1
|
Kanekiyo M, Gillespie RA, Midgett M, O’Malley KJ, Williams C, Moin SM, Wallace M, Treaster L, Cooper K, Syeda H, Kettenburg G, Rannulu H, Schmer T, Ortiz L, Da Silva Castanha P, Corry J, Xia M, Olsen E, Perez D, Yun G, Graham BS, Barratt-Boyes SM, Reed DS. Refined semi-lethal aerosol H5N1 influenza model in cynomolgus macaques for evaluation of medical countermeasures. iScience 2023; 26:107830. [PMID: 37766976 PMCID: PMC10520834 DOI: 10.1016/j.isci.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Highly pathogenic avian influenza A H5N1 viruses cause high mortality in humans and have pandemic potential. Effective vaccines and treatments against this threat are urgently needed. Here, we have refined our previously established model of lethal H5N1 infection in cynomolgus macaques. An inhaled aerosol virus dose of 5.1 log10 plaque-forming unit (pfu) induced a strong febrile response and acute respiratory disease, with four out of six macaques succumbing after challenge. Vaccination with three doses of adjuvanted seasonal quadrivalent influenza vaccine elicited low but detectable neutralizing antibody to H5N1. All six vaccinated macaques survived four times the 50% lethal dose of aerosolized H5N1, while four of six unvaccinated controls succumbed to disease. Although vaccination did not protect against severe influenza, vaccinees had reduced respiratory dysfunction and lower viral load in airways compared to controls. We anticipate that our macaque model will play a vital role in evaluating vaccines and antivirals against influenza pandemics.
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A. Gillespie
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Syed M. Moin
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Megan Wallace
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luke Treaster
- Division of Cardiothoracic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hubza Syeda
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Gwenddolen Kettenburg
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hasala Rannulu
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tabitha Schmer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucia Ortiz
- Department of Population Health, University of Georgia, Athens, GA, USA
| | | | - Jacqueline Corry
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengying Xia
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Olsen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Perez
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - Gabin Yun
- Division of Cardiothoracic Imaging, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Barney S. Graham
- Molecular Engineering Section, Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Simon M. Barratt-Boyes
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Corry J, Kettenburg G, Upadhyay AA, Wallace M, Marti MM, Wonderlich ER, Bissel SJ, Goss K, Sturgeon TJ, Watkins SC, Reed DS, Bosinger SE, Barratt-Boyes SM. Infiltration of inflammatory macrophages and neutrophils and widespread pyroptosis in lung drive influenza lethality in nonhuman primates. PLoS Pathog 2022; 18:e1010395. [PMID: 35271686 PMCID: PMC8939778 DOI: 10.1371/journal.ppat.1010395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/22/2022] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Severe influenza kills tens of thousands of individuals each year, yet the mechanisms driving lethality in humans are poorly understood. Here we used a unique translational model of lethal H5N1 influenza in cynomolgus macaques that utilizes inhalation of small-particle virus aerosols to define mechanisms driving lethal disease. RNA sequencing of lung tissue revealed an intense interferon response within two days of infection that resulted in widespread expression of interferon-stimulated genes, including inflammatory cytokines and chemokines. Macaques with lethal disease had rapid and profound loss of alveolar macrophages (AMs) and infiltration of activated CCR2+ CX3CR1+ interstitial macrophages (IMs) and neutrophils into lungs. Parallel changes of AMs and neutrophils in bronchoalveolar lavage (BAL) correlated with virus load when compared to macaques with mild influenza. Both AMs and IMs in lethal influenza were M1-type inflammatory macrophages which expressed neutrophil chemotactic factors, while neutrophils expressed genes associated with activation and generation of neutrophil extracellular traps (NETs). NETs were prominent in lung and were found in alveolar spaces as well as lung parenchyma. Genes associated with pyroptosis but not apoptosis were increased in lung, and activated inflammatory caspases, IL-1β and cleaved gasdermin D (GSDMD) were present in bronchoalveolar lavage fluid and lung homogenates. Cleaved GSDMD was expressed by lung macrophages and alveolar epithelial cells which were present in large numbers in alveolar spaces, consistent with loss of epithelial integrity. Cleaved GSDMD colocalized with viral NP-expressing cells in alveoli, reflecting pyroptosis of infected cells. These novel findings reveal that a potent interferon and inflammatory cascade in lung associated with infiltration of inflammatory macrophages and neutrophils, elaboration of NETs and cell death by pyroptosis mediates lethal H5N1 influenza in nonhuman primates, and by extension humans. These innate pathways represent promising therapeutic targets to prevent severe influenza and potentially other primary viral pneumonias in humans. Influenza can cause acute lung injury and death, but the mechanisms resulting in lethal influenza in humans are not well understood. We used a novel model of lethal influenza in nonhuman primates caused by aerosol infection with highly pathogenic avian influenza virus that closely resembles human disease to define how the virus causes severe pneumonia. We found that a potent innate immune response starting with high-level production of interferons and inflammatory factors in the lung drives severe disease. Inflammatory cells including macrophages and neutrophils were recruited into lung because of this early response, which in turn led to release of neutrophil extracellular traps that blocked lung alveoli. In addition, a particularly inflammatory form of cell death known as pyroptosis occurred in lungs during lethal influenza. These new findings show that an intense interferon response leading to an inflammatory cascade of macrophages and neutrophils, release of neutrophil extracellular traps, and cell death by pyroptosis is responsible for acute lung injury in lethal influenza. These innate pathways could be targeted by drugs to prevent lung injury in critically ill influenza patients.
Collapse
Affiliation(s)
- Jacqueline Corry
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JC); (SMBB)
| | - Gwenddolen Kettenburg
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Amit A. Upadhyay
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Megan Wallace
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michelle M. Marti
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Elizabeth R. Wonderlich
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stephanie J. Bissel
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kyndal Goss
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Timothy J. Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Steven E. Bosinger
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases & Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JC); (SMBB)
| |
Collapse
|
3
|
Mooij P, Stammes MA, Mortier D, Fagrouch Z, van Driel N, Verschoor EJ, Kondova I, Bogers WMJM, Koopman G. Aerosolized Exposure to H5N1 Influenza Virus Causes Less Severe Disease Than Infection via Combined Intrabronchial, Oral, and Nasal Inoculation in Cynomolgus Macaques. Viruses 2021; 13:v13020345. [PMID: 33671829 PMCID: PMC7926951 DOI: 10.3390/v13020345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Infection with highly pathogenic avian H5N1 influenza virus in humans often leads to severe respiratory disease with high mortality. Experimental infection in non-human primates can provide additional insight into disease pathogenesis. However, such a model should recapitulate the disease symptoms observed in humans, such as pneumonia and inflammatory cytokine response. While previous studies in macaques have demonstrated the occurrence of typical lesions in the lungs early after infection and a high level of immune activation, progression to severe disease and lethality were rarely observed. Here, we evaluated a routinely used combined route of infection via intra-bronchial, oral, and intra-nasal virus inoculation with aerosolized H5N1 exposure, with or without the regular collection of bronchoalveolar lavages early after infection. Both combined route and aerosol exposure resulted in similar levels of virus replication in nose and throat and similar levels of immune activation, cytokine, and chemokine release in the blood. However, while animals exposed to H5N1 by combined-route inoculation developed severe disease with high lethality, aerosolized exposure resulted in less lesions, as measured by consecutive computed tomography and less fever and lethal disease. In conclusion, not virus levels or immune activation, but route of infection determines fatal outcome for highly pathogenic avian H5N1 influenza infection.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Marieke A. Stammes
- Department of Parasitology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands;
| | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Nikki van Driel
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.v.D.); (I.K.)
| | - Ernst J. Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Ivanela Kondova
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (N.v.D.); (I.K.)
| | - Willy M. J. M. Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands; (P.M.); (D.M.); (Z.F.); (E.J.V.); (W.M.J.M.B.)
- Correspondence: ; Tel.: +31-152842761
| |
Collapse
|
4
|
Chen S, Miao X, Huangfu D, Zhao X, Zhang M, Qin T, Peng D, Liu X. H5N1 avian influenza virus without 80-84 amino acid deletion at the NS1 protein hijacks the innate immune system of dendritic cells for an enhanced mammalian pathogenicity. Transbound Emerg Dis 2020; 68:2401-2413. [PMID: 33124785 DOI: 10.1111/tbed.13904] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/01/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
NS gene is generally considered to be related to the virulence of highly pathogenic avian influenza virus (AIV). In recent years, the strains with five amino acids added to the 80-84 positions of the NS1 protein have become prevalent in H5N1 subtype AIVs isolated from mammals. However, the pathogenicity and mechanism of this pattern in mammals remain unclear. In this study, H5N1 subtype AIVs without 80-84 amino acids of the NS1 protein (rNSΔ5aa ) and a mutant virus (rNS5aa-R ) with no deletion of 80-84 amino acids of the NS1 protein were used to determine the pathogenicity in mice. Our results showed that rNS5aa-R possessed an enhanced pathogenicity compared with rNSΔ5aa in vivo and in vitro, which was accompanied by high expression of IL-6, MX1 and CXCL10 in murine lungs. Furthermore, we found that rNS5aa-R increased the infection ability to dendritic cells (DCs). Besides, rNS5aa-R enhanced the expression of phenotypic markers (CD80, CD86, CD40 and MHCII), activation marker CD69, inflammatory cytokines (IL-6, TNF-α and IL-10) and antagonized interferon (IFN-α) of DCs, in comparison to rNSΔ5aa . Moreover, rNS5aa-R induced DCs to quickly migrate into nearby cervical lymph nodes by highly upregulating CCR7, and CD86 showed a high expression on the migrated DCs. We also found that rNS5aa-R -infected DCs significantly promoted the allogeneic CD4+ T-cell proliferation. These findings suggested that rNS5aa-R strongly induced the innate immune response compared with the rNSΔ5aa , which is conducive to activate a wide immune response, resulting in a strong cytokine storm and causing an enhanced pathogenicity of H5N1 subtype AIVs in mammals.
Collapse
Affiliation(s)
- Sujuan Chen
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xinyu Miao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dandan Huangfu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyi Zhao
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Minxia Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tao Qin
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China.,Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Joint Laboratory Safety of International Cooperation of Agriculture&Agricultural-Products, The Ministry of Education of China, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
6
|
ICOSL-augmented adenoviral-based vaccination induces a bipolar Th17/Th1 T cell response against unglycosylated MUC1 antigen. Vaccine 2018; 36:6262-6269. [PMID: 30219366 DOI: 10.1016/j.vaccine.2018.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 01/14/2023]
Abstract
Cellular immunity established via immunotherapy holds the potential to eliminate solid tumors. Yet, cancer vaccines have failed to induce tumor-reactive T cells of sufficient quality to control disease. The inducible T cell costimulator (ICOS) pathway has been implicated in both the selective induction of immunity over tolerance as well as licensing of IL-17-polarized cellular immunity. Herein, we evaluated the ability of ICOS ligand (ICOSL) to augment the immunogenicity of adenoviral-based vaccination targeting the unglycosylated MUC1 peptide antigen. Vaccination disrupted immunotolerance in a transgenic mouse model recognizing human MUC1 as a self-antigen, inducing robust MUC1-specific immunity. Augmenting vaccination with ICOSL induced a bipolar Th17/Th1 effector profile, marked by increased MUC1-specific IL-17A production and RORγt expression in CD4+ but not CD8+ T cells which predominantly expressed IFNγ/IL-2 and T-bet. The polarization and maintenance of Th17 cells established following ICOSL augmented vaccination was highly durable, with elevated IL-17A and RORγt levels detected in CD4+ T cells up to 10 months after initial immunization. Furthermore, provision of ICOSL significantly enhanced MUC1-specific IgG antibody in response to immunization. ICOSL signaling dramatically influenced CD4+ T cell phenotype, altering gene expression of transcription factors and regulators of effector function following immunization. Interestingly, ICOSL augmentation failed to alter the transcriptional profile of CD8+ T cells following immunization, affecting the magnitude, but not distribution, of gene expression. Collectively, ICOSL supports the induction of durable, antigen-specific Th17/Th1-mediated immunity in vivo, establishing a vaccination platform to enhance CD4+ T cell-mediated antitumor immunity and providing a crucial component of an effective cancer vaccine.
Collapse
|
7
|
Experimental infection of Cynomolgus Macaques with highly pathogenic H5N1 influenza virus through the aerosol route. Sci Rep 2018; 8:4801. [PMID: 29556081 PMCID: PMC5859186 DOI: 10.1038/s41598-018-23022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/05/2018] [Indexed: 12/30/2022] Open
Abstract
Several animal models are used to study influenza viruses. Intranasal inoculation of animals with a liquid inoculum is one of the main methods used to experimentally infect animals with influenza virus; however, this method does not reflect the natural infection with influenza virus by contact or aerosol route. Aerosol inhalation methods have been established with several influenza viruses for mouse and ferret models, but few studies have evaluated inoculation routes in a nonhuman primates (NHP) model. Here, we performed the experimental infection of NHPs with a highly pathogenic H5N1 influenza virus via the aerosol route and demonstrated that aerosol infection had no effect on clinical outcome, but caused broader infection throughout all of the lobes of the lung compared with a non-aerosolized approach. Aerosol infection therefore represents an option for inoculation of NHPs in future studies.
Collapse
|
8
|
Soloff AC, Wolf BJ, White ND, Muir D, Courtney S, Hardiman G, Bossart GD, Fair PA. Environmental perfluorooctane sulfonate exposure drives T cell activation in bottlenose dolphins. J Appl Toxicol 2017; 37:1108-1116. [PMID: 28425113 DOI: 10.1002/jat.3465] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 12/29/2022]
Abstract
Perfluoroalkyl acids (PFAAs) are highly stable compounds that have been associated with immunotoxicity in epidemiologic studies and experimental rodent models. Lengthy half-lives and resistance to environmental degradation result in bioaccumulation of PFAAs in humans and wildlife. Perfluorooctane sulfonate (PFOS), the most prevalent PFAA detected within the environment, is found at high levels in occupationally exposed humans. We have monitored the environmental exposure of dolphins in the Charleston, SC region for over 10 years and levels of PFAAs, and PFOS in particular, were significantly elevated. As dolphins may serve as large mammal sentinels to identify the impact of environmental chemical exposure on human disease, we sought to assess the effect of environmental PFAAs on the cellular immune system in highly exposed dolphins. Herein, we utilized a novel flow cytometry-based assay to examine T cell-specific responses to environmental PFAA exposure ex vivo and to exogenous PFOS exposure in vitro. Baseline PFOS concentrations were associated with significantly increased CD4+ and CD8+ T cell proliferation from a heterogeneous resident dolphin population. Further analysis demonstrated that in vitro exposure to environmentally relevant levels of PFOS promoted proinflammatory cytokine production and proliferation in a dose-dependent manner. Collectively, these findings indicate that PFOS is capable of inducing proinflammatory interferon-gamma, but not immunoregulatory interleukin-4 production in T cells, which may establish a state of chronic immune activation known to be associated with susceptibility to disease. These findings suggest that PFOS directly dysregulates the dolphin cellular immune system and has implications for health hazards. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adam C Soloff
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.,Hollings Cancer Center, Flow Cytometry and Cell Sorting Shared Resource, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Research Service, Charleston, SC, USA
| | - Bethany Jacobs Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Natasha D White
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA
| | - Derek Muir
- Aquatic Ecosystem Protection Research Division, Environment Canada, Burlington, Ontario, Canada
| | - Sean Courtney
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,The Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary Hardiman
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,The Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Patricia A Fair
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.,National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA
| |
Collapse
|
9
|
Wonderlich ER, Swan ZD, Bissel SJ, Hartman AL, Carney JP, O'Malley KJ, Obadan AO, Santos J, Walker R, Sturgeon TJ, Frye LJ, Maiello P, Scanga CA, Bowling JD, Bouwer AL, Duangkhae PA, Wiley CA, Flynn JL, Wang J, Cole KS, Perez DR, Reed DS, Barratt-Boyes SM. Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. THE JOURNAL OF IMMUNOLOGY 2017; 198:1616-1626. [PMID: 28062701 DOI: 10.4049/jimmunol.1601770] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023]
Abstract
Human infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease. We reasoned that small particle aerosols of virus would penetrate the lower respiratory tract and blanket alveoli where target cells reside. We show that inhalation of aerosolized H5N1 influenza virus in cynomolgus macaques results in fulminant pneumonia that rapidly progresses to acute respiratory distress syndrome with a fatal outcome reminiscent of human disease. Molecular imaging revealed intense lung inflammation coincident with massive increases in proinflammatory proteins and IFN-α in distal airways. Aerosolized H5N1 exposure decimated alveolar macrophages, which were widely infected and caused marked influx of interstitial macrophages and neutrophils. Extensive infection of alveolar epithelial cells caused apoptosis and leakage of albumin into airways, reflecting loss of epithelial barrier function. These data establish inhalation of aerosolized virus as a critical source of exposure for fatal human infection and reveal that direct viral effects in alveoli mediate H5N1 disease. This new nonhuman primate model will advance vaccine and therapeutic approaches to prevent and treat human disease caused by highly pathogenic avian influenza viruses.
Collapse
Affiliation(s)
- Elizabeth R Wonderlich
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Zachary D Swan
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Stephanie J Bissel
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Jonathan P Carney
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Katherine J O'Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Adebimpe O Obadan
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Jefferson Santos
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Reagan Walker
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA 15260
| | - Timothy J Sturgeon
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261
| | - Lonnie J Frye
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Jennifer D Bowling
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Anthea L Bouwer
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Parichat A Duangkhae
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261
| | - Clayton A Wiley
- Division of Neuropathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; and
| | - Jieru Wang
- Division of Pulmonary Medicine, Allergy, and Immunology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kelly S Cole
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA 30602
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Simon M Barratt-Boyes
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261; .,Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
10
|
Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus. Sci Rep 2016; 6:37915. [PMID: 27892498 PMCID: PMC5124960 DOI: 10.1038/srep37915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 11/04/2016] [Indexed: 11/08/2022] Open
Abstract
H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.
Collapse
|
11
|
Abstract
Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Carole Schmoldt
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
12
|
Abstract
Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Carole Schmoldt
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
13
|
Gao N, Yan C, Lee P, Sun H, Yu FS. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea. J Clin Invest 2016; 126:1998-2011. [PMID: 27064280 DOI: 10.1172/jci85097] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/24/2016] [Indexed: 12/11/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) often leads to neurotrophic ulcerations in the cornea and skin; however, the underlying cellular mechanisms of this complication are poorly understood. Here, we used post-wound corneal sensory degeneration and regeneration as a model and tested the hypothesis that diabetes adversely affects DC populations and infiltration, resulting in disrupted DC-nerve communication and DPN. In streptozotocin-induced type 1 diabetic mice, there was a substantial reduction in sensory nerve density and the number of intraepithelial DCs in unwounded (UW) corneas. In wounded corneas, diabetes markedly delayed sensory nerve regeneration and reduced the number of infiltrating DCs, which were a major source of ciliary neurotrophic factor (CNTF) in the cornea. While CNTF neutralization retarded reinnervation in normal corneas, exogenous CNTF accelerated nerve regeneration in the wounded corneas of diabetic mice and healthy animals, in which DCs had been locally depleted. Moreover, blockade of the CNTF-specific receptor CNTFRα induced sensory nerve degeneration and retarded regeneration in normal corneas. Soluble CNTFRα also partially restored the branching of diabetes-suppressed sensory nerve endings and regeneration in the diabetic corneas. Collectively, our data show that DCs mediate sensory nerve innervation and regeneration through CNTF and that diabetes reduces DC populations in UW and wounded corneas, resulting in decreased CNTF and impaired sensory nerve innervation and regeneration.
Collapse
|
14
|
The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014. Antiviral Res 2015; 117:75-98. [PMID: 25746173 DOI: 10.1016/j.antiviral.2015.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022]
Abstract
Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer's study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research.
Collapse
|