1
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. J Virol 2024; 98:e0068924. [PMID: 39315814 PMCID: PMC11494878 DOI: 10.1128/jvi.00689-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes using a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify the infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately 1 month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers 6 months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. We provide an experimental protocol (dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others. IMPORTANCE We describe a new approach that can rapidly measure how the antibodies in human serum inhibit infection by many different influenza strains. This new approach is useful for understanding how viral evolution affects antibody immunity. We apply the approach to study the effect of repeated influenza vaccination.
Collapse
MESH Headings
- Humans
- High-Throughput Nucleotide Sequencing/methods
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Neutralization Tests/methods
- Vaccination
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Adult
- Female
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, Washington, USA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
2
|
Edler P, Schwab LSU, Aban M, Wille M, Spirason N, Deng YM, Carlock MA, Ross TM, Juno JA, Rockman S, Wheatley AK, Kent SJ, Barr IG, Price DJ, Koutsakos M. Immune imprinting in early life shapes cross-reactivity to influenza B virus haemagglutinin. Nat Microbiol 2024; 9:2073-2083. [PMID: 38890491 DOI: 10.1038/s41564-024-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Influenza exposures early in life are believed to shape future susceptibility to influenza infections by imprinting immunological biases that affect cross-reactivity to future influenza viruses. However, direct serological evidence linked to susceptibility is limited. Here we analysed haemagglutination-inhibition titres in 1,451 cross-sectional samples collected between 1992 and 2020, from individuals born between 1917 and 2008, against influenza B virus (IBV) isolates from 1940 to 2021. We included testing of 'future' isolates that circulated after sample collection. We show that immunological biases are conferred by early life IBV infection and result in lineage-specific cross-reactivity of a birth cohort towards future IBV isolates. This translates into differential estimates of susceptibility between birth cohorts towards the B/Yamagata and B/Victoria lineages, predicting lineage-specific birth-cohort distributions of observed medically attended IBV infections. Our data suggest that immunological measurements of imprinting could be important in modelling and predicting virus epidemiology.
Collapse
Affiliation(s)
- Peta Edler
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lara S U Schwab
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Malet Aban
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie Spirason
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Centre, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Centre, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Vaccine Product Development, CSL Seqirus Ltd, Parkville, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ian G Barr
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J Price
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Kawai A, Hirata H, Tokunoh N, Ono C, Matsuura Y, Hirai T, Yoshioka Y. Adjuvant-free parenterally injectable vaccine platform that harnesses previously induced IgG as an antigen delivery carrier. Biochem Biophys Res Commun 2024; 711:149919. [PMID: 38608435 DOI: 10.1016/j.bbrc.2024.149919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Subunit vaccines are among the most useful vaccine modalities; however, their low immunogenicity necessitates the addition of adjuvants. Although adjuvants improve immune responses induced by vaccines, they often cause adverse reactions. To address this, we developed an adjuvant-free subunit vaccine platform that uses pre-existing antibodies generated from past infections or vaccinations as carriers for the delivery of vaccine antigens. Although we have confirmed the usefulness of this platform for nasal vaccines, its suitability as a parenterally injectable vaccine remains uncertain. Here, we verified the potential of our vaccine platform to harness pre-existing immunity for parenterally injectable vaccines. We generated RBD-HA by combining the receptor binding domain (RBD) derived from SARS-CoV-2 as a vaccine antigen with hemagglutinin (HA) sourced from influenza viruses to serve as the carrier protein. We revealed that subcutaneous vaccination with RBD-HA effectively triggered strong RBD-specific IgG responses in mice previously infected with the influenza A virus, even in the absence of adjuvants, and conferred protection to mice against SARS-CoV-2 upon challenge. Furthermore, we revealed that vaccination with RBD-HA did not induce an inflammatory response, such as inflammatory cytokine production, swelling, and recruitment of inflammatory immune cells, whereas conventional vaccines combined with adjuvants induced these adverse reactions. In addition, we demonstrated the remarkable versatility of this platform using a vaccine antigen derived from Streptococcus pneumoniae. These findings indicate the potential of this adjuvant-free vaccine platform to enhance the efficacy of parenterally injectable subunit vaccines and reduce adverse reactions.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Haruki Hirata
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nagisa Tokunoh
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Loes AN, Tarabi RAL, Huddleston J, Touyon L, Wong SS, Cheng SMS, Leung NHL, Hannon WW, Bedford T, Cobey S, Cowling BJ, Bloom JD. High-throughput sequencing-based neutralization assay reveals how repeated vaccinations impact titers to recent human H1N1 influenza strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584176. [PMID: 38496577 PMCID: PMC10942427 DOI: 10.1101/2024.03.08.584176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The high genetic diversity of influenza viruses means that traditional serological assays have too low throughput to measure serum antibody neutralization titers against all relevant strains. To overcome this challenge, we have developed a sequencing-based neutralization assay that simultaneously measures titers against many viral strains using small serum volumes via a workflow similar to traditional neutralization assays. The key innovation is to incorporate unique nucleotide barcodes into the hemagglutinin (HA) genomic segment, and then pool viruses with numerous different barcoded HA variants and quantify infectivity of all of them simultaneously using next-generation sequencing. With this approach, a single researcher performed the equivalent of 2,880 traditional neutralization assays (80 serum samples against 36 viral strains) in approximately one month. We applied the sequencing-based assay to quantify the impact of influenza vaccination on neutralization titers against recent human H1N1 strains for individuals who had or had not also received a vaccine in the previous year. We found that the viral strain specificities of the neutralizing antibodies elicited by vaccination vary among individuals, and that vaccination induced a smaller increase in titers for individuals who had also received a vaccine the previous year-although the titers six months after vaccination were similar in individuals with and without the previous-year vaccination. We also identified a subset of individuals with low titers to a subclade of recent H1N1 even after vaccination. This study demonstrates the utility of high-throughput sequencing-based neutralization assays that enable titers to be simultaneously measured against many different viral strains. We provide a detailed experimental protocol (DOI: https://dx.doi.org/10.17504/protocols.io.kqdg3xdmpg25/v1) and a computational pipeline (https://github.com/jbloomlab/seqneut-pipeline) for the sequencing-based neutralization assays to facilitate the use of this method by others.
Collapse
Affiliation(s)
- Andrea N Loes
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Rosario Araceli L Tarabi
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - John Huddleston
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lisa Touyon
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Sook San Wong
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Samuel M S Cheng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - William W Hannon
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Jesse D Bloom
- Howard Hughes Medical Institute, Seattle, WA
- Division of Basic Sciences, Computational Biology Program, and Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
5
|
Lu X, Liu F, Tzeng WP, York IA, Tumpey TM, Levine MZ. Antibody-Mediated Suppression Regulates the Humoral Immune Response to Influenza Vaccination in Humans. J Infect Dis 2024; 229:310-321. [PMID: 37981659 DOI: 10.1093/infdis/jiad493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Preexisting immunity, including memory B cells and preexisting antibodies, can modulate antibody responses to influenza in vivo to antigenically related antigens. We investigated whether preexisting hemagglutination inhibition (HAI) antibodies targeting the K163 epitope on the hemagglutinin (K163 antibodies) could affect antibody responses following vaccination with A/California/07/2009-like A(H1N1)pdm09 influenza viruses in humans. METHODS Pre- and postvaccination sera collected from 300 adults (birth years, 1961-1998) in 6 seasons (2010-2016) were analyzed by HAI assays with 2 reverse genetics viruses and A(H1N1) viruses circulated from 1977 to 2018. Antibody adsorption assays were used to verify the preexisting K163 antibody-mediated suppression effect. RESULTS Preexisting K163 antibody titers ≥80 affected HAI antibody responses following influenza vaccination containing A/California/07/2009-like antigens. At high K163 antibody concentrations (HAI antibody titers ≥160), all HAI antibody responses were suppressed. However, at moderate K163 antibody concentrations (HAI antibody titer, 80), only K163 epitope-specific antibody responses were suppressed, and novel HAI antibody responses targeting the non-K163 epitopes were induced by vaccination. Novel antibodies targeting non-K163 epitopes cross-reacted with newly emerging A(H1N1)pdm09 strains with a K163Q mutation rather than historic 1977-2007 A(H1N1) viruses. CONCLUSIONS K163 antibody-mediated suppression shapes antibody responses to A(H1N1)pdm09 vaccination. Understanding how preexisting antibodies suppress and redirect vaccine-induced antibody responses is of great importance to improve vaccine effectiveness.
Collapse
Affiliation(s)
- Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Wen-Ping Tzeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
6
|
Kawai A, Tokunoh N, Kawahara E, Tamiya S, Okamura S, Ono C, Anindita J, Tanaka H, Akita H, Yamasaki S, Kunisawa J, Okamoto T, Matsuura Y, Hirai T, Yoshioka Y. Intranasal immunization with an RBD-hemagglutinin fusion protein harnesses preexisting immunity to enhance antigen-specific responses. J Clin Invest 2023; 133:e166827. [PMID: 38038133 PMCID: PMC10688985 DOI: 10.1172/jci166827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Intranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness. We made RBD-HA, a fusion of the receptor-binding domain (RBD) of spike derived from SARS-CoV-2 as a vaccine target with HA derived from influenza A virus (IAV) as a carrier protein. Intranasal immunization of previously IAV-infected mice with RBD-HA without an adjuvant elicited robust production of RBD-specific systemic IgG and mucosal IgA by utilizing both HA-specific preexisting IgG and CD4+ T cells. Consequently, the mice were efficiently protected from SARS-CoV-2 infection. Additionally, we demonstrated the high versatility of this intranasal vaccine platform by assessing various vaccine antigens and preexisting immunity associated with a variety of infectious diseases. The results of this study suggest the promising potential of this intranasal vaccine platform to address problems associated with intranasal vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nagisa Tokunoh
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Eigo Kawahara
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Tamiya
- Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Shinya Okamura
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research and
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jessica Anindita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroki Tanaka
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hidetaka Akita
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Sho Yamasaki
- Center for Infectious Disease Education and Research and
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, and
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Toru Okamoto
- Center for Infectious Disease Education and Research and
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research and
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, and
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research and
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, and
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Radwan J, Kohi C, Ejsmond M, Paganini J, Pontarotti P. Integration of the immune memory into the pathogen-driven MHC polymorphism hypothesis. HLA 2023; 102:653-659. [PMID: 37688391 DOI: 10.1111/tan.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/01/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
Major histocompatibility complex (MHC) genes (referred to as human leukocyte antigen or HLA in humans) are a key component of vertebrate immune systems, coding for proteins which present antigens to T-cells. These genes are outstanding in their degree of polymorphism, with important consequences for human and animal health. The polymorphism is thought to arise from selection pressures imposed by pathogens on MHC allomorphs, which differ in their antigen-binding capacity. However, the existing theory has not considered MHC selection in relation to the formation of immune memory. In this paper, we argue that this omission limits our understanding of the evolution of MHC polymorphism and its role in disease. We review recent evidence that has emerged from the massive research effort related to the SARS-CoV-2 pandemics, and which provides new evidence for the role of MHC in shaping immune memory. We then discuss why the inclusion of immune memory within the existing theory may have non-trivial consequence for our understanding of the evolution of MHC polymorphism. Finally, we will argue that neglecting immune memory hinders our interpretation of empirical findings, and postulate that future studies focusing on pathogen-driven MHC selection would benefit from stratifying the available data according to the history of infection (and vaccination, if relevant).
Collapse
Affiliation(s)
- Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Chirine Kohi
- MEPHI, Aix Marseille Université, Marseille, France
| | - Maciej Ejsmond
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | | | - Pierre Pontarotti
- MEPHI, Aix Marseille Université, Marseille, France
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
- SNC 5039 CNRS, Marseille, France
| |
Collapse
|
8
|
Huang CQ, Vishwanath S, Carnell GW, Chan ACY, Heeney JL. Immune imprinting and next-generation coronavirus vaccines. Nat Microbiol 2023; 8:1971-1985. [PMID: 37932355 DOI: 10.1038/s41564-023-01505-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023]
Abstract
Vaccines based on historical virus isolates provide limited protection from continuously evolving RNA viruses, such as influenza viruses or coronaviruses, which occasionally spill over between animals and humans. Despite repeated booster immunizations, population-wide declines in the neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have occurred. This has been compared to seasonal influenza vaccinations in humans, where the breadth of immune responses induced by repeat exposures to antigenically distinct influenza viruses is confounded by pre-existing immunity-a mechanism known as imprinting. Since its emergence, SARS-CoV-2 has evolved in a population with partial immunity, acquired by infection, vaccination or both. Here we critically examine the evidence for and against immune imprinting in host humoral responses to SARS-CoV-2 and its implications for coronavirus disease 2019 (COVID-19) booster vaccine programmes.
Collapse
Affiliation(s)
- Chloe Qingzhou Huang
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sneha Vishwanath
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - George William Carnell
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Chun Yue Chan
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Malosh RE, McGovern I, Monto AS. Influenza During the 2010-2020 Decade in the United States: Seasonal Outbreaks and Vaccine Interventions. Clin Infect Dis 2022; 76:540-549. [PMID: 36219562 PMCID: PMC9619714 DOI: 10.1093/cid/ciac653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/14/2022] Open
Abstract
The 10 years between the last influenza pandemic and start of the severe acute respiratory syndrome coronavirus 2 pandemic have been marked by great advances in our ability to follow influenza occurrence and determine vaccine effectiveness (VE), largely based on widespread use of the polymerase chain reaction assay. We examine the results, focusing mainly on data from the United States and inactivated vaccines. Surveillance has expanded, resulting in increased ability to characterize circulating viruses and their impact. The surveillance has often confirmed previous observations on timing of outbreaks and age groups affected, which can now be examined in greater detail. Selection of strains for vaccines is now based on enhanced viral characterization using immunologic, virologic, and computational techniques not previously available. Vaccine coverage has been largely stable, but VE has remained modest and, in some years, very low. We discuss ways to improve VE based on existing technology while we work toward supraseasonal vaccines.
Collapse
Affiliation(s)
| | | | - Arnold S Monto
- Correspondence: A. S. Monto, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029 ()
| |
Collapse
|
10
|
Lu X, Guo Z, Li ZN, Holiday C, Liu F, Jefferson S, Gross FL, Tzeng WP, Kumar A, York IA, Uyeki TM, Tumpey T, Stevens J, Levine MZ. Low quality antibody responses in critically ill patients hospitalized with pandemic influenza A(H1N1)pdm09 virus infection. Sci Rep 2022; 12:14971. [PMID: 36056075 PMCID: PMC9440095 DOI: 10.1038/s41598-022-18977-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Although some adults infected with influenza 2009 A(H1N1)pdm09 viruses mounted high hemagglutination inhibition (HAI) antibody response, they still suffered from severe disease, or even death. Here, we analyzed antibody profiles in patients (n = 31, 17-65 years) admitted to intensive care units (ICUs) with lung failure and invasive mechanical ventilation use due to infection with A(H1N1)pdm09 viruses during 2009-2011. We performed a comprehensive analysis of the quality and quantity of antibody responses using HAI, virus neutralization, biolayer interferometry, enzyme-linked-lectin and enzyme-linked immunosorbent assays. At time of the ICU admission, 45% (14/31) of the patients had HAI antibody titers ≥ 80 in the first serum (S1), most (13/14) exhibited narrowly-focused HAI and/or anti-HA-head binding antibodies targeting single epitopes in or around the receptor binding site. In contrast, 42% (13/31) of the patients with HAI titers ≤ 10 in S1 had non-neutralizing anti-HA-stem antibodies against A(H1N1)pdm09 viruses. Only 19% (6/31) of the patients showed HA-specific IgG1-dominant antibody responses. Three of 5 fatal patients possessed highly focused cross-type HAI antibodies targeting the (K130 + Q223)-epitopes with extremely low avidity. Our findings suggest that narrowly-focused low-quality antibody responses targeting specific HA-epitopes may have contributed to severe infection of the lower respiratory tract.
Collapse
Affiliation(s)
- Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Zhu-Nan Li
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Crystal Holiday
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Stacie Jefferson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - F Liaini Gross
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Wen-Ping Tzeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Anand Kumar
- Section of Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Terrence Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Min Z Levine
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, MS H17-5, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
11
|
Ryt-Hansen P, Nielsen HG, Sørensen SS, Larsen I, Kristensen CS, Larsen LE. The role of gilts in transmission dynamics of swine influenza virus and impacts of vaccination strategies and quarantine management. Porcine Health Manag 2022; 8:19. [PMID: 35513878 PMCID: PMC9069814 DOI: 10.1186/s40813-022-00261-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Along with an expanding global swine production, the commercial housing and management of swine herds, provide an optimal environment for constant circulation of swine influenza virus (swIAV), thereby challenging farmers and veterinarian in determining optimal control measures. The aim of this study was to investigate the role of gilts in the swIAV transmission dynamics, and to evaluate the impact of different control measures such as quarantine and gilt vaccination. METHODS The study was conducted as a cross-sectional study in ten Danish sow herds, including five swIAV vaccinated and five unvaccinated herds. Blood- and nasal swab samples of gilts, first parity sows and their piglets were collected at different stages in the production system (quarantine in/out, mating, gestation and farrowing) and analyzed for the presence of swIAV and swIAV antibodies. Associations between the detection of swIAV, seroprevalence, antibody levels, sow and gilt vaccination strategy and quarantine biosecurity were thereafter investigated to identify possible risk factors for swIAV introductions and persistence within the herds. RESULTS Nine of the ten herds of the study had swIAV circulation and swIAV was detected in the quarantine, mating- and farrowing unit. The prevalence of seropositive gilts and first parity sows was significantly higher in the vaccinated herds, but swIAV was still present in nasal swabs from both gilts, first parity sows and piglets in these herds. Quarantine gilt vaccination and all-in/all-out management resulted in a significant reduction of swIAV positive gilts at the end of the quarantine period. CONCLUSION The results underline that herd vaccination and/or quarantine facilities are crucial to avoid swIAV introductions into sow herds.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | - Henriette Guldberg Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | - Simon Smed Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | - Inge Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| | | | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Vieira MC, Donato CM, Arevalo P, Rimmelzwaan GF, Wood T, Lopez L, Huang QS, Dhanasekaran V, Koelle K, Cobey S. Lineage-specific protection and immune imprinting shape the age distributions of influenza B cases. Nat Commun 2021; 12:4313. [PMID: 34262041 PMCID: PMC8280188 DOI: 10.1038/s41467-021-24566-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
How a history of influenza virus infections contributes to protection is not fully understood, but such protection might explain the contrasting age distributions of cases of the two lineages of influenza B, B/Victoria and B/Yamagata. Fitting a statistical model to those distributions using surveillance data from New Zealand, we found they could be explained by historical changes in lineage frequencies combined with cross-protection between strains of the same lineage. We found additional protection against B/Yamagata in people for whom it was their first influenza B infection, similar to the immune imprinting observed in influenza A. While the data were not informative about B/Victoria imprinting, B/Yamagata imprinting could explain the fewer B/Yamagata than B/Victoria cases in cohorts born in the 1990s and the bimodal age distribution of B/Yamagata cases. Longitudinal studies can test if these forms of protection inferred from historical data extend to more recent strains and other populations.
Collapse
Affiliation(s)
- Marcos C Vieira
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| | - Celeste M Donato
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arevalo
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Timothy Wood
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Liza Lopez
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Q Sue Huang
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Vijaykrishna Dhanasekaran
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Schnaack OH, Nourmohammad A. Optimal evolutionary decision-making to store immune memory. eLife 2021; 10:61346. [PMID: 33908347 PMCID: PMC8116052 DOI: 10.7554/elife.61346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
The adaptive immune system provides a diverse set of molecules that can mount specific responses against a multitude of pathogens. Memory is a key feature of adaptive immunity, which allows organisms to respond more readily upon re-infections. However, differentiation of memory cells is still one of the least understood cell fate decisions. Here, we introduce a mathematical framework to characterize optimal strategies to store memory to maximize the utility of immune response over an organism's lifetime. We show that memory production should be actively regulated to balance between affinity and cross-reactivity of immune receptors for an effective protection against evolving pathogens. Moreover, we predict that specificity of memory should depend on the organism's lifespan, and shorter lived organisms with fewer pathogenic encounters should store more cross-reactive memory. Our framework provides a baseline to gauge the efficacy of immune memory in light of an organism's coevolutionary history with pathogens.
Collapse
Affiliation(s)
- Oskar H Schnaack
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany.,Department of Physics, University of Washington, Seattle, United States
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany.,Department of Physics, University of Washington, Seattle, United States.,Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
14
|
Creanga A, Gillespie RA, Fisher BE, Andrews SF, Lederhofer J, Yap C, Hatch L, Stephens T, Tsybovsky Y, Crank MC, Ledgerwood JE, McDermott AB, Mascola JR, Graham BS, Kanekiyo M. A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nat Commun 2021; 12:1722. [PMID: 33741916 PMCID: PMC7979723 DOI: 10.1038/s41467-021-21954-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) have been developed as potential countermeasures for seasonal and pandemic influenza. Deep characterization of these bnAbs and polyclonal sera provides pivotal understanding for influenza immunity and informs effective vaccine design. However, conventional virus neutralization assays require high-containment laboratories and are difficult to standardize and roboticize. Here, we build a panel of engineered influenza viruses carrying a reporter gene to replace an essential viral gene, and develop an assay using the panel for in-depth profiling of neutralizing antibodies. Replication of these viruses is restricted to cells expressing the missing viral gene, allowing it to be manipulated in a biosafety level 2 environment. We generate the neutralization profile of 24 bnAbs using a 55-virus panel encompassing the near-complete diversity of human H1N1 and H3N2, as well as pandemic subtype viruses. Our system offers in-depth profiling of influenza immunity, including the antibodies against the hemagglutinin stem, a major target of universal influenza vaccines.
Collapse
Affiliation(s)
- Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liam Hatch
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Monto AS, Fukuda K. Lessons From Influenza Pandemics of the Last 100 Years. Clin Infect Dis 2021; 70:951-957. [PMID: 31420670 PMCID: PMC7314237 DOI: 10.1093/cid/ciz803] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023] Open
Abstract
Seasonal influenza is an annual occurrence, but it is the threat of pandemics that produces universal concern. Recurring reports of avian influenza viruses severely affecting humans have served as constant reminders of the potential for another pandemic. Review of features of the 1918 influenza pandemic and subsequent ones helps in identifying areas where attention in planning is critical. Key among such issues are likely risk groups and which interventions to employ. Past pandemics have repeatedly underscored, for example, the vulnerability of groups such as pregnant women and taught other lessons valuable for future preparedness. While a fundamental difficulty in planning for the next pandemic remains their unpredictability and infrequency, this uncertainty can be mitigated, in part, by optimizing the handling of the much more predictable occurrence of seasonal influenza. Improvements in antivirals and novel vaccine formulations are critical in lessening the impact of both pandemic and seasonal influenza.
Collapse
Affiliation(s)
- Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Keiji Fukuda
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam
| |
Collapse
|
16
|
Serologically-Based Evaluation of Cross-Protection Antibody Responses among Different A(H1N1) Influenza Strains. Vaccines (Basel) 2020; 8:vaccines8040656. [PMID: 33167390 PMCID: PMC7712556 DOI: 10.3390/vaccines8040656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 12/29/2022] Open
Abstract
After the influenza H1N1 pandemic of 2009, the seasonal A/Brisbane/59/2007 strain was replaced by the A/California/07/2009 strain for the influenza virus vaccine composition. After several seasons with no indications on the occurrence of antigenic drift, A/Michigan/45/2015 was chosen as the H1N1 vaccine strain for the 2017/2018 season. Since the immune response to influenza is shaped by the history of exposure to antigenically similar strains, the potential cross-protection between seasonal human influenza vaccine strains and the emerging pandemic strains was investigated. Human serum samples were tested by hemagglutination inhibition and single radial hemolysis assays against A/Brisbane/59/2007, A/California/07/2009, and A/Michigan/45/2015 strains. Strong cross-reactions between A/California/07/2009 and A/Michigan/45/2015 strains were observed in 2009/2010, most likely induced by the start of the 2009 pandemic, and the subsequent post-pandemic seasons from 2010/2011 onward when A/California/07/2009 became the predominant strain. In the 2014/2015 season, population immunity against A/California/07/2009 and A/Michigan/45/2015 strains increased again, associated with strong cross-reactions. Whereas hemagglutination inhibition assay has a higher sensitivity for detection of new seasonal drift, the single radial hemolysis assay is an excellent tool for determining the presence of pre-existing immunity, allowing a potential prediction on the booster potential of influenza vaccines against newly emerging drifted strains.
Collapse
|
17
|
Abstract
Seasonal influenza vaccines prevent influenza-related illnesses, hospitalizations, and deaths. However, these vaccines are not as effective as other viral vaccines, and there is clearly room for improvement. Here, we review the history of seasonal influenza vaccines, describe challenges associated with producing influenza vaccine antigens, and discuss the inherent difficulties of updating influenza vaccine strains each influenza season. We argue that seasonal influenza vaccines can be dramatically improved by modernizing antigen production processes and developing models that are better at predicting viral evolution. Resources should be specifically dedicated to improving seasonal influenza vaccines while developing entirely new vaccine platforms.
Collapse
Affiliation(s)
- Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| | - Elizabeth M Anderson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , ,
| |
Collapse
|
18
|
The impact of candidate influenza virus and egg-based manufacture on vaccine effectiveness: Literature review and expert consensus. Vaccine 2020; 38:6047-6056. [PMID: 32600916 DOI: 10.1016/j.vaccine.2020.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Influenza is associated with significant morbidity and mortality worldwide. Whilst vaccination is key for the prevention of influenza infection, there are many factors which may contribute to reduced vaccine effectiveness, including antigenic evolution via both antigenic drift and egg-adaptations. Due to the currently dissociated and indirect evidence supporting both the occurrence of these two phenomena in the egg-based manufacturing process and their effects on vaccine effectiveness, this topic remains a subject of debate. OBJECTIVE To review the evidence and level of agreement in expert opinion supporting a mechanistic basis for reduced vaccine effectiveness due to egg-based manufacturing, using an expert consensus-based methodology and literature reviews. METHODS Ten European influenza specialists were recruited to the expert panel. The overall research question was deconstructed into four component principles, which were examined in series using a novel, online, two-stage assessment of proportional group awareness and consensus. The first stage independently generated a list of supporting references for each component principle via literature searches and expert assessments. In the second stage, a summary of each reference was circulated amongst the experts, who rated their agreement that each reference supported the component principle on a 5-point Likert scale. Finally, the panel were asked if they agreed that, as a whole, the evidence supported a mechanistic basis for reduced vaccine effectiveness due to egg-based manufacturing. RESULTS All component principles were reported to have a majority of strong or very strong supporting evidence (70-90%). CONCLUSIONS On reviewing the evidence for all component principles, experts unanimously agreed that there is a mechanistic basis for reduced vaccine effectiveness resulting from candidate influenza virus variation due to egg-based manufacturing, particularly in the influenza A/H3N2 strain. Experts pointed to surveillance, candidate vaccine virus selection and manufacturing stages involving eggs as the most likely to impact vaccine effectiveness.
Collapse
|
19
|
Ketklao S, Boonarkart C, Phakaratsakul S, Auewarakul P, Suptawiwat O. Responses to the Sb epitope contributed to antigenic drift of the influenza A 2009 H1N1 virus. Arch Virol 2020; 165:2503-2512. [PMID: 32783078 PMCID: PMC7418886 DOI: 10.1007/s00705-020-04758-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/27/2020] [Indexed: 12/01/2022]
Abstract
Immunodominance is recognized as a key factor in the antigenic drift of seasonal influenza viruses. In the immunodominance model, each individual in a population predominantly responds to a single epitope among the five antigenic epitopes of the viral hemagglutinin (HA), driving escape mutations one at a time, and sequential mutations in multiple individuals who respond to different epitopes eventually generate a drifted strain with mutations in epitopes that are targeted by a majority of the population. A focused antibody response to the Sa epitope in people born between 1965 and 1979 was believed to contribute to a mutation at HA residue 163 and the first antigenic drift of the 2009 pandemic influenza A H1N1 virus. A serine-to-threonine mutation at HA residue 185 in the Sb epitope emerged in 2010 even before the 163 mutation. We show here that a large fraction of the population in 2010-2011 had responses to the Sb epitope, as shown by 47% of tested sera having altered titers to the S185T mutant. Responses to the Sb epitope showed an age-specific trend similar to that found for the response to Sa epitope in these subjects. Together, the focused responses to Sa and Sb epitopes may have driven the first antigenic drift of the 2009 pandemic H1N1 virus.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Antigenic Variation
- Dogs
- Epitope Mapping
- Evolution, Molecular
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Mutant Proteins/genetics
- Mutant Proteins/immunology
- RNA, Viral/genetics
- Selection, Genetic
- Sequence Analysis, DNA
- Virus Cultivation
Collapse
Affiliation(s)
- S Ketklao
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - C Boonarkart
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Phakaratsakul
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - P Auewarakul
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| |
Collapse
|
20
|
Arevalo P, McLean HQ, Belongia EA, Cobey S. Earliest infections predict the age distribution of seasonal influenza A cases. eLife 2020; 9:e50060. [PMID: 32633233 PMCID: PMC7367686 DOI: 10.7554/elife.50060] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
Seasonal variation in the age distribution of influenza A cases suggests that factors other than age shape susceptibility to medically attended infection. We ask whether these differences can be partly explained by protection conferred by childhood influenza infection, which has lasting impacts on immune responses to influenza and protection against new influenza A subtypes (phenomena known as original antigenic sin and immune imprinting). Fitting a statistical model to data from studies of influenza vaccine effectiveness (VE), we find that primary infection appears to reduce the risk of medically attended infection with that subtype throughout life. This effect is stronger for H1N1 compared to H3N2. Additionally, we find evidence that VE varies with both age and birth year, suggesting that VE is sensitive to early exposures. Our findings may improve estimates of age-specific risk and VE in similarly vaccinated populations and thus improve forecasting and vaccination strategies to combat seasonal influenza.
Collapse
Affiliation(s)
- Philip Arevalo
- Department of Ecology and Evolutionary Biology, University of ChicagoChicagoUnited States
| | - Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research InstituteMarshfieldUnited States
| | - Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research InstituteMarshfieldUnited States
| | - Sarah Cobey
- Department of Ecology and Evolutionary Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
21
|
Saad-Roy CM, McDermott AB, Grenfell BT. Dynamic Perspectives on the Search for a Universal Influenza Vaccine. J Infect Dis 2020; 219:S46-S56. [PMID: 30715467 DOI: 10.1093/infdis/jiz044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A universal influenza vaccine (UIV) could considerably alleviate the public health burden of both seasonal and pandemic influenza. Although significant progress has been achieved in clarifying basic immunology and virology relating to UIV, several important questions relating to the dynamics of infection, immunity, and pathogen evolution remain unsolved. In this study, we review these gaps, which span integrative levels, from cellular to global and timescales from molecular events to decades. We argue that they can be best addressed by a tight integration of empirical (laboratory, epidemiological) research and theory and suggest fruitful areas for this synthesis. In particular, quantifying natural and vaccinal limitations on viral transmission are central to this effort.
Collapse
Affiliation(s)
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, New Jersey.,Woodrow Wilson School of Public and International Affairs, Princeton University, New Jersey.,Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Zost SJ, Wu NC, Hensley SE, Wilson IA. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J Infect Dis 2020; 219:S38-S45. [PMID: 30535315 DOI: 10.1093/infdis/jiy696] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza viruses routinely acquire mutations in their hemagglutinin (HA) and neuraminidase (NA) glycoproteins that abrogate binding of pre-existing antibodies in a process known as antigenic drift. Most human antibodies against HA and NA are directed against epitopes that are hypervariable and not against epitopes that are conserved among different influenza virus strains. Universal influenza vaccines are currently being developed to elicit protective responses against functionally conserved sites on influenza proteins where viral escape mutations can result in large fitness costs [1]. Universal vaccine targets include the highly conserved HA stem domain [2-12], the less conserved HA receptor-binding site (RBS) [13-16], as well as conserved sites on NA [17-19]. One central challenge of universal vaccine efforts is to steer human antibody responses away from immunodominant, variable epitopes and towards subdominant, functionally conserved sites. Overcoming this challenge will require further understanding of the structural basis of broadly neutralizing HA and NA antibody binding epitopes and factors that influence immunodominance hierarchies of human antibody responses.
Collapse
Affiliation(s)
- Seth J Zost
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
23
|
Monto AS, Malosh RE, Evans R, Lauring AS, Gordon A, Thompson MG, Fry AM, Flannery B, Ohmit SE, Petrie JG, Martin ET. Data resource profile: Household Influenza Vaccine Evaluation (HIVE) Study. Int J Epidemiol 2020; 48:1040-1040g. [PMID: 31038700 PMCID: PMC6693804 DOI: 10.1093/ije/dyz086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ryan E Malosh
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Richard Evans
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mark G Thompson
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brendan Flannery
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suzanne E Ohmit
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | |
Collapse
|
24
|
Zelner J, Petrie JG, Trangucci R, Martin ET, Monto AS. Effects of Sequential Influenza A(H1N1)pdm09 Vaccination on Antibody Waning. J Infect Dis 2020; 220:12-19. [PMID: 30722022 DOI: 10.1093/infdis/jiz055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Antibody waning following influenza vaccination has been repeatedly evaluated, but waning has rarely been studied in the context of longitudinal vaccination history. METHODS We developed a Bayesian hierarchical model to assess the effects of sequential influenza A(H1N1)pdm09 vaccination on hemagglutination inhibition antibody boosting and waning in a longitudinal cohort of older children and adults from 2011 to 2016, a period during which the A(H1N1)pdm09 vaccine strain did not change. RESULTS Antibody measurements from 2057 serum specimens longitudinally collected from 388 individuals were included. Average postvaccination antibody titers were similar across successive vaccinations, but the rate of antibody waning increased with each vaccination. The antibody half-life was estimated to decrease from 32 months (95% credible interval [CrI], 22-61 months) following first vaccination to 9 months (95% CrI, 7-15 months) following a seventh vaccination. CONCLUSIONS Although the rate of antibody waning increased with successive vaccination, the estimated antibody half-life was longer than a typical influenza season even among the most highly vaccinated. This supports current recommendations for vaccination at the earliest opportunity. Patterns of boosting and waning might be different with the influenza A(H3N2) subtype, which evolves more rapidly and has been most associated with reduced effectiveness following repeat vaccination.
Collapse
Affiliation(s)
- Jon Zelner
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor.,Department of Center for Social Epidemiology and Population Health, University of Michigan School of Public Health, Ann Arbor
| | - Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Rob Trangucci
- Department of Statistics, University of Michigan, Ann Arbor
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
25
|
Ryt-Hansen P, Pedersen AG, Larsen I, Kristensen CS, Krog JS, Wacheck S, Larsen LE. Substantial Antigenic Drift in the Hemagglutinin Protein of Swine Influenza A Viruses. Viruses 2020; 12:E248. [PMID: 32102230 PMCID: PMC7077184 DOI: 10.3390/v12020248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
The degree of antigenic drift in swine influenza A viruses (swIAV) has historically been regarded as minimal compared to that of human influenza A virus strains. However, as surveillance activities on swIAV have increased, more isolates have been characterized, revealing a high level of genetic and antigenic differences even within the same swIAV lineage. The objective of this study was to investigate the level of genetic drift in one enzootically infected swine herd over one year. Nasal swabs were collected monthly from sows (n = 4) and piglets (n = 40) in the farrowing unit, and from weaners (n = 20) in the nursery. Virus from 1-4 animals were sequenced per month. Analyses of the sequences revealed that the hemagglutinin (HA) gene was the main target for genetic drift with a substitution rate of 7.6 × 10-3 substitutions/site/year and evidence of positive selection. The majority of the mutations occurred in the globular head of the HA protein and in antigenic sites. The phylogenetic tree of the HA sequences displayed a pectinate typology, where only a single lineage persists and forms the ancestor for subsequent lineages. This was most likely caused by repeated selection of a single immune-escape variant, which subsequently became the founder of the next wave of infections.
Collapse
Affiliation(s)
- Pia Ryt-Hansen
- National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, DK-2800 Kongens Lyngby, Denmark
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark; (I.L.); (L.E.L.)
| | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kemitorvet Building 208, DK-2800 Kongens Lyngby, Denmark;
| | - Inge Larsen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark; (I.L.); (L.E.L.)
| | | | - Jesper Schak Krog
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark;
| | - Silke Wacheck
- Ceva Santé Animale 10 Avenue de la Ballastière, 33500 Libourne, France;
| | - Lars Erik Larsen
- Dpt. of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiksberg C, Denmark; (I.L.); (L.E.L.)
| |
Collapse
|
26
|
Huang KYA, Huang YC, Chiu CH, Tsao KC, Lin TY. Impaired Vaccine-Induced Antibody Response Against Clade 6B H1N1 Viruses in Individuals Before Viral Emergence. Open Forum Infect Dis 2020; 7:ofz513. [PMID: 31950072 PMCID: PMC6954487 DOI: 10.1093/ofid/ofz513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Clade 6B H1N1 pdm09 influenza viruses cause substantial morbidity and mortality worldwide. Human antibody profiles elicited upon vaccination against the clade 6B virus are largely unclear before viral emergence. METHODS Healthy volunteers, including children aged 3-8 years, adolescents aged 9-17 years, and adults, were enrolled before the clade 6B H1N1 outbreak and received the 2013-2014 inactivated influenza vaccine. We determined antibody responses before and after vaccination. Vaccine-induced plasmablast-derived antibodies were tested against H1N1 pdm09 reference and clade 6B viruses. RESULTS The majority of the subjects generated robust hemagglutination inhibition and neutralizing antibody responses upon vaccination across the different age groups. Nevertheless, a subset of young adults preferentially produced antibodies that failed to neutralize clade 6B viruses that emerged and circulated in 2014-2016. The hemagglutinin K163Q change at the Sa antigenic site, one of the substitutions that define clade 6B viruses, was responsible for resistance to neutralization by both postvaccination sera and vaccine-induced plasmablast-derived antibodies. CONCLUSIONS Vaccine-induced antibody immunity is compromised by the antigenic change of H1N1 pdm09 virus in a subset of adults, and this may warrant the incorporation of human serology in the antigenic characterization of virus and vaccine strain selection.
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
27
|
Cobey S, Gouma S, Parkhouse K, Chambers BS, Ertl HC, Schmader KE, Halpin RA, Lin X, Stockwell TB, Das SR, Landon E, Tesic V, Youngster I, Pinsky BA, Wentworth DE, Hensley SE, Grad YH. Poor Immunogenicity, Not Vaccine Strain Egg Adaptation, May Explain the Low H3N2 Influenza Vaccine Effectiveness in 2012-2013. Clin Infect Dis 2019; 67:327-333. [PMID: 29471464 PMCID: PMC6051447 DOI: 10.1093/cid/ciy097] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background Influenza vaccination aims to prevent infection by influenza virus and reduce associated morbidity and mortality; however, vaccine effectiveness (VE) can be modest, especially for subtype A(H3N2). Low VE has been attributed to mismatches between the vaccine and circulating influenza strains and to the vaccine’s elicitation of protective immunity in only a subset of the population. The low H3N2 VE in the 2012–2013 season was attributed to egg-adaptive mutations that created antigenic mismatch between the actual vaccine strain (IVR-165) and both the intended vaccine strain (A/Victoria/361/2011) and the predominant circulating strains (clades 3C.2 and 3C.3). Methods We investigated the basis of low VE in 2012–2013 by determining whether vaccinated and unvaccinated individuals were infected by different viral strains and by assessing the serologic responses to IVR-165, A/Victoria/361/2011, and 3C.2 and 3C.3 strains in an adult cohort before and after vaccination. Results We found no significant genetic differences between the strains that infected vaccinated and unvaccinated individuals. Vaccination increased titers to A/Victoria/361/2011 and 3C.2 and 3C.3 representative strains as much as to IVR-165. These results are consistent with the hypothesis that vaccination boosted cross-reactive immune responses instead of specific responses against unique vaccine epitopes. Only approximately one-third of the cohort achieved a ≥4-fold increase in titer. Conclusions In contrast to analyses based on ferret studies, low H3N2 VE in 2012–2013 in adults does not appear to be due to egg adaptation of the vaccine strain. Instead, low VE might have been caused by low vaccine immunogenicity in a subset of the population.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology & Evolution, University of Chicago, Illinois
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Benjamin S Chambers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Hildegund C Ertl
- Division of Geriatrics, Duke University Medical Center, North Carolina.,Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, North Carolina
| | - Kenneth E Schmader
- Division of Geriatrics, Duke University Medical Center, North Carolina.,Geriatric Research, Education, and Clinical Center, Durham VA Medical Center, North Carolina
| | - Rebecca A Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Xudong Lin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Timothy B Stockwell
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Suman R Das
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Emily Landon
- Department of Medicine, University of Chicago, Illinois
| | - Vera Tesic
- Department of Pathology, University of Chicago, Illinois
| | - Ilan Youngster
- Division of Pediatrics and the Center for Microbiome Research, Assaf Harofeh Medical Center, Tel Aviv University, Israel.,Division of Infectious Diseases, Boston Children's Hospital, Massachusetts
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, California.,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, California
| | - David E Wentworth
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Khurana S, Hahn M, Coyle EM, King LR, Lin TL, Treanor J, Sant A, Golding H. Repeat vaccination reduces antibody affinity maturation across different influenza vaccine platforms in humans. Nat Commun 2019; 10:3338. [PMID: 31350391 PMCID: PMC6659679 DOI: 10.1038/s41467-019-11296-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/26/2019] [Indexed: 01/09/2023] Open
Abstract
Several vaccines are approved in the United States for seasonal influenza vaccination every year. Here we compare the impact of repeat influenza vaccination on hemagglutination inhibition (HI) titers, antibody binding and affinity maturation to individual hemagglutinin (HA) domains, HA1 and HA2, across vaccine platforms. Fold change in HI and antibody binding to HA1 trends higher for H1N1pdm09 and H3N2 but not against B strains in groups vaccinated with FluBlok compared with FluCelvax and Fluzone. Antibody-affinity maturation occurs against HA1 domain of H1N1pdm09, H3N2 and B following vaccination with all vaccine platforms, but not against H1N1pdm09-HA2. Importantly, prior year vaccination of subjects receiving repeat vaccinations demonstrated reduced antibody-affinity maturation to HA1 of all three influenza virus strains irrespective of the vaccine platform. This study identifies an important impact of repeat vaccination on antibody-affinity maturation following vaccination, which may contribute to lower vaccine effectiveness of seasonal influenza vaccines in humans Here, Khurana et al. report the results of a phase 4 clinical trial with three FDA approved influenza vaccines and show that repeat influenza vaccination results in reduced antibody affinity maturation to hemagglutinin domain 1 irrespective of vaccine platform.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA.
| | - Megan Hahn
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Lisa R King
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - Tsai-Lien Lin
- Division of Biostatistics, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| | - John Treanor
- University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Andrea Sant
- University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, 20993, USA
| |
Collapse
|
29
|
Auladell M, Jia X, Hensen L, Chua B, Fox A, Nguyen THO, Doherty PC, Kedzierska K. Recalling the Future: Immunological Memory Toward Unpredictable Influenza Viruses. Front Immunol 2019; 10:1400. [PMID: 31312199 PMCID: PMC6614380 DOI: 10.3389/fimmu.2019.01400] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/03/2019] [Indexed: 01/09/2023] Open
Abstract
Persistent and durable immunological memory forms the basis of any successful vaccination protocol. Generation of pre-existing memory B cell and T cell pools is thus the key for maintaining protective immunity to seasonal, pandemic and avian influenza viruses. Long-lived antibody secreting cells (ASCs) are responsible for maintaining antibody levels in peripheral blood. Generated with CD4+ T help after naïve B cell precursors encounter their cognate antigen, the linked processes of differentiation (including Ig class switching) and proliferation also give rise to memory B cells, which then can change rapidly to ASC status after subsequent influenza encounters. Given that influenza viruses evolve rapidly as a consequence of antibody-driven mutational change (antigenic drift), the current influenza vaccines need to be reformulated frequently and annual vaccination is recommended. Without that process of regular renewal, they provide little protection against “drifted” (particularly H3N2) variants and are mainly ineffective when a novel pandemic (2009 A/H1N1 “swine” flu) strain suddenly emerges. Such limitation of antibody-mediated protection might be circumvented, at least in part, by adding a novel vaccine component that promotes cross-reactive CD8+ T cells specific for conserved viral peptides, presented by widely distributed HLA types. Such “memory” cytotoxic T lymphocytes (CTLs) can rapidly be recalled to CTL effector status. Here, we review how B cells and follicular T cells are elicited following influenza vaccination and how they survive into a long-term memory. We describe how CD8+ CTL memory is established following influenza virus infection, and how a robust CTL recall response can lead to more rapid virus elimination by destroying virus-infected cells, and recovery. Exploiting long-term, cross-reactive CTL against the continuously evolving and unpredictable influenza viruses provides a possible mechanism for preventing a disastrous pandemic comparable to the 1918-1919 H1N1 “Spanish flu,” which killed more than 50 million people worldwide.
Collapse
Affiliation(s)
- Maria Auladell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Brendon Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Annette Fox
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting Hemagglutinin: Approaches for Broad Protection against the Influenza A Virus. Viruses 2019; 11:v11050405. [PMID: 31052339 PMCID: PMC6563292 DOI: 10.3390/v11050405] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cong Xu
- Research Center of Agricultural of Dongguan City, Dongguan 523086, China.
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - George Dacai Liu
- Firstline Biopharmaceuticals Corporation, 12,050 167th PL NE, Redmond, WA 98052, USA.
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Skowronski DM, Chambers C, Sabaiduc S, De Serres G, Winter AL, Dickinson JA, Gubbay JB, Drews SJ, Martineau C, Charest H, Krajden M, Bastien N, Li Y. Beyond Antigenic Match: Possible Agent-Host and Immuno-epidemiological Influences on Influenza Vaccine Effectiveness During the 2015-2016 Season in Canada. J Infect Dis 2019; 216:1487-1500. [PMID: 29029166 PMCID: PMC5853508 DOI: 10.1093/infdis/jix526] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Vaccine effectiveness (VE) estimates for 2015-2016 seasonal influenza vaccine are reported from Canada's Sentinel Practitioner Surveillance Network (SPSN). This season was characterized by a delayed 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) epidemic and concurrent influenza B(Victoria) virus activity. Potential influences on VE beyond antigenic match are explored, including viral genomic variation, birth cohort effects, prior vaccination, and epidemic period. Methods VE was estimated by a test-negative design comparing the adjusted odds ratio for influenza test positivity among vaccinated compared to unvaccinated participants. Vaccine-virus relatedness was assessed by gene sequencing and hemagglutination inhibition assay. Results Analyses included 596 influenza A(H1N1)pdm09 and 305 B(Victoria) cases and 926 test-negative controls. A(H1N1)pdm09 viruses were considered antigenically related to vaccine (unchanged since 2009), despite phylogenetic clustering within emerging clade 6B.1. The adjusted VE against A(H1N1)pdm09 was 43% (95% confidence interval [CI], 25%-57%). Compared to other age groups, VE against A(H1N1)pdm09 was lower for adults born during 1957-1976 (25%; 95% CI, -16%-51%). The VE against A(H1N1)pdm09 was also lower for participants consecutively vaccinated during both the current and prior seasons (41%; 95% CI, 18%-57%) than for those vaccinated during the current season only (75%; 95% CI, 45%-88%), and the VE among participants presenting in March-April 2016 (19%; 95% CI, -15%-44%) was lower than that among those presenting during January-February 2016 (62%; 95% CI, 44%-74%). The adjusted VE for B(Victoria) viruses was 54% (95% CI, 32%-68%), despite lineage-level mismatch to B(Yamagata) vaccine. The further variation in VE as observed for A(H1N1)pdm09 was not observed for B(Victoria). Conclusions Influenza VE findings may require consideration of other agent-host and immuno-epidemiologic influences on vaccine performance beyond antigenic match, including viral genomic variation, repeat vaccination, birth (immunological) cohort effects, and potential within-season waning of vaccine protection.
Collapse
Affiliation(s)
- Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver.,University of British Columbia, Vancouver
| | | | | | - Gaston De Serres
- Institut National de Santé Publique du Québec.,Laval University, Québec.,Centre Hospitalier Universitaire de Québec, Québec
| | | | | | | | - Steven J Drews
- Alberta Provincial Laboratory, Edmonton.,University of Alberta, Edmonton
| | | | | | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver.,University of British Columbia, Vancouver
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Yan Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Influenza remains a major cause of morbidity and mortality. The 2017-2018 season was one of the most severe in the past decade. The exact factors determining the severity of a particular influenza season are complex and often poorly understood. RECENT FINDINGS Factors impacting annual influenza severity include characteristics of the specific virus, influenza vaccination, and antiviral use. Although viral virulence factors are important in this context and our knowledge of these is growing, there is a complex interplay between expression of these factors and their impact on a particular patient population. Vaccination has demonstrated efficacy in preventing disease, but vaccination rates remain sub-optimal and vaccine effectiveness can vary significantly between influenza strains and patient populations. Finally, while antiviral treatment is available and has shown benefits, many patients with influenza do not receive treatment. SUMMARY Strides have been made in recent years towards understanding the many factors that contribute to the severity of any particular influenza season. Obvious areas for improvement include improved vaccination rates and antiviral use. Additionally, a more complete understanding of reasons for poor strain and population-specific vaccine effectiveness may help reduce the severity of future influenza seasons.
Collapse
|
33
|
Zhang A, Stacey HD, Mullarkey CE, Miller MS. Original Antigenic Sin: How First Exposure Shapes Lifelong Anti–Influenza Virus Immune Responses. THE JOURNAL OF IMMUNOLOGY 2019; 202:335-340. [DOI: 10.4049/jimmunol.1801149] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
|
34
|
Broadened immunity against influenza by vaccination with computationally designed influenza virus N1 neuraminidase constructs. NPJ Vaccines 2018; 3:55. [PMID: 30510776 PMCID: PMC6265323 DOI: 10.1038/s41541-018-0093-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Split inactivated influenza vaccines remain one of the primary preventative strategies against severe influenza disease in the population. However, current vaccines are only effective against a limited number of matched strains. The need for broadly protective vaccines is acute due to the high mutational rate of influenza viruses and multiple strain variants in circulation at any one time. The neuraminidase (NA) glycoprotein expressed on the influenza virion surface has recently regained recognition as a valuable vaccine candidate. We sought to broaden the protection provided by NA within the N1 subtype by computationally engineering consensus NA sequences. Three NA antigens (NA5200, NA7900, NA9100) were designed based on sequence clusters encompassing three major groupings of NA sequence space; (i) H1N1 2009 pandemic and Swine H1N1, (ii) historical seasonal H1N1 and (iii) H1N1 viruses ranging from 1933 till current times. Recombinant NA proteins were produced as a vaccine and used in a mouse challenge model. The design of the protein dictated the protection provided against the challenge strains. NA5200 protected against H1N1 pdm09, a Swine isolate from 1998 and NIBRG-14 (H5N1). NA7900 protected against all seasonal H1N1 viruses tested, and NA9100 showed the broadest range of protection covering all N1 viruses tested. By passive transfer studies and serological assays, the protection provided by the cluster-based consensus (CBC) designs correlated to antibodies capable of mediating NA inhibition. Importantly, sera raised to the consensus NAs displayed a broader pattern of reactivity and protection than naturally occurring NAs, potentially supporting a predictive approach to antigen design. The high variability of the influenza virus — arising from its high mutation rate and wide range of strains — limits the effectiveness of influenza vaccines unless they induce a broad immune response, a difficult task when relying on natural viral antigens. Here, Xavier Saelens, Thorsten Vogel, Ray Oomen and colleagues applied a ‘cluster-based’ consensus computational approach to design three consensus sequences of the viral protein neuroaminidase (NA) subtype 1 that induce broadly protective immune responses in vaccinated mice. NA9100, a consensus NA sequence based on H1N1 virus strains collected from 1933 to today, was protective against all N1 viruses tested. By using a computational method to integrate multiple sequences of viral proteins into one consensus protein, the researchers provide a strategy that can be applied to develop broadly protective vaccine formulations for influenza virus.
Collapse
|
35
|
Sera from Individuals with Narrowly Focused Influenza Virus Antibodies Rapidly Select Viral Escape Mutations In Ovo. J Virol 2018; 92:JVI.00859-18. [PMID: 30045982 DOI: 10.1128/jvi.00859-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 02/05/2023] Open
Abstract
Influenza viruses use distinct antibody escape mechanisms depending on the overall complexity of the antibody response that is encountered. When grown in the presence of a hemagglutinin (HA) monoclonal antibody, influenza viruses typically acquire a single HA mutation that reduces the binding of that specific monoclonal antibody. In contrast, when confronted with mixtures of HA monoclonal antibodies or polyclonal sera that have antibodies that bind several HA epitopes, influenza viruses acquire mutations that increase HA binding to host cells. Recent data from our laboratory and others suggest that some humans possess antibodies that are narrowly focused on HA epitopes that were present in influenza virus strains that they were likely exposed to in childhood. Here, we completed a series of experiments to determine if humans with narrowly focused HA antibody responses are able to select for influenza virus antigenic escape variants in ovo We identified three human donors that possessed HA antibody responses that were heavily focused on a single HA antigenic site. Sera from all three of these donors selected single HA escape mutations during in ovo passage experiments, similar to what has been previously reported for single monoclonal antibodies. These single HA mutations directly reduced binding of serum antibodies used for selection. We propose that new antigenic variants of influenza viruses might originate in individuals who produce antibodies that are narrowly focused on HA epitopes that were present in viral strains that they encountered in childhood.IMPORTANCE Influenza vaccine strains must be updated frequently since circulating viral strains continuously change in antigenically important epitopes. Our previous studies have demonstrated that some individuals possess antibody responses that are narrowly focused on epitopes that were present in viral strains that they encountered during childhood. Here, we show that influenza viruses rapidly escape this type of polyclonal antibody response when grown in ovo by acquiring single mutations that directly prevent antibody binding. These studies improve our understanding of how influenza viruses evolve when confronted with narrowly focused polyclonal human antibodies.
Collapse
|
36
|
Kucharski AJ, Lessler J, Cummings DAT, Riley S. Timescales of influenza A/H3N2 antibody dynamics. PLoS Biol 2018; 16:e2004974. [PMID: 30125272 PMCID: PMC6117086 DOI: 10.1371/journal.pbio.2004974] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/30/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
Human immunity influences the evolution and impact of influenza strains. Because individuals are infected with multiple influenza strains during their lifetime, and each virus can generate a cross-reactive antibody response, it is challenging to quantify the processes that shape observed immune responses or to reliably detect recent infection from serological samples. Using a Bayesian model of antibody dynamics at multiple timescales, we explain complex cross-reactive antibody landscapes by inferring participants' histories of infection with serological data from cross-sectional and longitudinal studies of influenza A/H3N2 in southern China and Vietnam. We find that individual-level influenza antibody profiles can be explained by a short-lived, broadly cross-reactive response that decays within a year to leave a smaller long-term response acting against a narrower range of strains. We also demonstrate that accounting for dynamic immune responses alongside infection history can provide a more accurate alternative to traditional definitions of seroconversion for the estimation of infection attack rates. Our work provides a general model for quantifying aspects of influenza immunity acting at multiple timescales based on contemporary serological data and suggests a two-armed immune response to influenza infection consistent with competitive dynamics between B cell populations. This approach to analysing multiple timescales for antigenic responses could also be applied to other multistrain pathogens such as dengue and related flaviviruses.
Collapse
Affiliation(s)
- Adam J. Kucharski
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Derek A. T. Cummings
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Flannery B, Smith C, Garten RJ, Levine MZ, Chung JR, Jackson ML, Jackson LA, Monto AS, Martin ET, Belongia EA, McLean HQ, Gaglani M, Murthy K, Zimmerman R, Nowalk MP, Griffin MR, Keipp Talbot H, Treanor JJ, Wentworth DE, Fry AM. Influence of Birth Cohort on Effectiveness of 2015-2016 Influenza Vaccine Against Medically Attended Illness Due to 2009 Pandemic Influenza A(H1N1) Virus in the United States. J Infect Dis 2018; 218:189-196. [PMID: 29361005 PMCID: PMC6009604 DOI: 10.1093/infdis/jix634] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/04/2017] [Indexed: 01/29/2023] Open
Abstract
Background The effectiveness of influenza vaccine during 2015-2016 was reduced in some age groups as compared to that in previous 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09 virus)-predominant seasons. We hypothesized that the age at first exposure to specific influenza A(H1N1) viruses could influence vaccine effectiveness (VE). Methods We estimated the effectiveness of influenza vaccine against polymerase chain reaction-confirmed influenza A(H1N1)pdm09-associated medically attended illness from the 2010-2011 season through the 2015-2016 season, according to patient birth cohort using data from the Influenza Vaccine Effectiveness Network. Birth cohorts were defined a priori on the basis of likely immunologic priming with groups of influenza A(H1N1) viruses that circulated during 1918-2015. VE was calculated as 100 × [1 - adjusted odds ratio] from logistic regression models comparing the odds of vaccination among influenza virus-positive versus influenza test-negative patients. Results A total of 2115 A(H1N1)pdm09 virus-positive and 14 696 influenza virus-negative patients aged ≥6 months were included. VE was 61% (95% confidence interval [CI], 56%-66%) against A(H1N1)pdm09-associated illness during the 2010-2011 through 2013-2014 seasons, compared with 47% (95% CI, 36%-56%) during 2015-2016. During 2015-2016, A(H1N1)pdm09-specific VE was 22% (95% CI, -7%-43%) among adults born during 1958-1979 versus 61% (95% CI, 54%-66%) for all other birth cohorts combined. Conclusion Findings suggest an association between reduced VE against influenza A(H1N1)pdm09-related illness during 2015-2016 and early exposure to specific influenza A(H1N1) viruses.
Collapse
Affiliation(s)
- Brendan Flannery
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Catherine Smith
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rebecca J Garten
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Min Z Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessie R Chung
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael L Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | | | - Huong Q McLean
- Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Manjusha Gaglani
- Baylor Scott and White Health, Texas A&M University Health Science Center College of Medicine, Temple
| | - Kempapura Murthy
- Baylor Scott and White Health, Texas A&M University Health Science Center College of Medicine, Temple
| | | | - Mary Patricia Nowalk
- University of Pittsburgh Schools of Health Sciences, Pennsylvania
- University of Pittsburgh Medical Center, Pennsylvania
| | | | - H Keipp Talbot
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - John J Treanor
- Department of Medicine, University of Rochester Medical Center, New York
| | - David E Wentworth
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alicia M Fry
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
38
|
Garretson TA, Petrie JG, Martin ET, Monto AS, Hensley SE. Identification of human vaccinees that possess antibodies targeting the egg-adapted hemagglutinin receptor binding site of an H1N1 influenza vaccine strain. Vaccine 2018; 36:4095-4101. [PMID: 29861178 DOI: 10.1016/j.vaccine.2018.05.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 10/14/2022]
Abstract
Human influenza viruses passaged in eggs often acquire mutations in the hemagglutinin (HA) receptor binding site (RBS). To determine if egg-adapted H1N1 vaccines commonly elicit antibodies targeting the egg-adapted RBS of HA, we completed hemagglutinin-inhibition assays with A/California/7/2009 HA and egg-adapted A/California/7/2009-X-179A HA using sera collected from 159 humans vaccinated with seasonal influenza vaccines during the 2015-16 season. We found that ∼5% of participants had ≥4-fold higher antibody titers to the egg-adapted viral strain compared to wild type viral strain. We used reverse-genetics to demonstrate that a single egg-adapted HA RBS mutation (Q226R) was responsible for this phenotype.
Collapse
Affiliation(s)
- Tyler A Garretson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
39
|
How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. Nat Commun 2018; 9:1386. [PMID: 29643370 PMCID: PMC5895760 DOI: 10.1038/s41467-018-03665-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 01/19/2023] Open
Abstract
Influenza virus can escape most antibodies with single mutations. However, rare antibodies broadly neutralize many viral strains. It is unclear how easily influenza virus might escape such antibodies if there was strong pressure to do so. Here, we map all single amino-acid mutations that increase resistance to broad antibodies to H1 hemagglutinin. Our approach not only identifies antigenic mutations but also quantifies their effect sizes. All antibodies select mutations, but the effect sizes vary widely. The virus can escape a broad antibody to hemagglutinin's receptor-binding site the same way it escapes narrow strain-specific antibodies: via single mutations with huge effects. In contrast, broad antibodies to hemagglutinin's stalk only select mutations with small effects. Therefore, among the antibodies we examine, breadth is an imperfect indicator of the potential for viral escape via single mutations. Antibodies targeting the H1 hemagglutinin stalk are quantifiably harder to escape than the other antibodies tested here.
Collapse
|
40
|
Epidemiological Studies to Support the Development of Next Generation Influenza Vaccines. Vaccines (Basel) 2018; 6:vaccines6020017. [PMID: 29587412 PMCID: PMC6027373 DOI: 10.3390/vaccines6020017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023] Open
Abstract
The National Institute of Allergy and Infectious Diseases recently published a strategic plan for the development of a universal influenza vaccine. This plan focuses on improving understanding of influenza infection, the development of influenza immunity, and rational design of new vaccines. Epidemiological studies such as prospective, longitudinal cohort studies are essential to the completion of these objectives. In this review, we discuss the contributions of epidemiological studies to our current knowledge of vaccines and correlates of immunity, and how they can contribute to the development and evaluation of the next generation of influenza vaccines. These studies have been critical in monitoring the effectiveness of current influenza vaccines, identifying issues such as low vaccine effectiveness, reduced effectiveness among those who receive repeated vaccination, and issues related to egg adaptation during the manufacturing process. Epidemiological studies have also identified population-level correlates of protection that can inform the design and development of next generation influenza vaccines. Going forward, there is an enduring need for epidemiological studies to continue advancing knowledge of correlates of protection and the development of immunity, to evaluate and monitor the effectiveness of next generation influenza vaccines, and to inform recommendations for their use.
Collapse
|
41
|
Diversity of antigenic mutants of influenza A(H1N1)pdm09 virus escaped from human monoclonal antibodies. Sci Rep 2017; 7:17735. [PMID: 29255273 PMCID: PMC5735164 DOI: 10.1038/s41598-017-17986-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
Since the 2017 Southern Hemisphere influenza season, the A(H1N1)pdm09-like virus recommended for use in the vaccine was changed because human, but not ferret, sera distinguish A(H1N1)pdm09 viruses isolated after 2013 from the previously circulating strains. An amino acid substitution, lysine to glutamine, at position 166 (H3 numbering) in the major antigenic site of HA was reported to be responsible for the antigenic drift. Here, we obtained two anti-A(H1N1)pdm09 HA monoclonal antibodies that failed to neutralize viruses isolated after 2013 from a vaccinated volunteer. Escape mutations were identified at position 129, 165, or 166 in the major antigenic site of HA. Competitive growth of the escape mutant viruses with the wild-type virus revealed that some escape mutants possessing an amino acid substitution other than K166Q showed superior growth to that of the wild-type virus. These results suggest that in addition to the K166Q mutation that occurred in epidemic strains, other HA mutations can confer resistance to antibodies that recognize the K166 area, leading to emergence of epidemic strains with such mutations.
Collapse
|
42
|
Clark AM, DeDiego ML, Anderson CS, Wang J, Yang H, Nogales A, Martinez-Sobrido L, Zand MS, Sangster MY, Topham DJ. Antigenicity of the 2015-2016 seasonal H1N1 human influenza virus HA and NA proteins. PLoS One 2017; 12:e0188267. [PMID: 29145498 PMCID: PMC5690631 DOI: 10.1371/journal.pone.0188267] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/05/2017] [Indexed: 11/18/2022] Open
Abstract
Antigenic drift of the hemagglutinin (HA) and neuraminidase (NA) influenza virus proteins contributes to reduced vaccine efficacy. To analyze antigenic drift in human seasonal H1N1 viruses derived from the 2009 pandemic H1N1 virus (pH1N1-like viruses) accounts for the limited effectiveness (around 40%) of vaccination against pH1N1-like viruses during the 2015-2016 season, nasal washes/swabs collected from adult subjects in the Rochester, NY area, were used to sequence and isolate the circulating viruses. The HA and NA proteins from viruses circulating during the 2015-2016 season encoded eighteen and fourteen amino acid differences, respectively, when compared to A/California/04/2009, a strain circulating at the origin of the 2009 pandemic. The circulating strains belonged to subclade 6B.1, defined by HA amino acid substitutions S101N, S179N, and I233T. Hemagglutination-inhibiting (HAI) and HA-specific neutralizing serum antibody (Ab) titers from around 50% of pH1N1-like virus-infected subjects and immune ferrets were 2-4 fold lower for the 2015-2016 circulating strains compared to the vaccine strain. In addition, using a luminex-based mPlex HA assay, the binding of human sera from subjects infected with pH1N1-like viruses to the HA proteins from circulating and vaccine strains was not identical, strongly suggesting antigenic differences in the HA protein. Additionally, NA inhibition (NAI) Ab titers in human sera from pH1N1-like virus-infected subjects increased after the infection and there were measurable antigenic differences between the NA protein of circulating strains and the vaccine strain using both ferret and human antisera. Despite having been vaccinated, infected subjects exhibited low HAI Ab titers against the vaccine and circulating strains. This suggests that poor responses to the H1N1 component of the vaccine as well as antigenic differences in the HA and NA proteins of currently circulating pH1N1-like viruses could be contributing to risk of infection even after vaccination.
Collapse
Affiliation(s)
- Amelia M. Clark
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Marta L. DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DT); (MD)
| | - Christopher S. Anderson
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jiong Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Martin S. Zand
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (DT); (MD)
| |
Collapse
|
43
|
Puig-Barberà J, Guglieri-López B, Tortajada-Girbés M, López-Labrador FX, Carballido-Fernández M, Mollar-Maseres J, Schwarz-Chavarri G, Baselga-Moreno V, Mira-Iglesias A, Díez-Domingo J. Low influenza vaccine effectiveness and the effect of previous vaccination in preventing admission with A(H1N1)pdm09 or B/Victoria-Lineage in patients 60 years old or older during the 2015/2016 influenza season. Vaccine 2017; 35:7331-7338. [PMID: 29128380 DOI: 10.1016/j.vaccine.2017.10.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/15/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND The 2015/2016 influenza season was characterized in Europe by the circulation of A(H1N1)pdm09 clade 6B.1 and B/Victoria-lineage influenza viruses. The components of the vaccines used in the current and past two seasons in the Valencia region were similar but not well matched to the 2015/2016 dominant influenza-circulating strains. We estimate influenza vaccine effectiveness (IVE) and interference of previous vaccination in preventing admission with A(H1N1)pdm09 or B/Victoria-lineage in this particular season. METHODS The Valencia Hospital Network for the Study of Influenza runs an active surveillance hospital-based study to collect clinical and virological data from consecutive admissions possibly related to influenza. Combined nasopharyngeal and pharyngeal swabs are analyzed by reverse transcription polymerase chain reaction, and the hemagglutinin is sequenced in a sample of positive influenza specimens. Vaccination is ascertained consulting a population vaccine information system. We estimate IVE using a test-negative approach. RESULTS During the 2015-2016 season, we recruited 1049 eligible admissions of patients 60 years or older, and 187 tested positive for influenza. The adjusted IVE in preventing admission with A(H1N1)pdm09 was 20.2%; 95% confidence interval (CI) -21.3-47.5% and -33.2%; 95% CI, -140.1-26.1% in preventing admission with B/Victoria-lineage. The majority of A(H1N1)pdm09 sequenced viruses belonged to the emerging 6B.1 subclade, defined by S162N and I216T mutations in the hemagglutinin protein. When we restricted our analysis to those not vaccinated in the previous year, unadjusted IVE was 84.9% (95% CI 9.9-100.0) overall, 77.9% (-32.7-100.0%) in preventing A(H1N1)pdm09 and 48.8% (-219.5-100.0%) in preventing B/Yamagata-lineage admission. CONCLUSIONS Our findings indicate that IVE was low in preventing A(H1N1)pdm09 and strongly correlated with vaccination in the previous season. No effect in preventing admission with B/Victoria-lineage was observed. For the 2015/2016 season, IVE was low due to a mismatch and lack of concordance between the circulating and vaccine viruses.
Collapse
Affiliation(s)
- Joan Puig-Barberà
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain; Centro de Salud Pública de Castellón, Castellón, Spain.
| | - Beatriz Guglieri-López
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | | | - F Xavier López-Labrador
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain; Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - Víctor Baselga-Moreno
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Ainara Mira-Iglesias
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Javier Díez-Domingo
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | | |
Collapse
|
44
|
Petrie JG, Malosh RE, Cheng CK, Ohmit SE, Martin ET, Johnson E, Truscon R, Eichelberger MC, Gubareva LV, Fry AM, Monto AS. The Household Influenza Vaccine Effectiveness Study: Lack of Antibody Response and Protection Following Receipt of 2014-2015 Influenza Vaccine. Clin Infect Dis 2017; 65:1644-1651. [PMID: 29020179 PMCID: PMC5850544 DOI: 10.1093/cid/cix608] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/07/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Antigenically drifted A(H3N2) viruses circulated extensively during the 2014-2015 influenza season. Vaccine effectiveness (VE) was low and not significant among outpatients but in a hospitalized population was 43%. At least one study paradoxically observed increased A(H3N2) infection among those vaccinated 3 consecutive years. METHODS We followed a cohort of 1341 individuals from 340 households. VE against laboratory-confirmed influenza was estimated. Hemagglutination-inhibition and neuraminidase-inhibition antibody titers were determined in subjects ≥13 years. RESULTS Influenza A(H3N2) was identified in 166 (12%) individuals and B(Yamagata) in 34 (2%). VE against A(H3N2) was -3% (95% confidence interval [CI]: -55%, 32%) and similarly ineffective between age groups; increased risk of infection was not observed among those vaccinated in 2 or 3 previous years. VE against influenza B(Yamagata) was 57% (95% CI: -3%, 82%) but only significantly protective in children <9 years (87% [95% CI: 43%, 97%]). Less than 20% of older children and adults had ≥4-fold antibody titer rise against influenza A(H3N2) and B antigens following vaccination; responses were surprisingly similar for antigens included in the vaccine and those similar to circulating viruses. Antibody against A/Hong Kong/4801/14, similar to circulating 2014-2015 A(H3N2) viruses and included in the 2016-2017 vaccine, did not significantly predict protection. CONCLUSIONS Absence of VE against A(H3N2) was consistent with circulation of antigenically drifted viruses; however, generally limited antibody response following vaccination is concerning even in the context of antigenic mismatch. Although 2014-2015 vaccines were not effective in preventing A(H3N2) infection, no increased susceptibility was detected among the repeatedly vaccinated.
Collapse
Affiliation(s)
- Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Ryan E Malosh
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Caroline K Cheng
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Suzanne E Ohmit
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Emileigh Johnson
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Rachel Truscon
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Maryna C Eichelberger
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Larisa V Gubareva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alicia M Fry
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
45
|
Ng S, Saborio S, Kuan G, Gresh L, Sanchez N, Ojeda S, Harris E, Balmaseda A, Gordon A. Association between Haemagglutination inhibiting antibodies and protection against clade 6B viruses in 2013 and 2015. Vaccine 2017; 35:6202-6207. [PMID: 28986036 PMCID: PMC5685664 DOI: 10.1016/j.vaccine.2017.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/03/2017] [Accepted: 09/12/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND The epidemiology of the pandemic A(H1N1) virus has been changing as population immunity continues to co-evolve with the virus. The impact of genetic changes in the virus on human's susceptibility is an outstanding important question in vaccine design. In a community-based study, we aim to (1) determine the genetic characteristics of 2009-2015 pandemic H1N1 viruses, (2) assess antibody response following natural infections and (3) assess the correlation of A/California/07/09 antibody titers to protection in the 2013 and 2015 epidemics. METHODS In a household transmission study, serum specimens from 253 individuals in Managua, Nicaragua were analyzed. Combined nose and throat swabs were collected to detect RT-PCR confirmed influenza infection and virus sequencing. Hemagglutination inhibition assays were performed and the protective titer for circulating H1N1pdm was determined. RESULTS Clade 6B pandemic H1N1 viruses predominated in Nicaragua during the 2013 and 2015 seasons. Our household transmission study detected a household secondary attack rate of 17% in 2013 and 33% in 2015. Infected individuals, including vaccinees, showed an apparent antibody response to A/California/07/09. Baseline titers of A/California/07/09 antibodies were found to associate with protection in both seasons. A titer of ≥1:40 correlated to a 44% protection in children, a 29% protection in adults 15-49years old and a 51% protection in adults 50-85years old. CONCLUSION In 2013 and 2015, antibody titers to A/California/07/09 associated with an infection risk reduction amongst exposed household contacts. This is consistent with a detectable vaccine effectiveness reported in a number of studies. Genetic changes in clade 6B viruses might have led to a reduced immunity in some whereas others might have been less affected. The use of human serologic data is important in virus characterization and if performed in a timely manner, could assist in vaccine strain selection.
Collapse
Affiliation(s)
- Sophia Ng
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saira Saborio
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Monto AS, Malosh RE, Petrie JG, Martin ET. The Doctrine of Original Antigenic Sin: Separating Good From Evil. J Infect Dis 2017; 215:1782-1788. [PMID: 28398521 PMCID: PMC5853211 DOI: 10.1093/infdis/jix173] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
The term “original antigenic sin” was coined approximately 60 years ago to describe the imprinting by the initial first influenza A virus infection on the antibody response to subsequent vaccination. These studies did not suggest a reduction in the response to current antigens but instead suggested anamnestic recall of antibody to earlier influenza virus strains. Then, approximately 40 years ago, it was observed that sequential influenza vaccination might lead to reduced vaccine effectiveness (VE). This conclusion was largely dismissed after an experimental study involving sequential administration of then-standard influenza vaccines. Recent observations have provided convincing evidence that reduced VE after sequential influenza vaccination is a real phenomenon. We propose that such reduction in VE be termed “negative antigenic interaction,” given that there is no age cohort effect. In contrast, the potentially positive protective effect of early influenza virus infection later in life continues to be observed. It is essential that we understand better the immunologic factors underlying both original antigenic sin and negative antigenic interaction, to support development of improved influenza vaccines and vaccination strategies.
Collapse
Affiliation(s)
- Arnold S Monto
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Ryan E Malosh
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Joshua G Petrie
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| | - Emily T Martin
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor
| |
Collapse
|
47
|
Henry C, Palm AKE, Krammer F, Wilson PC. From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol 2017; 39:70-79. [PMID: 28867526 DOI: 10.1016/j.it.2017.08.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/15/2023]
Abstract
Antibody responses are essential for protection against influenza virus infection. Humans are exposed to a multitude of influenza viruses throughout their lifetime and it is clear that immune history influences the magnitude and quality of the antibody response. The 'original antigenic sin' concept refers to the impact of the first influenza virus variant encounter on lifelong immunity. Although this model has been challenged since its discovery, past exposure, and likely one's first exposure, clearly affects the epitopes targeted in subsequent responses. Understanding how previous exposure to influenza virus shapes antibody responses to vaccination and infection is critical, especially with the prospect of future pandemics and for the effective development of a universal influenza vaccine.
Collapse
Affiliation(s)
- Carole Henry
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA.
| | - Anna-Karin E Palm
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology Research, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
48
|
Martínez-Baz I, Casado I, Navascués A, Díaz-González J, Aguinaga A, Barrado L, Delfrade J, Ezpeleta C, Castilla J. Effect of Repeated Vaccination With the Same Vaccine Component Against 2009 Pandemic Influenza A(H1N1) Virus. J Infect Dis 2017; 215:847-855. [PMID: 28453845 DOI: 10.1093/infdis/jix055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/24/2017] [Indexed: 11/14/2022] Open
Abstract
Background The 2009 pandemic influenza A(H1N1) (A[H1N1]pdm09) vaccine component has remained unchanged from 2009. We estimate the effectiveness of current and prior inactivated influenza A(H1N1)pdm09 vaccination from influenza seasons 2010-2011 to 2015-2016. Methods Patients attended with influenza-like illness were tested for influenza. Four periods with continued A(H1N1)pdm09 circulation were included in a test-negative design. Results We enrolled 1278 cases and 2343 controls. As compared to individuals never vaccinated against influenza A(H1N1)pdm09, the highest effectiveness (66%; 95% confidence interval, 49%-78%) was observed in those vaccinated in the current season who had received 1-2 prior doses. The effectiveness was not statistically lower in individuals vaccinated in the current season only (52%) or in those without current vaccination and >2 prior doses (47%). However, the protection was lower in individuals vaccinated in the current season after >2 prior doses (38%; P = .009) or those currently unvaccinated with 1-2 prior doses (10%; P < .001). Current-season vaccination improved the effect in individuals with 1-2 prior doses and did not modify significantly the risk of influenza in individuals with >2 prior doses. Conclusion Current vaccination or several prior doses were needed for high protection. Despite the decreasing effect of repeated vaccination, current-season vaccination was not inferior to no current-season vaccination.
Collapse
Affiliation(s)
- Iván Martínez-Baz
- Instituto de Salud Pública de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Itziar Casado
- Instituto de Salud Pública de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ana Navascués
- Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - Jorge Díaz-González
- Instituto de Salud Pública de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | | | | | - Josu Delfrade
- Instituto de Salud Pública de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Jesús Castilla
- Instituto de Salud Pública de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
49
|
Cobey S, Hensley SE. Immune history and influenza virus susceptibility. Curr Opin Virol 2017; 22:105-111. [PMID: 28088686 DOI: 10.1016/j.coviro.2016.12.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 12/25/2022]
Abstract
Antibody responses to influenza viruses are critical for protection, but the ways in which repeated viral exposures shape antibody evolution and effectiveness over time remain controversial. Early observations demonstrated that viral exposure history has a profound effect on the specificity and magnitude of antibody responses to a new viral strain, a phenomenon called 'original antigenic sin.' Although 'sin' might suppress some aspects of the immune response, so far there is little indication that hosts with pre-existing immunity are more susceptible to viral infections compared to naïve hosts. However, the tendency of the immune response to focus on previously recognized conserved epitopes when encountering new viral strains can create an opportunity cost when mutations arise in these conserved epitopes. Hosts with different exposure histories may continue to experience distinct patterns of infection over time, which may influence influenza viruses' continued antigenic evolution. Understanding the dynamics of B cell competition that underlie the development of antibody responses might help explain the low effectiveness of current influenza vaccines and lead to better vaccination strategies.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 19104, USA.
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|