1
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Xu J, Tse MW, Pacheco JA, Kim JS, Pierce K, Deik A, Hussain FA, Elsherbini J, Hussain S, Xulu N, Khan N, Pillay V, Mitchell CM, Dong KL, Ndung'u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a metabolite-targeted strategy for bacterial vaginosis treatment. Cell 2024; 187:5413-5430.e29. [PMID: 39163861 PMCID: PMC11429459 DOI: 10.1016/j.cell.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related lactobacilli, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the vaginal microbiota and enhances bacterial fitness by biochemically sequestering OA in a derivative form only ohyA-harboring organisms can exploit. OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro BV model, suggesting a metabolite-based treatment approach.
Collapse
Affiliation(s)
- Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Matthew W Frank
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | - Jiawu Xu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Megan W Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jae Sun Kim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fatima Aysha Hussain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Salina Hussain
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Nondumiso Xulu
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Caroline M Mitchell
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Krista L Dong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Health Systems Trust, Durban, South Africa; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Thumbi Ndung'u
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Africa Health Research Institute, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, London, UK
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles O Rock
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Seth M Bloom
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Izadifar Z, Cotton J, Chen S, Horvath V, Stejskalova A, Gulati A, LoGrande NT, Budnik B, Shahriar S, Doherty ER, Xie Y, To T, Gilpin SE, Sesay AM, Goyal G, Lebrilla CB, Ingber DE. Mucus production, host-microbiome interactions, hormone sensitivity, and innate immune responses modeled in human cervix chips. Nat Commun 2024; 15:4578. [PMID: 38811586 PMCID: PMC11137093 DOI: 10.1038/s41467-024-48910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/22/2024] [Indexed: 05/31/2024] Open
Abstract
Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo. Thus, human Cervix Organ Chips represent physiologically relevant in vitro models to study cervix physiology and host-microbiome interactions, and hence may be used as a preclinical testbed for development of therapeutic interventions to enhance women's health.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- Urology Department, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Cotton
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Siyu Chen
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Viktor Horvath
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sanjid Shahriar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Erin R Doherty
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Tania To
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Sarah E Gilpin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Girija Goyal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, Davis, CA, 95616, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA.
- Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02134, USA.
| |
Collapse
|
3
|
Zhu M, Frank MW, Radka CD, Jeanfavre S, Tse MW, Pacheco JA, Pierce K, Deik A, Xu J, Hussain S, Hussain FA, Xulu N, Khan N, Pillay V, Dong KL, Ndung’u T, Clish CB, Rock CO, Blainey PC, Bloom SM, Kwon DS. Vaginal Lactobacillus fatty acid response mechanisms reveal a novel strategy for bacterial vaginosis treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573720. [PMID: 38234804 PMCID: PMC10793477 DOI: 10.1101/2023.12.30.573720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related species, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the human vaginal microbiota and sequesters OA in a derivative form that only ohyA-harboring organisms can exploit. Finally, OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro model of BV, suggesting a novel approach for treatment.
Collapse
Affiliation(s)
- Meilin Zhu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Matthew W. Frank
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
| | | | - Megan W. Tse
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Kerry Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jiawu Xu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Salina Hussain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Fatima Aysha Hussain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nondumiso Xulu
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Khan
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | - Krista L. Dong
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Health Systems Trust, Durban, South Africa
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- HIV Pathogenesis Programme (HPP), The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Africa Health Research Institute (AHRI), Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | | | - Charles O. Rock
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- passed away on September 22, 2023
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth M. Bloom
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Young IC, Srinivasan P, Shrivastava R, Janusziewicz R, Thorson A, Cottrell ML, Sellers RS, Sykes C, Schauer A, Little D, Kelley K, Kashuba ADM, Katz D, Pyles RB, García-Lerma JG, Vincent KL, Smith J, Benhabbour SR. Next generation 3D-printed intravaginal ring for prevention of HIV and unintended pregnancy. Biomaterials 2023; 301:122260. [PMID: 37549505 PMCID: PMC11537264 DOI: 10.1016/j.biomaterials.2023.122260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Globally, there are 20 million adolescent girls and young women living with HIV who have limited access to long-acting, effective, women-controlled preventative methods. Additionally, although there are many contraceptive methods available, globally, half of all pregnancies remain unintended. Here we report the first 3D-printed multipurpose prevention technology (MPT) intravaginal ring (IVR) for HIV prevention and contraception. We utilized continuous liquid interface production (CLIP™) to fabricate MPT IVRs in a biocompatible silicone-based resin. Etonogestrel (ENG), ethinyl estradiol (EE), and islatravir (ISL) were loaded into the silicone poly(urethane) IVR in a controlled single step drug loading process driven by absorption. ENG/EE/ISL IVR promoted sustained release of drugs for 150 days in vitro and 14 days in sheep. There were no adverse MPT IVR-related findings of cervicovaginal toxicity or changes in vaginal biopsies or microbiome community profiles evaluated in sheep. Furthermore, ISL IVR in macaques promoted sustained release for 28 days with ISL-triphosphate levels above the established pharmacokinetic benchmark of 50-100 fmol/106 PBMCs. The ISL IVR was found to be safe and well tolerated in the macaques with no observed mucosal cytokine changes or alterations in peripheral CD4 T-cell populations. Collectively, the proposed MPT IVR has potential to expand preventative choices for young women and girls.
Collapse
Affiliation(s)
- Isabella C Young
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Priya Srinivasan
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Roopali Shrivastava
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rima Janusziewicz
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Allison Thorson
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mackenzie L Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rani S Sellers
- Pathology Services Core, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amanda Schauer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dawn Little
- Katmai Government Services, Anchorage, AK, 99515, USA
| | | | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David Katz
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Richard B Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - J Gerardo García-Lerma
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Kathleen L Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - James Smith
- Laboratory Branch, Division of HIV Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - S Rahima Benhabbour
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Kwak J, Pandey S, Cho J, Song M, Kim ES, Doo H, Keum GB, Ryu S, Choi Y, Kang J, Kim S, Kim J, Kim HB. Development of the standard mouse model for human bacterial vaginosis induced by Gardnerella vaginalis. Front Vet Sci 2023; 10:1226859. [PMID: 37781285 PMCID: PMC10536170 DOI: 10.3389/fvets.2023.1226859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Bacterial vaginosis (BV) is a polymicrobial syndrome characterized by a diminished number of protective bacteria in the vaginal flora. Instead, it is accompanied by a significant increase in facultative and strict anaerobes, including Gardnerella vaginalis (G. vaginalis). BV is one of the most common gynecological problems experienced by reproductive age-women. Because an ideal and standard animal model for human BV induced by G. vaginalis is still underdeveloped, the main objective of this study was to develop a mouse model for human BV induced by G. vaginalis to demonstrate the clinical attributes observed in BV patients. A total of 80 female ICR mice were randomly assigned to 4 groups and intravaginally inoculated with different doses of G. vaginalis: NC (uninfected negative control), PC1 (inoculated with 1 × 105 CFU of G. vaginalis), PC2 (inoculated with 1 × 106 CFU of G. vaginalis) and PC3 (inoculated with 1 × 107 CFU of G. vaginalis). The myeloperoxidase (MPO) activity and serum concentrations of cytokines (IL-1β, IL-10) in mice administered with G. vaginalis were significantly higher than those of the control group. Gross lesion and histopathological analysis of reproductive tract of mice inoculated with G. vaginalis showed inflammation and higher epithelial cell exfoliation compared to the control group. In addition, vaginal swabs from the mice inoculated with G. vaginalis showed the presence of clue cells, which are a characteristic feature of human BV. Altogether, our results suggested that G. vaginalis is sufficient to generate comparable clinical attributes seen in patients with BV.
Collapse
Affiliation(s)
- Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Jinho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Sumin Ryu
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Yejin Choi
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Juyoun Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Sheena Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| | - Jeongyun Kim
- Department of Physics, Dankook University, Cheonan, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
6
|
Lyon LM, Doran KS, Horswill AR. Staphylococcus aureus Fibronectin-Binding Proteins Contribute to Colonization of the Female Reproductive Tract. Infect Immun 2023; 91:e0046022. [PMID: 36511703 PMCID: PMC9872658 DOI: 10.1128/iai.00460-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and frequent colonizer of human skin and mucosal membranes, including the vagina, with vaginal colonization reaching nearly 25% in some pregnant populations. MRSA vaginal colonization can lead to aerobic vaginitis (AV), and during pregnancy, bacterial ascension into the upper reproductive tract can lead to adverse birth outcomes. USA300, the most prominent MRSA lineage to colonize pregnant individuals, is a robust biofilm former and causative agent of invasive infections; however, little is known about how it colonizes and ascends in the female reproductive tract (FRT). Our previous studies showed that a MRSA mutant of seven fibrinogen-binding adhesins was deficient in FRT epithelial attachment and colonization. Using both monolayer and multilayer air-liquid interface cell culture models, we determine that one class of these adhesins, the fibronectin binding proteins (FnBPA and FnBPB), are critical for association with human vaginal epithelial cells (hVECs) and hVEC invasion through interactions with α5β1 integrin. We observe that both FnBPs are important for biofilm formation as single and double fnbAB mutants exhibit reduced biofilm formation on hVECs. Using heterologous expression of fnbA and fnbB in Staphylococcus carnosus, FnBPs are also found to be sufficient for hVEC cellular association, invasion, and biofilm formation. In addition, we found that an ΔfnbAB mutant displays attenuated ascension in our murine vaginal colonization model. Better understanding of MRSA FRT colonization and ascension can ultimately inform treatment strategies to limit MRSA vaginal burden or prevent ascension, especially during pregnancy and in those prone to AV.
Collapse
Affiliation(s)
- Laurie M. Lyon
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, USA
| |
Collapse
|
7
|
Edwards VL, McComb E, Gleghorn JP, Forney L, Bavoil PM, Ravel J. Three-dimensional models of the cervicovaginal epithelia to study host-microbiome interactions and sexually transmitted infections. Pathog Dis 2022; 80:6655985. [PMID: 35927516 PMCID: PMC9419571 DOI: 10.1093/femspd/ftac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 02/03/2023] Open
Abstract
2D cell culture systems have historically provided controlled, reproducible means to analyze host-pathogen interactions observed in the human reproductive tract. Although inexpensive, straightforward, and requiring a very short time commitment, these models recapitulate neither the functionality of multilayered cell types nor the associated microbiome that occurs in a human. Animal models have commonly been used to recreate the complexity of human infections. However, extensive modifications of animal models are required to recreate interactions that resemble those in the human reproductive tract. 3D cell culture models have emerged as alternative means of reproducing vital elements of human infections at a fraction of the cost of animal models and on a scale that allows for replicative experiments. Here, we describe a new 3D model that utilizes transwells with epithelial cells seeded apically and a basolateral extracellular matrix (ECM)-like layer. The model produced tissues with morphologic and physiological resemblance to human cervical and vaginal epithelia, including mucus levels produced by cervical cells. Infection by Chlamydia trachomatis and Neisseria gonorrhoeae was demonstrated, as well as the growth of bacterial species observed in the human vaginal microbiota. This enabled controlled mechanistic analyses of the interactions between host cells, the vaginal microbiota, and STI pathogens. Affordable and semi high-throughput 3D models of the cervicovaginal epithelia that are physiologically relevant by sustaining vaginal bacterial colonization, and facilitate studies of chlamydial and gonococcal infections.
Collapse
Affiliation(s)
- Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Patrik M Bavoil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Jacques Ravel
- Corresponding author: Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Health Science Research Facility (HSRDF), 670 W. Baltimore Street, Baltimore, MD 21201, United States. Tel: +1 410-706-5674; E-mail:
| |
Collapse
|
8
|
Wu S, Hugerth LW, Schuppe-Koistinen I, Du J. The right bug in the right place: opportunities for bacterial vaginosis treatment. NPJ Biofilms Microbiomes 2022; 8:34. [PMID: 35501321 PMCID: PMC9061781 DOI: 10.1038/s41522-022-00295-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial vaginosis (BV) is a condition in which the vaginal microbiome presents an overgrowth of obligate and facultative anaerobes, which disturbs the vaginal microbiome balance. BV is a common and recurring vaginal infection among women of reproductive age and is associated with adverse health outcomes and a decreased quality of life. The current recommended first-line treatment for BV is antibiotics, despite the high recurrence rate. Live biopharmaceutical products/probiotics and vaginal microbiome transplantation (VMT) have also been tested in clinical trials for BV. In this review, we discuss the advantages and challenges of current BV treatments and interventions. Furthermore, we provide our understanding of why current clinical trials with probiotics have had mixed results, which is mainly due to not administering the correct bacteria to the correct body site. Here, we propose a great opportunity for large clinical trials with probiotic strains isolated from the vaginal tract (e.g., Lactobacillus crispatus) and administered directly into the vagina after pretreatment.
Collapse
Affiliation(s)
- Shengru Wu
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Luisa Warchavchik Hugerth
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Ina Schuppe-Koistinen
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Juan Du
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
McKenzie R, Maarsingh JD, Łaniewski P, Herbst-Kralovetz MM. Immunometabolic Analysis of Mobiluncus mulieris and Eggerthella sp. Reveals Novel Insights Into Their Pathogenic Contributions to the Hallmarks of Bacterial Vaginosis. Front Cell Infect Microbiol 2022; 11:759697. [PMID: 35004344 PMCID: PMC8733642 DOI: 10.3389/fcimb.2021.759697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
The cervicovaginal microbiome plays an important role in protecting women from dysbiosis and infection caused by pathogenic microorganisms. In healthy reproductive-age women the cervicovaginal microbiome is predominantly colonized by protective Lactobacillus spp. The loss of these protective bacteria leads to colonization of the cervicovaginal microenvironment by pathogenic microorganisms resulting in dysbiosis and bacterial vaginosis (BV). Mobiluncus mulieris and Eggerthella sp. are two of the many anaerobes that can contribute to BV, a condition associated with multiple adverse obstetric and gynecological outcomes. M. mulieris has been linked to high Nugent scores (relating to BV morphotypes) and preterm birth (PTB), whilst some bacterial members of the Eggerthellaceae family are highly prevalent in BV, and identified in ~85-95% of cases. The functional impact of M. mulieris and Eggerthella sp. in BV is still poorly understood. To determine the individual immunometabolic contributions of Eggerthella sp. and M. mulieris within the cervicovaginal microenvironment, we utilized our well-characterized human three-dimensional (3-D) cervical epithelial cell model in combination with multiplex immunoassays and global untargeted metabolomics approaches to identify key immune mediators and metabolites related to M. mulieris and Eggerthella sp. infections. We found that infection with M. mulieris significantly elevated multiple proinflammatory markers (IL-6, IL-8, TNF-α and MCP-1) and altered metabolites related to energy metabolism (nicotinamide and succinate) and oxidative stress (cysteinylglycine, cysteinylglycine disulfide and 2-hydroxygluatrate). Eggerthella sp. infection significantly elevated multiple sphingolipids and glycerolipids related to epithelial barrier function, and biogenic amines (putrescine and cadaverine) associated with elevated vaginal pH, vaginal amine odor and vaginal discharge. Our study elucidated that M. mulieris elevated multiple proinflammatory markers relating to PTB and STI acquisition, as well as altered energy metabolism and oxidative stress, whilst Eggerthella sp. upregulated multiple biogenic amines associated with the clinical diagnostic criteria of BV. Future studies are needed to evaluate how these bacteria interact with other BV-associated bacteria within the cervicovaginal microenvironment.
Collapse
Affiliation(s)
- Ross McKenzie
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jason D Maarsingh
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
10
|
Łaniewski P, Herbst-Kralovetz MM. Bacterial vaginosis and health-associated bacteria modulate the immunometabolic landscape in 3D model of human cervix. NPJ Biofilms Microbiomes 2021; 7:88. [PMID: 34903740 PMCID: PMC8669023 DOI: 10.1038/s41522-021-00259-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial vaginosis (BV) is an enigmatic polymicrobial condition characterized by a depletion of health-associated Lactobacillus and an overgrowth of anaerobes. Importantly, BV is linked to adverse gynecologic and obstetric outcomes: an increased risk of sexually transmitted infections, preterm birth, and cancer. We hypothesized that members of the cervicovaginal microbiota distinctly contribute to immunometabolic changes in the human cervix, leading to these sequelae. Our 3D epithelial cell model that recapitulates the human cervical epithelium was infected with clinical isolates of cervicovaginal bacteria, alone or as a polymicrobial community. We used Lactobacillus crispatus as a representative health-associated commensal and four common BV-associated species: Gardnerella vaginalis, Prevotella bivia, Atopobium vaginae, and Sneathia amnii. The immunometabolic profiles of these microenvironments were analyzed using multiplex immunoassays and untargeted global metabolomics. A. vaginae and S. amnii exhibited the highest proinflammatory potential through induction of cytokines, iNOS, and oxidative stress-associated compounds. G. vaginalis, P. bivia, and S. amnii distinctly altered physicochemical barrier-related proteins and metabolites (mucins, sialic acid, polyamines), whereas L. crispatus produced an antimicrobial compound, phenyllactic acid. Alterations to the immunometabolic landscape correlate with symptoms and hallmarks of BV and connected BV with adverse women’s health outcomes. Overall, this study demonstrated that 3D cervical epithelial cell colonized with cervicovaginal microbiota faithfully reproduce the immunometabolic microenvironment previously observed in clinical studies and can successfully be used as a robust tool to evaluate host responses to commensal and pathogenic bacteria in the female reproductive tract.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA. .,Department of Obstetrics and Gynecology, College of Medicine - Phoenix, University of Arizona, Phoenix, AZ, 85004, USA.
| |
Collapse
|
11
|
Impact of vaginal douching products on vaginal Lactobacillus, Escherichia coli and epithelial immune responses. Sci Rep 2021; 11:23069. [PMID: 34845288 PMCID: PMC8629978 DOI: 10.1038/s41598-021-02426-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
We compared the effect of commercial vaginal douching products on Lactobacillus crispatus, L. jensenii, L. gasseri, L. iners, E. coli, and immortalized vaginal epithelial cells (VK2). All studied douching products (vinegar, iodine and baking soda based) induced epithelial cell death, and all inhibited growth of E. coli. Co-culture of vaginal epithelial cells with any of the lactobacilli immediately following exposure to douching products resulted in a trend to less human cell death. However, co-culture of epithelial cells with L. iners was associated with higher production of IL6 and IL8, and lower IL1RA regardless of presence or type of douching solution. Co-culture with L. crispatus or L. jensenii decreased IL6 production in the absence of douches, but increased IL6 production after exposure to vinegar. Douching products may be associated with epithelial disruption and inflammation, and may reduce the anti-inflammatory effects of beneficial lactobacilli.
Collapse
|
12
|
Khan S, Vancuren SJ, Hill JE. A Generalist Lifestyle Allows Rare Gardnerella spp. to Persist at Low Levels in the Vaginal Microbiome. MICROBIAL ECOLOGY 2021; 82:1048-1060. [PMID: 33219399 PMCID: PMC7678777 DOI: 10.1007/s00248-020-01643-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Gardnerella spp. are considered a hallmark of bacterial vaginosis, a dysbiosis of the vaginal microbiome. There are four cpn60 sequence-based subgroups within the genus (A, B, C and D), and thirteen genome species have been defined recently. Gardnerella spp. co-occur in the vaginal microbiome with varying abundance, and these patterns are shaped by a resource-dependent, exploitative competition, which affects the growth rate of subgroups A, B and C negatively. The growth rate of rarely abundant subgroup D, however, increases with the increasing number of competitors, negatively affecting the growth rate of others. We hypothesized that a nutritional generalist lifestyle and minimal niche overlap with the other more abundant Gardnerella spp. facilitate the maintenance of subgroup D in the vaginal microbiome through negative frequency-dependent selection. Using 40 whole-genome sequences from isolates representing all four subgroups, we found that they could be distinguished based on the content of their predicted proteomes. Proteins associated with carbohydrate and amino acid uptake and metabolism were significant contributors to the separation of subgroups. Subgroup D isolates had significantly more of their proteins assigned to amino acid metabolism than the other subgroups. Subgroup D isolates were also significantly different from others in terms of number and type of carbon sources utilized in a phenotypic assay, while the other three could not be distinguished. Overall, the results suggest that a generalist lifestyle and lack of niche overlap with other Gardnerella spp. leads to subgroup D being favoured by negative frequency-dependent selection in the vaginal microbiome.
Collapse
Affiliation(s)
- Salahuddin Khan
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| | - Sarah J. Vancuren
- Present Address: Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4 Canada
| |
Collapse
|
13
|
Vagios S, Mitchell CM. Mutual Preservation: A Review of Interactions Between Cervicovaginal Mucus and Microbiota. Front Cell Infect Microbiol 2021; 11:676114. [PMID: 34327149 PMCID: PMC8313892 DOI: 10.3389/fcimb.2021.676114] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
At mucosal surfaces throughout the body mucus and mucins regulate interactions between epithelia and both commensal and pathogenic bacteria. Although the microbes in the female genital tract have been linked to multiple reproductive health outcomes, the role of cervicovaginal mucus in regulating genital tract microbes is largely unexplored. Mucus-microbe interactions could support the predominance of specific bacterial species and, conversely, commensal bacteria can influence mucus properties and its influence on reproductive health. Herein, we discuss the current evidence for both synergistic and antagonistic interactions between cervicovaginal mucus and the female genital tract microbiome, and how an improved understanding of these relationships could significantly improve women’s health.
Collapse
Affiliation(s)
- Stylianos Vagios
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Boston, MA, United States
| | - Caroline M Mitchell
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Massachusetts General Hospital Research Institute, Boston, MA, United States
| |
Collapse
|
14
|
Salliss ME, Maarsingh JD, Garza C, Łaniewski P, Herbst-Kralovetz MM. Veillonellaceae family members uniquely alter the cervical metabolic microenvironment in a human three-dimensional epithelial model. NPJ Biofilms Microbiomes 2021; 7:57. [PMID: 34230496 PMCID: PMC8260719 DOI: 10.1038/s41522-021-00229-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is a gynecologic disorder characterized by a shift in cervicovaginal microbiota from Lactobacillus spp. dominance to a polymicrobial biofilm composed of diverse anaerobes. We utilized a well-characterized human three-dimensional cervical epithelial cell model in conjunction with untargeted metabolomics and immunoproteomics analyses to determine the immunometabolic contribution of three members of the Veillonellaceae family: Veillonella atypica, Veillonella montpellierensis and Megasphaera micronuciformis at this site. We found that Veillonella spp. infections induced significant elevation of polyamines. M. micronuciformis infections significantly increased soluble inflammatory mediators, induced moderate levels of cell cytotoxicity, and accumulation of cell membrane lipids relative to Veillonella spp. Notably, both V. atypica and V. montpellierensis infections resulted in consumption of lactate, a key metabolite linked to gynecologic and reproductive health. Collectively our approach and data provide unique insights into the specific contributions of Veillonellaceae members to the pathogenesis of BV and women's health.
Collapse
Affiliation(s)
- Mary E Salliss
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jason D Maarsingh
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Camryn Garza
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Arizona State University, Tempe, AZ, USA
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
| |
Collapse
|
15
|
Novel Ex Vivo Model to Examine the Mechanism and Relationship of Esophageal Microbiota and Disease. Biomedicines 2021; 9:biomedicines9020142. [PMID: 33540531 PMCID: PMC7912808 DOI: 10.3390/biomedicines9020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Rates of esophageal cancer have increased over the last 40 years. Recent clinical research has identified correlations between the esophageal microbiome and disease. However, mechanisms of action have been difficult to elucidate performing human experimentation. We propose an ex vivo model, which mimics the esophagus and is ideal for mechanistic studies on the esophageal microbiome and resultant transcriptome. To determine the microbiome and transcriptome profile of the human distal esophagus, the microbiome was assessed in 74 patients and the transcriptome profile was assessed in 37 patients with and without Barrett’s esophagus. Thereafter, an ex vivo model of the esophagus was created using an air–liquid interfaced (ALI) design. This design created a sterile apical surface and a nutrient-rich basal surface. An epithelial layer was grown on the apical surface. A normal microbiome and Barrett’s microbiome was harvested and created from patients during endoscopic examination of the esophagus. There was a distinct microbiome in patients with Barrett’s esophagus. The ex vivo model was successfully created with a squamous epithelial layer on the apical surface of the ex vivo system. Using this ex vivo model, multiple normal esophageal and Barrett’s esophageal cell lines will be created and used for experimentation. Each microbiome will be inoculated onto the sterile apical surface of each cell line. The resultant microbiome and transcriptome profile on each surface will be measured and compared to results in the human esophagus to determine the mechanism of the microbiome interaction.
Collapse
|
16
|
Jackson R, Maarsingh J, Herbst-Kralovetz MM, Van Doorslaer K. 3D Oral and Cervical Tissue Models for Studying Papillomavirus Host-Pathogen Interactions. CURRENT PROTOCOLS IN MICROBIOLOGY 2020; 59:e129. [PMID: 33232584 PMCID: PMC11088941 DOI: 10.1002/cpmc.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) infection occurs in differentiating epithelial tissues. Cancers caused by high-risk types (e.g., HPV16 and HPV18) typically occur at oropharyngeal and anogenital anatomical sites. The HPV life cycle is differentiation-dependent, requiring tissue culture methodology that is able to recapitulate the three-dimensional (3D) stratified epithelium. Here we report two distinct and complementary methods for growing differentiating epithelial tissues that mimic many critical morphological and biochemical aspects of in vivo tissue. The first approach involves growing primary human epithelial cells on top of a dermal equivalent consisting of collagen fibers and living fibroblast cells. When these cells are grown at the liquid-air interface, differentiation occurs and allows for epithelial stratification. The second approach uses a rotating wall vessel bioreactor. The low-fluid-shear microgravity environment inside the bioreactor allows the cells to use collagen-coated microbeads as a growth scaffold and self-assemble into 3D cellular aggregates. These approaches are applied to epithelial cells derived from HPV-positive and HPV-negative oral and cervical tissues. The second part of the article introduces potential downstream applications for these 3D tissue models. We describe methods that will allow readers to start successfully culturing 3D tissues from oral and cervical cells. These tissues have been used for microscopic visualization, scanning electron microscopy, and large omics-based studies to gain insights into epithelial biology, the HPV life cycle, and host-pathogen interactions. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Establishing human primary cell-derived 3D organotypic raft cultures Support Protocol 1: Isolation of epithelial cells from patient-derived tissues Support Protocol 2: Growth and maintenance of primary human epithelial cells in monolayer culture Support Protocol 3: PCR-based HPV screening of primary cell cultures Basic Protocol 2: Establishing human 3D cervical tissues using the rotating wall vessel bioreactor Support Protocol 4: Growth and maintenance of human A2EN cells in monolayer culture Support Protocol 5: Preparation of the slow-turning lateral vessel bioreactor Support Protocol 6: Preparation of Cytodex-3 microcarrier beads Basic Protocol 3: Histological assessment of 3D organotypic raft tissues Basic Protocol 4: Spatial analysis of protein expression in 3D organotypic raft cultures Basic Protocol 5: Immunofluorescence imaging of RWV-derived 3D tissues Basic Protocol 6: Ultrastructural visualization and imaging of RWV-derived 3D tissues Basic Protocol 7: Characterization of gene expression by RT-qPCR.
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA 85721
| | - Jason Maarsingh
- Department of Obstetrics and Gynecology, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, USA 85004
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, USA 85004
- Department of Basic Medical Sciences; BIO5 Institute; Clinical Translational Sciences Graduate Program; University of Arizona Cancer Center, University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, USA 85004
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA 85721
- Department of Immunobiology; BIO5 Institute; Cancer Biology Graduate Interdisciplinary Program; Genetics Graduate Interdisciplinary Program; and University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA 85721
| |
Collapse
|
17
|
Garcia-Grau I, Simon C, Moreno I. Uterine microbiome-low biomass and high expectations†. Biol Reprod 2020; 101:1102-1114. [PMID: 30544156 DOI: 10.1093/biolre/ioy257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
The existence of different bacterial communities throughout the female reproductive tract has challenged the traditional view of human fetal development as a sterile event. There is still no consensus on what physiological microbiota exists in the upper reproductive tract of the vast majority of women who are not in periods of infection or pregnancy, and the role of bacteria that colonize the upper reproductive tract in uterine diseases or pregnancy outcomes is not well established. Despite published studies and advances in uterine microbiome sequencing, some study aspects-such as study design, sampling method, DNA extraction, sequencing methods, downstream analysis, and assignment of taxa-have not yet been improved and standardized. It is time to further investigate the uterine microbiome to increase our understanding of the female reproductive tract and to develop more personalized reproductive therapies, highlighting the potential importance of using microbiological assessment in infertile patients.
Collapse
Affiliation(s)
- Iolanda Garcia-Grau
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain.,Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Carlos Simon
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain.,Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Igenomix S.L, Valencia, Spain.,Department of Obstetrics and Gynecology, School of Medicine, Stanford University, California, USA
| | - Inmaculada Moreno
- Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Igenomix S.L, Valencia, Spain
| |
Collapse
|
18
|
Rouanet A, Bolca S, Bru A, Claes I, Cvejic H, Girgis H, Harper A, Lavergne SN, Mathys S, Pane M, Pot B, Shortt C, Alkema W, Bezulowsky C, Blanquet-Diot S, Chassard C, Claus SP, Hadida B, Hemmingsen C, Jeune C, Lindman B, Midzi G, Mogna L, Movitz C, Nasir N, Oberreither M, Seegers JFML, Sterkman L, Valo A, Vieville F, Cordaillat-Simmons M. Live Biotherapeutic Products, A Road Map for Safety Assessment. Front Med (Lausanne) 2020; 7:237. [PMID: 32637416 PMCID: PMC7319051 DOI: 10.3389/fmed.2020.00237] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Recent developments in the understanding of the relationship between the microbiota and its host have provided evidence regarding the therapeutic potential of selected microorganisms to prevent or treat disease. According to Directive 2001/83/EC, in the European Union (EU), any product intended to prevent or treat disease is defined as a medicinal product and requires a marketing authorization by competent authorities prior to commercialization. Even if the pharmaceutical regulatory framework is harmonized at the EU level, obtaining marketing authorisations for medicinal products remains very challenging for Live Biotherapeutic Products (LBPs). Compared to other medicinal products currently on the market, safety assessment of LBPs represents a real challenge because of their specific characteristics and mode of action. Indeed, LBPs are not intended to reach the systemic circulation targeting distant organs, tissues, or receptors, but rather exert their effect through direct interactions with the complex native microbiota and/or the modulation of complex host-microbiota relation, indirectly leading to distant biological effects within the host. Hence, developers must rely on a thorough risk analysis, and pharmaceutical guidelines for other biological products should be taken into account in order to design relevant non-clinical and clinical development programmes. Here we aim at providing a roadmap for a risk analysis that takes into account the specificities of LBPs. We describe the different risks associated with these products and their interactions with the patient. Then, from that risk assessment, we propose solutions to design non-clinical programmes and First in Human (FIH) early clinical trials appropriate to assess LBP safety.
Collapse
Affiliation(s)
- Alice Rouanet
- Pharmabiotic Research Institute - PRI, Narbonne, France
| | | | | | | | - Helene Cvejic
- Accelsiors CRO, Budapest, Hungary
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Ashton Harper
- Medical Affairs Department, ADM Protexin Ltd., Somerset, United Kingdom
| | | | | | | | - Bruno Pot
- Science Department, Yakult Europe BV, Almere, Netherlands
- Research Group of Industrial Microbiology and Food Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Colette Shortt
- Johnson & Johnson Consumer Services EAME Ltd., Foundation Park, Maidenhead, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Garikai Midzi
- Medical Affairs Department, ADM Protexin Ltd., Somerset, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wilkinson EM, Łaniewski P, Herbst-Kralovetz MM, Brotman RM. Personal and Clinical Vaginal Lubricants: Impact on Local Vaginal Microenvironment and Implications for Epithelial Cell Host Response and Barrier Function. J Infect Dis 2020; 220:2009-2018. [PMID: 31539059 DOI: 10.1093/infdis/jiz412] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/08/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND A majority of US women report past use of vaginal lubricants to enhance the ease and comfort of intimate sexual activities. Lubricants are also administered frequently in clinical practice. We sought to investigate if hyperosmolar lubricants are toxic to the vaginal mucosal epithelia. METHODS We tested a panel of commercially available lubricants across a range of osmolalities in human monolayer vaginal epithelial cell (VEC) culture and a robust 3-dimensional (3-D) VEC model. The impact of each lubricant on cellular morphology, cytotoxicity, barrier targets, and the induction of inflammatory mediators was examined. Conceptrol, containing nonoxynol-9, was used as a cytotoxicity control. RESULTS We observed a loss of intercellular connections, and condensation of chromatin, with increasing lubricant osmolality. EZ Jelly, K-Y Jelly, Astroglide, and Conceptrol induced cytotoxicity in both models at 24 hours. There was a strong positive correlation (r = 0.7326) between lubricant osmolality and cytotoxicity in monolayer VECs, and cell viability was reduced in VECs exposed to all the lubricants tested for 24 hours, except McKesson. Notably, select lubricants altered cell viability, barrier targets, and inflammatory mediators in 3-D VECs. CONCLUSIONS These findings indicate that hyperosmolar lubricants alter VEC morphology and are selectively cytotoxic, inflammatory, and barrier disrupting in the 3-D VEC model.
Collapse
Affiliation(s)
- Ellen M Wilkinson
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona.,Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Baltimore
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona.,Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Baltimore
| | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
20
|
Randis TM, Ratner AJ. Gardnerella and Prevotella: Co-conspirators in the Pathogenesis of Bacterial Vaginosis. J Infect Dis 2020; 220:1085-1088. [PMID: 30715397 DOI: 10.1093/infdis/jiy705] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Tara M Randis
- Departments of Pediatrics and Microbiology, Division of Pediatric Infectious Diseases, New York University School of Medicine, New York
| | - Adam J Ratner
- Departments of Pediatrics and Microbiology, Division of Pediatric Infectious Diseases, New York University School of Medicine, New York
| |
Collapse
|
21
|
Morrill S, Gilbert NM, Lewis AL. Gardnerella vaginalis as a Cause of Bacterial Vaginosis: Appraisal of the Evidence From in vivo Models. Front Cell Infect Microbiol 2020; 10:168. [PMID: 32391287 PMCID: PMC7193744 DOI: 10.3389/fcimb.2020.00168] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Koch's postulates dictate the use of experimental models to illustrate features of human disease and provide evidence for a singular organism as the cause. The underlying cause(s) of bacterial vaginosis (BV) has been debated in the literature for over half a century. In 1955, it was first reported that a bacterium now known as Gardnerella vaginalis may be the cause of a condition (BV) resulting in higher vaginal pH, thin discharge, a fishy odor, and the presence of epithelial cells covered in bacteria. Here we review contemporary and historical studies on BV with a focus on reports of experimental infections in human or animal models using Gardnerella vaginalis. We evaluate experimental evidence for the hypothesis that G. vaginalis is sufficient to trigger clinical features of BV or relevant health complications associated with the condition. Additionally, we evaluate in vivo models of co-infection employing G. vaginalis together with other bacterial species to investigate evidence for the hypothesis that G. vaginalis may encourage colonization or virulence of other potential pathogens. Together, these studies paint a complex picture in which G. vaginalis has both direct and indirect roles in the features, health complications, and co-infections associated with BV. We briefly review the current taxonomic landscape and genetic diversity pertinent to Gardnerella and note the limitations of sequence-based studies using different marker genes and priming sites. Although much more study is needed to refine our understanding of how BV develops and persists within the human host, applications of the experimental aspects of Koch's postulates have provided an important glimpse into some of the causal relationships that may govern this condition in vivo.
Collapse
Affiliation(s)
- Sydney Morrill
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Nicole M Gilbert
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda L Lewis
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome and gynaecological cancer development, prevention and therapy. Nat Rev Urol 2020; 17:232-250. [PMID: 32071434 PMCID: PMC9977514 DOI: 10.1038/s41585-020-0286-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 12/16/2022]
Abstract
The female reproductive tract (FRT), similar to other mucosal sites, harbours a site-specific microbiome, which has an essential role in maintaining health and homeostasis. In the majority of women of reproductive age, the microbiota of the lower FRT (vagina and cervix) microenvironment is dominated by Lactobacillus species, which benefit the host through symbiotic relationships. By contrast, the upper FRT (uterus, Fallopian tubes and ovaries) might be sterile in healthy individuals or contain a low-biomass microbiome with a diverse mixture of microorganisms. When dysbiosis occurs, altered immune and metabolic signalling can affect hallmarks of cancer, including chronic inflammation, epithelial barrier breach, changes in cellular proliferation and apoptosis, genome instability, angiogenesis and metabolic dysregulation. These pathophysiological changes might lead to gynaecological cancer. Emerging evidence shows that genital dysbiosis and/or specific bacteria might have an active role in the development and/or progression and metastasis of gynaecological malignancies, such as cervical, endometrial and ovarian cancers, through direct and indirect mechanisms, including modulation of oestrogen metabolism. Cancer therapies might also alter microbiota at sites throughout the body. Reciprocally, microbiota composition can influence the efficacy and toxic effects of cancer therapies, as well as quality of life following cancer treatment. Modulation of the microbiome via probiotics or microbiota transplant might prove useful in improving responsiveness to cancer treatment and quality of life. Elucidating these complex host-microbiome interactions, including the crosstalk between distal and local sites, will translate into interventions for prevention, therapeutic efficacy and toxic effects to enhance health outcomes for women with gynaecological cancers.
Collapse
Affiliation(s)
- Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Zehra Esra Ilhan
- Department of Obstetrics and Gynecology, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA,Department of Obstetrics and Gynecology, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, USA,UA Cancer Center, University of Arizona, Phoenix/Tucson, AZ, USA,Correspondence:
| |
Collapse
|
23
|
Analysis of Host Responses to Neisseria gonorrhoeae Using a Human Three-Dimensional Endometrial Epithelial Cell Model. Methods Mol Biol 2020; 1997:347-361. [PMID: 31119633 DOI: 10.1007/978-1-4939-9496-0_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Neisseria gonorrhoeae infections have been associated with complications including chronic endometritis and pelvic inflammatory disease. Robust in vitro models of the female reproductive tract are urgently needed to better understand the biological mechanisms leading to these pathophysiological changes. Our human three-dimensional (3D) endometrial epithelial cell (EEC) model, which is generated using the HEC-1A cell line and rotating wall vessel (RWV) bioreactor technology, replicates several hallmarks of endometrial tissue in vivo. Studying the interactions of N. gonorrhoeae with the host using this newly characterized human 3D EEC model allows for the investigation of unique mechanisms of gonococcal pathogenesis in the upper female reproductive tract. In this chapter, we describe methodologies that can be used to investigate the interactions of N. gonorrhoeae with the human 3D endometrial epithelium. Protocols for generating the human 3D EEC model using the RWV technology and assessing the host response (including morphological/ultrastructural changes to the epithelial cells; cytokine/chemokine secretion or gene expression changes) following infection with N. gonorrhoeae are presented.
Collapse
|
24
|
Scott NA, Mann ER. Regulation of mononuclear phagocyte function by the microbiota at mucosal sites. Immunology 2020; 159:26-38. [PMID: 31777068 PMCID: PMC6904663 DOI: 10.1111/imm.13155] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Mucosal tissues contain distinct microbial communities that differ drastically depending on the barrier site, and as such, mucosal immune responses have evolved to be tailored specifically for their location. Whether protective or regulatory immune responses against invading pathogens or the commensal microbiota occur is controlled by local mononuclear phagocytes (MNPs). Comprising macrophages and dendritic cells (DCs), the functions of these cells are highly dependent on the local environment. For example, the intestine contains the greatest bacterial load of any site in the body, and hence, intestinal MNPs are hyporesponsive to bacterial stimulation. This is thought to be one of the major mechanisms by which harmful immune responses directed against the trillions of harmless bacteria that line the gut lumen are avoided. Regulation of MNP function by the microbiota has been characterized in the most depth in the intestine but there are several mucosal sites that also contain their own microbiota. In this review, we present an overview of how MNP function is regulated by the microbiota at mucosal sites, highlighting recent novel pathways by which this occurs in the intestine, and new studies elucidating these interactions at mucosal sites that have been characterized in less depth, including the urogenital tract.
Collapse
Affiliation(s)
- Nicholas A. Scott
- Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Manchester Collaborative Centre for Inflammation ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Manchester Collaborative Centre for Inflammation ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
25
|
Ilhan ZE, Łaniewski P, Thomas N, Roe DJ, Chase DM, Herbst-Kralovetz MM. Deciphering the complex interplay between microbiota, HPV, inflammation and cancer through cervicovaginal metabolic profiling. EBioMedicine 2019; 44:675-690. [PMID: 31027917 PMCID: PMC6604110 DOI: 10.1016/j.ebiom.2019.04.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dysbiotic vaginal microbiota have been implicated as contributors to persistent HPV-mediated cervical carcinogenesis and genital inflammation with mechanisms unknown. Given that cancer is a metabolic disease, metabolic profiling of the cervicovaginal microenvironment has the potential to reveal the functional interplay between the host and microbes in HPV persistence and progression to cancer. METHODS Our study design included HPV-negative/positive controls, women with low-grade and high-grade cervical dysplasia, or cervical cancer (n = 78). Metabolic fingerprints were profiled using liquid chromatography-mass spectrometry. Vaginal microbiota and genital inflammation were analysed using 16S rRNA gene sequencing and immunoassays, respectively. We used an integrative bioinformatic pipeline to reveal host and microbe contributions to the metabolome and to comprehensively assess the link between HPV, microbiota, inflammation and cervical disease. FINDINGS Metabolic analysis yielded 475 metabolites with known identities. Unique metabolic fingerprints discriminated patient groups from healthy controls. Three-hydroxybutyrate, eicosenoate, and oleate/vaccenate discriminated (with excellent capacity) between cancer patients versus the healthy participants. Sphingolipids, plasmalogens, and linoleate positively correlated with genital inflammation. Non-Lactobacillus dominant communities, particularly in high-grade dysplasia, perturbed amino acid and nucleotide metabolisms. Adenosine and cytosine correlated positively with Lactobacillus abundance and negatively with genital inflammation. Glycochenodeoxycholate and carnitine metabolisms connected non-Lactobacillus dominance to genital inflammation. INTERPRETATION Cervicovaginal metabolic profiles were driven by cancer followed by genital inflammation, HPV infection, and vaginal microbiota. This study provides evidence for metabolite-driven complex host-microbe interactions as hallmarks of cervical cancer with future translational potential. FUND: Flinn Foundation (#1974), Banner Foundation Obstetrics/Gynecology, and NIH NCI (P30-CA023074).
Collapse
Affiliation(s)
- Zehra Esra Ilhan
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| | - Paweł Łaniewski
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Natalie Thomas
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA
| | - Denise J Roe
- UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA
| | - Dana M Chase
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA; US Oncology, Phoenix, AZ 85016, USA; Maricopa Integrated Health Systems, Phoenix, AZ 85008, USA; Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Melissa M Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, 85004, USA; UA Cancer Center, University of Arizona, Tucson/Phoenix, AZ 85004, USA.
| |
Collapse
|
26
|
Diop K, Dufour JC, Levasseur A, Fenollar F. Exhaustive repertoire of human vaginal microbiota. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.humic.2018.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Takada K, Komine-Aizawa S, Kuramochi T, Ito S, Trinh QD, Pham NTK, Sasano M, Hayakawa S. Lactobacillus crispatus accelerates re-epithelialization in vaginal epithelial cell line MS74. Am J Reprod Immunol 2018; 80:e13027. [PMID: 30144195 DOI: 10.1111/aji.13027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
PROBLEM The functions of vaginal lactobacilli in susceptibility to infectious diseases as regards epithelial barrier integrity and wound healing remain incompletely understood. METHOD OF STUDY Lactobacillus crispatus, one of the most common Lactobacillus species in the vagina and among the most protective against sexually transmitted infections, was cocultured with an immortalized human vaginal epithelial cell line (MS74), and a scratch assay was performed to evaluate re-epithelialization. The concentration of vascular endothelial growth factor A (VEGF) was measured using enzyme-linked immunosorbent assay (ELISA). An immunofluorescence assay was performed to locate the expression of VEGF and VEGF receptor (VEGFR) 1 and 2. The effects of the bacterial supernatant of L. crispatus were also evaluated. RESULTS Lactobacillus crispatus significantly accelerated re-epithelialization of MS74 cells, accompanied by an increase in VEGF concentration. In contrast, heat-killed L. crispatus did not show this effect. The bacterial supernatant of L. crispatus also induced re-epithelialization. The immunoreactivity of VEGF was higher at the scratched edge, whereas VEGFR1 and 2 stained site-independently. Recombinant VEGF induced cell migration in a dose-dependent manner. The bacterial supernatant of L. crispatus also significantly accelerated re-epithelialization in MS74 cells and increased the concentration of VEGF in the culture 24 hours after the scratch. CONCLUSION These results may enhance our knowledge of the importance of L. crispatus in the healing of damaged vaginal epithelium and protection against the consequent risk of pathogenic infections, such as human immunodeficiency virus (HIV), and improve our understanding of vaginal epithelial barrier integrity maintenance by this bacterium.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | - Shun Ito
- Nihon University School of Medicine, Tokyo, Japan
| | - Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mari Sasano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
28
|
Wilkinson EM, Ilhan ZE, Herbst-Kralovetz MM. Microbiota–drug interactions: Impact on metabolism and efficacy of therapeutics. Maturitas 2018; 112:53-63. [DOI: 10.1016/j.maturitas.2018.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
|
29
|
Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine Microbiota: Residents, Tourists, or Invaders? Front Immunol 2018; 9:208. [PMID: 29552006 PMCID: PMC5840171 DOI: 10.3389/fimmu.2018.00208] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/24/2018] [Indexed: 12/14/2022] Open
Abstract
Uterine microbiota have been reported under various conditions and populations; however, it is uncertain the level to which these bacteria are residents that maintain homeostasis, tourists that are readily eliminated or invaders that contribute to human disease. This review provides a historical timeline and summarizes the current status of this topic with the aim of promoting research priorities and discussion on this controversial topic. Discrepancies exist in current reports of uterine microbiota and are critically reviewed and examined. Established and putative routes of bacterial seeding of the human uterus and interactions with distal mucosal sites are discussed. Based upon the current literature, we highlight the need for additional robust clinical and translational studies in this area. In addition, we discuss the necessity for investigating host–microbiota interactions and the physiologic and functional impact of these microbiota on the local endometrial microenvironment as these mechanisms may influence poor reproductive, obstetric, and gynecologic health outcomes and sequelae.
Collapse
Affiliation(s)
- James M Baker
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Dana M Chase
- Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine at St. Joseph's Hospital, Phoenix, AZ, United States
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States.,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
30
|
Corynebacterium fournierii sp. nov., isolated from the female genital tract of a patient with bacterial vaginosis. Antonie van Leeuwenhoek 2018; 111:1165-1174. [PMID: 29383461 DOI: 10.1007/s10482-018-1022-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
Strain Marseille-P2948T, a novel Gram-positive, catalase-positive bacterium was isolated from a vaginal sample of a patient with bacterial vaginosis. It was characterised using the taxonogenomic approach. Phylogenetic analysis revealed that the 16S rRNA and the rpoB genes exhibit 98.7 and 93.4% similarity, respectively, with those of Corynebacterium ureicelerivorans strain IMMIB RIV-301T. Biochemical tests of strain Marseille-P2948T gave results that were similar to those of other validly named Corynebacterium species, whereas chemotaxonomic tests showed the presence of C16:0, C18:1n9, C18:0, and C18:2n6 in the fatty acid profile. The draft genome of strain Marseille-P2948T is 2,383,644 bp long in size with a G+C content of 65.03%. Of the 2210 predicted genes, 2147 are protein-coding genes and 63 are RNAs. Based on phenotypic, phylogenic and genomic results, it was concluded that the isolate represents a new species within the genus Corynebacterium. The name Corynebacterium fournierii sp. nov. is proposed and the type strain is Marseille-P2948T (= CSUR P2948 = DSM 103271).
Collapse
|
31
|
Jung HS, Ehlers MM, Lombaard H, Redelinghuys MJ, Kock MM. Etiology of bacterial vaginosis and polymicrobial biofilm formation. Crit Rev Microbiol 2017; 43:651-667. [PMID: 28358585 DOI: 10.1080/1040841x.2017.1291579] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microorganisms in nature rarely exist in a planktonic form, but in the form of biofilms. Biofilms have been identified as the cause of many chronic and persistent infections and have been implicated in the etiology of bacterial vaginosis (BV). Bacterial vaginosis is the most common form of vaginal infection in women of reproductive age. Similar to other biofilm infections, BV biofilms protect the BV-related bacteria against antibiotics and cause recurrent BV. In this review, an overview of BV-related bacteria, conceptual models and the stages involved in the polymicrobial BV biofilm formation will be discussed.
Collapse
Affiliation(s)
- Hyun-Sul Jung
- a Department of Medical Microbiology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Marthie M Ehlers
- a Department of Medical Microbiology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa.,b Department of Medical Microbiology, Tshwane Academic Division , National Health Laboratory Service (NHLS) , Pretoria , South Africa
| | - Hennie Lombaard
- c Gauteng Department of Health, Rahima Moosa Mother and Child Hospital, Wits Obstetrics and Gynaecology Clinical Research Division, Department of Obstetrics and Gynaecology , University of Witwatersrand , Johannesburg , South Africa
| | - Mathys J Redelinghuys
- a Department of Medical Microbiology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa
| | - Marleen M Kock
- a Department of Medical Microbiology, Faculty of Health Sciences , University of Pretoria , Pretoria , South Africa.,b Department of Medical Microbiology, Tshwane Academic Division , National Health Laboratory Service (NHLS) , Pretoria , South Africa
| |
Collapse
|
32
|
Human Three-Dimensional Endometrial Epithelial Cell Model To Study Host Interactions with Vaginal Bacteria and Neisseria gonorrhoeae. Infect Immun 2017; 85:IAI.01049-16. [PMID: 28052997 DOI: 10.1128/iai.01049-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
Colonization of the endometrium by pathogenic bacteria ascending from the lower female reproductive tract (FRT) is associated with many gynecologic and obstetric health complications. To study these host-microbe interactions in vitro, we developed a human three-dimensional (3-D) endometrial epithelial cell (EEC) model using the HEC-1A cell line and the rotating wall vessel (RWV) bioreactor technology. Our model, composed of 3-D EEC aggregates, recapitulates several functional/structural characteristics of human endometrial epithelial tissue, including cell differentiation, the presence of junctional complexes/desmosomes and microvilli, and the production of membrane-associated mucins and Toll-like receptors (TLRs). TLR function was evaluated by exposing the EEC aggregates to viral and bacterial products. Treatment with poly(I·C) and flagellin but not with synthetic lipoprotein (fibroblast-stimulating lipoprotein 1 [FSL-1]) or lipopolysaccharide (LPS) significantly induced proinflammatory mediators in a dose-dependent manner. To simulate ascending infection, we infected EEC aggregates with commensal and pathogenic bacteria: Lactobacillus crispatus, Gardnerella vaginalis, and Neisseria gonorrhoeae All vaginal microbiota and N. gonorrhoeae efficiently colonized the 3-D surface, localizing to crevices of the EEC model and interacting with multiple adjacent cells simultaneously. However, only infection with pathogenic N. gonorrhoeae and not infection with the other bacteria tested significantly induced proinflammatory mediators and significant ultrastructural changes to the host cells. The latter observation is consistent with clinical findings and illustrated the functional specificity of our system. Additionally, we highlighted the utility of the 3-D EEC model for the study of the pathogenesis of N. gonorrhoeae using a well-characterized ΔpilT mutant. Overall, this study demonstrates that the human 3-D EEC model is a robust tool for studying host-microbe interactions and bacterial pathogenesis in the upper FRT.
Collapse
|
33
|
Gardner JK, Herbst-Kralovetz MM. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions. Viruses 2016; 8:v8110304. [PMID: 27834891 PMCID: PMC5127018 DOI: 10.3390/v8110304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022] Open
Abstract
The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D) human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV) bioreactor was designed by the National Aeronautics and Space Administration (NASA) to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue) have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies.
Collapse
Affiliation(s)
- Jameson K Gardner
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| |
Collapse
|