1
|
Mukherjee T, Das T, Basak S, Mohanty S, Adhikary K, Chatterjee P, Maiti R, Karak P. Mucormycosis during COVID-19 era: A retrospective assessment. INFECTIOUS MEDICINE 2024; 3:100112. [PMID: 38948388 PMCID: PMC11214187 DOI: 10.1016/j.imj.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 07/02/2024]
Abstract
In a retrospective view, this review examines the impact of mucormycosis on health workers and researchers during the COVID era. The diagnostic and treatment challenges arising from unestablished underlying pathology and limited case studies add strain to healthcare systems. Mucormycosis, caused by environmental molds, poses a significant threat to COVID-19 patients, particularly those with comorbidities and compromised immune systems. Due to a variety of infectious Mucorales causes and regionally related risk factors, the disease's incidence is rising globally. Data on mucormycosis remains scarce in many countries, highlighting the urgent need for more extensive research on its epidemiology and prevalence. This review explores the associations between COVID-19 disease and mucormycosis pathology, shedding light on potential future diagnostic techniques based on the fungal agent's biochemical components. Medications used in ICUs and for life support in ventilated patients have been reported, revealing the challenge of managing this dual onslaught. To develop more effective treatment strategies, it is crucial to identify novel pharmacological targets through "pragmatic" multicenter trials and registries. In the absence of positive mycology culture data, early clinical detection, prompt treatment, and tissue biopsy are essential to confirm the specific morphologic features of the fungal agent. This review delves into the history, pathogens, and pathogenesis of mucormycosis, its opportunistic nature in COVID or immunocompromised individuals, and the latest advancements in therapeutics. Additionally, it offers a forward-looking perspective on potential pharmacological targets for future drug development.
Collapse
Affiliation(s)
- Tuhin Mukherjee
- Department of Advanced Pharmacology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Tanisha Das
- School of Pharmaceutical Sciences (SPS), Siksha 'O' Anusandhan University, Bhubaneswar 751003, Odisha, India
| | - Sourav Basak
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur 495009, Chhattisgarh, India
| | - Satyajit Mohanty
- Department of Advanced Pharmacology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Odisha 761211, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, West Bengal 713212, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal 722101, India
| | - Prithviraj Karak
- Department of Physiology, Bankura Christian College, Bankura, West Bengal 722101, India
| |
Collapse
|
2
|
Khoury DM, Ghaoui N, El Tayar E, Dagher R, El Hawa M, Rubeiz N, Abbas O, Kurban M. Topical statins as antifungals: a review. Int J Dermatol 2024; 63:747-753. [PMID: 38344878 DOI: 10.1111/ijd.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024]
Abstract
Cutaneous fungal infections affect millions around the world. However, severe, multi-resistant fungal infections are increasingly being reported over the past years. As a result of the high rate of resistance which urged for drug repurposing, statins were studied and found to have multiple pleiotropic effects, especially when combined with other already-existing drugs. An example of this is the synergism found between several typical antifungals and statins, such as antifungals Imidazole and Triazole with a wide range of statins shown in this review. The main mechanisms in which they exert an antifungal effect are ergosterol inhibition, protein prenylation, mitochondrial disruption, and morphogenesis/mating inhibition. This article discusses multiple in vitro studies that have proven the antifungal effect of systemic statins against many fungal species, whether used alone or in combination with other typical antifungals. However, as a result of the high rate of drug-drug interactions and the well-known side effects of systemic statins, topical statins have become of increasing interest. Furthermore, patients with dyslipidemia treated with systemic statins who have a new topical fungal infection could benefit from the antifungal effect of their statin. However, it is still not indicated to initiate systemic statins in patients with topical mycotic infections if they do not have another indication for statin use, which raises the interest in using topical statins for fungal infections. This article also tackles the different formulations that have been studied to enhance topical statins' efficacy, as well as the effect of different topical statins on distinct dermatologic fungal diseases.
Collapse
Affiliation(s)
- Dana M Khoury
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nohra Ghaoui
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Ruby Dagher
- American University of Beirut, Beirut, Lebanon
| | - Mariana El Hawa
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nelly Rubeiz
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
3
|
Lewis RE. The Impact of Dimitrios P. Kontoyiannis on Mucormycosis Research. J Fungi (Basel) 2024; 10:382. [PMID: 38921367 PMCID: PMC11205125 DOI: 10.3390/jof10060382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Dimitrios P [...].
Collapse
Affiliation(s)
- Russell E Lewis
- Department of Molecular Medicine, University of Padua, 35121 Padova, Italy
| |
Collapse
|
4
|
Ben-Ami R. Experimental Models to Study the Pathogenesis and Treatment of Mucormycosis. J Fungi (Basel) 2024; 10:85. [PMID: 38276032 PMCID: PMC10820959 DOI: 10.3390/jof10010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Mucormycosis presents a formidable challenge to clinicians and researchers. Animal models are an essential part of the effort to decipher the pathogenesis of mucormycosis and to develop novel pharmacotherapeutics against it. Diverse model systems have been established, using a range of animal hosts, immune and metabolic perturbations, and infection routes. An understanding of the characteristics, strengths, and drawbacks of these models is needed to optimize their use for specific research aims.
Collapse
Affiliation(s)
- Ronen Ben-Ami
- Department of Infectious Diseases, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv 64239, Israel
| |
Collapse
|
5
|
Ostroumova OS, Efimova SS. Lipid-Centric Approaches in Combating Infectious Diseases: Antibacterials, Antifungals and Antivirals with Lipid-Associated Mechanisms of Action. Antibiotics (Basel) 2023; 12:1716. [PMID: 38136750 PMCID: PMC10741038 DOI: 10.3390/antibiotics12121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
One of the global challenges of the 21st century is the increase in mortality from infectious diseases against the backdrop of the spread of antibiotic-resistant pathogenic microorganisms. In this regard, it is worth targeting antibacterials towards the membranes of pathogens that are quite conservative and not amenable to elimination. This review is an attempt to critically analyze the possibilities of targeting antimicrobial agents towards enzymes involved in pathogen lipid biosynthesis or towards bacterial, fungal, and viral lipid membranes, to increase the permeability via pore formation and to modulate the membranes' properties in a manner that makes them incompatible with the pathogen's life cycle. This review discusses the advantages and disadvantages of each approach in the search for highly effective but nontoxic antimicrobial agents. Examples of compounds with a proven molecular mechanism of action are presented, and the types of the most promising pharmacophores for further research and the improvement of the characteristics of antibiotics are discussed. The strategies that pathogens use for survival in terms of modulating the lipid composition and physical properties of the membrane, achieving a balance between resistance to antibiotics and the ability to facilitate all necessary transport and signaling processes, are also considered.
Collapse
Affiliation(s)
- Olga S. Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg 194064, Russia;
| | | |
Collapse
|
6
|
Zhang M, Xu W, Mei H, Song G, Ge N, Tao Y, Liu W, Liang G. Comparative genomics predict specific genes in potential mucorales identification. Arch Microbiol 2023; 205:320. [PMID: 37640972 DOI: 10.1007/s00203-023-03659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Mucoralean fungi could cause mucormycosis in humans, particularly in immunodeficient individuals and those with diabetes mellitus or trauma. With plenty of species and genera, their molecular identification and pathogenicity have a large deviation. Reported cases of mucormycosis showed frequent occurrence in Rhizopus species, Mucor species, and Lichtheimia species. We analyzed the whole genome sequences of 25 species of the top 10 Mucorales genera, along with another 22 important pathogenic non-Mucorales species, to dig the target genes for monitoring Mucorales species and identify potential genomic imprints of virulence in them. Mucorales-specific genes have been found in various orthogroups extracted by Python script, while genus-specific genes were annotated covering cellular structure, biochemistry metabolism, molecular processing, and signal transduction. Proteins related to the virulence of Mucorales species varied with distinct significance in copy numbers, in which Orthofinder was conducted. Based on our fresh retrospective analysis of mucormycosis, a comparative genomic analysis of pathogenic Mucorales was conducted in more frequent pathogens. Specific orthologs between Mucorales and non-Mucoralean pathogenic fungi were discussed in detail. Referring to the previously reported virulence proteins, we included more frequent pathogenic Mucorales and compared them in Mucorales species and non-Mucorales species. Besides, more samples are needed to further verify the potential target genes.
Collapse
Affiliation(s)
- Meijie Zhang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenqi Xu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Ge Song
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Naicen Ge
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China
| | - Ye Tao
- Shanghai Biozeron Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China.
| | - Guanzhao Liang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China.
| |
Collapse
|
7
|
Meena DS, Kumar D, Bohra GK. Combination therapy in Mucormycosis: Current evidence from the world literature, a mini review. J Mycol Med 2023; 33:101332. [PMID: 36270213 PMCID: PMC9472709 DOI: 10.1016/j.mycmed.2022.101332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
Abstract
The emergence of Mucorales infections is an urgent global public health threat rapidly disseminating during the current COVID-19 pandemic. Invasive mucormycosis carries significant morbidity and mortality; this is further compounded by the lack of newer effective antifungals on the horizon. Liposomal Amphotericin (L-AMB) is currently considered the cornerstone of antifungals therapy against mucormycosis; However, two decades later (since the introduction of L-AMB), the outcome remains dismal. Furthermore, adverse events related to therapeutic doses of L-AMB are also a hindrance. There is an imperative need for an alternative therapeutic approach to reduce the high mortality. One such approach is to combine the amphotericin with other agents (e.g., caspofungin, posaconazole, isavuconazole, and iron chelators) that can work synergistically or help in reducing the therapeutic doses of L-AMB. This review aims to highlight the various treatment approaches by gathering the clinical evidence from the literature and considering all potential pharmacological combinations that can provide the direction for future studies.
Collapse
Affiliation(s)
- Durga Shankar Meena
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India.
| | - Deepak Kumar
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Gopal Krishana Bohra
- Division of Infectious Diseases, Department of Internal Medicine, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
8
|
Hussain MK, Ahmed S, Khan A, Siddiqui AJ, Khatoon S, Jahan S. Mucormycosis: A hidden mystery of fungal infection, possible diagnosis, treatment and development of new therapeutic agents. Eur J Med Chem 2023; 246:115010. [PMID: 36566630 PMCID: PMC9734071 DOI: 10.1016/j.ejmech.2022.115010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Mucormycosis is a fungal infection which got worsens with time if not diagnosed and treated. The current COVID-19 pandemic has association with fungal infection specifically with mucormycosis. Already immunocompromised patients are easy target for COVID-19 and mucormycosis as well. COVID-19 infection imparts in weak immune system so chances of infection is comparatively high in COVID-19 patients. Furthermore, diabetes, corticosteroid medicines, and a weakened immune system are the most prevalent risk factors for this infection as we discussed in case studies here. The steroid therapy for COVID-19 patients sometimes have negative impact on the patient health and this state encounters many infections including mucormycosis. There are treatments available but less promising and less effective. So, researchers are focusing on the promising agents against mucormycosis. It is reported that early treatment with liposomal amphotericin B (AmB), manogepix, echinocandins isavuconazole, posacanazole and other promising therapeutic agents have overcome the burden of mucormycosis. Lipid formulations of AmB have become the standard treatment for mucormycosis due to their greater safety and efficacy. In this review article, we have discussed case studies with the infection of mucormycosis in COVID-19 patients. Furthermore, we focused on anti-mucormycosis agents with mechanism of action of various therapeutics, including coverage of new antifungal agents being investigated as part of the urgent global response to control and combat this lethal infection, especially those with established risk factors.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza PG College, Rampur, 244901, India,M.J.P. Rohil Khand University, Bareilly, India
| | - Shaista Ahmed
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, 11952, Saudi Arabia,Corresponding author
| |
Collapse
|
9
|
Kontoyiannis DP. Statin Use and Aspergillosis Risk-More than Meets the Eye? Clin Infect Dis 2023; 76:368. [PMID: 36049031 DOI: 10.1093/cid/ciac710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1460, Houston, TX 77030, USA
| |
Collapse
|
10
|
Yang X, Huang Q, Xu J, Gao Z, Jiang X, Wu Y, Ye W, Liang Y. Transcriptome reveals BCAAs biosynthesis pathway is influenced by lovastatin and can act as a potential control target in Phytophthora sojae. J Appl Microbiol 2022; 133:3585-3595. [PMID: 36000236 DOI: 10.1111/jam.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
Abstract
AIMS Lovastatin has been indicated to impair growth and development of Phytophthora sojae. Therefore, this study was performed to understand the inhibitory mechanism of lovastatin and investigate the metabolic pathway potentially serviced as a new control target for this plant pathogen. METHODS AND RESULTS Whole transcriptome analysis of lovastatin-treated P. sojae was performed by RNA-sequencing. The results revealed that 84 genes were upregulated and 58 were downregulated with more than four-fold changes under treatment. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the branched-chain amino acids (BCAAs) biosynthesis pathway was abundantly enriched. All enzymes in the BCAAs biosynthesis pathway were identified in the P. sojae genome. Moreover, the study found that the herbicide flumetsulam targeting acetohydroxyacid synthase (AHAS) of the BCAAs biosynthesis pathway could effectively inhibit mycelial growth of P. sojae. CONCLUSIONS Lovastatin treatment significantly influences the BCAAs biosynthesis pathway in P. sojae. Moreover, the herbicide flumetsulam targets AHAS and inhibits growth of P. sojae. SIGNIFICANCE AND IMPACT OF STUDY The present study revealed that BCAAs biosynthesis pathway was influenced by lovastatin treatment and its key enzyme AHAS was identified as a potential new control target, which provides clues for exploring more oomycides to control plant diseases caused by P. sojae.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qifeng Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jitao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhen Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xue Jiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
COVID-19-Associated Mucormycosis: A Matter of Concern Amid the SARS-CoV-2 Pandemic. Vaccines (Basel) 2022; 10:vaccines10081266. [PMID: 36016154 PMCID: PMC9415927 DOI: 10.3390/vaccines10081266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Mucormycosis is an invasive fungal infection caused by fungi belonging to order Mucorales. Recently, with the increase in COVID-19 infections, mucormycosis infections have become a matter of concern globally, because of the high morbidity and mortality rates associated with them. Due to the association of mucormycosis with COVID-19 disease, it has been termed COVID-19-associated mucormycosis (CAM). In the present review, we focus on mucormycosis incidence, pathophysiology, risk factors, immune dysfunction, interactions of Mucorales with endothelial cells, and the possible role of iron in Mucorales growth. We review the limitations associated with current diagnostic procedures and the requirement for more specific, cost-effective, convenient, and sensitive assays, such as PCR-based assays and monoclonal antibody-based assays for the effective diagnosis of mucormycosis. We discuss the current treatment options involving antifungal drug therapies, adjunctive therapy, surgical treatment, and their limitations. We also review the importance of nutraceuticals-based therapy for the prevention as well as treatment of mucormycosis. Our review also highlights the need to explore the potential of novel immunotherapeutics, which include antibody-based therapy, cytokine-based therapy, and combination/synergistic antifungal therapy, as treatment options for mucormycosis. In summary, this review provides a complete overview of COVID-19-associated mucormycosis, addressing the current research gaps and future developments required in the field.
Collapse
|
12
|
Gaspar ML, Pawlowska TE. Innate immunity in fungi: Is regulated cell death involved? PLoS Pathog 2022; 18:e1010460. [PMID: 35587923 PMCID: PMC9119436 DOI: 10.1371/journal.ppat.1010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Maria Laura Gaspar
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yang X, Jiang X, Yan W, Huang Q, Sun H, Zhang X, Zhang Z, Ye W, Wu Y, Govers F, Liang Y. The Mevalonate Pathway Is Important for Growth, Spore Production, and the Virulence of Phytophthora sojae. Front Microbiol 2021; 12:772994. [PMID: 36338274 PMCID: PMC9635365 DOI: 10.3389/fmicb.2021.772994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 09/29/2023] Open
Abstract
The mevalonate (MVA) pathway in eukaryotic organisms produces isoprenoids, sterols, ubiquinone, and dolichols. These molecules are vital for diverse cellular functions, ranging from signaling to membrane integrity, and from post-translational modification to energy homeostasis. However, information on the MVA pathway in Phytophthora species is limited. In this study, we identified the MVA pathway genes and reconstructed the complete pathway in Phytophthora sojae in silico. We characterized the function of the MVA pathway of P. sojae by treatment with enzyme inhibitor lovastatin, deletion of the geranylgeranyl diphosphate synthase gene (PsBTS1), and transcriptome profiling analysis. The MVA pathway is ubiquitously conserved in Phytophthora species. Under lovastatin treatment, mycelial growth, spore production, and virulence of P. sojae were inhibited but the zoospore encystment rate increased. Heterozygous mutants of PsBTS1 showed slow growth, abnormal colony characteristics, and mycelial morphology. Mutants showed decreased numbers of sporangia and oospores as well as reduced virulence. RNA sequencing analysis identified the essential genes in sporangia formation were influenced by the enzyme inhibitor lovastatin. Our findings elucidate the role of the MVA pathway in P. sojae and provide new insights into the molecular mechanisms underlying the development, reproduction, and virulence of P. sojae and possibly other oomycetes. Our results also provide potential chemical targets for management of plant Phytophthora diseases.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| | - Xue Jiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Weiqi Yan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Qifeng Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Huiying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xin Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhichao Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Plant Pathology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
14
|
Jose A, Singh S, Roychoudhury A, Kholakiya Y, Arya S, Roychoudhury S. Current Understanding in the Pathophysiology of SARS-CoV-2-Associated Rhino-Orbito-Cerebral Mucormycosis: A Comprehensive Review. J Maxillofac Oral Surg 2021; 20:373-380. [PMID: 34155426 PMCID: PMC8208379 DOI: 10.1007/s12663-021-01604-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
AIM Recently, with the second wave of COVID-19, the Indian subcontinent has witnessed a dramatic rise in mucormycosis infection in patients recovered from COVID-19. This association has been documented in various case reports/case series and institutional experiences, and the mortality associated with this fungal infection is emerging as a cause of concern. The aim of the present paper is to provide a scientific overview on the pathogenesis of mucormycosis in COVID-19 beyond the conventional understanding of the disease process, which may not otherwise explain the increased incidence of mucormycosis in SARS-CoV-2. METHODOLOGY This paper is structured as a narrative review of the published literature on the pathogenesis of COVID-19 which contributes to the development of mucormycosis. Apart from the acknowledged role of ketoacidosis, high blood sugar, and iron metabolism in the pathogenesis of mucormycosis, other factors involved in pathophysiology of COVID-19 which might alter or enhance the mucormycosis infection such as (1) the role of ferritin, (2) high serum iron, (3) free radical-induced endothelitis, (4) hepcidin activation, (5) upregulation of glucose receptor protein (GRP78) are discussed in the pathophysiology of COVID-19-associated mucormycosis. CONCLUSION A new proposal for the pathogenesis based on the ferritin, viral mimicry of hepcidin and GRP78-CotH3 interaction, which clearly explains the surge in mucormycosis in SARS-CoV-2 infection, has been explained.
Collapse
Affiliation(s)
- Anson Jose
- Oral and Maxillofacial Surgeon, Private Practitioner, New Delhi, India
| | - Shagun Singh
- Oral and Maxillofacial Surgeon, Armed Forces, New Delhi, India
| | - Ajoy Roychoudhury
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Yathin Kholakiya
- Department of Oral and Maxillofacial Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Arya
- Oral and Maxillofacial Surgeon, Armed Forces, New Delhi, India
| | | |
Collapse
|
15
|
Chatterjee S, Vardhan B, Singh DK, Maitra A, Ojha UK. Should statins be considered for the management of mucormycosis in COVID-19? Diabetes Metab Syndr 2021; 15:102162. [PMID: 34186353 PMCID: PMC8178941 DOI: 10.1016/j.dsx.2021.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Subhankar Chatterjee
- Department of General Medicine, Patliputra Medical College & Hospital, Dhanbad, Jharkhand, India.
| | - Bhagya Vardhan
- Patliputra Medical College & Hospital, Dhanbad, Jharkhand, India.
| | | | - Abhishek Maitra
- Patliputra Medical College & Hospital, Dhanbad, Jharkhand, India.
| | - Umesh Kumar Ojha
- Professor & Head,Department of General Medicine, Patliputra Medical College & Hospital, Dhanbad, Jharkhand, India.
| |
Collapse
|
16
|
Abstract
Fungal infections are estimated to be responsible for 1.5 million deaths annually. Global anti-microbial resistance is also observed for fungal pathogens, and scientists are looking for new antifungal agents to address this challenge. One potential strategy is to evaluate currently available drugs for their possible antifungal activity. One of the suggested drug classes are statins, which are commonly used to decrease plasma cholesterol and reduce cardiovascular risk associated with low density lipoprotein cholesterol (LDL-c). Statins are postulated to possess pleiotropic effects beyond cholesterol lowering; improving endothelial function, modulating inflammation, and potentially exerting anti-microbial effects. In this study, we reviewed in-vitro and in-vivo studies, as well as clinical reports pertaining to the antifungal efficacy of statins. In addition, we have addressed various modulators of statin anti-fungal activity and the potential mechanisms responsible for their anti-fungal effects. In general, statins do possess anti-fungal activity, targeting a broad spectrum of fungal organisms including human opportunistic pathogens such as Candida spp. and Zygomycetes, Dermatophytes, alimentary toxigenic species such as Aspergillus spp., and fungi found in device implants such as Saccharomyces cerevisiae. Statins have been shown to augment a number of antifungal drug classes, for example, the azoles and polyenes. Synthetic statins are generally considered more potent than the first generation of fungal metabolites. Fluvastatin is considered the most effective statin with the broadest and most potent fungal inhibitory activity, including fungicidal and/or fungistatic properties. This has been demonstrated with plasma concentrations that can easily be achieved in a clinical setting. Additionally, statins can potentiate the efficacy of available antifungal drugs in a synergistic fashion. Although only a limited number of animal and human studies have been reported to date, observational cohort studies have confirmed that patients using statins have a reduced risk of candidemia-related complications. Further studies are warranted to confirm our findings and expand current knowledge of the anti-fungal effects of statins.
Collapse
|
17
|
|
18
|
CRISPR-Cas9-mediated disruption of the HMG-CoA reductase genes of Mucor circinelloides and subcellular localization of the encoded enzymes. Fungal Genet Biol 2019; 129:30-39. [PMID: 30991115 DOI: 10.1016/j.fgb.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023]
|
19
|
Lichtheimia corymbifera Colonization Leading to Pulmonary Infection Can Be Prevented with Liposomal Amphotericin B in a New Murine Model. Antimicrob Agents Chemother 2019; 63:AAC.02544-18. [PMID: 31138564 DOI: 10.1128/aac.02544-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/17/2019] [Indexed: 01/26/2023] Open
Abstract
The incidence of pulmonary mucormycosis is constantly increasing, especially in hematological patients staying in high-efficiency particulate air-filtered rooms. Pulmonary inhalation of spores may occur outside the hospital, leading to invasive disease once patients received chemotherapies. We developed a new pulmonary mucormycosis mouse model mimicking the expected pathophysiology in human to study antifungal drugs. Naive mice were inoculated intratracheally with Lichtheimia corymbifera spores. After 3 days, mice received corticosteroids and cyclophosphamide and secondarily developed the disease, while only 5% of the initial inoculum was present in the lungs at day 3. Lung colonization with L. corymbifera spores in immunocompetent mice can last at least 44 days. Antifungal drug was administered the day of immunosuppression. Injection of a single 15 mg/kg of body weight dose of liposomal amphotericin B significantly improved survival and pulmonary fungal burden compared with controls, whereas 80 mg/kg oral posaconazole did not. These results show that a unique dose of liposomal amphotericin B offers a real potential decolonization treatment to prevent infection in our mouse model of L. corymbifera lung colonization followed by lung infection.
Collapse
|
20
|
NAEIMI ESHKALETI M, KORDBACHEH P, HASHEMI SJ, FALAHATI M, ZAINI F, MIRHENDI H, SAFARA M, HOSSEINPOOR L. In Vitro Activity of Amphotericin B in Combination with Statins against Clinical and Environmental Rhizopus oryzae Strains. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:943-948. [PMID: 31523652 PMCID: PMC6717400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mucormycosis is an acute and invasive fungal infection with a high mortality rate. Mucorales are less sensitive than other types of fungi to most antifungal agents. Amphotericin B (AMB) is one treatment option for this infection, but in recent studies, the antifungal activity of statins against Mucorales was shown. Therefore, therapy that combines AMB with these agents may have better effects in management of patients with mucormycosis. We evaluated the in vitro activity of AMB alone and in combination with statins, against Mucorales. METHODS Susceptibility profiles of AMB alone and in combination with two statins, atorvastatin (ATO) and lovastatin (LOV) determined against clinical (n: 15) and environmental (n: 5) Rhizopus oryzae isolates, obtained between Jan 2009 and Oct 2016 from patients with uncontrolled diabetes mellitus and cancer referred to the Department of Parasitology and Medical Mycology of Tehran University of Medical Sciences, Tehran, Iran. It was performed by microdilution method, based on the Clinical and Laboratory Standard Institute (CLSI) M38-A2 guideline. RESULTS All clinical and environmental isolates were susceptible to AMB (MIC≤1 μg/mL). The results of the interactions between AMB and the two statins were positive. The AMB-ATO (GM: 0.13 μg/Ml) combination produced greater activity than the AMB-LOV (GM: 0.26 μg/mL) combination. AMB, in combination with ATO and LOV, reacts positively against clinical and environmental R. oryzae isolates. CONCLUSION This combination strategy may lead to more effective treatment of mucormycosis and fewer side effects using low dose of AMB.
Collapse
Affiliation(s)
- Mahsa NAEIMI ESHKALETI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parivash KORDBACHEH
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Seyed Jamal HASHEMI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehraban FALAHATI
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh ZAINI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein MIRHENDI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahin SAFARA
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila HOSSEINPOOR
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Animal Models to Study Mucormycosis. J Fungi (Basel) 2019; 5:jof5020027. [PMID: 30934788 PMCID: PMC6617025 DOI: 10.3390/jof5020027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Mucormycosis is a rare but often fatal or debilitating infection caused by a diverse group of fungi. Animal models have been crucial in advancing our knowledge of mechanisms influencing the pathogenesis of mucormycoses, and to evaluate therapeutic strategies. This review describes the animal models established for mucormycosis, summarizes how they have been applied to study mucormycoses, and discusses the advantages and limitations of the different model systems.
Collapse
|
22
|
Gupta M, Kumar A. Comparison of Minimum Inhibitory Concentration (MIC) value of statin drugs: A Systematic Review. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/2211352516666180629124433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:
Microbial infection and its resistance to clinically approved drugs create a huge
threat to human health. Emerging reports have indicated the potential of statin drugs in the treatment of
various types of microbial infections. However, it is still unclear, how much concentration of statin is
effective against microbial infections. In literature, Minimum Inhibitory Concentration (MIC) values of
statin drugs vary according to strain, species, and the type of statins. Thus, the main aim of the current
study is to compare the MIC values of various types of statins against various types of micro-organisms.
The data related to statin and microbial infection has been extracted from Pub Med (from
September 1
Methodology:
987 to October 2017). A total of 662 studies have been published from 1987 -2017 regarding
statin and microbial infections. After inclusion and exclusion criteria, finally, 28 studies have been
selected for comparative analysis of MIC values.
Results:
All the statin drugs have shown a significant effect on various types of microbial infections.
Among all the tested statin drugs, Simvastatin has lower MIC value in almost all types of microorganisms
as compared to other statin drugs. However, on S. pneumoniae and aspergillus, Fluvastatin has
the lowest MIC values as compared to Simvastatin. Atorvastatin was found to be the most potent
against almost all strains of gram-negative bacteria. However, Rosuvastatin and Pravastatin have high
MIC value against all types of microorganisms. Further, FICI value indicated the synergetic effect of
Simvastatin with Amphotericin B, Itraconazole, and Fluconazole against various strains of Cryptococcus.
Conclusion:
In conclusion, Simvastatin, Atorvastatin, and Fluvastatin could be developed as potential
antimicrobial agents. However, further studies are required to understand its complete safety and efficacy
profile..
Collapse
Affiliation(s)
- Meenakshi Gupta
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab, India
| | - Anoop Kumar
- Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, Punjab, India
| |
Collapse
|
23
|
Therapy of Mucormycosis. J Fungi (Basel) 2018; 4:jof4030090. [PMID: 30065232 PMCID: PMC6162664 DOI: 10.3390/jof4030090] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the recent introduction of mold-active agents (posaconazole and isavuconazole), in addition to amphotericin B products, to our armamentarium against mucormycosis, many uncertainties remain for the management of this uncommon opportunistic infection, as there are no data from prospective randomized clinical trials to guide therapy. In this mini-review, we present the current status of treatment options. In view of the heterogeneity of the disease (different types of affected hosts, sites of infection, and infecting Mucorales), mucormycosis management requires an individualized management plan that takes into account the net state of immunosuppression of the host, including comorbidities, certainty of diagnosis, site of infection, and antifungal pharmacological properties.
Collapse
|
24
|
Petrikkos G, Tsioutis C. Recent Advances in the Pathogenesis of Mucormycoses. Clin Ther 2018; 40:894-902. [PMID: 29631910 DOI: 10.1016/j.clinthera.2018.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE The purposes of this review are to describe the pathogenesis of mucormycosis and to address recent research advances in understanding the mechanisms of fungal invasion and dissemination. METHODS Studies and reviews published in the PubMed and ClinicalTrials.gov databases until December 2017 that explored or reported recent advances in the understanding of the pathogenesis of mucormycosis were reviewed. FINDINGS To cause disease, fungal spores need to evade the innate immune system and germinate, leading to angioinvasion and tissue destruction. Recent studies have found that Mucorales are able to downregulate several host defense mechanisms and have identified the specific receptors through which Mucorales attach to the endothelium, facilitating their endocytosis and subsequent angioinvasion. In addition, certain conditions found to act through various mechanisms and pathways in experimental and animal studies, such as hyperglycemia, elevated iron concentrations, and acidosis (particularly diabetic ketoacidosis), increase the virulence of the fungi and enhance their attachment to the endothelium, rendering patients with uncontrolled diabetes and patients with iron overload susceptible to mucormycosis. The role and various antifungal functions of platelets and natural killer cells are highlighted, and the potential contribution of alternative therapies, such as manipulating the innate immune host defenses with granulocyte transfusions or administration of growth factors and using the antifungal effects of calcineurin inhibitors, are presented. Finally, directions and possible implications for future research are provided. IMPLICATIONS This article provides a comprehensive overview of research advances in the pathogenesis of infections caused by Mucorales and helps future studies develop effective treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- George Petrikkos
- School of Medicine, European University Cyprus, Nicosia, Cyprus; Infectious Diseases Research Laboratory, Fourth Dept of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
25
|
Sephton-Clark PCS, Voelz K. Spore Germination of Pathogenic Filamentous Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:117-157. [PMID: 29680124 DOI: 10.1016/bs.aambs.2017.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fungi, algae, plants, protozoa, and bacteria are all known to form spores, especially hardy and ubiquitous propagation structures that are also often the infectious agents of diseases. Spores can survive for thousands of years, frozen in the permafrost (Kochkina et al., 2012), with the oldest viable spores extracted after 250 million years from salt crystals (Vreeland, Rosenzweig, & Powers, 2000). Their resistance to high levels of UV, desiccation, pressure, heat, and cold enables the survival of spores in the harshest conditions (Setlow, 2016). For example, Bacillus subtilis spores can survive and remain viable after experiencing conditions similar to those on Mars (Horneck et al., 2012). Spores are disseminated through environmental factors. Wind, water, or animal carriage allow spores to be spread ubiquitously throughout the environment. Spores will break dormancy and begin to germinate once exposed to favorable conditions. Germination is the mechanism that converts the spore from a dormant biological organism to one that grows vegetatively and is capable of either sexual or asexual reproduction. The process of germination has been well studied in plants, moss, bacteria, and many fungi (Hohe & Reski, 2005; Huang & Hull, 2017; Vesty et al., 2016). Unfortunately, information on the complex signaling involved in the regulation of germination, particularly in fungi remains lacking. This chapter will discuss germination of fungal spores covering our current understanding of the regulation, signaling, outcomes, and implications of germination of pathogenic fungal spores. Owing to the morphological similarities between the spore-hyphal and yeast-hyphal transition and their relevance for disease progression, relevant aspects of fungal dimorphism will be discussed alongside spore germination in this chapter.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
26
|
Abstract
Immunocompromised patients are at high risk for invasive fungal infections (IFIs); although Aspergillus remains the most common IFI caused by molds, other fungi, such as Mucorales, dematiaceous molds, and Fusarium spp, are being seen with increasing frequency. Presentations can vary, but sinopulmonary and disseminated infections are common. Our understanding of the pathogenesis of these infections is rudimentary. Fungal cultures and histopathology remain the backbone of diagnostics, as no good serologic markers are available. Polymerase chain reaction tests are being developed but currently remain investigational. Management of these infections is usually multidisciplinary, requiring surgical debridement along with antifungal therapy.
Collapse
|
27
|
Song Y, Qiao J, Giovanni G, Liu G, Yang H, Wu J, Chen J. Mucormycosis in renal transplant recipients: review of 174 reported cases. BMC Infect Dis 2017; 17:283. [PMID: 28420334 PMCID: PMC5395857 DOI: 10.1186/s12879-017-2381-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucormycosis is a highly lethal fungal infection especially in immunocompromised individuals. METHODS In order to review the epidemiology, diagnosis, and treatment of mucormycosis in renal transplant recipients we searched publications of mucormycosis cases in renal transplant recipients in PUBMED database up to December 2015. RESULTS A total of 174 cases in renal transplant recipients were included in this review. Most of the cases (76%) were male. Major underlying diseases were diabetes mellitus (43.1%). Rhinocerebral was the most common site of infection (33.3%). Rhizopus species was the most frequent fungus (59.1%) in patients with pathogen identified to species level. The mortality rates of disseminated mucormycosis (76.0%) and graft renal (55.6%) were higher than infection in other sites. The overall survival in patients received surgical debridement combined with amphotericin B/posaconazole (70.2%) was higher than those who received antifungal therapy alone (32.4%), surgery alone (36.4%) or without therapy (0%) (p < 0.001). The overall survivals in patients receiving posaconazole and lipid amphoterincin B were higher than that receiving deoxycholate formulation (92.3% and 73.4% vs 47.4%). CONCLUSIONS Mucormycosis is a severe infection in renal transplant recipients. Surgical debridement combined with antifungals, especially liposomal amphotericin B and posaconazole, can significantly improve patient's overall survival.
Collapse
Affiliation(s)
- Yan Song
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Gaffi Giovanni
- Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Guangjun Liu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Hao Yang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Jianyong Wu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 Zhejiang People’s Republic of China
| |
Collapse
|