1
|
Zhang T, Zhao C, Li Y, Wu J, Wang F, Yu J, Wang Z, Gao Y, Zhao L, Liu Y, Yan Y, Li X, Gao H, Hu Z, Cui B, Li K. FGD5 in basal cells induces CXCL14 secretion that initiates a feedback loop to promote murine mammary epithelial growth and differentiation. Dev Cell 2024; 59:2085-2100.e9. [PMID: 38821057 DOI: 10.1016/j.devcel.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
The interactions of environmental compartments with epithelial cells are essential for mammary gland development and homeostasis. Currently, the direct crosstalk between the endothelial niche and mammary epithelial cells remains poorly understood. Here, we show that faciogenital dysplasia 5 (FGD5) is enriched in mammary basal cells (BCs) and mediates critical interactions between basal and endothelial cells (ECs) in the mammary gland. Conditional deletion of Fgd5 reduced, whereas conditional knockin of Fgd5 increased, the engraftment and expansion of BCs, regulating ductal morphogenesis in the mammary gland. Mechanistically, murine mammary BC-expressed FGD5 inhibited the transcriptional activity of activating transcription factor 3 (ATF3), leading to subsequent transcriptional activation and secretion of CXCL14. Furthermore, activation of CXCL14/CXCR4/ERK signaling in primary murine mammary stromal ECs enhanced the expression of HIF-1α-regulated hedgehog ligands, which initiated a positive feedback loop to promote the function of BCs. Collectively, these findings identify functionally important interactions between BCs and the endothelial niche that occur through the FGD5/CXCL14/hedgehog axis.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenxi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunxuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinmei Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhenhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yang Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yechao Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
| | - Huan Gao
- Marine College, Shandong University, Weihai 264200, China
| | - Zhuowei Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Chinese Academy of Medical Sciences & Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Liu X, Van Maele L, Matarazzo L, Soulard D, Alves Duarte da Silva V, de Bakker V, Dénéréaz J, Bock FP, Taschner M, Ou J, Gruber S, Nizet V, Sirard JC, Veening JW. A conserved antigen induces respiratory Th17-mediated broad serotype protection against pneumococcal superinfection. Cell Host Microbe 2024; 32:304-314.e8. [PMID: 38417443 DOI: 10.1016/j.chom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
Several vaccines targeting bacterial pathogens show reduced efficacy upon concurrent viral infection, indicating that a new vaccinology approach is required. To identify antigens for the human pathogen Streptococcus pneumoniae that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the conserved lafB gene as crucial for virulence. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid important for cell wall homeostasis. Respiratory vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective against S. pneumoniae serotypes 2, 15A, and 24F in a murine model. In contrast to standard capsule-based vaccines, protection did not require LafB-specific antibodies but was dependent on airway CD4+ T helper 17 cells. Healthy human individuals can elicit LafB-specific immune responses, indicating LafB antigenicity in humans. Collectively, these findings present a universal pneumococcal vaccine antigen that remains effective following influenza infection.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Laurye Van Maele
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laura Matarazzo
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Daphnée Soulard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vinicius Alves Duarte da Silva
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Julien Dénéréaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jinzhao Ou
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Claude Sirard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Fraga-Silva TFDC, Boko MMM, Martins NS, Cetlin AA, Russo M, Vianna EO, Bonato VLD. Asthma-associated bacterial infections: Are they protective or deleterious? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:14-22. [PMID: 37780109 PMCID: PMC10510013 DOI: 10.1016/j.jacig.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 10/03/2023]
Abstract
Eosinophilic, noneosinophilic, or mixed granulocytic inflammations are the hallmarks of asthma heterogeneity. Depending on the priming of lung immune and structural cells, subjects with asthma might generate immune responses that are TH2-prone or TH17-prone immune response. Bacterial infections caused by Haemophilus, Moraxella, or Streptococcus spp. induce the secretion of IL-17, which in turn recruit neutrophils into the airways. Clinical studies and experimental models of asthma indicated that neutrophil infiltration induces a specific phenotype of asthma, characterized by an impaired response to corticosteroid treatment. The understanding of pathways that regulate the TH17-neutrophils axis is critical to delineate and develop host-directed therapies that might control asthma and its exacerbation episodes that course with infectious comorbidities. In this review, we outline clinical and experimental studies on the role of airway epithelial cells, S100A9, and high mobility group box 1, which act in concert with the IL-17-neutrophil axis activated by bacterial infections, and are related with asthma that is difficult to treat. Furthermore, we report critically our view in the light of these findings in an attempt to stimulate further investigations and development of immunotherapies for the control of severe asthma.
Collapse
Affiliation(s)
| | - Mèdéton Mahoussi Michaël Boko
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Núbia Sabrina Martins
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Andrea Antunes Cetlin
- Pulmonary Division, Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Elcio Oliveira Vianna
- Pulmonary Division, Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vania Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
4
|
Early Activation of iNKT Cells Increased Survival Time of BALB/c Mice in a Murine Model of Melioidosis. Infect Immun 2022; 90:e0026822. [PMID: 36374098 PMCID: PMC9753712 DOI: 10.1128/iai.00268-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Melioidosis is an infectious disease caused by Burkholderia pseudomallei. High interferon gamma (IFN-γ) levels in naive mice were reported to mediate protection against B. pseudomallei infection. Invariant natural killer T (iNKT) cells can produce and secrete several cytokines, including IFN-γ. When iNKT cell-knockout (KO) BALB/c mice were infected with B. pseudomallei, their survival time was significantly shorter than wild-type mice. Naive BALB/c mice pretreated intraperitoneally with α-galactosylceramide (α-GalCer), an iNKT cell activator, 24 h before infection demonstrated 62.5% survival at the early stage, with prolonged survival time compared to nonpretreated infected control mice (14 ± 1 days versus 6 ± 1 days, respectively). At 4 h after injection with α-GalCer, treated mice showed significantly higher levels of serum IFN-γ, interleukin-4 (IL-4), IL-10, and IL-12 than control mice. Interestingly, the IFN-γ levels in the α-GalCer-pretreated group were decreased at 4, 24, and 48 h after infection, while they were highly increased in the control group. At 24 h postinfection in the α-GalCer group, bacterial loads were significantly lower in blood (no growth and 1,780.00 ± 51.21, P < 0.0001), spleens (no growth and 34,300 ± 1,106.04, P < 0.0001), and livers (1,550 ± 68.72 and 13,400 ± 1,066.67, P < 0.0001) than in the control group, but not in the lungs (15,300 ± 761.10 and 1,320 ± 41.63, P < 0.0001), and almost all were negative at 48 h postinfection. This study for the first time shows that early activation of iNKT cells by α-GalCer helps clearance of B. pseudomallei and prolongs mouse survival.
Collapse
|
5
|
Murray MP, Crosby CM, Marcovecchio P, Hartmann N, Chandra S, Zhao M, Khurana A, Zahner SP, Clausen BE, Coleman FT, Mizgerd JP, Mikulski Z, Kronenberg M. Stimulation of a subset of natural killer T cells by CD103 + DC is required for GM-CSF and protection from pneumococcal infection. Cell Rep 2022; 38:110209. [PMID: 35021099 DOI: 10.1016/j.celrep.2021.110209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
Innate-like T cells, including invariant natural killer T cells, mucosal-associated invariant T cells, and γδ T cells, are present in various barrier tissues, including the lung, where they carry out protective responses during infections. Here, we investigate their roles during pulmonary pneumococcal infection. Following infection, innate-like T cells rapidly increase in lung tissue, in part through recruitment, but T cell antigen receptor activation and cytokine production occur mostly in interleukin-17-producing NKT17 and γδ T cells. NKT17 cells are preferentially located within lung tissue prior to infection, as are CD103+ dendritic cells, which are important both for antigen presentation to NKT17 cells and γδ T cell activation. Whereas interleukin-17-producing γδ T cells are numerous, granulocyte-macrophage colony-stimulating factor is exclusive to NKT17 cells and is required for optimal protection. These studies demonstrate how particular cellular interactions and responses of functional subsets of innate-like T cells contribute to protection from pathogenic lung infection.
Collapse
Affiliation(s)
- Mallory Paynich Murray
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine M Crosby
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Paola Marcovecchio
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nadine Hartmann
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Meng Zhao
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sonja P Zahner
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Fadie T Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Wu B, Zhang G, Guo Z, Wang G, Xu X, Li JL, Whitmire JK, Zheng J, Wan YY. The SKI proto-oncogene restrains the resident CD103 +CD8 + T cell response in viral clearance. Cell Mol Immunol 2021; 18:2410-2421. [PMID: 32612153 PMCID: PMC8484360 DOI: 10.1038/s41423-020-0495-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Acute viral infection causes illness and death. In addition, an infection often results in increased susceptibility to a secondary infection, but the mechanisms behind this susceptibility are poorly understood. Since its initial identification as a marker for resident memory CD8+ T cells in barrier tissues, the function and regulation of CD103 integrin (encoded by ITGAE gene) have been extensively investigated. Nonetheless, the function and regulation of the resident CD103+CD8+ T cell response to acute viral infection remain unclear. Although TGFβ signaling is essential for CD103 expression, the precise molecular mechanism behind this regulation is elusive. Here, we reveal a TGFβ-SKI-Smad4 pathway that critically and specifically directs resident CD103+CD8+ T cell generation for protective immunity against primary and secondary viral infection. We found that resident CD103+CD8+ T cells are abundant in both lymphoid and nonlymphoid tissues from uninfected mice. CD103 acts as a costimulation signal to produce an optimal antigenic CD8+ T cell response to acute viral infection. There is a reduction in resident CD103+CD8+ T cells following primary infection that results in increased susceptibility of the host to secondary infection. Intriguingly, CD103 expression inversely and specifically correlates with SKI proto-oncogene (SKI) expression but not R-Smad2/3 activation. Ectopic expression of SKI restricts CD103 expression in CD8+ T cells in vitro and in vivo to hamper viral clearance. Mechanistically, SKI is recruited to the Itgae loci to directly suppress CD103 transcription by regulating histone acetylation in a Smad4-dependent manner. Our study therefore reveals that resident CD103+CD8+ T cells dictate protective immunity during primary and secondary infection. Interfering with SKI function may amplify the resident CD103+CD8+ T cell response to promote protective immunity.
Collapse
Affiliation(s)
- Bing Wu
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ge Zhang
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.411971.b0000 0000 9558 1426Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044 China
| | - Zengli Guo
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Gang Wang
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002 China
| | - Xiaojiang Xu
- grid.280664.e0000 0001 2110 5790Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Chapel Hill, NC 27709 USA
| | - Jian-liang Li
- grid.280664.e0000 0001 2110 5790Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, Chapel Hill, NC 27709 USA
| | - Jason K. Whitmire
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002 China
| | - Yisong Y. Wan
- grid.10698.360000000122483208Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA ,grid.10698.360000000122483208Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
7
|
Gálvez NMS, Bohmwald K, Pacheco GA, Andrade CA, Carreño LJ, Kalergis AM. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin Microbiol Rev 2021; 34:e00232-20. [PMID: 33361143 PMCID: PMC7950362 DOI: 10.1128/cmr.00232-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The immune system must work in an orchestrated way to achieve an optimal response upon detection of antigens. The cells comprising the immune response are traditionally divided into two major subsets, innate and adaptive, with particular characteristics for each type. Type I natural killer T (iNKT) cells are defined as innate-like T cells sharing features with both traditional adaptive and innate cells, such as the expression of an invariant T cell receptor (TCR) and several NK receptors. The invariant TCR in iNKT cells interacts with CD1d, a major histocompatibility complex class I (MHC-I)-like molecule. CD1d can bind and present antigens of lipid nature and induce the activation of iNKT cells, leading to the secretion of various cytokines, such as gamma interferon (IFN-γ) and interleukin 4 (IL-4). These cytokines will aid in the activation of other immune cells following stimulation of iNKT cells. Several molecules with the capacity to bind to CD1d have been discovered, including α-galactosylceramide. Likewise, several molecules have been synthesized that are capable of polarizing iNKT cells into different profiles, either pro- or anti-inflammatory. This versatility allows NKT cells to either aid or impair the clearance of pathogens or to even control or increase the symptoms associated with pathogenic infections. Such diverse contributions of NKT cells to infectious diseases are supported by several publications showing either a beneficial or detrimental role of these cells during diseases. In this article, we discuss current data relative to iNKT cells and their features, with an emphasis on their driving role in diseases produced by pathogenic agents in an organ-oriented fashion.
Collapse
Affiliation(s)
- Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaspar A Pacheco
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Rey-Jurado E, Bohmwald K, Gálvez NMS, Becerra D, Porcelli SA, Carreño LJ, Kalergis AM. Contribution of NKT cells to the immune response and pathogenesis triggered by respiratory viruses. Virulence 2021; 11:580-593. [PMID: 32463330 PMCID: PMC7549913 DOI: 10.1080/21505594.2020.1770492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) cause acute respiratory tract infections in children worldwide. Natural killer T (NKT) cells are unconventional T lymphocytes, and their TCRs recognize glycolipids bound to the MHC-I-like molecule, CD1d. These cells modulate the inflammatory response in viral infections. Here, we evaluated the contribution of NKT cells in both hRSV and hMPV infections. A significant decrease in the number of neutrophils, eosinophils, and CD103+DCs infiltrating to the lungs, as well as an increased production of IFN-γ, were observed upon hRSV-infection in CD1d-deficient BALB/c mice, as compared to wild-type control mice. However, this effect was not observed in the CD1d-deficient BALB/c group, upon infection with hMPV. Importantly, reduced expression of CD1d in CD11b+ DCs and epithelial cells was found in hRSV -but not hMPV-infected mice. Besides, a reduction in the expression of CD1d in alveolar macrophages of lungs from hRSV- and hMPV-infected mice was found. Such reduction of CD1d expression interfered with NKT cells activation, and consequently IL-2 secretion, as characterized by in vitro experiments for both hRSV and hMPV infections. Furthermore, increased numbers of NKT cells recruited to the lungs in response to hRSV- but not hMPV-infection was detected, resulting in a reduction in the expression of IFN-γ and IL-2 by these cells. In conclusion, both hRSV and hMPV might be differently impairing NKT cells function and contributing to the immune response triggered by these viruses.
Collapse
Affiliation(s)
- Emma Rey-Jurado
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Daniela Becerra
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Steven A Porcelli
- Department of Microbiology and Immunology, and Department of Medicine, Albert Einstein College of Medicine , Bronx, NY, USA
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy, Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| |
Collapse
|
9
|
Kovach MA, Che K, Brundin B, Andersson A, Asgeirsdottir H, Padra M, Lindén SK, Qvarfordt I, Newstead MW, Standiford TJ, Lindén A. IL-36 Cytokines Promote Inflammation in the Lungs of Long-Term Smokers. Am J Respir Cell Mol Biol 2021; 64:173-182. [PMID: 33105081 PMCID: PMC7874394 DOI: 10.1165/rcmb.2020-0035oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease with high morbidity and mortality. The IL-36 family are proinflammatory cytokines that are known to shape innate immune responses, including those critical to bacterial pneumonia. The objective of this study was to determine whether IL-36 cytokines promote a proinflammatory milieu in the lungs of long-term smokers with and without COPD. Concentrations of IL-36 cytokines were measured in plasma and BAL fluid from subjects in a pilot study (n = 23) of long-term smokers with and without COPD in vivo and from a variety of lung cells (from 3-5 donors) stimulated with bacteria or cigarette smoke components in vitro. Pulmonary macrophages were stimulated with IL-36 cytokines in vitro, and chemokine and cytokine production was assessed. IL-36α and IL-36γ are produced to varying degrees in murine and human lung cells in response to bacterial stimuli and cigarette smoke components in vitro. Moreover, whereas IL-36γ production is upregulated early after cigarette smoke stimulation and wanes over time, IL-36α production requires a longer duration of exposure. IL-36α and IL-36γ are enhanced systemically and locally in long-term smokers with and without COPD, and local IL-36α concentrations display a positive correlation with declining ventilatory lung function and increasing proinflammatory cytokine concentrations. In vitro, IL-36α and IL-36γ induce proinflammatory chemokines and cytokines in a concentration-dependent fashion that requires IL-36R and MyD88. IL-36 cytokine production is altered in long-term smokers with and without COPD and contributes to shaping a proinflammatory milieu in the lungs.
Collapse
Affiliation(s)
- Melissa A. Kovach
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karlhans Che
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Brundin
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Andersson
- Division of Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helga Asgeirsdottir
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Médea Padra
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara K. Lindén
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Qvarfordt
- Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael W. Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan; and
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Duhan V, Khairnar V, Kitanovski S, Hamdan TA, Klein AD, Lang J, Ali M, Adomati T, Bhat H, Friedrich SK, Li F, Krebs P, Futerman AH, Addo MM, Hardt C, Hoffmann D, Lang PA, Lang KS. Integrin Alpha E (CD103) Limits Virus-Induced IFN-I Production in Conventional Dendritic Cells. Front Immunol 2021; 11:607889. [PMID: 33584680 PMCID: PMC7873973 DOI: 10.3389/fimmu.2020.607889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022] Open
Abstract
Early and strong production of IFN-I by dendritic cells is important to control vesicular stomatitis virus (VSV), however mechanisms which explain this cell-type specific innate immune activation remain to be defined. Here, using a genome wide association study (GWAS), we identified Integrin alpha-E (Itgae, CD103) as a new regulator of antiviral IFN-I production in a mouse model of vesicular stomatitis virus (VSV) infection. CD103 was specifically expressed by splenic conventional dendritic cells (cDCs) and limited IFN-I production in these cells during VSV infection. Mechanistically, CD103 suppressed AKT phosphorylation and mTOR activation in DCs. Deficiency in CD103 accelerated early IFN-I in cDCs and prevented death in VSV infected animals. In conclusion, CD103 participates in regulation of cDC specific IFN-I induction and thereby influences immune activation after VSV infection.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Disease Models, Animal
- Genome-Wide Association Study
- Host-Pathogen Interactions
- Immunity, Innate
- Integrin alpha Chains/genetics
- Integrin alpha Chains/metabolism
- Interferon Type I/metabolism
- Mice, 129 Strain
- Mice, Inbred AKR
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred NOD
- Mice, Knockout
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Vesicular Stomatitis/genetics
- Vesicular Stomatitis/immunology
- Vesicular Stomatitis/metabolism
- Vesicular Stomatitis/virology
- Vesiculovirus/growth & development
- Vesiculovirus/pathogenicity
- Virus Replication
- Mice
Collapse
Affiliation(s)
- Vikas Duhan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Vishal Khairnar
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Dana-Farber Cancer Institute, Harvard University, Boston, MA, United States
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Thamer A. Hamdan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Amman, Jordan
| | - Andrés D. Klein
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Centro de Genética y Genómica, Universidad Del Desarrollo Clínica Alemana de Santiago, Santiago, Chile
| | - Judith Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Murtaza Ali
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tom Adomati
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Hilal Bhat
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah-Kim Friedrich
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Fanghui Li
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Marylyn M. Addo
- University Medical Center Hamburg-Eppendorf, Division of Infectious Diseases, 1st Department of Medicine, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riemse, Hamburg, Germany
- Department of Clinical Immunology of Infectious Diseases, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Cornelia Hardt
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl S. Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
11
|
Gu W, Madrid DMD, Yang G, Artiaga BL, Loeb JC, Castleman WL, Richt JA, Lednicky JA, Driver JP. Unaltered influenza disease outcomes in swine prophylactically treated with α-galactosylceramide. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103843. [PMID: 32871161 PMCID: PMC8119227 DOI: 10.1016/j.dci.2020.103843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/22/2020] [Accepted: 08/22/2020] [Indexed: 05/10/2023]
Abstract
Influenza A viruses (IAV) are a major cause of respiratory diseases in pigs. Invariant natural killer T (iNKT) cells are an innate-like T cell subset that contribute significantly to IAV resistance in mice. In the current work, we explored whether expanding and activating iNKT cells with the iNKT cell superagonist α-galactosylceramide (α-GalCer) would change the course of an IAV infection in pigs. In one study, α-GalCer was administered to pigs intramuscularly (i.m.) 9 days before infection, which systemically expanded iNKT cells. In another study, α-GalCer was administered intranasally (i.n.) 2 days before virus infection to activate mucosal iNKT cells. Despite a synergistic increase in iNKT cells when α-GalCer i.m. treated pigs were infected with IAV, neither approach reduced disease signs, lung pathology, or virus replication. Our results indicate that prophylactic use of iNKT cell agonists to prevent IAV infection is ineffective in pigs. This is significant because this type of approach has been considered for humans whose iNKT cell levels and IAV infections are more similar to those of pigs than mice.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | | | - Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Bianca L Artiaga
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Julia C Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | | | - Jürgen A Richt
- Department of Diagnostic Medicine/Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - John A Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Leborgne NGF, Taddeo A, Freigang S, Benarafa C. Serpinb1a Is Dispensable for the Development and Cytokine Response of Invariant Natural Killer T Cell Subsets. Front Immunol 2020; 11:562587. [PMID: 33262755 PMCID: PMC7686238 DOI: 10.3389/fimmu.2020.562587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes. They quickly respond to antigenic stimulation by producing copious amounts of cytokines and chemokines. iNKT precursors differentiate into three subsets iNKT1, iNKT2, and iNKT17 with specific cytokine production signatures. While key transcription factors drive subset differentiation, factors that regulate iNKT subset homeostasis remain incompletely defined. Transcriptomic analyses of thymic iNKT subsets indicate that Serpinb1a is one of the most specific transcripts for iNKT17 cells suggesting that iNKT cell maintenance and function may be regulated by Serpinb1a. Serpinb1a is a major survival factor in neutrophils and prevents cell death in a cell-autonomous manner. It also controls inflammation in models of bacterial and viral infection as well as in LPS-driven inflammation. Here, we examined the iNKT subsets in neutropenic Serpinb1a−/− mice as well as in Serpinb1a−/− mice with normal neutrophil counts due to transgenic re-expression of SERPINB1 in neutrophils. In steady state, we found no significant effect of Serpinb1a-deficiency on the proliferation and numbers of iNKT subsets in thymus, lymph nodes, lung, liver and spleen. Following systemic activation with α-galactosylceramide, the prototypic glycolipid agonist of iNKT cells, we observed similar serum levels of IFN-γ and IL-4 between genotypes. Moreover, splenic dendritic cells showed normal upregulation of maturation markers following iNKT cell activation with α-galactosylceramide. Finally, lung instillation of α-galactosylceramide induced a similar recruitment of neutrophils and production of iNKT-derived cytokines IL-17, IFN-γ, and IL-4 in wild-type and Serpinb1a−/− mice. Taken together, our results indicate that Serpinb1a, while dominantly expressed in iNKT17 cells, is not essential for iNKT cell homeostasis, subset differentiation and cytokine release.
Collapse
Affiliation(s)
- Nathan G F Leborgne
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Adriano Taddeo
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stefan Freigang
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Synthetic gene-regulatory networks in the opportunistic human pathogen Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2020; 117:27608-27619. [PMID: 33087560 PMCID: PMC7959565 DOI: 10.1073/pnas.1920015117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for enormous global morbidity and mortality. Despite this, the pneumococcus makes up part of the commensal nasopharyngeal flora. How the pneumococcus switches from this commensal to pathogenic state and causes disease is unclear and very likely involves variability in expression of its virulence factors. Here, we used synthetic biology approaches to generate complex gene-regulatory networks such as logic gates and toggle switches. We show that these networks are functional in vivo to control capsule production in an influenza-superinfection model. This opens the field of systematically testing the role of phenotypic variation in pneumococcal virulence. The approaches used here may serve as an example for synthetic biology projects in unrelated organisms. Streptococcus pneumoniae can cause disease in various human tissues and organs, including the ear, the brain, the blood, and the lung, and thus in highly diverse and dynamic environments. It is challenging to study how pneumococci control virulence factor expression, because cues of natural environments and the presence of an immune system are difficult to simulate in vitro. Here, we apply synthetic biology methods to reverse-engineer gene expression control in S. pneumoniae. A selection platform is described that allows for straightforward identification of transcriptional regulatory elements out of combinatorial libraries. We present TetR- and LacI-regulated promoters that show expression ranges of four orders of magnitude. Based on these promoters, regulatory networks of higher complexity are assembled, such as logic AND gates and IMPLY gates. We demonstrate single-copy genome-integrated toggle switches that give rise to bimodal population distributions. The tools described here can be used to mimic complex expression patterns, such as the ones found for pneumococcal virulence factors. Indeed, we were able to rewire gene expression of the capsule operon, the main pneumococcal virulence factor, to be externally inducible (YES gate) or to act as an IMPLY gate (only expressed in absence of inducer). Importantly, we demonstrate that these synthetic gene-regulatory networks are functional in an influenza A virus superinfection murine model of pneumonia, paving the way for in vivo investigations of the importance of gene expression control on the pathogenicity of S. pneumoniae.
Collapse
|
14
|
Koné B, Pérez‐Cruz M, Porte R, Hennegrave F, Carnoy C, Gosset P, Trottein F, Sirard J, Pichavant M, Gosset P. Boosting the IL-22 response using flagellin prevents bacterial infection in cigarette smoke-exposed mice. Clin Exp Immunol 2020; 201:171-186. [PMID: 32324274 PMCID: PMC7366752 DOI: 10.1111/cei.13445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
The progression of chronic obstructive pulmonary disease (COPD), a lung inflammatory disease being the fourth cause of death worldwide, is marked by acute exacerbations. These episodes are mainly caused by bacterial infections, frequently due to Streptococcus pneumoniae. This susceptibility to infection involves a defect in interleukin (IL)-22, which plays a pivotal role in mucosal defense mechanism. Administration of flagellin, a Toll-like receptor 5 (TLR-5) agonist, can protect mice and primates against respiratory infections in a non-pathological background. We hypothesized that TLR-5-mediated stimulation of innate immunity might improve the development of bacteria-induced exacerbations in a COPD context. Mice chronically exposed to cigarette smoke (CS), mimicking COPD symptoms, are infected with S. pneumoniae, and treated in a preventive and a delayed manner with flagellin. Both treatments induced a lower bacterial load in the lungs and blood, and strongly reduced the inflammation and lung lesions associated with the infection. This protection implicated an enhanced production of IL-22 and involved the recirculation of soluble factors secreted by spleen cells. This is also associated with higher levels of the S100A8 anti-microbial peptide in the lung. Furthermore, human mononuclear cells from non-smokers were able to respond to recombinant flagellin by increasing IL-22 production while active smoker cells do not, a defect associated with an altered IL-23 production. This study shows that stimulation of innate immunity by a TLR-5 ligand reduces CS-induced susceptibility to bacterial infection in mice, and should be considered in therapeutic strategies against COPD exacerbations.
Collapse
Affiliation(s)
- B. Koné
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - M. Pérez‐Cruz
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - R. Porte
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - F. Hennegrave
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - C. Carnoy
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - P. Gosset
- Service d’Anatomo‐pathologieHôpital Saint Vincent de PaulLilleFrance
| | - F. Trottein
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - J.‐C. Sirard
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - M. Pichavant
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - P. Gosset
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| |
Collapse
|
15
|
Wiedinger K, McCauley J, Bitsaktsis C. Isotype-specific outcomes in Fc gamma receptor targeting of PspA using fusion proteins as a vaccination strategy against Streptococcus pneumoniae infection. Vaccine 2020; 38:5634-5646. [PMID: 32646816 DOI: 10.1016/j.vaccine.2020.06.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
Streptococcus pneumoniae (Spn) remains a considerable threat to public health despite the availability of antibiotics and polysaccharide conjugate vaccines. The lack of mucosal immunity in addition to capsular polysaccharide diversity, has proved to be problematic in developing a universal vaccine against Spn. Targeting antigen to Fc receptors is an attractive way to augment both innate and adaptive immunity against mucosal pathogens, by promoting interactions with activating Fcγ receptors (FcγR) that mediate diverse immunomodulatory functions. The effect of targeting FcγR is highly influenced by the IgG subclass, which bares differential affinities for activating and inhibitory FcγR. In the current study we demonstrate targeting activating FcγR with fusion proteins consisting of PspA and IgG2a Fc enhance PspA-specific immune responses, and effectively protect against mucosal Spn challenge. Specifically, targeting PspA to FcγR polarized alveolar macrophage to the AM1 phenotype and increased conventional dendritic cell subsets in the lung in addition to augmenting Th1 cytokines and PspA-specific IgG and IgA. In contrast, fusion proteins consisting of PspA fused to the IgG1 Fc provided minimal benefit over administration of PspA alone, as a result of interaction with the inhibitory FcγRIIB. Protective efficacy of the IgG1 fusion protein was significantly enhanced in animals deficient for FcγRIIB accompanied by increased B cell maturation and proliferation levels in these animals. These studies demonstrate FcγR targeting is an effective strategy for inducing potent cellular and humoral responses via mucosal immunization with Fc fusion proteins, however, careful consideration of the Fc region utilized is required since Fc isotype subclass heavily influenced immunization induced effector functions and survival against lethal Spn challenge. Fc-engineering with specific attention to FcγRIIB engagement presents a valuable vaccine strategy for protecting against Spn infection.
Collapse
Affiliation(s)
- Kari Wiedinger
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | - James McCauley
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | | |
Collapse
|
16
|
Hassane M, Jouan Y, Creusat F, Soulard D, Boisseau C, Gonzalez L, Patin EC, Heuzé-Vourc'h N, Sirard JC, Faveeuw C, Trottein F, Si-Tahar M, Baranek T, Paget C. Interleukin-7 protects against bacterial respiratory infection by promoting IL-17A-producing innate T-cell response. Mucosal Immunol 2020; 13:128-139. [PMID: 31628425 DOI: 10.1038/s41385-019-0212-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023]
Abstract
Interleukin-7 (IL-7) is a critical cytokine in B- and T-lymphocyte development and maturation. Recent evidence suggests that IL-7 is a preferential homeostatic and survival factor for RORγt+ innate T cells such as natural killer T (NKT) cells, γδT cells, and mucosal-associated invariant T (MAIT) cells in the periphery. Given the important contribution of these populations in antibacterial immunity at barrier sites, we questioned whether IL-7 could be instrumental in boosting the local host immune response against respiratory bacterial infection. By using a cytokine-monoclonal antibody approach, we illustrated a role for topical IL-7 delivery in increasing the pool of RORγt+ IL-17A-producing innate T cells. Prophylactic IL-7 treatment prior to Streptococcus pneumoniae infection led to better bacterial containment, a process associated with increased neutrophilia and that depended on γδT cells and IL-17A. Last, combined delivery of IL-7 and α-galactosylceramide (α-GalCer), a potent agonist for invariant NKT (iNKT) cells, conferred an almost total protection in terms of survival, an effect associated with enhanced IL-17 production by innate T cells and neutrophilia. Collectively, we provide a proof of concept that IL-7 enables fine-tuning of innate T- cell functions. This might pave the way for considering IL-7 as an innovative biotherapeutic against bacterial infection.
Collapse
Affiliation(s)
- Maya Hassane
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Youenn Jouan
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France.,Service de Médecine Intensive et Réanimation, Centre Hospitalier Régional Universitaire, Tours, France
| | - Florent Creusat
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Emmanuel C Patin
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Jean-Claude Sirard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Christelle Faveeuw
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France.,Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille- Institut Pasteur de Lille, 59000, Lille, France. .,INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR, 1100, Tours, France. .,Université de Tours, Faculté de Médecine de Tours, Tours, France.
| |
Collapse
|
17
|
Paget C, Trottein F. Mechanisms of Bacterial Superinfection Post-influenza: A Role for Unconventional T Cells. Front Immunol 2019; 10:336. [PMID: 30881357 PMCID: PMC6405625 DOI: 10.3389/fimmu.2019.00336] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 12/24/2022] Open
Abstract
Despite the widespread application of vaccination programs and antiviral drug treatments, influenza viruses are still among the most harmful human pathogens. Indeed, influenza results in significant seasonal and pandemic morbidity and mortality. Furthermore, severe bacterial infections can occur in the aftermath of influenza virus infection, and contribute substantially to the excess morbidity and mortality associated with influenza. Here, we review the main features of influenza viruses and current knowledge about the mechanical and immune mechanisms that underlie post-influenza secondary bacterial infections. We present the emerging literature describing the role of "innate-like" unconventional T cells in post-influenza bacterial superinfection. Unconventional T cell populations span the border between the innate and adaptive arms of the immune system, and are prevalent in mucosal tissues (including the airways). They mainly comprise Natural Killer T cells, mucosal-associated invariant T cells and γδ T cells. We provide an overview of the principal functions that these cells play in pulmonary barrier functions and immunity, highlighting their unique ability to sense environmental factors and promote protection against respiratory bacterial infections. We focus on two major opportunistic pathogens involved in superinfections, namely Streptococcus pneumoniae and Staphylococcus aureus. We discuss mechanisms through which influenza viruses alter the antibacterial activity of unconventional T cells. Lastly, we discuss recent fundamental advances and possible therapeutic approaches in which unconventional T cells would be targeted to prevent post-influenza bacterial superinfections.
Collapse
Affiliation(s)
- Christophe Paget
- Centre d'Etude des Pathologies Respiratoires, Institut National de la Santé et de la Recherche Médicale U1100, Tours, France.,Faculty of Medicine, Université de Tours, Tours, France
| | - François Trottein
- U1019-UMR 8204-CIIL-Centre d'Infection et d'Immunité de Lille, Université de Lille, Lille, France.,Centre National de la Recherche Scientifique, UMR 8204, Lille, France.,Institut National de la Santé et de la Recherche Médicale U1019, Lille, France.,Centre Hospitalier, Universitaire de Lille, Lille, France.,Institut Pasteur de Lille, Lille, France
| |
Collapse
|
18
|
TLR9-mediated dendritic cell activation uncovers mammalian ganglioside species with specific ceramide backbones that activate invariant natural killer T cells. PLoS Biol 2019; 17:e3000169. [PMID: 30822302 PMCID: PMC6420026 DOI: 10.1371/journal.pbio.3000169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/15/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population of lipid-reactive T cells that are involved in many immune responses, mediated through T-cell receptor (TCR)–dependent and/or independent activation. Although numerous microbial lipid antigens (Ags) have been identified, several lines of evidence have suggested the existence of relevant Ags of endogenous origin. However, the identification of their precise nature as well as the molecular mechanisms involved in their generation are still highly controversial and ill defined. Here, we identified two mammalian gangliosides—namely monosialoganglioside GM3 and disialoganglioside GD3—as endogenous activators for mouse iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly, their ability to activate iNKT cells is highly dependent on the ceramide backbone structure. Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly recognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing cells. Moreover, these gangliosides conferred partial protection in the context of bacterial infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells. Although the existence of self-antigens for invariant Natural Killer T (iNKT) cells is widely accepted, their precise nature remains a matter of debate. This study shows that two mammalian ganglioside species activate iNKT cells in a CD1d-dependent manner. Invariant natural killer T (iNKT) cells are a population of unconventional T lymphocytes that activate rapidly during inflammation due to their innate-like features. They are unconventional since they do not react to peptidic antigens (Ags) presented by classical major histocompatibility complex (MHC) molecules; instead, they recognize lipid-based Ags in the context of the MHC class I-like molecule CD1d. While numerous Ags of microbial origins have been described, their endogenous Ags are far less understood and remain a matter of strong debate. Here, we report that engagement of an innate receptor on the Ag-presenting cells leads to modulation of their lipid metabolism. This results in an enrichment of particular glycosphingolipid species that differ in both the nonpolar tail and polar head structures. Among those, two species have the potential to activate iNKT cells in a CD1d-dependent manner after further intracellular modifications. Based on these data, we propose a concept that iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced changes in CD1d-expressing cells. Given the presence of closely related molecules in some pathological conditions such as cancer, it will be interesting to evaluate the biological relevance of these Ags in disease states.
Collapse
|
19
|
Unveiling the regulation of NKT17 cell differentiation and function. Mol Immunol 2018; 105:55-61. [PMID: 30496977 DOI: 10.1016/j.molimm.2018.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022]
Abstract
Invariant natural killer T cells (iNKTs) are distinct from conventional T cells. iNKT cells express a semi-invariant T cell receptor (TCR) that can specifically recognize lipid antigens presented by CD1d, an MHC class I-like antigen-presenting molecule. Currently, iNKT cells are distinguished in three functionally distinct subsets. Each subset is defined by lineage-specifying factors: T-bet shapes the fate of NKT1 subset that mainly secretes IFNγ, Gata3 specifies the NKT2 subset that produces robustly IL-4 whereas RORγt seals the differentiation of NKT17 subset that secretes IL-17. In the present review, the focus is placed on the regulation of NKT17 specification and their function.
Collapse
|
20
|
Beshara R, Sencio V, Soulard D, Barthélémy A, Fontaine J, Pinteau T, Deruyter L, Ismail MB, Paget C, Sirard JC, Trottein F, Faveeuw C. Alteration of Flt3-Ligand-dependent de novo generation of conventional dendritic cells during influenza infection contributes to respiratory bacterial superinfection. PLoS Pathog 2018; 14:e1007360. [PMID: 30372491 PMCID: PMC6224179 DOI: 10.1371/journal.ppat.1007360] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/08/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023] Open
Abstract
Secondary bacterial infections contribute to the excess morbidity and mortality of influenza A virus (IAV) infection. Disruption of lung integrity and impaired antibacterial immunity during IAV infection participate in colonization and dissemination of the bacteria out of the lungs. One key feature of IAV infection is the profound alteration of lung myeloid cells, characterized by the recruitment of deleterious inflammatory monocytes. We herein report that IAV infection causes a transient decrease of lung conventional dendritic cells (cDCs) (both cDC1 and cDC2) peaking at day 7 post-infection. While triggering emergency monopoiesis, IAV transiently altered the differentiation of cDCs in the bone marrow, the cDC1-biaised pre-DCs being particularly affected. The impaired cDC differentiation during IAV infection was independent of type I interferons (IFNs), IFN-γ, TNFα and IL-6 and was not due to an intrinsic dysfunction of cDC precursors. The alteration of cDC differentiation was associated with a drop of local and systemic production of Fms-like tyrosine kinase 3 ligand (Flt3-L), a critical cDC differentiation factor. Overexpression of Flt3-L during IAV infection boosted the cDC progenitors' production in the BM, replenished cDCs in the lungs, decreased inflammatory monocytes' infiltration and lowered lung damages. This was associated with partial protection against secondary pneumococcal infection, as reflected by reduced bacterial dissemination and prolonged survival. These findings highlight the impact of distal viral infection on cDC genesis in the BM and suggest that Flt3-L may have potential applications in the control of secondary infections.
Collapse
Affiliation(s)
- Ranin Beshara
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Valentin Sencio
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Daphnée Soulard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Adeline Barthélémy
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Josette Fontaine
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Thibault Pinteau
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Lucie Deruyter
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Christophe Paget
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christelle Faveeuw
- Univ. Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
21
|
Trottein F, Paget C. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Front Immunol 2018; 9:1750. [PMID: 30116242 PMCID: PMC6082944 DOI: 10.3389/fimmu.2018.01750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The immune system has been traditionally divided into two arms called innate and adaptive immunity. Typically, innate immunity refers to rapid defense mechanisms that set in motion within minutes to hours following an insult. Conversely, the adaptive immune response emerges after several days and relies on the innate immune response for its initiation and subsequent outcome. However, the recent discovery of immune cells displaying merged properties indicates that this distinction is not mutually exclusive. These populations that span the innate-adaptive border of immunity comprise, among others, CD1d-restricted natural killer T cells and MR1-restricted mucosal-associated invariant T cells. These cells have the unique ability to swiftly activate in response to non-peptidic antigens through their T cell receptor and/or to activating cytokines in order to modulate many aspects of the immune response. Despite they recirculate all through the body via the bloodstream, these cells mainly establish residency at barrier sites including lungs. Here, we discuss the current knowledge into the biology of these cells during lung (viral and bacterial) infections including activation mechanisms and functions. We also discuss future strategies targeting these cell types to optimize immune responses against respiratory pathogens.
Collapse
Affiliation(s)
- François Trottein
- Univ. Lille, U1019 – UMR 8204 – CIIL – Centre d’Infection et d’Immunité de Lille, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale U1019, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Paget
- Institut National de la Santé et de la Recherche Médicale U1100, Centre d’Etude des Pathologies Respiratoires (CEPR), Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
22
|
Kinjo Y, Takatsuka S, Kitano N, Kawakubo S, Abe M, Ueno K, Miyazaki Y. Functions of CD1d-Restricted Invariant Natural Killer T Cells in Antimicrobial Immunity and Potential Applications for Infection Control. Front Immunol 2018; 9:1266. [PMID: 29928278 PMCID: PMC5997780 DOI: 10.3389/fimmu.2018.01266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are innate-type lymphocytes that express a T-cell receptor (TCR) containing an invariant α chain encoded by the Vα14 gene in mice and Vα24 gene in humans. These iNKT cells recognize endogenous, microbial, and synthetic glycolipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule CD1d. Upon TCR stimulation by glycolipid antigens, iNKT cells rapidly produce large amounts of cytokines, including interferon-γ (IFNγ) and interleukin-4 (IL-4). Activated iNKT cells contribute to host protection against a broad spectrum of microbial pathogens, and glycolipid-mediated stimulation of iNKT cells ameliorates many microbial infections by augmenting innate and acquired immunity. In some cases, however, antigen-activated iNKT cells exacerbate microbial infections by promoting pathogenic inflammation. Therefore, it is important to identify appropriate microbial targets for the application of iNKT cell activation as a treatment or vaccine adjuvant. Many studies have found that iNKT cell activation induces potent adjuvant activities promoting protective vaccine effects. In this review, we summarize the functions of CD1d-restricted iNKT cells in immune responses against microbial pathogens and describe the potential applications of glycolipid-mediated iNKT cell activation for preventing and controlling microbial infections.
Collapse
Affiliation(s)
- Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Takatsuka
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Kitano
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shun Kawakubo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
23
|
Le Rouzic O, Pichavant M, Frealle E, Guillon A, Si-Tahar M, Gosset P. Th17 cytokines: novel potential therapeutic targets for COPD pathogenesis and exacerbations. Eur Respir J 2017; 50:1602434. [PMID: 29025886 DOI: 10.1183/13993003.02434-2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease of the airways caused mainly by cigarette smoke exposure. COPD progression is marked by exacerbations of the disease, often associated with infections. Recent data show the involvement in COPD pathophysiology of interleukin (IL)-17 and IL-22, two cytokines that are important in the control of lung inflammation and infection. During the initiation and progression of the disease, increased IL-17 secretion causes neutrophil recruitment, leading to chronic inflammation, airways obstruction and emphysema. In the established phase of COPD, a defective IL-22 response facilitates pathogen-associated infections and disease exacerbations. Altered production of these cytokines involves a complex network of immune cells and dysfunction of antigen-presenting cells. In this review, we describe current knowledge on the involvement of IL-17 and IL-22 in COPD pathophysiology at steady state and during exacerbations, and discuss implications for COPD management and future therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Le Rouzic
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Service de Pneumologie Immunologie et Allergologie, CHU Lille, Lille, France
| | - Muriel Pichavant
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Emilie Frealle
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
- Laboratoire de Parasitologie et Mycologie Médicale, CHU Lille, Lille, France
| | - Antoine Guillon
- Service de Réanimation Polyvalente, CHRU de Tours, Tours, France
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- Inserm, U1100 - Centre d'Etude des Pathologies Respiratoires, Tours, France
- Université François Rabelais, Tours, France
| | - Philippe Gosset
- Université de Lille, U1019 - UMR 8204, Lung Infection and Innate Immunity, Center for Infection and Immunity of Lille (CIIL), Lille, France
- CNRS, UMR 8204, Lille, France
- INSERM, U1019, Lille, France
- Institut Pasteur de Lille, Lille, France
| |
Collapse
|
24
|
IL-36γ is a crucial proximal component of protective type-1-mediated lung mucosal immunity in Gram-positive and -negative bacterial pneumonia. Mucosal Immunol 2017; 10:1320-1334. [PMID: 28176791 PMCID: PMC5548659 DOI: 10.1038/mi.2016.130] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/01/2016] [Indexed: 02/04/2023]
Abstract
Interleukin-36γ (IL-36γ) is a member of novel IL-1-like proinflammatory cytokine family that are highly expressed in epithelial tissues and several myeloid-derived cell types. Little is known about the role of the IL-36 family in mucosal immunity, including lung anti-bacterial responses. We used murine models of IL-36γ deficiency to assess the contribution of IL-36γ in the lung during experimental pneumonia. Induction of IL-36γ was observed in the lung in response to Streptococcus pneumoniae (Sp) infection, and mature IL-36γ protein was secreted primarily in microparticles. IL-36γ-deficient mice challenged with Sp demonstrated increased mortality, decreased lung bacterial clearance and increased bacterial dissemination, in association with reduced local expression of type-1 cytokines, and impaired lung macrophage M1 polarization. IL-36γ directly stimulated type-1 cytokine induction from dendritic cells in vitro in a MyD88-dependent manner. Similar protective effects of IL-36γ were observed in a Gram-negative pneumonia model (Klebsiella pneumoniae). Intrapulmonary delivery of IL-36γ-containing microparticles reconstituted immunity in IL-36γ-/- mice. Enhanced expression of IL-36γ was also observed in plasma and bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome because of pneumonia. These studies indicate that IL-36γ assumes a vital proximal role in the lung innate mucosal immunity during bacterial pneumonia by driving protective type-1 responses and classical macrophage activation.
Collapse
|
25
|
Le Gars M, Haustant M, Klezovich-Benard M, Paget C, Trottein F, Goossens PL, Tournier JN. [iNKT cells: potential therapeutic targets to fight anthrax]. Med Sci (Paris) 2017; 33:488-490. [PMID: 28612722 DOI: 10.1051/medsci/20173305010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mathieu Le Gars
- Pathogénie des toxi-infections bactériennes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris, France - Blish lab, department of medicine, Stanford immunology, Stanford university, Stanford, CA, États-Unis
| | - Michel Haustant
- Pathogénie des toxi-infections bactériennes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris, France
| | - Maria Klezovich-Benard
- Pathogénie des toxi-infections bactériennes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris, France
| | - Christophe Paget
- Centre d'infection et d'immunité de Lille, Inserm U1019, CNRS UMR 8204, université de Lille, CHU Lille et Institut Pasteur de Lille, 1, rue du professeur Calmette, 59000 Lille, France
| | - François Trottein
- Centre d'infection et d'immunité de Lille, Inserm U1019, CNRS UMR 8204, université de Lille, CHU Lille et Institut Pasteur de Lille, 1, rue du professeur Calmette, 59000 Lille, France
| | - Pierre L Goossens
- Pathogénie des toxi-infections bactériennes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris, France
| | - Jean-Nicolas Tournier
- Pathogénie des toxi-infections bactériennes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris, France - Unité interactions hôte-agents pathogènes, institut de recherche biomédicale des armées, BP73, 91223 Brétigny-sur-Orge, France
| |
Collapse
|
26
|
Baranek T, Morello E, Valayer A, Aimar RF, Bréa D, Henry C, Besnard AG, Dalloneau E, Guillon A, Dequin PF, Narni-Mancinelli E, Vivier E, Laurent F, Wei Y, Paget C, Si-Tahar M. FHL2 Regulates Natural Killer Cell Development and Activation during Streptococcus pneumoniae Infection. Front Immunol 2017; 8:123. [PMID: 28243234 PMCID: PMC5303898 DOI: 10.3389/fimmu.2017.00123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expression and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is expressed in both mouse and human NK cells. Using FHL2−/− mice, we found that FHL2 controls NK cell development in the bone marrow and maturation in peripheral organs. To evaluate the importance of FHL2 in NK cell activation, FHL2−/− mice were infected with Streptococcus pneumoniae. FHL2−/− mice are highly susceptible to this infection. The activation of lung NK cells is altered in FHL2−/− mice, leading to decreased IFNγ production and a loss of control of bacterial burden. Collectively, our data reveal that FHL2 is a new transcription cofactor implicated in NK cell development and activation during pulmonary bacterial infection.
Collapse
Affiliation(s)
- Thomas Baranek
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Eric Morello
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Alexandre Valayer
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Rose-France Aimar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Déborah Bréa
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Clemence Henry
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Anne-Gaelle Besnard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Emilie Dalloneau
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Pierre-François Dequin
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France; Service de Réanimation Polyvalente, Centre Hospitalier Régional Universitaire, Tours, France
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS , Marseille , France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, Marseille, France; Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | - Yu Wei
- Hépacivirus et immunité innée, Institut Pasteur , Paris , France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université François Rabelais, Tours, France
| |
Collapse
|
27
|
Shekhar S, Peng Y, Wang S, Yang X. CD103+ lung dendritic cells (LDCs) induce stronger Th1/Th17 immunity to a bacterial lung infection than CD11b hi LDCs. Cell Mol Immunol 2017; 15:377-387. [PMID: 28194020 DOI: 10.1038/cmi.2016.68] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/04/2016] [Accepted: 12/04/2016] [Indexed: 12/24/2022] Open
Abstract
Recent studies suggest differential roles for CD103+ and CD11bhi lung dendritic cells (LDCs) in host defense against viral and bacterial infections. In this study, we examined the contribution of these LDC subsets in protective immunity to chlamydial lung infection using a Chlamydia muridarum mouse infection model. We found that CD103+ LDCs showed higher expression of costimulatory molecules (CD40, CD80 and CD86) and increased production of cytokines (IL-12p70, IL-10, IL-23 and IL-6) compared with CD11bhi LDCs, but the expression of programmed death-ligand 1 (PD-L1) was similar between the two subsets. More importantly, we found, in adoptive transfer experiments, that the mice receiving CD103+ LDCs from Chlamydia-infected mice exhibited better protection than the recipients of CD11bhi LDCs, which was associated with more robust Th1/Th17 cytokine responses. In addition, in vitro experiments showed that CD103+ LDCs induced stronger IFN-γ and IL-17 responses, when cocutured with chlamydial antigen-primed CD4+ T cells, than CD11bhi LDCs. Furthermore, the blockade of PD1 in the culture of CD4+ T cells with either CD103+ or CD11bhi LDCs enhanced production of IFN-γ and IL-17. In conclusion, our data provide direct evidence that CD103+ LDCs are more potent in promoting Th1/Th17 immunity to chlamydial lung infection than CD11bhi LDCs.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Ying Peng
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Shuhe Wang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
28
|
Wang Y, Jiang B, Guo Y, Li W, Tian Y, Sonnenberg GF, Weiser JN, Ni X, Shen H. Cross-protective mucosal immunity mediated by memory Th17 cells against Streptococcus pneumoniae lung infection. Mucosal Immunol 2017; 10:250-259. [PMID: 27118490 PMCID: PMC5083242 DOI: 10.1038/mi.2016.41] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/22/2016] [Indexed: 02/04/2023]
Abstract
Pneumonia caused by Streptococcus pneumoniae (Sp) remains a leading cause of serious illness and death worldwide. Immunization with conjugated pneumococcal vaccine has lowered the colonization rate and consequently invasive diseases by inducing serotype-specific antibodies. However, many of the current pneumonia cases result from infection by serotype strains not included in the vaccine. In this study, we asked if cross-protection against lung infection by heterologous strains can be induced, and investigated the underlying immune mechanism. We found that immune mice recovered from a prior infection were protected against heterologous Sp strains in the pneumonia challenge model, as evident by accelerated bacterial clearance, reduced pathology, and apoptosis of lung epithelial cells. Sp infection in the lung induced strong T-helper type 17 (Th17) responses at the lung mucosal site. Transfer of CD4+ T cells from immune mice provided heterologous protection against pneumonia, and this protection was abrogated by interleukin-17A (IL-17A) blockade. Transfer of memory CD4+ T cells from IL-17A-knockout mice failed to provide protection. These results indicate that memory Th17 cells had a key role in providing protection against pneumonia in a serotype-independent manner and suggest the feasibility of developing a broadly protective vaccine against bacterial pneumonia by targeting mucosal Th17 T cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Bin Jiang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Yongli Guo
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Wenchao Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Department of Microbiology & Immunology, and The Jill Robert’s Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, New York, NY, USA
| | - Jeffery N. Weiser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Xin Ni
- Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA 19104, USA
,Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
| |
Collapse
|
29
|
Exogenous Activation of Invariant Natural Killer T Cells by α-Galactosylceramide Reduces Pneumococcal Outgrowth and Dissemination Postinfluenza. mBio 2016; 7:mBio.01440-16. [PMID: 27803187 PMCID: PMC5090038 DOI: 10.1128/mbio.01440-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus infection can predispose to potentially devastating secondary bacterial infections. Invariant natural killer T (iNKT) cells are unconventional, lipid-reactive T lymphocytes that exert potent immunostimulatory functions. Using a mouse model of postinfluenza invasive secondary pneumococcal infection, we sought to establish whether α-galactosylceramide (α-GalCer [a potent iNKT cell agonist that is currently in clinical development]) could limit bacterial superinfection. Our results highlighted the presence of a critical time window during which α-GalCer treatment can trigger iNKT cell activation and influence resistance to postinfluenza secondary pneumococcal infection. Intranasal treatment with α-GalCer during the acute phase (on day 7) of influenza virus H3N2 and H1N1 infection failed to activate (gamma interferon [IFN-γ] and interleukin-17A [IL-17A]) iNKT cells; this effect was associated with a strongly reduced number of conventional CD103+ dendritic cells in the respiratory tract. In contrast, α-GalCer treatment during the early phase (on day 4) or during the resolution phase (day 14) of influenza was associated with lower pneumococcal outgrowth and dissemination. Less intense viral-bacterial pneumonia and a lower morbidity rate were observed in superinfected mice treated with both α-GalCer (day 14) and the corticosteroid dexamethasone. Our results open the way to alternative (nonantiviral/nonantibiotic) iNKT-cell-based approaches for limiting postinfluenza secondary bacterial infections. IMPORTANCE Despite the application of vaccination programs and antiviral drugs, influenza A virus (IAV) infection is responsible for widespread morbidity and mortality (500,000 deaths/year). Influenza infections can also result in sporadic pandemics that can be devastating: the 1918 pandemic led to the death of 50 million people. Severe bacterial infections are commonly associated with influenza and are significant contributors to the excess morbidity and mortality of influenza. Today's treatments of secondary bacterial (pneumococcal) infections are still not effective enough, and antibiotic resistance is a major issue. Hence, there is an urgent need for novel therapies. In the present study, we set out to evaluate the efficacy of α-galactosylceramide (α-GalCer)-a potent agonist of invariant NKT cells that is currently in clinical development-in a mouse model of postinfluenza, highly invasive pneumococcal pneumonia. Our data indicate that treatment with α-GalCer reduces susceptibility to superinfections and, when combined with the corticosteroid dexamethasone, reduces viral-bacterial pneumonia.
Collapse
|
30
|
Hackstein H, Lippitsch A, Krug P, Schevtschenko I, Kranz S, Hecker M, Dietert K, Gruber AD, Bein G, Brendel C, Baal N. Prospectively defined murine mesenchymal stem cells inhibit Klebsiella pneumoniae-induced acute lung injury and improve pneumonia survival. Respir Res 2015; 16:123. [PMID: 26438075 PMCID: PMC4594670 DOI: 10.1186/s12931-015-0288-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Background Numerous studies have described the immunosuppressive capacity of mesenchymal stem cells (MSC) but these studies use mixtures of heterogeneous progenitor cells for in vitro expansion. Recently, multipotent MSC have been prospectively identified in murine bone marrow (BM) on the basis of PDFGRa+ SCA1+ CD45− TER119− (PαS) expression but the immunomodulatory capacity of these MSC is unknown. Methods We isolated PαS MSC by high-purity FACS sorting of murine BM and after in vitro expansion we analyzed the in vivo immunomodulatory activity during acute pneumonia. PαS MSC (1 × 106) were applied intratracheally 4 h after acute respiratory Klebsiella pneumoniae induced infection. Results PαS MSC treatment resulted in significantly reduced alveolitis and protein leakage in comparison to mock-treated controls. PαS MSC-treated mice exhibited significantly reduced alveolar TNF-α and IL-12p70 expression, while IL-10 expression was unaffected. Dissection of respiratory dendritic cell (DC) subsets by multiparameter flow cytometry revealed significantly reduced lung DC infiltration and significantly reduced CD86 costimulatory expression on lung CD103+ DC in PαS MSC-treated mice. In the post-acute phase of pneumonia, PαS MSC-treated animals exhibited significantly reduced respiratory IL-17+ CD4+ T cells and IFN-γ+ CD4+ T cells. Moreover, PαS MSC treatment significantly improved overall pneumonia survival and did not increase bacterial load. Conclusion In this study we demonstrated for the first time the feasibility and in vivo immunomodulatory capacity of prospectively defined MSC in pneumonia. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0288-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Anne Lippitsch
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Philipp Krug
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Inna Schevtschenko
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Sabine Kranz
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Matthias Hecker
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Kristina Dietert
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163, Berlin, Germany.
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163, Berlin, Germany.
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen und Marburg, Marburg, Germany.
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Langhansstr. 7, D-35390, Giessen, Germany.
| |
Collapse
|
31
|
Shekhar S, Joyee AG, Gao X, Peng Y, Wang S, Yang J, Yang X. Invariant Natural Killer T Cells Promote T Cell Immunity by Modulating the Function of Lung Dendritic Cells during Chlamydia pneumoniae Infection. J Innate Immun 2014; 7:260-74. [PMID: 25531453 DOI: 10.1159/000368779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 10/01/2014] [Indexed: 01/23/2023] Open
Abstract
In this study, we examined the effect of invariant natural killer T (iNKT) cells on the function of lung dendritic cells (LDCs) in eliciting protective immunity against Chlamydia pneumoniae (Cpn) lung infection. We employed a combination of approaches including the use of iNKT cell-deficient, Jα18-knockout (KO) mice and LDC adoptive transfer. We found that iNKT cells significantly altered the number, phenotype and cytokine profile of LDCs following infection. Furthermore, coculture of T cells with LDCs from Cpn-infected wild-type (WT) and KO mice induced type-1 and type-2 responses, respectively. More importantly, upon adoptive transfer, LDCs from Cpn-infected WT mice (WT-LDCs) conferred protective immunity, whereas LDCs from KO mice (KO-LDCs) increased the severity of disease after challenge infection. Further cytokine analyses of the lung tissues and lung-draining lymph node cells showed that KO-LDC-recipient mice exhibited a type-2 cytokine production pattern, while WT-LDC recipients exhibited a type-1 cytokine profile. Taken together, our results provide in vivo evidence that iNKT cells play a critical role in modulating LDC function to generate protective T-cell immunity, particularly in a clinically relevant intracellular bacterial infection.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Man., Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Paget C, Chow MT, Gherardin NA, Beavis PA, Uldrich AP, Duret H, Hassane M, Souza-Fonseca-Guimaraes F, Mogilenko DA, Staumont-Sallé D, Escalante NK, Hill GR, Neeson P, Ritchie DS, Dombrowicz D, Mallevaey T, Trottein F, Belz GT, Godfrey DI, Smyth MJ. CD3bright signals on γδ T cells identify IL-17A-producing Vγ6Vδ1+ T cells. Immunol Cell Biol 2014; 93:198-212. [PMID: 25385067 DOI: 10.1038/icb.2014.94] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 01/09/2023]
Abstract
Interleukin-17A (IL-17A) is a pro-inflammatory cytokine that has an important role at mucosal sites in a wide range of immune responses including infection, allergy and auto-immunity. γδ T cells are recognized as IL-17 producers, but based on the level of CD3 expression, we now define the remarkable ability of a CD3(bright) γδ T-cell subset with an effector memory phenotype to rapidly produce IL-17A, but not interferon-γ. CD3(bright) γδ T cells uniformly express the canonical germline encoded Vγ6/Vδ1(+) T-cell receptor. They are widely distributed with a preferential representation in the lungs and skin are negatively impacted in the absence of retinoic acid receptor-related orphan receptor gammat expression or endogenous flora. This population responded rapidly to various stimuli in a mechanism involving IL-23 and NOD-like receptor family, pyrin domain containing 3 (NLRP3)-inflammasome-dependent IL-1β. Finally, we demonstrated that IL-17-producing CD3(bright) γδ T cells responded promptly and strongly to pneumococcal infection and during skin inflammation. Here, we propose a new way to specifically analyze IL-17-producing Vγ6/Vδ1(+) T cells based on the level of CD3 signals. Using this gating strategy, our data reinforce the crucial role of this γδ T-cell subset in respiratory and skin disorders.
Collapse
Affiliation(s)
- C Paget
- 1] Peter MacCallum Cancer Centre, Cancer Immunology Program, St Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Lille, France [4] University of Lille 2, Lille, France
| | - M T Chow
- 1] Peter MacCallum Cancer Centre, Cancer Immunology Program, St Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - N A Gherardin
- 1] Peter MacCallum Cancer Centre, Cancer Immunology Program, St Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - P A Beavis
- 1] Peter MacCallum Cancer Centre, Cancer Immunology Program, St Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - A P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - H Duret
- 1] Peter MacCallum Cancer Centre, Cancer Immunology Program, St Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - M Hassane
- 1] INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Lille, France [2] University of Lille 2, Lille, France
| | | | - D A Mogilenko
- 1] University of Lille 2, Lille, France [2] INSERM U1011, Institut Pasteur de Lille, Lille, France [3] European Genomic Institute of Diabetes, Lille, France
| | - D Staumont-Sallé
- 1] University of Lille 2, Lille, France [2] INSERM U1011, Institut Pasteur de Lille, Lille, France [3] European Genomic Institute of Diabetes, Lille, France [4] Department of Dermatology, Claude Huriez Hospital, Lille, France
| | - N K Escalante
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - G R Hill
- 1] QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia [2] Department of Bone Marrow Transplantation, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - P Neeson
- 1] Peter MacCallum Cancer Centre, Cancer Immunology Program, St Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - D S Ritchie
- 1] Peter MacCallum Cancer Centre, Cancer Immunology Program, St Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - D Dombrowicz
- 1] University of Lille 2, Lille, France [2] INSERM U1011, Institut Pasteur de Lille, Lille, France [3] European Genomic Institute of Diabetes, Lille, France
| | - T Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - F Trottein
- 1] INSERM U1019, Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Lille, France [2] University of Lille 2, Lille, France
| | - G T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - D I Godfrey
- 1] Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia [2] Australian Research Council Centre of Excellence in Advanced Medical Imaging at University of Melbourne, Parkville, Victoria, Australia
| | - M J Smyth
- 1] Peter MacCallum Cancer Centre, Cancer Immunology Program, St Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia [4] School of Medicine, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
33
|
Ivanov S, Paget C, Trottein F. Role of non-conventional T lymphocytes in respiratory infections: the case of the pneumococcus. PLoS Pathog 2014; 10:e1004300. [PMID: 25299581 PMCID: PMC4192596 DOI: 10.1371/journal.ppat.1004300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-conventional T lymphocytes constitute a special arm of the immune system and act as sentinels against pathogens at mucosal surfaces. These non-conventional T cells (including mucosal-associated invariant T [MAIT] cells, gamma delta [γδ] T cells, and natural killer T [NKT] cells) display several innate cell-like features and are rapidly activated by the recognition of conserved, stress-induced, self, and microbial ligands. Here, we review the role of non-conventional T cells during respiratory infections, with a particular focus on the encapsulated extracellular pathogen Streptococcus pneumoniae, the leading cause of bacterial pneumonia worldwide. We consider whether MAIT cells, γδ T cells, and NKT cells might offer opportunities for preventing and/or treating human pneumococcus infections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
34
|
Van Maele L, Carnoy C, Cayet D, Ivanov S, Porte R, Deruy E, Chabalgoity JA, Renauld JC, Eberl G, Benecke AG, Trottein F, Faveeuw C, Sirard JC. Activation of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J Infect Dis 2014; 210:493-503. [PMID: 24577508 DOI: 10.1093/infdis/jiu106] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mucosal sites are continuously exposed to pathogenic microorganisms and are therefore equipped to control respiratory infections. Type 3 innate lymphoid cells (ILC3) are key players in antimicrobial defense in intestinal mucosa, through interleukin 17 and interleukin 22 (IL-22) production. The present study aimed at analyzing the distribution and function of ILC3 in the respiratory tract. We first observed that lung mucosa harbors a discrete population of ILC3 expressing CD127, CD90, CCR6, and the transcriptional factor RORγt. In addition, lung ILC3 were identified as a major source of IL-22 in response to interleukin 23 stimulation. During Streptococcus pneumoniae infection, ILC3 rapidly accumulated in the lung tissue to produce IL-22. In response to S. pneumoniae, dendritic cells and MyD88, an important adaptor of innate immunity, play critical functions in IL-22 production by ILC3. Finally, administration of the Toll-like receptor 5 agonist flagellin during S. pneumoniae challenge exacerbated IL-22 production by ILC3, a process that protects against lethal infection. In conclusion, boosting lung ILC3 might represent an interesting strategy to fight respiratory bacterial infections.
Collapse
Affiliation(s)
- Laurye Van Maele
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Christophe Carnoy
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Delphine Cayet
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Stoyan Ivanov
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Rémi Porte
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Emeric Deruy
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - José A Chabalgoity
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur Centre National de la Recherche Scientifique, URA 1961, Paris
| | - Arndt G Benecke
- Institut des Hautes Études Scientifiques Centre National de la Recherche Scientifique, Bures-sur-Yvette, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Christelle Faveeuw
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| | - Jean-Claude Sirard
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille Institut National de la Santé et de la Recherche Médicale, U1019 Centre National de la Recherche Scientifique, UMR 8204 Univ Lille Nord de France, Lille
| |
Collapse
|
35
|
Bandyopadhyay G, Bandyopadhyay S, Bankey PE, Miller-Graziano CL. Elevated postinjury thrombospondin 1-CD47 triggering aids differentiation of patients' defective inflammatory CD1a+dendritic cells. J Leukoc Biol 2014; 96:797-807. [PMID: 25001859 DOI: 10.1189/jlb.4ma0214-077r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A subset of Pts develops dysfunctional MO to inflammatory DC differentiation and immunosuppression. MDDC, a newly described DC subset, is pivotal in initiating antibacterial responses. Endogenous proteins are known to alter MO to MDDC differentiation. In particular, trauma-elevated TSP-1, a protein that is known to affect MO functions, could trigger MDDC differentiation defects. We hypothesized that TSP-1-deranged differentiation of inflammatory CD1a(+)MDDC would negatively alter activation of immune functions, thereby increasing the risk of postinjury infections. Post-trauma increased TSP-1 levels in patients' plasma and MO correlated with two distinct MDDC differentiation dysfunctions: the previously described decreased CD1a(+)DC yields but also, development of an immunoincompetent CD1a(+)MDDC. The Pts' development of Dysf DC correlated to increased infectious complications. TSP-1 triggered its inhibitory receptor, CD47, activating an inhibitory phosphatase, SHP-1. Increased pSHP-1, decreased antigen processing, and depressed T cell stimulation characterized Pt Dysf DC. TSP-1 mimics added during Cnt MDDC differentiation depressed CD1a(+)DC yields but more importantly, also induced defective CD1a(+)MDDC, reproducing Pts' MDDC differentiation dysfunctions. CD47 triggering during Cnt MDDC differentiation increased SHP-1 activation, inhibiting IL-4-induced STAT-6 activation (critical for CD1a(+)MDDC differentiation). SHP-1 inhibition during MDDC differentiation in the presence of TSP-1 mimics restored pSTAT-6 levels and CD1a(+)MDDC immunogenicity. Thus, postinjury-elevated TSP-1 can decrease CD1a(+)DC yields but more critically, also induces SHP-1 hyperactivity, deviating MDDC differentiation to defective CD1a(+) inflammatory MDDCs by inhibiting STAT-6.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- Immunobiology and Stress Response Laboratory, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Sanjukta Bandyopadhyay
- Immunobiology and Stress Response Laboratory, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Paul E Bankey
- Immunobiology and Stress Response Laboratory, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Carol L Miller-Graziano
- Immunobiology and Stress Response Laboratory, Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
36
|
Nguyen CT, Kim EH, Luong TT, Pyo S, Rhee DK. ATF3 Confers Resistance to Pneumococcal Infection Through Positive Regulation of Cytokine Production. J Infect Dis 2014; 210:1745-54. [DOI: 10.1093/infdis/jiu352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
37
|
van Lieshout MH, Scicluna BP, Florquin S, van der Poll T. NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia. Am J Respir Cell Mol Biol 2014; 50:699-712. [PMID: 24164497 DOI: 10.1165/rcmb.2013-0015oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Streptococcus pneumoniae is the most frequently isolated causative pathogen of community-acquired pneumonia, a leading cause of mortality worldwide. Inflammasomes are multiprotein complexes that play crucial roles in the regulation of inflammation. Nod-like receptor family, pyrin domain containing (NLRP) 3 is a sensor that functions in a single inflammasome, whereas adaptor apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) is a common adaptor of several inflammasomes. We investigated the role of NLRP3 and ASC during S. pneumoniae pneumonia by comparing bacterial growth and spreading, and host innate immune responses in wild-type mice and mice deficient for either NLRP3 (Nlrp3(-/-)) or ASC (Asc(-/-)). Asc(-/-) mice had increased bacterial dissemination and lethality compared with Nlrp3(-/-) mice, although the cytokine response was impaired in both mouse strains. By detailed analysis of the early inflammatory response in the lung by whole-genome transcriptional profiling, we identified several mediators that were differentially expressed between Nlrp3(-/-) and Asc(-/-) mice. Of these, IL-17, granulocyte/macrophage colony-stimulating factor, and integrin-αM were significantly attenuated in Asc(-/-) relative to Nlrp3(-/-) mice, as well as a number of genes involved in the adaptive immune response. These differences may explain the increased susceptibility of Asc(-/ -) mice during S. pneumoniae infection, and suggest that either ASC-dependent NLRP3-independent inflammasomes or inflammasome-independent ASC functions may be involved.
Collapse
|
38
|
Reboul A, Lemaître N, Titecat M, Merchez M, Deloison G, Ricard I, Pradel E, Marceau M, Sebbane F. Yersinia pestis requires the 2-component regulatory system OmpR-EnvZ to resist innate immunity during the early and late stages of plague. J Infect Dis 2014; 210:1367-75. [PMID: 24813471 DOI: 10.1093/infdis/jiu274] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Plague is transmitted by fleas or contaminated aerosols. To successfully produce disease, the causal agent (Yersinia pestis) must rapidly sense and respond to rapid variations in its environment. Here, we investigated the role of 2-component regulatory systems (2CSs) in plague because the latter are known to be key players in bacterial adaptation to environmental change. Along with the previously studied PhoP-PhoQ system, OmpR-EnvZ was the only one of Y. pestis' 23 other 2CSs required for production of bubonic, septicemic, and pneumonic plague. In vitro, OmpR-EnvZ was needed to counter serum complement and leukocytes but was not required for the secretion of antiphagocyte exotoxins. In vivo, Y. pestis lacking OmpR-EnvZ did not induce an early immune response in the skin and was fully virulent in neutropenic mice. We conclude that, throughout the course of Y. pestis infection, OmpR-EnvZ is required to counter toxic effectors secreted by polymorphonuclear leukocytes in the tissues.
Collapse
Affiliation(s)
- Angéline Reboul
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille
| | - Nadine Lemaître
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille Centre Hospitalier Régional Universitaire de Lille, France
| | - Marie Titecat
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille Centre Hospitalier Régional Universitaire de Lille, France
| | - Maud Merchez
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille
| | - Gaspard Deloison
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille
| | - Isabelle Ricard
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille
| | - Elizabeth Pradel
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille
| | - Michaël Marceau
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille
| | - Florent Sebbane
- Plague and Yersinia pestis Group, INSERM U1019 Centre National de la Recherche Scientifique UMR8204 Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille Université Lille Nord de France Centre d'Infection et d'Immunité de Lille, Université du Droit et de la Santé de Lille
| |
Collapse
|
39
|
L-plastin is essential for alveolar macrophage production and control of pulmonary pneumococcal infection. Infect Immun 2014; 82:1982-93. [PMID: 24595139 DOI: 10.1128/iai.01199-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that mice deficient for the hematopoietic-specific, actin-bundling protein L-plastin (LPL) succumb rapidly to intratracheal pneumococcal infection. The increased susceptibility of LPL(-/-) mice to pulmonary pneumococcal challenge correlated with reduced numbers of alveolar macrophages, consistent with a critical role for this cell type in the immediate response to pneumococcal infection. LPL(-/-) mice demonstrated a very early clearance defect, with an almost 10-fold-higher bacterial burden in the bronchoalveolar lavage fluid 3 h following infection. Clearance of pneumococci from the alveolar space in LPL(-/-) mice was defective compared to that in Rag1(-/-) mice, which lack all B and T lymphocytes, indicating that innate immunity is defective in LPL(-/-) mice. We did not identify defects in neutrophil or monocyte recruitment or in the production of inflammatory cytokines or chemokines that would explain the early clearance defect. However, efficient alveolar macrophage regeneration following irradiation required LPL. We thus identify LPL as being key to alveolar macrophage development and essential to an effective antipneumococcal response. Further analysis of LPL(-/-) mice will illuminate critical regulators of the generation of alveolar macrophages and, thus, effective pulmonary innate immunity.
Collapse
|
40
|
Paget C, Trottein F. Role of type 1 natural killer T cells in pulmonary immunity. Mucosal Immunol 2013; 6:1054-67. [PMID: 24104457 DOI: 10.1038/mi.2013.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/18/2013] [Indexed: 02/04/2023]
Abstract
Mucosal sites are populated by a multitude of innate lymphoid cells and "innate-like" T lymphocytes expressing semiconserved T-cell receptors. Among the latter group, interest in type I natural killer T (NKT) cells has gained considerable momentum over the last decade. Exposure to NKT cell antigens is likely to occur continuously at mucosal sites. For this reason, and as they rapidly respond to stress-induced environmental cytokines, NKT cells are important contributors to immune and inflammatory responses. Here, we review the dual role of mucosal NKT cells during immune responses and pathologies with a particular focus on the lungs. Their role during pulmonary acute and chronic inflammation and respiratory infections is outlined. Whether NKT cells might provide a future attractive therapeutic target for treating human respiratory diseases is discussed.
Collapse
Affiliation(s)
- C Paget
- 1] Cancer Immunology Program, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia [2] Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Victoria, Australia [3] Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France [4] Institut National de la Santé et de la Recherche Médicale, Lille, France [5] Centre National de la Recherche Scientifique, UMR 8204, Lille, France [6] Université Lille Nord de France, Lille, France [7] Institut Fédératif de Recherche 142, Lille, France
| | | |
Collapse
|
41
|
Hackstein H, Kranz S, Lippitsch A, Wachtendorf A, Kershaw O, Gruber AD, Michel G, Lohmeyer J, Bein G, Baal N, Herold S. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection. Respir Res 2013; 14:91. [PMID: 24044871 PMCID: PMC3848864 DOI: 10.1186/1465-9921-14-91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022] Open
Abstract
Background Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity. Method By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsiella pneumonia infection. Results Data indicate that pDCs and MoDC were markedly elevated in the post acute pneumonia phase when compared to mock-infected controls. Analysis of draining mediastinal lymph nodes revealed a rapid increase of activated CD103+ DC, CD11b+ DC and MoDC within 48 h post infection. Lung pDC identification during bacterial pneumonia was confirmed by extended phenotyping for 120G8, mPDCA-1 and Siglec-H expression and by demonstration of high Interferon-alpha producing capacity after cell sorting. Cytokine expression analysis of ex vivo-sorted respiratory DC subpopulations from infected animals revealed elevated Interferon-alpha in pDC, elevated IFN-gamma, IL-4 and IL-13 in CD103+ DC and IL-19 and IL-12p35 in CD11b+ DC subsets in comparison to CD11c+ MHC-class IIlow cells indicating distinct functional roles. Antigen-specific naive CD4+ T cell stimulatory capacity of purified respiratory DC subsets was analysed in a model system with purified ovalbumin T cell receptor transgenic naive CD4+ responder T cells and respiratory DC subsets, pulsed with ovalbumin and matured with Klebsiella pneumoniae lysate. CD103+ DC and CD11b+ DC subsets represented the most potent naive CD4+ T helper cell activators. Conclusion These results provide novel insight into the activation of respiratory DC subsets during Klebsiella pneumonia infection. The detection of increased respiratory pDC numbers in bacterial pneumonia may indicate possible novel pDC functions with respect to lung repair and regeneration.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Member of the German Center for Lung Research (DZL), Langhansstr, 7, D-35392, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ivanov S, Renneson J, Fontaine J, Barthelemy A, Paget C, Fernandez EM, Blanc F, De Trez C, Van Maele L, Dumoutier L, Huerre MR, Eberl G, Si-Tahar M, Gosset P, Renauld JC, Sirard JC, Faveeuw C, Trottein F. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection. J Virol 2013; 87:6911-24. [PMID: 23596287 PMCID: PMC3676141 DOI: 10.1128/jvi.02943-12] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/04/2013] [Indexed: 12/30/2022] Open
Abstract
Interleukin-22 (IL-22) has redundant, protective, or pathogenic functions during autoimmune, inflammatory, and infectious diseases. Here, we addressed the potential role of IL-22 in host defense and pathogenesis during lethal and sublethal respiratory H3N2 influenza A virus (IAV) infection. We show that IL-22, as well as factors associated with its production, are expressed in the lung tissue during the early phases of IAV infection. Our data indicate that retinoic acid receptor-related orphan receptor-γt (RORγt)-positive αβ and γδ T cells, as well as innate lymphoid cells, expressed enhanced Il22 transcripts as early as 2 days postinfection. During lethal or sublethal IAV infections, endogenous IL-22 played no role in the control of IAV replication and in the development of the IAV-specific CD8(+) T cell response. During lethal infection, where wild-type (WT) mice succumbed to severe pneumonia, the lack of IL-22 did not accelerate or delay IAV-associated pathogenesis and animal death. In stark contrast, during sublethal IAV infection, IL-22-deficient animals had enhanced lung injuries and showed a lower airway epithelial integrity relative to WT littermates. Of importance, the protective effect of endogenous IL-22 in pulmonary damages was associated with a more controlled secondary bacterial infection. Indeed, after challenge with Streptococcus pneumoniae, IAV-experienced Il22(-/-) animals were more susceptible than WT controls in terms of survival rate and bacterial burden in the lungs. Together, IL-22 plays no major role during lethal influenza but is beneficial during sublethal H3N2 IAV infection, where it limits lung inflammation and subsequent bacterial superinfections.
Collapse
Affiliation(s)
- Stoyan Ivanov
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Joelle Renneson
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Josette Fontaine
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Adeline Barthelemy
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christophe Paget
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Elodie Macho Fernandez
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Fany Blanc
- Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U874, Paris, France
| | - Carl De Trez
- Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurye Van Maele
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Université Catholique de Louvain, Brussels
| | - Michel-René Huerre
- Institut Pasteur, Paris, France
- Unite de Recherche et d'Expertise Histotechnologie et Pathologie, Paris, France
| | - Gérard Eberl
- Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, URA 1961, Paris, France
| | - Mustapha Si-Tahar
- Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale, U874, Paris, France
| | - Pierre Gosset
- Hopital Saint Vincent, Groupe Hospitalier de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | | | - Jean Claude Sirard
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christelle Faveeuw
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - François Trottein
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique, UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale, U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| |
Collapse
|
43
|
Wright AKA, Bangert M, Gritzfeld JF, Ferreira DM, Jambo KC, Wright AD, Collins AM, Gordon SB. Experimental human pneumococcal carriage augments IL-17A-dependent T-cell defence of the lung. PLoS Pathog 2013; 9:e1003274. [PMID: 23555269 PMCID: PMC3610738 DOI: 10.1371/journal.ppat.1003274] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
Pneumococcal carriage is both immunising and a pre-requisite for mucosal and systemic disease. Murine models of pneumococcal colonisation show that IL-17A-secreting CD4(+) T-cells (Th-17 cells) are essential for clearance of pneumococci from the nasopharynx. Pneumococcal-responding IL-17A-secreting CD4(+) T-cells have not been described in the adult human lung and it is unknown whether they can be elicited by carriage and protect the lung from pneumococcal infection. We investigated the direct effect of experimental human pneumococcal nasal carriage (EHPC) on the frequency and phenotype of cognate CD4(+) T-cells in broncho-alveolar lavage and blood using multi-parameter flow cytometry. We then examined whether they could augment ex vivo alveolar macrophage killing of pneumococci using an in vitro assay. We showed that human pneumococcal carriage leads to a 17.4-fold (p = 0.007) and 8-fold (p = 0.003) increase in the frequency of cognate IL-17A(+) CD4(+) T-cells in BAL and blood, respectively. The phenotype with the largest proportion were TNF(+)/IL-17A(+) co-producing CD4(+) memory T-cells (p<0.01); IFNγ(+) CD4(+) memory T-cells were not significantly increased following carriage. Pneumococci could stimulate large amounts of IL-17A protein from BAL cells in the absence of carriage but in the presence of cognate CD4(+) memory T-cells, IL-17A protein levels were increased by a further 50%. Further to this we then show that alveolar macrophages, which express IL-17A receptors A and C, showed enhanced killing of opsonised pneumococci when stimulated with rhIL-17A (p = 0.013). Killing negatively correlated with RC (r = -0.9, p = 0.017) but not RA expression. We conclude that human pneumococcal carriage can increase the proportion of lung IL-17A-secreting CD4(+) memory T-cells that may enhance innate cellular immunity against pathogenic challenge. These pathways may be utilised to enhance vaccine efficacy to protect the lung against pneumonia.
Collapse
Affiliation(s)
- Adam K. A. Wright
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- National Institute for Health Research Biomedical Research Centre in Microbial Diseases, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Mathieu Bangert
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jenna F. Gritzfeld
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kondwani C. Jambo
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre, Malawi
| | - Angela D. Wright
- Comprehensive Local Research Network, Royal Liverpool and Broadgreen University Hospital Trust, Liverpool, United Kingdom
| | - Andrea M. Collins
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- National Institute for Health Research Biomedical Research Centre in Microbial Diseases, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|