1
|
Kuse N, Gatanaga H, Zhang Y, Chikata T, Oka S, Takiguchi M. Epitope-dependent effect of long-term cART on maintenance and recovery of HIV-1-specific CD8 + T cells. J Virol 2023; 97:e0102423. [PMID: 37877716 PMCID: PMC10688310 DOI: 10.1128/jvi.01024-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE HIV-1-specific CD8+ T cells are anticipated to become effector cells for curative treatment using the "shock and kill" approach in people living with HIV-1 (PLWH) under combined antiretroviral therapy (cART). Previous studies demonstrated that the frequency of HIV-1-specific CD8+ T cells is reduced under cART and their functional ability remains impaired. These studies analyzed T-cell responses to a small number of HIV-1 epitopes or overlapping HIV-1 peptides. Therefore, the features of CD8+ T cells specific for HIV-1 epitopes under cART remain only partially clarified. Here, we analyzed CD8+ T cells specific for 63 well-characterized epitopes in 90 PLWH. We demonstrated that CD8+ T cells specific for large numbers of HIV-1 epitopes were maintained in an epitope-dependent fashion under long-term cART and that long-term cART enhanced or restored the ability of HIV-1-specific T cells to proliferate in vitro. This study implies that some HIV-1-specific T cells would be useful as effector cells for curative treatment.
Collapse
Affiliation(s)
- Nozomi Kuse
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yu Zhang
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takayuki Chikata
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masafumi Takiguchi
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Hu D, Irving AT. Massively-multiplexed epitope mapping techniques for viral antigen discovery. Front Immunol 2023; 14:1192385. [PMID: 37818363 PMCID: PMC10561112 DOI: 10.3389/fimmu.2023.1192385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Following viral infection, viral antigens bind specifically to receptors on the surface of lymphocytes thereby activating adaptive immunity in the host. An epitope, the smallest structural and functional unit of an antigen, binds specifically to an antibody or antigen receptor, to serve as key sites for the activation of adaptive immunity. The complexity and diverse range of epitopes are essential to study and map for the diagnosis of disease, the design of vaccines and for immunotherapy. Mapping the location of these specific epitopes has become a hot topic in immunology and immune therapy. Recently, epitope mapping techniques have evolved to become multiplexed, with the advent of high-throughput sequencing and techniques such as bacteriophage-display libraries and deep mutational scanning. Here, we briefly introduce the principles, advantages, and disadvantages of the latest epitope mapping techniques with examples for viral antigen discovery.
Collapse
Affiliation(s)
- Diya Hu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Aaron T. Irving
- Department of Clinical Laboratory Studies, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Biomedical and Health Translational Research Centre of Zhejiang Province (BIMET), Haining, China
- College of Medicine & Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Shapiro IE, Bassani-Sternberg M. The impact of immunopeptidomics: From basic research to clinical implementation. Semin Immunol 2023; 66:101727. [PMID: 36764021 DOI: 10.1016/j.smim.2023.101727] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
The immunopeptidome is the set of peptides presented by the major histocompatibility complex (MHC) molecules, in humans also known as the human leukocyte antigen (HLA), on the surface of cells that mediate T-cell immunosurveillance. The immunopeptidome is a sampling of the cellular proteome and hence it contains information about the health state of cells. The peptide repertoire is influenced by intra- and extra-cellular perturbations - such as in the case of drug exposure, infection, or oncogenic transformation. Immunopeptidomics is the bioanalytical method by which the presented peptides are extracted from biological samples and analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (MS), resulting in a deep qualitative and quantitative snapshot of the immunopeptidome. In this review, we discuss published immunopeptidomics studies from recent years, grouped into three main domains: i) basic, ii) pre-clinical and iii) clinical research and applications. We review selected fundamental immunopeptidomics studies on the antigen processing and presentation machinery, on HLA restriction and studies that advanced our understanding of various diseases, and how exploration of the antigenic landscape allowed immune targeting at the pre-clinical stage, paving the way to pioneering exploratory clinical trials where immunopeptidomics is directly implemented in the conception of innovative treatments for cancer patients.
Collapse
Affiliation(s)
- Ilja E Shapiro
- Ludwig Institute for Cancer Research, University of Lausanne, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1005 Lausanne, Switzerland.
| |
Collapse
|
4
|
Lin X, Ahmad A, Ivanov AI, Simhadri J, Wang S, Kumari N, Ammosova T, Nekhai S. HIV-1 Transcription Inhibitor 1E7-03 Decreases Nucleophosmin Phosphorylation. Mol Cell Proteomics 2023; 22:100488. [PMID: 36563749 PMCID: PMC9975258 DOI: 10.1016/j.mcpro.2022.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Transcription activation of latent human immunodeficiency virus-1 (HIV-1) occurs due to HIV-1 rebound, the interruption of combination antiretroviral therapy, or development of drug resistance. Thus, novel HIV-1 inhibitors, targeting HIV-1 transcription are needed. We previously developed an HIV-1 transcription inhibitor, 1E7-03, that binds to the noncatalytic RVxF-accommodating site of protein phosphatase 1 and inhibits HIV-1 replication in cultured cells and HIV-1-infected humanized mice by impeding protein phosphatase 1 interaction with HIV-1 Tat protein. However, host proteins and regulatory pathways targeted by 1E7-03 that contribute to its overall HIV-1 inhibitory activity remain to be identified. To address this issue, we performed label-free quantitative proteome and phosphoproteome analyses of noninfected and HIV-1-infected CEM T cells that were untreated or treated with 1E7-03. 1E7-03 significantly reprogramed the phosphorylation profile of proteins including PPARα/RXRα, TGF-β, and PKR pathways. Phosphorylation of nucleophosmin (NPM1) at Ser-125 residue in PPARα/RXRα pathway was significantly reduced (>20-fold, p = 1.37 × 10-9), followed by the reduced phosphorylation of transforming growth factor-beta 2 at Ser-46 (TGF-β2, >12-fold, p = 1.37 × 10-3). Downregulation of NPM1's Ser-125 phosphorylation was further confirmed using Western blot. Phosphorylation mimicking NPM1 S125D mutant activated Tat-induced HIV-1 transcription and exhibited enhanced NPM1-Tat interaction compared to NPM1 S125A mutant. Inhibition of Aurora A or Aurora B kinases that phosphorylate NPM1 on Ser-125 residue inhibited HIV-1, further supporting the role of NPM1 in HIV-1 infection. Taken together, 1E7-03 reprogrammed PPARα/RXRα and TGF-β pathways that contribute to the inhibition of HIV-1 transcription. Our findings suggest that NPM1 phosphorylation is a plausible target for HIV-1 transcription inhibition.
Collapse
Key Words
- actn4, alpha-actinin-1
- asl, argininosuccinate lyase
- aspm, abnormal spindle-like microcephaly-associated protein
- cart, combination antiretroviral therapy
- cdk2, cell cycle-dependent kinase 2
- ck2, casein kinase 2
- dmso, dimethyl sulfoxide
- egln1, egl-9 family hypoxia inducible factor 1
- erk/p38, extracellular signal-regulated kinase p38
- fa, formic acid
- gadd34, growth arrest and dna damage-inducible protein
- hif-1α, hypoxia-inducible factor 1α
- hiv-1 vif protein, viral infectivity factor, an hiv-1 accessory protein
- hiv-1, human immunodeficiency virus-1
- hsp90, heat shock protein 90
- ipa, ingenuity pathway analysis
- lc-ft/ms, tandem liquid chromatography-fourier transform mass spectrometry
- mapk, mitogen-activated protein kinase
- map3k4, mitogen-activated protein kinase kinase kinase 4
- mita, mediator of interferon response factor 3 activation
- nfat, nuclear factor of activated t cells
- nf-κb, nuclear factor kappa-light-chain-enhancer of activated b cell
- npm1, nucleophosmin
- oa, okadaic acid
- pi3k/akt, phosphoinositide 3-kinase/ ak strain transforming or protein kinase b
- pp, protein phosphatase
- pparα/rxrα, peroxisome proliferator-activated receptor α/ retinoid x receptor α
- ptm, posttranslational modification
- rnr2, ribonucleotide reductase 2
- rt, reverse transcription
- samhd1, sam domain and hd domain-containing protein 1
- smad7, mothers against decapentaplegic homolog 7
- stat5, signal transducer and activator of transcription 5 taf4
- taf4, transcription factor tfiid subunit tata-box-binding protein (tbp)-associated factor 4
- tgf-β2, transforming growth factor-beta
- tp53, tumor protein p53
Collapse
Affiliation(s)
- Xionghao Lin
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA; College of Dentistry, Howard University, Washington, District of Columbia, USA
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Andrey I Ivanov
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Jyothirmai Simhadri
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Songping Wang
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Namita Kumari
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Microbiology, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Medicine, College of Medicine, Howard University, Washington, District of Columbia, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Microbiology, College of Medicine, Howard University, Washington, District of Columbia, USA; Department of Medicine, College of Medicine, Howard University, Washington, District of Columbia, USA.
| |
Collapse
|
5
|
Immunological Control of HIV-1 Disease Progression by Rare Protective HLA Allele. J Virol 2022; 96:e0124822. [DOI: 10.1128/jvi.01248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-B57 is a relatively rare allele around world and the strongest protective HLA allele in Caucasians and African black individuals infected with HIV-1. Previous studies suggested that the advantage of this allele in HIV-1 disease progression is due to a strong functional ability of HLA-B57-restricted Gag-specific T cells and lower fitness of mutant viruses selected by the T cells.
Collapse
|
6
|
Control of HIV-1 Replication by CD8 + T Cells Specific for Two Novel Pol Protective Epitopes in HIV-1 Subtype A/E Infection. J Virol 2022; 96:e0081122. [PMID: 36154612 PMCID: PMC9555181 DOI: 10.1128/jvi.00811-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although many HIV-1-specific CD8+ T cell epitopes have been identified and used in various HIV-1 studies, most of these epitopes were derived from HIV-1 subtypes B and C. Only 17 well-defined epitopes, none of which were protective, have been identified for subtype A/E infection. The roles of HIV-1-specific T cells have been rarely analyzed for subtype A/E infection. In this study, we identified six novel HLA-B*15:02-restricted optimal HIV-1 subtype A/E epitopes and then analyzed the presentation of these epitopes by HIV-1 subtype A/E virus-infected cells and the T cell responses to these epitopes in treatment-naive HIV-1 subtype A/E-infected HLA-B*15:02+ Vietnamese individuals. Responders to the PolTY9 or PolLF10 epitope had a significantly lower plasma viral load (pVL) than nonresponders among HLA-B*15:02+ individuals, whereas no significant difference in pVL was found between responders to four other epitopes and nonresponders. The breadth of T cell responses to these two Pol epitopes correlated inversely with pVL. These findings suggest that HLA-B*15:02-restricted T cells specific for PolTY9 and PolLF10 contribute to the suppression of HIV-1 replication in HLA-B*15:02+ individuals. The HLA-B*15:02-associated mutation Pol266I reduced the recognition of PolTY9-specific T cells in vitro but did not affect HIV-1 replication by PolTY9-specific T cells in Pol266I mutant virus-infected individuals. These findings indicate that PolTY9-specific T cells suppress replication of the Pol266I mutant virus even though the T cells selected this mutant. This study demonstrates the effective role of T cells specific for these Pol epitopes to control circulating viruses in HIV-1 subtype A/E infection. IMPORTANCE It is expected that HIV-1-specific CD8+ T cells that effectively suppress HIV-1 replication will contribute to HIV-1 vaccine development and therapy to achieve an HIV cure. T cells specific for protective epitopes were identified in HIV-1 subtype B and C infections but not in subtype A/E infection, which is epidemic in Southeast Asia. In the present study, we identified six T cell epitopes derived from the subtype A/E virus and demonstrated that T cells specific for two Pol epitopes effectively suppressed HIV-1 replication in treatment-naive Vietnamese individuals infected with HIV-1 subtype A/E. One of these Pol protective epitopes was conserved among circulating viruses, and one escape mutation was accumulated in the other epitope. This mutation did not critically affect HIV-1 control by specific T cells in HIV-1 subtype A/E-infected individuals. This study identified two protective Pol epitopes and characterized them in cases of HIV-1 subtype A/E infection.
Collapse
|
7
|
Protective HLA-B57: T cell and natural killer cell recognition in HIV infection. Biochem Soc Trans 2022; 50:1329-1339. [DOI: 10.1042/bst20220244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Understanding the basis of the immune determinants controlling disease outcome is critical to provide better care to patients and could be exploited for therapeutics and vaccine design. The discovery of the human immunodeficiency virus (HIV) virus as the causing agent of acquired immunodeficiency syndrome (AIDS) decades ago, led to a tremendous amount of research. Among the findings, it was discovered that some rare HIV+ individuals, called HIV controllers (HICs), had the ability to control the virus and keep a low viral load without the need of treatment. This ability allows HICs to delay or avoid progression to AIDS. HIV control is strongly associated with the expression of human leukocyte antigen (HLA) alleles in HICs. From the HIV protective HLAs described, HLA-B57 is the most frequent in HIC patients. HLA-B57 can present a large range of highly conserved Gag-derived HIV peptides to CD8+ T cells and natural killer (NK) cells, both the focus of this review. So far there are limited differences in the immune response strength, magnitude, or receptor repertoire towards HIV epitopes that could explain viral control in HICs. Interestingly, some studies revealed that during early infection the large breadth of the immune response towards HIV mutants in HLA-B57+ HIC patients, might in turn influence the disease outcome.
Collapse
|
8
|
Impact of Micropolymorphism Outside the Peptide Binding Groove in the Clinically Relevant Allele HLA-C*14 on T Cell Responses in HIV-1 Infection. J Virol 2022; 96:e0043222. [PMID: 35475667 PMCID: PMC9131871 DOI: 10.1128/jvi.00432-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is increasing evidence for the importance of human leukocyte antigen C (HLA-C)-restricted CD8+ T cells in HIV-1 control, but these responses are relatively poorly investigated. The number of HLA-C-restricted HIV-1 epitopes identified is much smaller than those of HLA-A-restricted or HLA-B-restricted ones. Here, we utilized a mass spectrometry-based approach to identify HIV-1 peptides presented by HLA-C*14:03 protective and HLA-C*14:02 nonprotective alleles. We identified 25 8- to 11-mer HLA-I-bound HIV-1 peptides from HIV-1-infected HLA-C*14:02+/14:03+ cells. Analysis of T cell responses to these peptides identified novel 6 T cell epitopes targeted in HIV-1-infected HLA-C*14:02+/14:03+ subjects. Analyses using HLA stabilization assays demonstrated that all 6 epitope peptides exhibited higher binding to and greater cell surface stabilization of HLA-C*14:02 than HLA-C*14:03. T cell response magnitudes were typically higher in HLA-C*14:02+ than HLA-C*14:03+ individuals, with responses to the Pol KM9 and Nef epitopes being significantly higher. The results show that HLA-C*14:02 can elicit stronger T cell responses to HIV-1 than HLA-C*14:03 and suggest that the single amino acid difference between these HLA-C14 subtypes at position 21, outside the peptide-binding groove, indirectly influences the stability of peptide-HLA-C*14 complexes and induction/expansion of HIV-specific T cells. Taken together with a previous finding that KIR2DL2+ NK cells recognized HLA-C*14:03+ HIV-1-infected cells more than HLA-C*14:02+ ones, the present study indicates that these HLA-C*14 subtypes differentially impact HIV-1 control by T cells and NK cells. IMPORTANCE Some human leukocyte antigen (HLA) class I alleles are associated with good clinical outcomes in HIV-1 infection and are called protective HLA alleles. Identification of T cell epitopes restricted by protective HLA alleles can give important insight into virus-immune system interactions and inform design of immune-based prophylactic/therapeutic strategies. Although epitopes restricted by many protective HLA-A/B alleles have been identified, protective HLA-C alleles are relatively understudied. Here, we identified 6 novel T cell epitopes presented by both HLA-C*14:02 (no association with protection) and HLA-C*14:03 (protective) using a mass spectrometry-based immunopeptidome profiling approach. We found that these peptides bound to and stabilized HLA-C*14:02 better than HLA-C*14:03 and observed differences in induction/expansion of epitope-specific T cell responses in HIV-infected HLA-C*14:02+ versus HLA-C*14:03+ individuals. These results enhance understanding of how the microstructural difference at position 21 between these HLA-C*14 subtypes may influence cellular immune responses involved in viral control in HIV-1 infection.
Collapse
|
9
|
Abdelhafiz AS, Ali A, Fouda MA, Sayed DM, Kamel MM, Kamal LM, Khalil MA, Bakry RM. HLA-B*15 predicts survival in Egyptian patients with COVID-19. Hum Immunol 2022; 83:10-16. [PMID: 34607724 PMCID: PMC8485223 DOI: 10.1016/j.humimm.2021.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
Genetic differences among individuals could affect the clinical presentations and outcomes of COVID-19. Human Leukocyte Antigens are associated with COVID-19 susceptibility, severity, and prognosis. This study aimed to identify HLA-B and -C genotypes among 69 Egyptian patients with COVID-19 and correlate them with disease outcomes and other clinical and laboratory data. HLA-B and -C typing was performed using Luminex-based HLA typing kits. Forty patients (58%) had severe COVID-19; 55% of these patients died, without reported mortality in the moderate group. The alleles associated with severe COVID-19 were HLA-B*41, -B*42, -C*16, and -C*17, whereas HLA-B*15, -C*7, and -C*12 were significantly associated with protection against mortality. Regression analysis showed that HLA-B*15 was the only allele associated with predicted protection against mortality, where the likelihood of survival increased with HLA-B*15 (P < 0.001). Patient survival was less likely to occur with higher total leukocytic count, ferritin, and creatinine levels. This study provides interesting insights into the association between HLA class I alleles and protection from or severity of COVID-19 through immune response modulation. This is the first study to investigate this relationship in Egyptian patients. More studies are needed to understand how HLA class I alleles interact and affect Cytotoxic T lymphocytes and natural killer cell function.
Collapse
Affiliation(s)
- Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Asmaa Ali
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt
| | - Merhan A Fouda
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Douaa M Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Lamyaa Mohamed Kamal
- Department of Clinical and Chemical Pathology, Elsahel Teaching Hospital, MOH, Cairo, Egypt
| | - Mahmoud Ali Khalil
- Department of Tropical Medicine and Infectious Disease, Imbaba Fever Hospital, MOH, Cairo, Egypt
| | - Rania M Bakry
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Kuse N, Akahoshi T, Takiguchi M. STING Ligand-Mediated Priming of Functional CD8 + T Cells Specific for HIV-1-Protective Epitopes from Naive T Cells. J Virol 2021; 95:e0069921. [PMID: 34076478 PMCID: PMC8312882 DOI: 10.1128/jvi.00699-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/19/2021] [Indexed: 12/03/2022] Open
Abstract
Functional HIV-1-specific CD8+ T cells primed from naive T cells are expected to act as effector T cells in a "shock-and-kill" therapeutic strategy for an HIV-1 cure since less functional HIV-1-specific CD8+ T cells are elicited from memory T cells in HIV-1-infected individuals on combined antiretroviral therapy (cART). CD8+ T cells specific for HIV-1 conserved and protective epitopes are candidates for such T cells. We investigated the priming with STING ligand of CD8+ T cells specific for HLA-B*52:01 or HLA-C*12:02-restricted protective epitopes from naive T cells. STING ligand 3'3'-cGAMP effectively primed CD8+ T cells specific for 3 of 4 HLA-B*52:01-restricted epitopes but failed to prime those specific for all 3 HLA-C*12:02-restricted epitopes from the naive T cells of HIV-1-uninfected individuals having an HLA-B*52:01-C*12:02 protective haplotype. These HLA-B*52:01-restricted CD8+ T cells had a strong ability to suppress HIV-1 replication and expressed a high level of cytolytic effector molecules. The viral suppression ability of these T cells was significantly correlated with the expression level of perforin and showed a trend for a positive correlation with the expression level of CD107a. The present study highlighted the priming with STING ligand of functional CD8+ T cells specific for protective epitopes, which T cells would contribute as effector T cells to a shock-and-kill therapy. IMPORTANCE The current "shock-and-kill" therapeutic strategy for HIV cure has been directed toward eliminating latent viral reservoirs by reactivation of latent reservoirs with latency-reversing agents followed by eradication of these cells by immune-mediated responses. Although HIV-1-specific T cells are expected to eradicate viral reservoirs, the function of these T cells is reduced in HIV-1-infected individuals with long-term cART. Therefore, priming of HIV-1-specific T cells with high function from naive T cells is to be expected in these individuals. In this study, we demonstrated the priming with STING ligand 3'3'-cGAMP of CD8+ T cells specific for HIV-1-protective epitopes from naive T cells. cGAMP primed CD8+ T cells specific for 3 HLA-B*52:01-restricted protective epitopes, which cells expressed a high level of cytolytic effector molecules and effectively suppressed HIV-1 replication. The present study suggested that the priming with STING ligand of functional CD8+ T cells specific for protective epitopes would be useful in a therapy for an HIV-1 cure.
Collapse
Affiliation(s)
- Nozomi Kuse
- Tokyo Joint Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Masafumi Takiguchi
- Tokyo Joint Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
11
|
Murakoshi H, Chikata T, Akahoshi T, Zou C, Borghan MA, Van Tran G, Nguyen TV, Van Nguyen K, Kuse N, Takiguchi M. Critical effect of Pol escape mutations associated with detrimental allele HLA-C*15: 05 on clinical outcome in HIV-1 subtype A/E infection. AIDS 2021; 35:33-43. [PMID: 33031103 PMCID: PMC7752225 DOI: 10.1097/qad.0000000000002704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The mechanism explaining the role of detrimental HLA alleles in HIV-1 infections has been investigated in very few studies. HLA-A*29:01-B*07:05-C*15:05 is a detrimental haplotype in HIV-1 subtype A/E-infected Vietnamese individuals. The accumulation of mutations at Pol 653/657 is associated with a poor clinical outcome in these individuals. However, the detrimental HLA allele and the mechanism responsible for its detrimental effect remains unknown. Therefore, in this current study we identified the detrimental HLA allele and investigated the mechanism responsible for the detrimental effect. DESIGN AND METHODS A T-cell epitope including Pol 653/657 and its HLA restriction were identified by using overlapping HIV-1 peptides and cell lines expressing a single HLA. The effect of the mutations on the T-cell recognition of HIV-1-infected cells was investigated by using target cells infected with the mutant viruses. The effect of these mutations on the clinical outcome was analyzed in 74 HLA-C*15:05 Vietnamese infected with the subtype A/E virus. RESULTS We identified HLA-C*15:05-restricted SL9 epitope including Pol 653/657. PolS653A/T/L mutations within this epitope critically impaired the T-cell recognition of HIV-1-infected cells, indicating that these mutations had escaped from the T cells. T-cell responders infected with these mutants showed significantly lower CD4 T-cell counts than those with the wild-type virus or Pol S653K/Q mutants, which are not associated with HLA-C*15:05. CONCLUSION The accumulation of Pol S653A/T/L escape mutants critically affected the control of HIV-1 by SL9-specific T cells and led to a poor clinical outcome in the subtype A/E-infected individuals having the detrimental HLA-C*15:05 allele.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Takayuki Chikata
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chengcheng Zou
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Mohamed Ali Borghan
- Department of Physiology and Biophysics, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Sultanate of Oman
| | - Giang Van Tran
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- National Hospital of Tropical Diseases
- Hanoi Medical University, Hanoi, Vietnam
| | - Trung Vu Nguyen
- National Hospital of Tropical Diseases
- Hanoi Medical University, Hanoi, Vietnam
| | | | - Nozomi Kuse
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
12
|
Akahoshi T, Gatanaga H, Kuse N, Chikata T, Koyanagi M, Ishizuka N, Brumme CJ, Murakoshi H, Brumme ZL, Oka S, Takiguchi M. T-cell responses to sequentially emerging viral escape mutants shape long-term HIV-1 population dynamics. PLoS Pathog 2020; 16:e1009177. [PMID: 33370400 PMCID: PMC7833229 DOI: 10.1371/journal.ppat.1009177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/25/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.
Collapse
Affiliation(s)
| | - Hiroyuki Gatanaga
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Shinichi Oka
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Role of Escape Mutant-Specific T Cells in Suppression of HIV-1 Replication and Coevolution with HIV-1. J Virol 2020; 94:JVI.01151-20. [PMID: 32699092 PMCID: PMC7495385 DOI: 10.1128/jvi.01151-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1. The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo. HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1. IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.
Collapse
|
14
|
Impact of HLA-B*52:01-Driven Escape Mutations on Viral Replicative Capacity. J Virol 2020; 94:JVI.02025-19. [PMID: 32321820 DOI: 10.1128/jvi.02025-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
HLA-B*52:01 is strongly associated with protection against HIV disease progression. However, the mechanisms of HLA-B*52:01-mediated immune control have not been well studied. We here describe a cohort with a majority of HIV C-clade-infected individuals from Delhi, India, where HLA-B*52:01 is highly prevalent (phenotypic frequency, 22.5%). Consistent with studies of other cohorts, expression of HLA-B*52:01 was associated with high absolute CD4 counts and therefore a lack of HIV disease progression. We here examined the impact of HLA-B*52:01-associated viral polymorphisms within the immunodominant C clade Gag epitope RMTSPVSI (here, RI8; Gag residues 275 to 282) on viral replicative capacity (VRC) since HLA-mediated reduction in VRC is a central mechanism implicated in HLA-associated control of HIV. We observed in HLA-B*52:01-positive individuals a higher frequency of V280T, V280S, and V280A variants within RI8 (P = 0.0001). Each of these variants reduced viral replicative capacity in C clade viruses, particularly the V280A variant (P < 0.0001 in both the C clade consensus and in the Indian study cohort consensus p24 Gag backbone), which was also associated with significantly higher absolute CD4 counts in the donors (median, 941.5 cells/mm3; P = 0.004). A second HLA-B*52:01-associated mutation, K286R, flanking HLA-B*52:01-RI8, was also analyzed. Although selected in HLA-B*52:01-positive subjects often in combination with the V280X variants, this mutation did not act as a compensatory mutant but, indeed, further reduced VRC. These data are therefore consistent with previous work showing that HLA-B molecules that are associated with immune control of HIV principally target conserved epitopes within the capsid protein, escape from which results in a significant reduction in VRC.IMPORTANCE Few studies have addressed the mechanisms of immune control in HIV-infected subjects in India, where an estimated 2.7 million people are living with HIV. We focus here on a study cohort in Delhi on one of the most prevalent HLA-B alleles, HLA-B*52:01, present in 22.5% of infected individuals. HLA-B*52:01 has consistently been shown in other cohorts to be associated with protection against HIV disease progression, but studies have been limited by the low prevalence of this allele in North America and Europe. Among the C-clade-infected individuals, we show that HLA-B*52:01 is the most protective of all the HLA-B alleles expressed in the Indian cohort and is associated with the highest absolute CD4 counts. Further, we show that the mechanism by which HLA-B*52:01 mediates immune protection is, at least in part, related to the inability of HIV to evade the HLA-B*52:01-restricted p24 Gag-specific CD8+ T-cell response without incurring a significant loss to viral replicative capacity.
Collapse
|
15
|
Paes W, Leonov G, Partridge T, Chikata T, Murakoshi H, Frangou A, Brackenridge S, Nicastri A, Smith AG, Learn GH, Li Y, Parker R, Oka S, Pellegrino P, Williams I, Haynes BF, McMichael AJ, Shaw GM, Hahn BH, Takiguchi M, Ternette N, Borrow P. Contribution of proteasome-catalyzed peptide cis-splicing to viral targeting by CD8 + T cells in HIV-1 infection. Proc Natl Acad Sci U S A 2019; 116:24748-24759. [PMID: 31748275 PMCID: PMC6900506 DOI: 10.1073/pnas.1911622116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8+ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells. We demonstrate that HIV-1-derived spliced peptides comprise a relatively minor component of the HLA-I-bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8+ T cell responses relatively infrequently during infection, CD8+ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection.
Collapse
Affiliation(s)
- Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| | - German Leonov
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - Thomas Partridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Takayuki Chikata
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Anna Frangou
- Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Andrew G Smith
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert Parker
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Shinichi Oka
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
- AIDS Clinical Centre, National Centre for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Nicola Ternette
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| |
Collapse
|
16
|
Identification of Immunodominant HIV-1 Epitopes Presented by HLA-C*12:02, a Protective Allele, Using an Immunopeptidomics Approach. J Virol 2019; 93:JVI.00634-19. [PMID: 31217245 PMCID: PMC6694829 DOI: 10.1128/jvi.00634-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023] Open
Abstract
Despite the fact that the cell surface expression level of HLA-C on both uninfected and HIV-infected cells is lower than those of HLA-A and -B, increasing evidence suggests an important role for HLA-C and HLA-C-restricted CD8+ T cell responses in determining the efficiency of viral control in HIV-1-infected individuals. Nonetheless, HLA-C-restricted T cell responses are much less well studied than HLA-A/B-restricted ones, and relatively few optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C alleles have been defined. Recent improvements in the sensitivity of mass spectrometry (MS)-based approaches for profiling the immunopeptidome present an opportunity for epitope discovery on a large scale. Here, we employed an MS-based immunopeptidomic strategy to characterize HIV-1 peptides presented by a protective allele, HLA-C*12:02. We identified a total of 10,799 unique 8- to 12-mer peptides, including 15 HIV-1 peptides. The latter included 2 previously reported immunodominant HIV-1 epitopes, and analysis of T cell responses to the other HIV-1 peptides detected revealed an additional immunodominant epitope. These findings illustrate the utility of MS-based approaches for epitope definition and emphasize the capacity of HLA-C to present immunodominant T cell epitopes in HIV-infected individuals, indicating the importance of further evaluation of HLA-C-restricted responses to identify novel targets for HIV-1 prophylactic and therapeutic strategies.IMPORTANCE Mass spectrometry (MS)-based approaches are increasingly being employed for large-scale identification of HLA-bound peptides derived from pathogens, but only very limited profiling of the HIV-1 immunopeptidome has been conducted to date. Notably, a growing body of evidence has recently begun to indicate a protective role for HLA-C in HIV-1 infection, which may suggest that despite the fact that levels of HLA-C expression on both uninfected and HIV-1-infected cells are lower than those of HLA-A/B, HLA-C still presents epitopes to CD8+ T cells effectively. To explore this, we analyzed HLA-C*12:02-restricted HIV-1 peptides presented on HIV-1-infected cells expressing only HLA-C*12:02 (a protective allele) using liquid chromatography-tandem MS (LC-MS/MS). We identified a number of novel HLA-C*12:02-bound HIV-1 peptides and showed that although the majority of them did not elicit T cell responses during natural infection in a Japanese cohort, they included three immunodominant epitopes, emphasizing the contribution of HLA-C to epitope presentation on HIV-infected cells.
Collapse
|
17
|
Ramírez de Arellano E, Díez-Fuertes F, Aguilar F, de la Torre Tarazona HE, Sánchez-Lara S, Lao Y, Vicario JL, García F, González-Garcia J, Pulido F, Gutierrez-Rodero F, Moreno S, Iribarren JA, Viciana P, Vilches C, Ramos M, Capa L, Alcamí J, Del Val M. Novel association of five HLA alleles with HIV-1 progression in Spanish long-term non progressor patients. PLoS One 2019; 14:e0220459. [PMID: 31393887 PMCID: PMC6687284 DOI: 10.1371/journal.pone.0220459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Certain host genetic variants, especially in the human leucocyte antigen (HLA) region, are associated with different progression of HIV-1-induced diseases and AIDS. Long term non progressors (LTNP) represent only the 2% of infected patients but are especially relevant because of their efficient HIV control. In this work we present a global analysis of genetic data in the large national multicenter cohort of Spanish LTNP, which is compared with seronegative individuals and HIV-positive patients. We have analyzed whether several single-nucleotide polymorphisms (SNPs) including in key genes and certain HLA-A and B alleles could be associated with a specific HIV phenotype. A total of 846 individuals, 398 HIV-1-positive patients (213 typical progressors, 55 AIDS patients, and 130 LTNPs) and 448 HIV-negative controls, were genotyped for 15 polymorphisms and HLA-A and B alleles. Significant differences in the allele frequencies among the studied populations identified 16 LTNP-associated genetic factors, 5 of which were defined for the first time as related to LTNP phenotype: the protective effect of HLA-B39, and the detrimental impact of HLA-B18, -A24, -B08 and –A29. The remaining eleven polymorphisms confirmed previous publications, including the protective alleles HLA-B57, rs2395029 (HCP5), HLA bw4 homozygosity, HLA-B52, HLA-B27, CCR2 V64I, rs9264942 (HLA-C) and HLA-A03; and the risk allele HLA bw6 homozygosity. Notably, individual Spanish HIV-negative individuals had an average of 0.12 protective HLA alleles and SNPs, compared with an average of 1.43 protective alleles per LTNP patient, strongly suggesting positive selection of LTNP. Finally, stratification of LTNP according to viral load showed a proportional relationship between the frequency of protective alleles with control of viral load. Interestingly, no differences in the frequency of protection/risk polymorphisms were found between elite controllers and LTNPs maintaining viral loads <2.000 copies/mL throughout the follow-up.
Collapse
Affiliation(s)
- Eva Ramírez de Arellano
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| | - Francisco Díez-Fuertes
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Francisco Aguilar
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Susana Sánchez-Lara
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Yolanda Lao
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Luis Vicario
- Departamento de Histocompatibilidad, Centro de Transfusión de Madrid, Madrid, Spain
| | - Felipe García
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | - Federico Pulido
- HIV Unit, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Félix Gutierrez-Rodero
- Servicio de Medicina Interna, Unidad de Enfermedades Infecciosas, Hospital General Universitario de Elche, Alicante, Spain
| | | | | | - Pompeyo Viciana
- Laboratory of Immunovirology, Biomedicine Institute of Sevilla, Virgen del Rocío University Hospital, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, IBIS/CSIC/SAS/University of Sevilla, Sevilla, Spain
| | - Carlos Vilches
- Inmunogenética e Histocompatibilidad, Instituto de Investigación Sanitaria Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Manuel Ramos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Laura Capa
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Alcamí
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Unit, IBIDAPS, HIVACAT, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Margarita Del Val
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Viral Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| |
Collapse
|
18
|
Effective Suppression of HIV-1 Replication by Cytotoxic T Lymphocytes Specific for Pol Epitopes in Conserved Mosaic Vaccine Immunogens. J Virol 2019; 93:JVI.02142-18. [PMID: 30674626 PMCID: PMC6430542 DOI: 10.1128/jvi.02142-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022] Open
Abstract
It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro. This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure. Cytotoxic T lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize circulating HIV-1 could be key for both HIV-1 cure and prophylaxis. We recently designed conserved mosaic T-cell vaccine immunogens (tHIVconsvX) composed of 6 Gag and Pol regions. Since the tHIVconsvX vaccine targets conserved regions common to most global HIV-1 variants and employs a bivalent mosaic design, it is expected that it could be universal if the vaccine works. Although we recently demonstrated that CTLs specific for 5 Gag epitopes in the vaccine immunogens had strong ability to suppress HIV-1 replication in vitro and in vivo, it remains unknown whether the Pol region-specific CTLs are equally efficient. In this study, we investigated CTLs specific for Pol epitopes in the immunogens in treatment-naive Japanese patients infected with HIV-1 clade B. Overall, we mapped 20 reported and 5 novel Pol conserved epitopes in tHIVconsvX. Responses to 6 Pol epitopes were significantly associated with good clinical outcome, suggesting that CTLs specific for these 6 Pol epitopes had a strong ability to suppress HIV-1 replication in HIV-1-infected individuals. In vitro T-cell analyses further confirmed that the Pol-specific CTLs could effectively suppress HIV-1 replication. The present study thus demonstrated that the Pol regions of the vaccine contained protective epitopes. T-cell responses to the previous 5 Gag and present 6 Pol protective epitopes together also showed a strong correlation with better clinical outcome. These findings support the testing of the conserved mosaic vaccine in HIV-1 cure and prevention in humans. IMPORTANCE It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro. This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure.
Collapse
|
19
|
Broad Recognition of Circulating HIV-1 by HIV-1-Specific Cytotoxic T-Lymphocytes with Strong Ability to Suppress HIV-1 Replication. J Virol 2018; 93:JVI.01480-18. [PMID: 30333175 DOI: 10.1128/jvi.01480-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/10/2018] [Indexed: 11/20/2022] Open
Abstract
HIV-1-specific cytotoxic T-lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize most circulating HIV-1 strains are candidates for effector T cells for cure treatment and prophylactic AIDS vaccine. Previous studies demonstrated that the existence of CTLs specific for 11 epitopes was significantly associated with good clinical outcomes in Japan, although CTLs specific for one of these epitopes select for escape mutations. However, it remains unknown whether the CTLs specific for the remaining 10 epitopes suppress HIV-1 replication in vitro and recognize circulating HIV-1. Here, we investigated the abilities of these CTLs to suppress HIV-1 replication and to recognize variants in circulating HIV-1. CTL clones specific for 10 epitopes had strong abilities to suppress HIV-1 replication in vitro The ex vivo and in vitro analyses of T-cell responses to variant epitope peptides showed that the T cells specific for 10 epitopes recognized mutant peptides which are detected in 84.1% to 98.8% of the circulating HIV-1 strains found in HIV-1-infected Japanese individuals. In addition, the T cells specific for 5 epitopes well recognized target cells infected with 7 mutant viruses that had been detected in >5% of tested individuals. Taken together, these results suggest that CTLs specific for the 10 epitopes effectively suppress HIV-1 replication and broadly recognize the circulating HIV-1 strains in the HIV-1-infected individuals. This study suggests the use of these T cells in clinical trials.IMPORTANCE In recent T-cell AIDS vaccine trials, the vaccines did not prevent HIV-1 infection, although HIV-1-specific T cells were induced in the vaccinated individuals, suggesting that the T cells have a weak ability to suppress HIV-1 replication and fail to recognize circulating HIV-1. We previously demonstrated that the T-cell responses to 10 epitopes were significantly associated with good clinical outcome. However, there is no direct evidence that these T cells have strong abilities to suppress HIV-1 replication and recognize circulating HIV-1. Here, we demonstrated that the T cells specific for the 10 epitopes had strong abilities to suppress HIV-1 replication in vitro Moreover, the T cells cross-recognized most of the circulating HIV-1 in HIV-1-infected individuals. This study suggests the use of T cells specific for these 10 epitopes in clinical trials of T-cell vaccines as a cure treatment.
Collapse
|
20
|
Murakoshi H, Zou C, Kuse N, Akahoshi T, Chikata T, Gatanaga H, Oka S, Hanke T, Takiguchi M. CD8 + T cells specific for conserved, cross-reactive Gag epitopes with strong ability to suppress HIV-1 replication. Retrovirology 2018; 15:46. [PMID: 29970102 PMCID: PMC6029025 DOI: 10.1186/s12977-018-0429-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of AIDS vaccines for effective prevention of circulating HIV-1 is required, but no trial has demonstrated definitive effects on the prevention. Several recent T-cell vaccine trials showed no protection against HIV-1 acquisition although the vaccines induced HIV-1-specific T-cell responses, suggesting that the vaccine-induced T cells have insufficient capacities to suppress HIV-1 replication and/or cross-recognize circulating HIV-1. Therefore, it is necessary to develop T-cell vaccines that elicit T cells recognizing shared protective epitopes with strong ability to suppress HIV-1. We recently designed T-cell mosaic vaccine immunogens tHIVconsvX composed of 6 conserved Gag and Pol regions and demonstrated that the T-cell responses to peptides derived from the vaccine immunogens were significantly associated with lower plasma viral load (pVL) and higher CD4+ T-cell count (CD4 count) in HIV-1-infected, treatment-naive Japanese individuals. However, it remains unknown T cells of which specificities have the ability to suppress HIV-1 replication. In the present study, we sought to identify more T cells specific for protective Gag epitopes in the vaccine immunogens, and analyze their abilities to suppress HIV-1 replication and recognize epitope variants in circulating HIV-1. RESULTS We determined 17 optimal Gag epitopes and their HLA restriction, and found that T-cell responses to 9 were associated significantly with lower pVL and/or higher CD4 count. T-cells recognizing 5 of these Gag peptides remained associated with good clinical outcome in 221 HIV-1-infected individuals even when comparing responders and non-responders with the same restricting HLA alleles. Although it was known previously that T cells specific for 3 of these protective epitopes had strong abilities to suppress HIV-1 replication in vivo, here we demonstrated equivalent abilities for the 2 novel epitopes. Furthermore, T cells against all 5 Gag epitopes cross-recognized variants in majority of circulating HIV-1. CONCLUSIONS We demonstrated that T cells specific for 5 Gag conserved epitopes in the tHIVconsvX have ability to suppress replication of circulating HIV-1 in HIV-1-infected individuals. Therefore, the tHIVconsvX vaccines have the right specificity to contribute to prevention of HIV-1 infection and eradication of latently infected cells following HIV-1 reactivation.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Chengcheng Zou
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.,AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomáš Hanke
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan.,The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
21
|
Chikata T, Tran GV, Murakoshi H, Akahoshi T, Qi Y, Naranbhai V, Kuse N, Tamura Y, Koyanagi M, Sakai S, Nguyen DH, Nguyen DT, Nguyen HT, Nguyen TV, Oka S, Martin MP, Carrington M, Sakai K, Nguyen KV, Takiguchi M. HLA Class I-Mediated HIV-1 Control in Vietnamese Infected with HIV-1 Subtype A/E. J Virol 2018; 92:e01749-17. [PMID: 29237835 PMCID: PMC5809730 DOI: 10.1128/jvi.01749-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
HIV-1-specific cytotoxic T cells (CTLs) play an important role in the control of HIV-1 subtype B or C infection. However, the role of CTLs in HIV-1 subtype A/E infection still remains unclear. Here we investigated the association of HLA class I alleles with clinical outcomes in treatment-naive Vietnamese infected with subtype A/E virus. We found that HLA-C*12:02 was significantly associated with lower plasma viral loads (pVL) and higher CD4 counts and that the HLA-A*29:01-B*07:05-C*15:05 haplotype was significantly associated with higher pVL and lower CD4 counts than those for individuals without these respective genotypes. Nine Pol and three Nef mutations were associated with at least one HLA allele in the HLA-A*29:01-B*07:05-C*15:05 haplotype, with a strong negative correlation between the number of HLA-associated Pol mutations and CD4 count as well as a positive correlation with pVL for individuals with these HLA alleles. The results suggest that the accumulation of mutations selected by CTLs restricted by these HLA alleles affects HIV control.IMPORTANCE Most previous studies on HLA association with disease progression after HIV-1 infection have been performed on cohorts infected with HIV-1 subtypes B and C, whereas few such population-based studies have been reported for cohorts infected with the Asian subtype A/E virus. In this study, we analyzed the association of HLA class I alleles with clinical outcomes for 536 HIV-1 subtype A/E-infected Vietnamese individuals. We found that HLA-C*12:02 is protective, while the HLA haplotype HLA-A*29:01-B*07:05-C*15:05 is deleterious. The individuals with HIV-1 mutations associated with at least one of the HLA alleles in the deleterious HLA haplotype had higher plasma viral loads and lower CD4 counts than those of individuals without the mutations, suggesting that viral adaptation and escape from HLA-mediated immune control occurred. The present study identifies a protective allele and a deleterious haplotype for HIV-1 subtype A/E infection which are different from those identified for cohorts infected with HIV-1 subtypes B and C.
Collapse
Affiliation(s)
| | - Giang Van Tran
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | | | | | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Center for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Yoshiko Tamura
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Sachiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Dung Hoai Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Dung Thi Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Ha Thu Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Trung Vu Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Keiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kinh Van Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | | |
Collapse
|