reservoir is primarily maintained by cellular proliferation due to homeostasis and antigenic stimulation, although cryptic replication may take place in anatomic sites where treatment is sub-optimal. The employment of single-genome/proviral sequencing showed that latency reversing agents broadly activate quiescent proviruses but do not clear the intracellular reservoir. Recently, full-length individual proviral sequencing assays have been developed and the application of these assays has revealed that the majority of intracellular HIV-1 DNA is genetically defective. In addition, the employment of these assays has shown that genetically intact proviruses are unequally distributed in memory T cell subsets during antiretroviral therapy. The application of single-molecule assays has enhanced the understanding of the source and dynamics of persistent HIV-1 in the plasma and cells of HIV-infected individuals. Future studies of the persistent HIV-1 reservoir and new treatment strategies to eradicate persistent virus will benefit from the utilization of these assays.
Collapse
Affiliation(s)
- Xiao Qian Wang
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia.
| |
Collapse
|
24
|
Abstract
The introduction of combination antiretroviral therapy (cART) in the 1990s has dramatically changed the course of HIV infection, decreasing the risk for both AIDS- and non-AIDS-related events. Cancers, cardiovascular disease (CVD), liver and kidney disease, neurological disorders and frailty have become of great importance lately in the clinical management as they represent the principal cause of death in people living with HIV who receive cART (Kirk et al. in Clin Infect Dis 45(1):103-10, 2007; Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006; Ances et al. J Infect Dis 201(3):336-340, 2010; Desquilbet et al. J Gerontol A Biol Sci Med Sci 62(11):1279-1286, 2007; Lifson et al. HIV Clin Trials 9(3):177-185, 2008). Despite the undeniable achievements of cART, we are now faced with its limitations: a considerable proportion of individuals, referred as to immunological non-responders, fails to reconstitute the immune system despite optimal treatment and viral suppression (Kelley et al. Clin Infect Dis 48(6):787-794, 2009; Robbins et al. Clin Infect Dis 48(3):350-361, 2009) and remains at high risk for opportunistic infections and non-AIDS-related events (Strategies for Management of Antiretroviral Therapy Study et al. N Engl J Med 355(22):2283-2296, 2006). Moreover, the generalized state of immune activation and inflammation, linked to serious non-AIDS events, persists despite successful HIV suppression with cART. Finally, the current strategies have so far failed to eradicate the virus, and inflammation appears a driving force in viral persistence. In the light of all this, it is of fundamental importance to investigate the pathophysiological processes that link incomplete immune recovery, immune activation and HIV persistence to design targeted therapies that could impact on the three.
Collapse
Affiliation(s)
- Elena Bruzzesi
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. .,Department of Infectious Diseases, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
25
|
Painter MM, Zaikos TD, Collins KL. Quiescence Promotes Latent HIV Infection and Resistance to Reactivation from Latency with Histone Deacetylase Inhibitors. J Virol 2017; 91:e01080-17. [PMID: 29021396 PMCID: PMC5709582 DOI: 10.1128/jvi.01080-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) establishes transcriptionally silent latent infections in resting memory T cells and hematopoietic stem and progenitor cells (HSPCs), which allows the virus to persist in infected individuals despite antiretroviral therapy. Developing in vitro models of HIV-1 latency that recapitulate the characteristics of latently infected cells in vivo is crucial to identifying and developing effective latency-reversing therapies. HSPCs exist in a quiescent state in vivo, and quiescence is correlated with latent infections in T cells. However, current models for culturing HSPCs and for infecting T cells in vitro require that the cells be maintained in an actively proliferating state. Here we describe a novel culture system in which primary human HSPCs cultured under hypothermic conditions are maintained in a quiescent state. We show that these quiescent HSPCs are susceptible to predominantly latent infection with HIV-1, while actively proliferating and differentiating HSPCs obtain predominantly active infections. Furthermore, we demonstrate that the most primitive quiescent HSPCs are more resistant to spontaneous reactivation from latency than more differentiated HSPCs and that quiescent HSPCs are resistant to reactivation by histone deacetylase inhibitors or P-TEFb activation but are susceptible to reactivation by protein kinase C (PKC) agonists. We also demonstrate that inhibition of HSP90, a known regulator of HIV transcription, recapitulates the quiescence and latency phenotypes of hypothermia, suggesting that hypothermia and HSP90 inhibition may regulate these processes by similar mechanisms. In summary, these studies describe a novel model for studying HIV-1 latency in human primary cells maintained in a quiescent state.IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) establishes a persistent infection for which there remains no feasible cure. Current approaches are unable to clear the virus despite decades of therapy due to the existence of latent reservoirs of integrated HIV-1, which can reactivate and contribute to viral rebound following treatment interruption. Previous clinical attempts to reactivate the latent reservoirs in an individual so that they can be eliminated by the immune response or viral cytopathic effect have failed, indicating the need for a better understanding of the processes regulating HIV-1 latency. Here we characterize a novel in vitro model of HIV-1 latency in primary hematopoietic stem and progenitor cells isolated from human cord blood that may better recapitulate the behavior of latently infected cells in vivo This model can be used to study mechanisms regulating latency and potential therapeutic approaches to reactivate latent infections in quiescent cells.
Collapse
Affiliation(s)
- Mark M Painter
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas D Zaikos
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen L Collins
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Abstract
OBJECTIVE The functional polarization of CD4 T cells determines their antimicrobial effector profile, but may also impact the susceptibility to infection with HIV-1. Here, we analyzed the susceptibility of CD4 T cells with different functional polarization to infection with X4 and R5-tropic HIV-1. METHODS CD4 T cells with a Th1, Th2, Th17, and Th9 polarization were subjected to in-vitro infection assays with X4, R5, or vesicular stomatitis virus-G protein-pseudotyped HIV-1. In addition, we sorted differentially polarized CD4 T-cell subsets from individuals treated with antiretroviral therapy and analyzed the tropism of viral env sequences. RESULTS Th9-polarized CD4 T cells and, to a lesser extent, Th2-polarized CD4 T cells expressed higher surface levels of CXCR4, and are more permissive to X4-tropic infection in vitro. In contrast, Th1 and Th17 CD4 T cells exhibited stronger surface expression of CCR5, and were more susceptible to infection with R5-tropic viruses. Correspondingly, the distribution of X4-tropic viral sequences in antiretroviral therapy-treated HIV-1-infected patients was biased toward Th9/Th2 cells, whereas R5-tropic sequences were more frequently observed in Th17 cells. CONCLUSION CD4 T-cell polarization is associated with a distinct susceptibility to X4 and R5-tropic HIV-1 infection.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Tissue reservoirs of HIV may promote the persistent immunopathology responsible for non-AIDS morbidity and data support multifocal reactivation from tissues as the source of viral rebound during antiretroviral therapy (ART) interruption. The heterogeneity of tissue reservoirs and incomplete knowledge about their composition are obstacles to an HIV cure. RECENT FINDINGS In addition to the higher concentration of infected CD4 T cells found in both central lymphoid tissues and gut, specific subsets of CD4 T cells appear to play a disproportionate role in HIV persistence. Recently, a subset of central memory T cells enriched in lymph node germinal centers called T-follicular helper cells has been identified that expresses more viral RNA and occupies an anatomic niche inaccessible to cytotoxic T lymphocyte killing. Additional observations suggest that antiretroviral drug (ARV) concentrations may be lower in some tissues, raising the possibility for localized, low-level viral replication. Finally, some recent data implicate the persistence of infected, non-CD4 T-cell types in tissues during ART. SUMMARY The retention of infected cells in a wide variety of tissues, often with distinct viral and cellular characteristics, underscores the importance of studying tissue reservoirs in the development and assessment of cure strategies. Both inhibitory ARVs and latency-reversing drugs must reach these sites, and novel strategies may be needed to attack virus in cells as variable as T-follicular helper cells and macrophages.
Collapse
|
28
|
Sebastian NT, Zaikos TD, Terry V, Taschuk F, McNamara LA, Onafuwa-Nuga A, Yucha R, Signer RAJ, Riddell IV J, Bixby D, Markowitz N, Morrison SJ, Collins KL. CD4 is expressed on a heterogeneous subset of hematopoietic progenitors, which persistently harbor CXCR4 and CCR5-tropic HIV proviral genomes in vivo. PLoS Pathog 2017; 13:e1006509. [PMID: 28732051 PMCID: PMC5540617 DOI: 10.1371/journal.ppat.1006509] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/02/2017] [Accepted: 07/04/2017] [Indexed: 12/27/2022] Open
Abstract
Latent HIV infection of long-lived cells is a barrier to viral clearance. Hematopoietic stem and progenitor cells are a heterogeneous population of cells, some of which are long-lived. CXCR4-tropic HIVs infect a broad range of HSPC subtypes, including hematopoietic stem cells, which are multi-potent and long-lived. However, CCR5-tropic HIV infection is limited to more differentiated progenitor cells with life spans that are less well understood. Consistent with emerging data that restricted progenitor cells can be long-lived, we detected persistent HIV in restricted HSPC populations from optimally treated people. Further, genotypic and phenotypic analysis of amplified env alleles from donor samples indicated that both CXCR4- and CCR5-tropic viruses persisted in HSPCs. RNA profiling confirmed expression of HIV receptor RNA in a pattern that was consistent with in vitro and in vivo results. In addition, we characterized a CD4high HSPC sub-population that was preferentially targeted by a variety of CXCR4- and CCR5-tropic HIVs in vitro. Finally, we present strong evidence that HIV proviral genomes of both tropisms can be transmitted to CD4-negative daughter cells of multiple lineages in vivo. In some cases, the transmitted proviral genomes contained signature deletions that inactivated the virus, eliminating the possibility that coincidental infection explains the results. These data support a model in which both stem and non-stem cell progenitors serve as persistent reservoirs for CXCR4- and CCR5-tropic HIV proviral genomes that can be passed to daughter cells. People who are effectively treated with antiretroviral medication harbor persistent forms of HIV that are integrated into the cellular genome. While HIV is cytopathic to most cells, transcriptionally silent, latent forms do not express toxic HIV gene products and can survive in the host for years. When conditions change, the latent virus can be activated to reinitiate infection. Because of the capacity for virus to spread, cure of HIV will require that we identify and eradicate all cells harboring functional HIV provirus. CD4+ T cells are abundant and easily identified as harboring proviral genomes. However, rare cell types that express HIV receptors, such as bone marrow hematopoietic progenitor and stem cells can also be infected by the virus potentially serving as barriers to cure strategies. We found that HIV can infect and persist in progenitor sub-types that were previously thought to be short lived, which expands the types of cells that can support reservoir formation. In addition, we found that HIV can spread by proliferation and cellular differentiation without the need for viral gene expression and virion production that could reveal the infection to the immune system. A deeper understanding of viral reservoirs is critically important for developing strategies that will succeed in viral eradication.
Collapse
Affiliation(s)
- Nadia T. Sebastian
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas D. Zaikos
- Department of Microbiology and Immunology University of Michigan, Ann Arbor, Michigan, United States of America
| | - Valeri Terry
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Frances Taschuk
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lucy A. McNamara
- Department of Microbiology and Immunology University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adewunmi Onafuwa-Nuga
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ryan Yucha
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert A. J. Signer
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James Riddell IV
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dale Bixby
- Division of Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Norman Markowitz
- Division of Infectious Diseases, Henry Ford Hospital, Detroit, Michigan, United States of America
| | - Sean J. Morrison
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kathleen L. Collins
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology University of Michigan, Ann Arbor, Michigan, United States of America
- Division of Infectious Disease, Department of Internal Medicine University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
29
|
Margolis DM, Archin NM. Proviral Latency, Persistent Human Immunodeficiency Virus Infection, and the Development of Latency Reversing Agents. J Infect Dis 2017; 215:S111-S118. [PMID: 28520964 DOI: 10.1093/infdis/jiw618] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quiescent proviral genomes that persist during human immunodeficiency virus type 1 (HIV-1) infection despite effective antiretroviral therapy (ART) can fuel rebound viremia after ART interruption and is a central obstacle to the cure of HIV infection. The induction of quiescent provirus is the goal of a new class of potential therapeutics, latency reversing agents (LRAs). The discovery, development, and testing of HIV LRAs is a key part of current efforts to develop latency reversal and viral clearance strategies to eradicate established HIV infection. The development of LRAs is burdened by many uncertainties that make drug discovery difficult. The biology of HIV latency is complex and incompletely understood. Potential targets for LRAs are host factors, and the potential toxicities of host-directed therapies in individuals that are otherwise clinically stable may be unacceptable. Assays to measure latency reversal and assess the effectiveness of potential therapeutics are complex and incompletely validated. Despite these obstacles, novel LRAs are under development and beginning to enter combination testing with viral clearance strategies. It is hoped that the steady advances in the development of LRAs now being paired with emerging immunotherapeutics to clear persistently infected cells will soon allow measurable clinical advances toward an HIV cure.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center.,Department of Medicine, and.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine ; and.,Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health
| | | |
Collapse
|
30
|
Romani B, Allahbakhshi E. Underlying mechanisms of HIV-1 latency. Virus Genes 2017; 53:329-339. [PMID: 28258391 DOI: 10.1007/s11262-017-1443-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
Similarly to other retroviruses, HIV-1 integrates its genome into the cellular chromosome. Expression of viral genes from the integrated viral DNA could then be regulated by the host genome. If the infected cell suppresses viral gene expression, the virus will undergo latency. The latently infected cells cannot be detected or cleared by the immune system since they do not express viral antigens. These cells remain undetected for several years, even under antiretroviral treatments. The silenced HIV-1 DNA could be reactivated under certain conditions. Despite the efficient use of antiretroviral drugs, HIV-1 latently infected cells remain the major obstacles to a permanent cure. In this review, we discuss the cellular and molecular mechanisms through which HIV-1 establishes latency.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.,Department of Biology, Faculty of Science, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), 61357-15794, Ahvaz, Iran.
| |
Collapse
|
31
|
Zhang J, Crumpacker CS. Toward a Cure: Does Host Immunity Play a Role? mSphere 2017; 2:e00138-17. [PMID: 28497113 PMCID: PMC5422033 DOI: 10.1128/msphere.00138-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/01/2017] [Indexed: 01/18/2023] Open
Abstract
Three decades of research on human immunodeficiency virus (HIV) and AIDS reveal that the human body has developed through evolution a genome immune system embodying epigenetic regulation against pathogenic nucleic acid invasion. In HIV infection, this epigenetic regulation plays a cardinal role in HIV RNA production that silences HIV transcription at a molecular (RNA) level, controls viral load at a cellular (biological) level, and governs the viremic stage of AIDS at the clinical (patient) level. Even though the human genome is largely similar among humans and HIV is a single viral species, human hosts show significant differences in viral RNA levels, ranging from cell to organ to individual and expressed as elite controllers, posttreatment controllers, and patients with AIDS. These are signature biomarkers of typical epigenetic regulation whose importance has been shunted aside by interpreting all of AIDS pathogenesis by the known properties of innate and adaptive immunity. We propose that harnessing the host genome immune system, defined as epigenetic immunity, against HIV infection will lead toward a cure.
Collapse
Affiliation(s)
- Jielin Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Clyde S Crumpacker
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Mzingwane ML, Tiemessen CT. Mechanisms of HIV persistence in HIV reservoirs. Rev Med Virol 2017; 27. [PMID: 28128885 DOI: 10.1002/rmv.1924] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/18/2023]
Abstract
The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy.
Collapse
Affiliation(s)
- Mayibongwe L Mzingwane
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Pathology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Caroline T Tiemessen
- Centre for HIV and Sexually Transmitted Infections, National Institute for Communicable Diseases, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The introduction of effective antiretroviral therapy (ART) has transformed HIV infection from a deadly to a chronic infection. Despite its successes in reducing mortality, ART fails to cure HIV allowing HIV to persist in vivo. HIV persistence under ART is thought to be mediated by a combination of latent infection of long-lived cells, homeostatic proliferation of latently infected cells, anatomic sanctuaries, and low-level virus replication. To understand the contribution of specific cell types and anatomic sites to virus persistence in vivo animal models are necessary. RECENT FINDINGS The advancements in ART and our understanding of animal models have facilitated the development of models of HIV persistence in nonhuman primates and mice. Simian immunodeficiency virus (SIV) or simian/HIV infection (SHIV) of rhesus and pigtail macaques followed by effective ART represents the most faithful animal model of HIV persistence. HIV infection of humanized mice also provides a useful model for answering specific questions regarding virus persistence in a uniquely mutable system. SUMMARY In this review, we describe the most recent findings using animal models of HIV persistence. We will first describe the important aspects of HIV infection that SIV/SHIV infection of nonhuman primates are able to recapitulate, then we will discuss some recent studies that have used these models to understand viral persistence.
Collapse
|
34
|
HIV-1 Reservoirs During Suppressive Therapy. Trends Microbiol 2016; 24:345-355. [PMID: 26875617 DOI: 10.1016/j.tim.2016.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
Abstract
The introduction of antiretroviral therapy (ART) 20 years ago has dramatically reduced morbidity and mortality associated with HIV-1. Initially there was hope that ART would be curative, but it quickly became clear that even though ART was able to restore CD4(+) T cell counts and suppress viral loads below levels of detection, discontinuation of treatment resulted in a rapid rebound of infection. This is due to persistence of a small reservoir of latently infected cells with a long half-life, which necessitates life-long ART. Over the past few years, significant progress has been made in defining and characterizing the latent reservoir of HIV-1, and here we review how understanding the latent reservoir during suppressive therapy will lead to significant advances in curative approaches for HIV-1.
Collapse
|
35
|
Chahroudi A, Silvestri G, Lichterfeld M. T memory stem cells and HIV: a long-term relationship. Curr HIV/AIDS Rep 2016; 12:33-40. [PMID: 25578055 DOI: 10.1007/s11904-014-0246-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In analogy to many tissues in which mature, terminally differentiated cells are continuously replenished by the progeny of less differentiated, long-lasting stem cells, it has been suspected that memory T lymphocytes might contain small numbers of stem cell-like cells. However, only recently have such cells been physically identified and isolated from humans, mice, and nonhuman primates. These cells, termed "T memory stem cells" (TSCM), represent approximately 2-4 % of all circulating T lymphocytes, seem to be extremely durable, and can rapidly differentiate into more mature central memory, effector memory, and effector T cells, while maintaining their own pool size through homeostatic self-renewal. Although it is becoming increasingly evident that that these cells have critical roles for T cell homeostasis and maintaining life-long cellular immunity against microbial pathogens during physiological conditions, they also seem intrinsically involved in many key aspects of HIV/SIV disease pathogenesis. Current data suggest that CD4+ TSCM cells represent a core element of the HIV-1 reservoir in patients treated with suppressive antiretroviral therapy (ART) and that relative resistance of CD4+ TSCM cells to SIV represents a distinguishing feature of non-pathogenic SIV infection in natural hosts. This article summarizes recent studies investigating the role of TSCM in HIV/SIV infection.
Collapse
Affiliation(s)
- Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA,
| | | | | |
Collapse
|
36
|
HIV-1 Is Restricted prior to Integration of Viral DNA in Primary Cord-Derived Human CD34+ Cells. J Virol 2015; 89:8096-100. [PMID: 25995256 DOI: 10.1128/jvi.01044-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Certain cells have the ability to block retroviral infection at specific stages of the viral cycle by the activities of well-characterized factors and transcriptional silencing machinery. Infection of murine stem cells (MSCs) by the murine leukemia viruses (MLVs) is profoundly blocked postintegration by transcriptional silencing. Here, we show that a dominant point of restriction of HIV-1 in human CD34+ cells is prior to integration of viral DNA and that HIV-1 restriction by human CD34+ cells is fundamentally different from MLV restriction by mouse cells.
Collapse
|
37
|
Cenderello G, De Maria A. Discordant responses to cART in HIV-1 patients in the era of high potency antiretroviral drugs: clinical evaluation, classification, management prospects. Expert Rev Anti Infect Ther 2015; 14:29-40. [PMID: 26513236 DOI: 10.1586/14787210.2016.1106937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The goal of antiretroviral treatment (ART) in HIV-1 patients is immune reconstitution following control of viral replication. CD4+ cell number/proportions are a crude but essential correlate of immune reconstitution. Despite suppression of HIV replication, a fraction of ART-treated patients still fails to fully reconstitute CD4+ T cell numbers (immunological nonresponders, INRs). New drugs, regimens and treatment strategies led to increased efficacy, lower side effects and higher virological success rates in clinical practice. The multitude of described immune defects and clinical events accompanying INR opposed to the marginal effect of antiretroviral intensification or immunotherapy trials underline the need for continuing efforts at understanding the mechanisms that underlie INR. Here, we reassess INR definition, frequency, and the achievements of active clinical and translational research suggesting a shared definition for insufficient, partial and complete CD4+ cell number recovery thus improving homogeneity in patient selection and mechanism identification.
Collapse
Affiliation(s)
| | - Andrea De Maria
- b Department of Health Sciences , University of Genova , Genoa 16132 , Italy.,c Clinica Malattie Infettive, IRCCS A.O.U. S. Martino - IST Genova , Istituto Nazionale per la Ricerca sul Cancro , Genoa , Italy
| |
Collapse
|
38
|
Hashimoto M, Nasser H, Bhuyan F, Kuse N, Satou Y, Harada S, Yoshimura K, Sakuragi JI, Monde K, Maeda Y, Welbourn S, Strebel K, Abd El-Wahab EW, Miyazaki M, Hattori S, Chutiwitoonchai N, Hiyoshi M, Oka S, Takiguchi M, Suzu S. Fibrocytes Differ from Macrophages but Can Be Infected with HIV-1. THE JOURNAL OF IMMUNOLOGY 2015; 195:4341-50. [PMID: 26416279 DOI: 10.4049/jimmunol.1500955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022]
Abstract
Fibrocytes (fibroblastic leukocytes) are recently identified as unique hematopoietic cells with features of both macrophages and fibroblasts. Fibrocytes are known to contribute to the remodeling or fibrosis of various injured tissues. However, their role in viral infection is not fully understood. In this study, we show that differentiated fibrocytes are phenotypically distinguishable from macrophages but can be infected with HIV-1. Importantly, fibrocytes exhibited persistently infected cell-like phenotypes, the degree of which was more apparent than macrophages. The infected fibrocytes produced replication-competent HIV-1, but expressed HIV-1 mRNA at low levels and strongly resisted HIV-1-induced cell death, which enabled them to support an extremely long-term HIV-1 production at low but steady levels. More importantly, our results suggested that fibrocytes were susceptible to HIV-1 regardless of their differentiation state, in contrast to the fact that monocytes become susceptible to HIV-1 after the differentiation into macrophages. Our findings indicate that fibrocytes are the previously unreported HIV-1 host cells, and they suggest the importance of considering fibrocytes as one of the long-lived persistently infected cells for curing HIV-1.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hesham Nasser
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Farzana Bhuyan
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yorifumi Satou
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Jun-ichi Sakuragi
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kazuaki Monde
- Department of Medical Virology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yosuke Maeda
- Department of Medical Virology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Sarah Welbourn
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Klaus Strebel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ekram W Abd El-Wahab
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsue Miyazaki
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | - Masateru Hiyoshi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-0052, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinya Suzu
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan;
| |
Collapse
|
39
|
Th1/17 Polarization of CD4 T Cells Supports HIV-1 Persistence during Antiretroviral Therapy. J Virol 2015; 89:11284-93. [PMID: 26339043 DOI: 10.1128/jvi.01595-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED The ability to persist long term in latently infected CD4 T cells represents a characteristic feature of HIV-1 infection and the predominant barrier to efforts aiming at viral eradication and cure. Yet, increasing evidence suggests that only small subsets of CD4 T cells with specific developmental and maturational profiles are able to effectively support HIV-1 long-term persistence. Here, we analyzed how the functional polarization of CD4 T cells shapes and structures the reservoirs of HIV-1-infected cells. We found that CD4 T cells enriched for a Th1/17 polarization had elevated susceptibilities to HIV-1 infection in ex vivo assays, harbored high levels of HIV-1 DNA in persons treated with antiretroviral therapy, and made a disproportionately increased contribution to the viral reservoir relative to their contribution to the CD4 T memory cell pool. Moreover, HIV-1 DNA levels in Th1/17 cells remained stable over many years of antiretroviral therapy, resulting in a progressively increasing contribution of these cells to the viral reservoir, and phylogenetic studies suggested preferential long-term persistence of identical viral sequences during prolonged antiretroviral treatment in this cell compartment. Together, these data suggest that Th1/17 CD4 T cells represent a preferred site for HIV-1 DNA long-term persistence in patients receiving antiretroviral therapy. IMPORTANCE Current antiretroviral therapy is very effective in suppressing active HIV-1 replication but does not fully eliminate virally infected cells. The ability of HIV-1 to persist long term despite suppressive antiretroviral combination therapy represents a perplexing aspect of HIV-1 disease pathogenesis, since most HIV-1 target cells are activated, short-lived CD4 T cells. This study suggests that CD4 T helper cells with Th1/17 polarization have a preferential role as a long-term reservoir for HIV-1 infection during antiretroviral therapy, possibly because these cells may imitate some of the functional properties traditionally attributed to stem cells, such as the ability to persist for extremely long periods of time and to repopulate their own pool size through homeostatic self-renewal. These observations support the hypothesis that HIV-1 persistence is driven by small subsets of long-lasting stem cell-like CD4 T cells that may represent particularly promising targets for clinical strategies aiming at HIV-1 eradication and cure.
Collapse
|
40
|
Hematopoietic Stem and Immune Cells in Chronic HIV Infection. Stem Cells Int 2015; 2015:148064. [PMID: 26300920 PMCID: PMC4537765 DOI: 10.1155/2015/148064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW To summarize the evidence in the literature that supports the central nervous system (CNS) as a viral reservoir for HIV-1 and to prioritize future research efforts. RECENT FINDINGS HIV-1 DNA has been detected in brain tissue of patients with undetectable viral load or neurocognitive disorders, and is associated with long-lived cells such as astrocytes and microglia. In neurocognitively normal patients, HIV-1 can be found at high frequency in these cells (4% of astrocytes and 20% of macrophages). CNS cells have unique molecular mechanisms to suppress viral replication and induce latency, which include increased expression of dominant negative transcription factors and suppressive epigenetic factors. There is also evidence of continued inflammation in patients lacking a CNS viral load, suggesting the production and activity of viral neurotoxins (for example, Tat). SUMMARY Together, these findings provide evidence that the CNS can potentially act as a viral reservoir of HIV-1. However, the majority of these studies were performed in historical cohorts (absence of combination antiretroviral therapy or presence of viral load), which do not reflect modern day patients (combination antiretroviral therapy-treated and undetectable viral load). Future studies will need to examine patient samples with these characteristics to conclusively determine whether the CNS represents a relevant and important viral reservoir.
Collapse
|
42
|
von Stockenstrom S, Odevall L, Lee E, Sinclair E, Bacchetti P, Killian M, Epling L, Shao W, Hoh R, Ho T, Faria NR, Lemey P, Albert J, Hunt P, Loeb L, Pilcher C, Poole L, Hatano H, Somsouk M, Douek D, Boritz E, Deeks SG, Hecht FM, Palmer S. Longitudinal Genetic Characterization Reveals That Cell Proliferation Maintains a Persistent HIV Type 1 DNA Pool During Effective HIV Therapy. J Infect Dis 2015; 212:596-607. [PMID: 25712966 DOI: 10.1093/infdis/jiv092] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/09/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The stability of the human immunodeficiency virus type 1 (HIV-1) reservoir and the contribution of cellular proliferation to the maintenance of the reservoir during treatment are uncertain. Therefore, we conducted a longitudinal analysis of HIV-1 in T-cell subsets in different tissue compartments from subjects receiving effective antiretroviral therapy (ART). METHODS Using single-proviral sequencing, we isolated intracellular HIV-1 genomes derived from defined subsets of CD4(+) T cells from peripheral blood, gut-associated lymphoid tissue and lymph node tissue specimens from 8 subjects with virologic suppression during long-term ART at 2 time points (time points 1 and 2) separated by 7-9 months. RESULTS DNA integrant frequencies were stable over time (<4-fold difference) and highest in memory T cells. Phylogenetic analyses showed that subjects treated during chronic infection contained viral populations with up to 73% identical sequence expansions, only 3 of which were observed in specimens obtained before therapy. At time points 1 and 2, such clonally expanded populations were found predominantly in effector memory T cells from peripheral blood and lymph node tissue specimens. CONCLUSIONS Memory T cells maintained a relatively constant HIV-1 DNA integrant pool that was genetically stable during long-term effective ART. These integrants appear to be maintained by cellular proliferation and longevity of infected cells, rather than by ongoing viral replication.
Collapse
Affiliation(s)
- Susanne von Stockenstrom
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Odevall
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet
| | - Eunok Lee
- Westmead Millennium Institute for Medical Research University of Sydney, Westmead, Australia
| | | | - Peter Bacchetti
- Department of Epidemiology and Biostatistics, University of California-San Francisco
| | | | | | - Wei Shao
- Leidos Biomedical Research, INC, Frederick National Laboratory for Cancer Research
| | | | | | - Nuno R Faria
- Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven-University of Leuven, Belgium
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | - Daniel Douek
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Eli Boritz
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | - Sarah Palmer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Westmead Millennium Institute for Medical Research University of Sydney, Westmead, Australia
| |
Collapse
|
43
|
Sahu GK. Potential implication of residual viremia in patients on effective antiretroviral therapy. AIDS Res Hum Retroviruses 2015; 31:25-35. [PMID: 25428885 DOI: 10.1089/aid.2014.0194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The current antiretroviral therapy (ART) has suppressed viremia to below the limit of detection of clinical viral load assays; however, it cannot eliminate viremia completely in the body even after prolonged treatment. Plasma HIV-1 loads persist at extremely low levels below the clinical detection limit. This low-level viremia (termed "residual viremia") cannot be abolished in most patients, even after the addition of a new class of drug, i.e., viral integrase inhibitor, to the combined antiretroviral regimens. Neither the cellular source nor the clinical significance of this residual viremia in patients on ART remains fully clear at present. Since residual plasma viruses generally do not evolve with time in the presence of effective ART, one prediction is that these viruses are persistently released at low levels from one or more stable but yet unknown HIV-1 reservoirs in the body during therapy. This review attempts to emphasize the source of residual viremia as another important reservoir (namely, "active reservoir") distinct from the well-known latent HIV-1 reservoir in the body, and why its elimination should be a priority in the effort for HIV-1 eradication.
Collapse
Affiliation(s)
- Gautam K. Sahu
- HIV Biology and Persistence Laboratory, Department of Medicine, Roger Williams Medical Center, Providence, Rhode Island
| |
Collapse
|
44
|
Zanussi S, Bortolin MT, Pratesi C, Tedeschi R, Basaglia G, Abbruzzese L, Mazzucato M, Spina M, Vaccher E, Tirelli U, Rupolo M, Michieli M, Di Mascio M, De Paoli P. Autograft HIV-DNA load predicts HIV-1 peripheral reservoir after stem cell transplantation for AIDS-related lymphoma patients. AIDS Res Hum Retroviruses 2015; 31:150-9. [PMID: 25581618 DOI: 10.1089/aid.2014.0157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autologous stem cell transplantation (ASCT) is a widely used procedure for AIDS-related lymphomas, and it represents an opportunity to evaluate strategies curing HIV-1 infection. The association of autograft HIV-DNA load with peripheral blood HIV-1 reservoir before ASCT and its contribution in predicting HIV-1 reservoir size and stability during combination antiretroviral therapy (cART) after transplantation are unknown. Aiming to obtain information suggesting new functional cure strategies by ASCT, we retrospectively evaluated HIV-DNA load in autograft and in peripheral blood before and after transplantation in 13 cART-treated HIV-1 relapse/refractoring lymphoma patients. Among them seven discontinued cART after autograft infusion. HIV-DNA was evaluated by a sensitive quantitative real-time polymerase chain reaction (PCR). After debulking chemotherapy/mobilization, the autograft HIV-1 reservoir was higher than and not associated with the peripheral HIV-1 reservoir at baseline [median 215 HIV-DNA copies/10(6) autograft mononuclear cells, range 13-706 vs. 82 HIV-DNA copies/10(6) peripheral blood mononuclear cells (PBMCs), range 13-479, p = 0.03]. After high dose chemotherapy and autograft infusion, HIV-DNA levels reached a plateau between month 6 and 12 of follow-up. No association was found between peripheral HIV-DNA levels at baseline and after infusion in both cART interrupting and not interrupting patients. Only in the last subgroup, a stable significant linear association between autograft and peripheral blood HIV-1 reservoir emerged from month 1 (R(2) = 0.84, p = 0.01) to month 12 follow-up (R(2) = 0.99, p = 0.0005). In summary, autograft HIV-1 reservoir size could be influenced by the mobilization phase and predicts posttransplant peripheral HIV-1 reservoir size in patients on continuous cART. These findings could promote new research on strategies reducing the HIV-1 reservoir by using the ASCT procedure.
Collapse
Affiliation(s)
- Stefania Zanussi
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Maria Teresa Bortolin
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Chiara Pratesi
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Rosamaria Tedeschi
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Giancarlo Basaglia
- Microbiology, Immunology, and Virology Unit, CRO National Cancer Institute, Aviano, Italy
| | - Luciano Abbruzzese
- Stem Cell Collection and Processing Unit, CRO National Cancer Institute, Aviano, Italy
| | - Mario Mazzucato
- Stem Cell Collection and Processing Unit, CRO National Cancer Institute, Aviano, Italy
| | - Michele Spina
- Division of Medical Oncology A, CRO National Cancer Institute, Aviano, Italy
| | - Emanuela Vaccher
- Division of Medical Oncology A, CRO National Cancer Institute, Aviano, Italy
| | - Umberto Tirelli
- Division of Medical Oncology A, CRO National Cancer Institute, Aviano, Italy
| | - Maurizio Rupolo
- Cellular Therapy and High Dose Chemotherapy Unit, CRO National Cancer Institute, Aviano, Italy
| | - Mariagrazia Michieli
- Cellular Therapy and High Dose Chemotherapy Unit, CRO National Cancer Institute, Aviano, Italy
| | | | - Paolo De Paoli
- Scientific Directorate, CRO National Cancer Institute, Aviano, Italy
| |
Collapse
|
45
|
Bordoni V, Bibas M, Abbate I, Viola D, Rozera G, Agrati C, Rinaldi A, Amendola A, Ammassari A, Capobianchi MR, Martini F. Bone marrow CD34+ progenitor cells may harbour HIV-DNA even in successfully treated patients. Clin Microbiol Infect 2014; 21:290.e5-8. [PMID: 25658531 DOI: 10.1016/j.cmi.2014.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 11/02/2014] [Indexed: 01/23/2023]
Abstract
The issue about bone marrow hematopoietic progenitor cells harbouring HIV-DNA in infected patients is still under scrutiny. We studied nine HIV-infected individuals undergoing bone marrow aspiration for diagnostic purposes. In all patients, even in those receiving successful antiretroviral therapy for several years, HIV-DNA was detected in purified CD34+ lineage-bone marrow progenitor cells. This finding, although not conclusive due to the low number of patients examined, adds further evidence that current treatment strategies may be insufficient to resolve latent infection in bone marrow CD34+ hematopoietic progenitor cells.
Collapse
Affiliation(s)
- V Bordoni
- Cellular Immunology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy.
| | - M Bibas
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - I Abbate
- Virology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - D Viola
- Cellular Immunology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - G Rozera
- Virology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - C Agrati
- Cellular Immunology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy; Virology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - A Rinaldi
- Cellular Immunology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - A Amendola
- Virology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - A Ammassari
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - M R Capobianchi
- Virology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - F Martini
- Cellular Immunology Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| |
Collapse
|
46
|
Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 2014; 12:750-64. [PMID: 25402363 PMCID: PMC4383747 DOI: 10.1038/nrmicro3352] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Effective antiretroviral therapy (ART) blunts viraemia, which enables HIV-1-infected individuals to control infection and live long, productive lives. However, HIV-1 infection remains incurable owing to the persistence of a viral reservoir that harbours integrated provirus within host cellular DNA. This latent infection is unaffected by ART and hidden from the immune system. Recent studies have focused on the development of therapies to disrupt latency. These efforts unmasked residual viral genomes and highlighted the need to enable the clearance of latently infected cells, perhaps via old and new strategies that improve the HIV-1-specific immune response. In this Review, we explore new approaches to eradicate established HIV-1 infection and avoid the burden of lifelong ART.
Collapse
Affiliation(s)
- Nancie M Archin
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Julia Marsh Sung
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Carolina Garrido
- Department of Medicine, University of North Carolina at Chapel Hill
| | | | - David M Margolis
- 1] Department of Medicine, University of North Carolina at Chapel Hill. [2] Department of Microbiology and Immunology, University of North Carolina at Chapel Hill. [3] Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
47
|
Sebastian NT, Collins KL. Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells and future directions. Expert Rev Anti Infect Ther 2014; 12:1187-201. [PMID: 25189526 DOI: 10.1586/14787210.2014.956094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Current therapy for HIV effectively suppresses viral replication and prolongs life, but the infection persists due, at least in part, to latent infection of long-lived cells. One favored strategy toward a cure targets latent virus in resting memory CD4(+) T cells by stimulating viral production. However, the existence of an additional reservoir in bone marrow hematopoietic progenitor cells has been detected in some treated HIV-infected people. This review describes approaches investigators have used to reactivate latent proviral genomes in resting CD4(+) T cells and hematopoietic progenitor cells. In addition, the authors review approaches for clearance of these reservoirs along with other important topics related to HIV eradication.
Collapse
Affiliation(s)
- Nadia T Sebastian
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
48
|
Abstract
In human immunodeficiency virus (HIV)-infected persons, the incidence of hematologic malignancies, including leukemia and lymphoma, is increased despite the use of successful antiretroviral therapy. Hematopoietic stem cell transplantation (SCT) is emerging as a safe and effective therapy for HIV-infected persons with hematologic malignancies. Management of these patients is complicated by drug-drug interactions involving antiretroviral therapy (ART) that may impact conditioning agent efficacy and metabolism of immunosuppressive medications and potentiate drug toxicities. As such, optimal strategies for ART remain controversial. We discuss recent advances, controversies, and future directions related to SCT in HIV-infected persons, including the investigation of allogeneic SCT as a strategy for HIV cure.
Collapse
Affiliation(s)
- Ignacio A Echenique
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Suite 900, Chicago, IL, 60611, USA,
| | | | | | | |
Collapse
|
49
|
Armijo E, Soto C, Davis BR. HIV/AIDS: modified stem cells in the spotlight. Cell Mol Life Sci 2014; 71:2641-9. [PMID: 24509823 PMCID: PMC11113296 DOI: 10.1007/s00018-014-1572-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 12/18/2022]
Abstract
Since HIV/AIDS was first recognized in 1981, an urgent need has existed for the development of novel therapeutic strategies to treat the disease. Due to the current antiretroviral therapy not being curative, human stem cell-based therapeutic intervention has emerged as an approach for its treatment. Genetically modified hematopoietic stem cells (HSCs) possess the potential to self-renew, reconstitute the immune system with HIV-resistant cells, and thus control, or even eliminate, viral replication. However, HSCs may be difficult to isolate in sufficient number from HIV-infected individuals for transplantation and/or re-infusion of autologous HSCs preparations would also include some contaminating HIV-infected cells. Furthermore, since genetic modification of HSCs is not completely efficient, the risk of providing unprotected immune cells to become new targets for HIV to infect could contribute to continued immune system failure. Therefore, induced pluripotent stem cells (iPSCs) should be considered a new potential source of cells to be engineered for HIV resistance and subsequently differentiated into clonal anti-HIV HSCs or hematopoietic progeny for transplant. In this article, we provide an overview of the current possible cellular therapies for treating HIV/AIDS.
Collapse
Affiliation(s)
- Enrique Armijo
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, 77030, TX, USA,
| | | | | |
Collapse
|
50
|
HIV-1 latency: an update of molecular mechanisms and therapeutic strategies. Viruses 2014; 6:1715-58. [PMID: 24736215 PMCID: PMC4014718 DOI: 10.3390/v6041715] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 02/06/2023] Open
Abstract
The major obstacle towards HIV-1 eradication is the life-long persistence of the virus in reservoirs of latently infected cells. In these cells the proviral DNA is integrated in the host’s genome but it does not actively replicate, becoming invisible to the host immune system and unaffected by existing antiviral drugs. Rebound of viremia and recovery of systemic infection that follows interruption of therapy, necessitates life-long treatments with problems of compliance, toxicity, and untenable costs, especially in developing countries where the infection hits worst. Extensive research efforts have led to the proposal and preliminary testing of several anti-latency compounds, however, overall, eradication strategies have had, so far, limited clinical success while posing several risks for patients. This review will briefly summarize the more recent advances in the elucidation of mechanisms that regulates the establishment/maintenance of latency and therapeutic strategies currently under evaluation in order to eradicate HIV persistence.
Collapse
|