1
|
Mancebo FJ, Nuévalos M, Lalchandani J, Martín Galiano AJ, Fernández-Ruiz M, Aguado JM, García-Ríos E, Pérez-Romero P. Cytomegalovirus UL44 protein induces a potent T-cell immune response in mice. Antiviral Res 2024; 227:105914. [PMID: 38759930 DOI: 10.1016/j.antiviral.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Due to the severity of CMV infection in immunocompromised individuals the development of a vaccine has been declared a priority. However, despite the efforts made there is no yet a vaccine available for clinical use. We designed an approach to identify new CMV antigens able to inducing a broad immune response that could be used in future vaccine formulations. We have used serum samples from 28 kidney transplant recipients, with a previously acquired CMV-specific immune response to identify viral proteins that were recognized by the antibodies present in the patient serum samples by Western blot. A band of approximately 45 kDa, identified as UL44, was detected by most serum samples. UL44 immunogenicity was tested in BALB/c mice that received three doses of the UL44-pcDNA DNA vaccine. UL44 elicited both, a strong antibody response and CMV-specific cellular response. Using bioinformatic analysis we demonstrated that UL44 is a highly conserved protein and contains epitopes that are able to activate CD8 lymphocytes of the most common HLA alleles in the world population. We constructed a UL44 ORF deletion mutant virus that produced no viral progeny, suggesting that UL44 is an essential viral protein. In addition, other authors have demonstrated that UL44 is one of the most abundant viral proteins after infection and have suggested an essential role of UL44 in viral replication. Altogether, our data suggests that UL44 is a potent antigen, and favored by its abundance, it may be a good candidate to include in a vaccine formulation.
Collapse
Affiliation(s)
- Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Jaanam Lalchandani
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Estéfani García-Ríos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Pilar Pérez-Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Langley JM, Gantt S, Halperin SA, Ward B, McNeil S, Ye L, Cai Y, Smith B, Anderson DE, Mitoma FD. An enveloped virus-like particle alum-adjuvanted cytomegalovirus vaccine is safe and immunogenic: A first-in-humans Canadian Immunization Research Network (CIRN) study. Vaccine 2024; 42:713-722. [PMID: 38142214 DOI: 10.1016/j.vaccine.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 12/03/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is the most common cause of congenital infection and affected children often have permanent neurodevelopmental sequelae, including hearing loss and intellectual disability. Vaccines to prevent transmission of CMV during pregnancy are a public health priority. This first-in-humans dose-ranging, randomized, placebo-controlled, observer-blinded study evaluated the safety and immunogenicity of an enveloped virus-like particle (eVLP) vaccine expressing a modified form of the CMV glycoprotein B (gB). METHODS Healthy CMV-seronegative 18 to 40-year-olds at 3 Canadian study sites were randomized to one of 4 dose formulations (0.5 µg, 1 µg, or 2 µg gB content with alum) or 1 µg gB without alum, or placebo, given intramuscularly on days 0, 56 and 168. Outcome measures were solicited and unsolicited adverse events (AE), severe AE, gB and AD-2 epitope binding antibody titers and avidity, and neutralizing antibody (nAb) titers to CMV measured in fibroblast and epithelial cell infection assays. RESULTS Among 125 participants, the most common solicited local and general AEs were pain and headache, respectively. A dose-dependent increase in gB binding, avidity and nAb titers was observed after doses 2 and 3, with the highest titers in the alum-adjuvanted 2.0 µg dose recipients after the third dose; in the latter 24 % had responses to the broadly neutralizing AD-2 epitope. Neutralizing activity to CMV infection of fibroblasts was seen in 100 % of 2.0 µg alum-adjuvanted dose recipients, and to epithelial cell infection in 31 %. Epithelial cell nAb titers were positively correlated with higher geometric mean CMV gB binding titers. CONCLUSIONS An eVLP CMV vaccine was immunogenic in healthy CMV-seronegative adults and no safety signals were seen. Alum adjuvantation increased immunogenicity as did higher antigen content and a three dose schedule. This phase 1 trial supports further development of this eVLP CMV vaccine candidate.
Collapse
Affiliation(s)
- Joanne M Langley
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada; Departments of Pediatrics, Dalhousie University, Nova Scotia, Canada; Community Health and Epidemiology, Dalhousie University, Nova Scotia, Canada.
| | - Soren Gantt
- CHU Sainte-Justine Research Centre and the Departments of Microbiology and Pediatrics, University of Montreal (formerly at the Vaccine Evaluation Center, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver BC at the time of the study), Canada
| | - Scott A Halperin
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada; Departments of Pediatrics, Dalhousie University, Nova Scotia, Canada; Microbiology and Immunology, Dalhousie University, Nova Scotia, Canada
| | - Brian Ward
- McGill University Health Centre Vaccine Study Centre, Montreal, PQ, Canada
| | - Shelly McNeil
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada; Departments of Pediatrics, Dalhousie University, Nova Scotia, Canada; Community Health and Epidemiology, Dalhousie University, Nova Scotia, Canada; Department of Medicine, Dalhousie University, Nova Scotia, Canada
| | - Lingyun Ye
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada
| | - Yun Cai
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada
| | - Bruce Smith
- Canadian Center for Vaccinology, (Dalhousie University, IWK Health Centre and the Nova Scotia Health Authority), Canada
| | | | | |
Collapse
|
3
|
Doss KM, Heldman MR, Limaye AP. Updates in Cytomegalovirus Prevention and Treatment in Solid Organ Transplantation. Infect Dis Clin North Am 2023:S0891-5520(23)00083-1. [PMID: 37989636 PMCID: PMC11102935 DOI: 10.1016/j.idc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The authors summarize recent updates in the prevention and management of cytomegalovirus (CMV) in solid organ transplant (SOT) recipients with a focus on CMV seronegative recipients of organs from seropositive donors (CMV D+/R-) who are at highest risk of CMV infection and disease. They discuss advantages of preemptive therapy for CMV disease prevention in CMV D+/R- liver transplant recipients, letermovir for CMV prophylaxis, and updates in the development of monoclonal antibodies and vaccines as immune-based preventative strategies. They review the roles of maribavir and virus-specific T cells for management of resistant or refractory CMV infection in SOT recipients.
Collapse
Affiliation(s)
- Kathleen M Doss
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Madeleine R Heldman
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Ajit P Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Valencia SM, Rochat E, Harnois MJ, Dennis M, Webster HS, Hora B, Kumar A, Wang HYS, Li L, Freed D, Zhang N, An Z, Wang D, Permar SR. Vaccination with a replication-defective cytomegalovirus vaccine elicits a glycoprotein B-specific monoclonal antibody repertoire distinct from natural infection. NPJ Vaccines 2023; 8:154. [PMID: 37816743 PMCID: PMC10564777 DOI: 10.1038/s41541-023-00749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Human Cytomegalovirus (HCMV) is the leading infectious congenital infection globally and the most common viral infection in transplant recipients, therefore identifying a vaccine for HCMV is a top priority. Humoral immunity is a correlate of protection for HCMV infection. The most effective vaccine tested to date, which achieved 50% reduction in acquisition of HCMV, was comprised of the glycoprotein B protein given with an oil-in-water emulsion adjuvant MF59. We characterize gB-specific monoclonal antibodies isolated from individuals vaccinated with a disabled infectious single cycle (DISC) CMV vaccine, V160, and compare these to the gB-specific monoclonal antibody repertoire isolated from naturally-infected individuals. We find that vaccination with V160 resulted in gB-specific antibodies that bound homogenously to gB expressed on the surface of a cell in contrast to antibodies isolated from natural infection which variably bound to cell-associated gB. Vaccination resulted in a similar breadth of gB-specific antibodies, with binding profile to gB genotypes 1-5 comparable to that of natural infection. Few gB-specific neutralizing antibodies were isolated from V160 vaccinees and fewer antibodies had identifiable gB antigenic domain specificity compared to that of naturally-infected individuals. We also show that glycosylation of gB residue N73 may shield binding of gB-specific antibodies.
Collapse
Affiliation(s)
- Sarah M Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Eric Rochat
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Melissa J Harnois
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Helen S Webster
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Bhavna Hora
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Amit Kumar
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Hsuan-Yuan Sherry Wang
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dai Wang
- Merck & Co., Inc., Rahway, NJ, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Gal Y, Marcus H, Mamroud E, Aloni-Grinstein R. Mind the Gap-A Perspective on Strategies for Protecting against Bacterial Infections during the Period from Infection to Eradication. Microorganisms 2023; 11:1701. [PMID: 37512874 PMCID: PMC10386665 DOI: 10.3390/microorganisms11071701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The emergence of antibiotic-resistant bacteria is a pressing public health concern, highlighting the need for alternative approaches to control bacterial infections. Promising approaches include the development of therapeutic vaccines and the utilization of innate immune activation techniques, which may prove useful in conjunction with antibiotics, as well as other antibacterial modalities. However, innate activation should be fast and self- or actively- contained to prevent detrimental consequences. TLR ligand adjuvants are effective at rapidly activating, within minutes to hours, the innate immune system by inducing cytokine production and other signaling molecules that bolster the host's immune response. Neutrophils serve as the first line of defense against invading pathogens by capturing and destroying them through various mechanisms, such as phagocytosis, intracellular degradation, and the formation of NETs. Nutritional immunity is another host defense mechanism that limits the availability of essential metals, such as iron, from invading bacterial pathogens. Thus, iron starvation has been proposed as a potential antibacterial strategy. In this review, we focus on approaches that have the potential to enhance rapid and precise antibacterial responses, bridging the gap between the onset of infection and the elimination of bacteria, hence limiting the infection by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Hadar Marcus
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona 74100, Israel
| |
Collapse
|
6
|
Gomes AC, Baraniak IA, McIntosh MR, Sodi I, Langstone T, Siddiqui S, Atkinson C, McLean GR, Griffiths PD, Reeves MB. A temperature-dependent virus-binding assay reveals the presence of neutralizing antibodies in human cytomegalovirus gB vaccine recipients' sera. J Gen Virol 2023; 104:001860. [PMID: 37310000 PMCID: PMC10661908 DOI: 10.1099/jgv.0.001860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) remains an important cause of mortality in immune-compromised transplant patients and following congenital infection. Such is the burden, an effective vaccine strategy is considered to be of the highest priority. The most successful vaccines to date have focused on generating immune responses against glycoprotein B (gB) - a protein essential for HCMV fusion and entry. We have previously reported that an important component of the humoral immune response elicited by gB/MF59 vaccination of patients awaiting transplant is the induction of non-neutralizing antibodies that target cell-associated virus with little evidence of concomitant classical neutralizing antibodies. Here we report that a modified neutralization assay that promotes prolonged binding of HCMV to the cell surface reveals the presence of neutralizing antibodies in sera taken from gB-vaccinated patients that cannot be detected using standard assays. We go on to show that this is not a general feature of gB-neutralizing antibodies, suggesting that specific antibody responses induced by vaccination could be important. Although we can find no evidence that these neutralizing antibody responses are a correlate of protection in vivo in transplant recipients their identification demonstrates the utility of the approach in identifying these responses. We hypothesize that further characterization has the potential to aid the identification of functions within gB that are important during the entry process and could potentially improve future vaccine strategies directed against gB if they prove to be effective against HCMV at higher concentrations.
Collapse
Affiliation(s)
- Ariane C. Gomes
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Ilona A. Baraniak
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Megan R. McIntosh
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Isabella Sodi
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Toby Langstone
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Saima Siddiqui
- London Metropolitan University, School of Human Sciences, London, N7 8DB, UK
| | - Claire Atkinson
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Gary R. McLean
- London Metropolitan University, School of Human Sciences, London, N7 8DB, UK
- Imperial College London, National Heart and Lung Institute, London, W2 1PG, UK
| | - Paul D. Griffiths
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, UCL, Royal Free Campus, London, NW3 2PP, UK
| |
Collapse
|
7
|
Sittisak T, Guntawang T, Srivorakul S, Photichai K, Boonprasert K, Khammesri S, Chuammitri P, Thitaram C, Hsu WL, Thanawongnuwech R, Pringproa K. Response of elephant peripheral blood mononuclear cells when stimulated with elephant endotheliotropic herpesvirus glycoprotein B (EEHV-gB). Vet Immunol Immunopathol 2023; 258:110577. [PMID: 36867998 DOI: 10.1016/j.vetimm.2023.110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Elephant endotheliotropic herpesvirus-hemorrhagic disease (EEHV-HD) is the most highly fatal infectious disease among young Asian elephants. Despite the fact that antiviral therapy has been widely used, its therapeutic outcomes remain uncertain. Additionally, the virus has yet to be successfully cultivated in vitro in the process of develop viral envelope glycoproteins for vaccine design. The present study aims to investigate and evaluate EEHV1A glycoprotein B (gB) antigenic epitopes as potential candidates for further vaccine development. Epitopes of EEHV1A-gB were employed in in silico predictions and designed by using online antigenic predicting tools. Candidate genes were then constructed, transformed and expressed in the E. coli vectors prior to examine their potential for acceleration elephant immune responses in vitro. Elephant peripheral blood mononuclear cells (PBMCs) isolated from 16 healthy juvenile Asian elephants were investigated for their proliferative capability and cytokine responses after being stimulated with EEHV1A-gB epitopes. Exposure of elephant PBMCs to 20 µg/mL of gB for 72 h resulted in a significant proliferation of CD3 + cells when compared with the control group. Furthermore, proliferation of CD3 + cells was associated with a marked up-regulation of cytokine mRNA expression, involving IL-1β, IL-8, IL-12 and IFN-γ. It remains to be determined whether these candidate EEHV1A-gB epitopes could activate immune responses in animal models or elephants in vivo. Our potentially promising results demonstrate a degree of feasibility for the use of these gB epitopes in expanding EEHV vaccine development.
Collapse
Affiliation(s)
- Tidaratt Sittisak
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Thunyamas Guntawang
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Saralee Srivorakul
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kornravee Photichai
- Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Khajohnpat Boonprasert
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Siripat Khammesri
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chatchote Thitaram
- Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Roongroje Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Elephant and Wildlife Research, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
8
|
Zhong L, Zhang W, Krummenacher C, Chen Y, Zheng Q, Zhao Q, Zeng MS, Xia N, Zeng YX, Xu M, Zhang X. Targeting herpesvirus entry complex and fusogen glycoproteins with prophylactic and therapeutic agents. Trends Microbiol 2023:S0966-842X(23)00077-X. [DOI: 10.1016/j.tim.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
|
9
|
Nuévalos M, García-Ríos E, Mancebo FJ, Martín-Martín C, Pérez-Romero P. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease. Trends Microbiol 2023; 31:480-497. [PMID: 36624009 DOI: 10.1016/j.tim.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen worldwide. Although HCMV infection is often asymptomatic in immunocompetent individuals, it can cause severe or even life-threatening symptoms in immunocompromised patients. Due to limitations of antiviral treatments, it is necessary to search for new therapeutic alternatives. Recent studies have highlighted the contribution of antibodies in protecting against HCMV disease, including neutralizing and non-neutralizing antibodies. Given the immunocompromised target population, monoclonal antibodies (mAbs) may represent an alternative to the clinical management of HCMV infection. In this context, we provide a synthesis of recent data revising the literature supporting and arguing about the role of the humoral immunity in controlling HCMV infection. Additionally, we review the state of the art in the development of therapies based on mAbs.
Collapse
Affiliation(s)
- Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; Department of Science, Universidad Internacional de Valencia-VIU, 46002 Valencia, Spain.
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Clara Martín-Martín
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
10
|
Jenks JA, Amin S, Sponholtz MR, Kumar A, Wrapp D, Venkatayogi S, Tu JJ, Karthigeyan K, Valencia SM, Connors M, Harnois MJ, Hora B, Rochat E, McLellan JS, Wiehe K, Permar SR. A single, improbable B cell receptor mutation confers potent neutralization against cytomegalovirus. PLoS Pathog 2023; 19:e1011107. [PMID: 36662906 PMCID: PMC9891502 DOI: 10.1371/journal.ppat.1011107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/01/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.
Collapse
Affiliation(s)
- Jennifer A. Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sharmi Amin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Madeline R. Sponholtz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krithika Karthigeyan
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah M. Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Megan Connors
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| | - Melissa J. Harnois
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eric Rochat
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
11
|
Harnois MJ, Dennis M, Stöhr D, Valencia SM, Rodgers N, Semmes EC, Webster HS, Jenks JA, Barfield R, Pollara J, Chan C, Sinzger C, Permar SR. Characterization of Plasma Immunoglobulin G Responses in Elite Neutralizers of Human Cytomegalovirus. J Infect Dis 2022; 226:1667-1677. [PMID: 35970817 PMCID: PMC10205896 DOI: 10.1093/infdis/jiac341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is the most common infectious complication of organ transplantation and cause of birth defects worldwide. There are limited therapeutic options and no licensed vaccine to prevent HCMV infection or disease. To inform development of HCMV antibody-based interventions, a previous study identified individuals with potent and broad plasma HCMV-neutralizing activity, termed elite neutralizers (ENs), from a cohort of HCMV-seropositive (SP) blood donors. However, the specificities and functions of plasma antibodies associated with EN status remained undefined. METHODS We sought to determine the plasma antibody specificities, breadth, and Fc-mediated antibody effector functions associated with the most potent HCMV-neutralizing responses in plasma from ENs (n = 25) relative to that from SP donors (n = 19). We measured antibody binding against various HCMV strains and glycoprotein targets and evaluated Fc-mediated effector functions, antibody-dependent cellular cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP). RESULTS We demonstrate that ENs have elevated immunoglobulin G binding responses against multiple viral glycoproteins, relative to SP donors. Our study also revealed potent HCMV-specific antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis activity of plasma from ENs. CONCLUSIONS We conclude that antibody responses against multiple glycoprotein specificities may be needed to achieve potent plasma neutralization and that potently HCMV elite-neutralizing plasma antibodies can also mediate polyfunctional responses.
Collapse
Affiliation(s)
- Melissa J Harnois
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maria Dennis
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, Ulm, Baden-Württemberg, Germany
| | - Sarah M Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Nicole Rodgers
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Eleanor C Semmes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen S Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Human Systems Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Human Systems Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Christian Sinzger
- Institute for Virology, Ulm University Medical Center, Ulm, Baden-Württemberg, Germany
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
Hu X, Wang HY, Otero CE, Jenks JA, Permar SR. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu Rev Virol 2022; 9:491-520. [PMID: 35704747 PMCID: PMC10154983 DOI: 10.1146/annurev-virology-100220-010653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
13
|
Mokhtary P, Pourhashem Z, Mehrizi AA, Sala C, Rappuoli R. Recent Progress in the Discovery and Development of Monoclonal Antibodies against Viral Infections. Biomedicines 2022; 10:biomedicines10081861. [PMID: 36009408 PMCID: PMC9405509 DOI: 10.3390/biomedicines10081861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs), the new revolutionary class of medications, are fast becoming tools against various diseases thanks to a unique structure and function that allow them to bind highly specific targets or receptors. These specialized proteins can be produced in large quantities via the hybridoma technique introduced in 1975 or by means of modern technologies. Additional methods have been developed to generate mAbs with new biological properties such as humanized, chimeric, or murine. The inclusion of mAbs in therapeutic regimens is a major medical advance and will hopefully lead to significant improvements in infectious disease management. Since the first therapeutic mAb, muromonab-CD3, was approved by the U.S. Food and Drug Administration (FDA) in 1986, the list of approved mAbs and their clinical indications and applications have been proliferating. New technologies have been developed to modify the structure of mAbs, thereby increasing efficacy and improving delivery routes. Gene delivery technologies, such as non-viral synthetic plasmid DNA and messenger RNA vectors (DMabs or mRNA-encoded mAbs), built to express tailored mAb genes, might help overcome some of the challenges of mAb therapy, including production restrictions, cold-chain storage, transportation requirements, and expensive manufacturing and distribution processes. This paper reviews some of the recent developments in mAb discovery against viral infections and illustrates how mAbs can help to combat viral diseases and outbreaks.
Collapse
Affiliation(s)
- Pardis Mokhtary
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Department of Biochemistry and Molecular Biology, University of Siena, 53100 Siena, Italy
| | - Zeinab Pourhashem
- Student Research Committee, Pasteur Institute of Iran, Tehran 1316943551, Iran;
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Akram Abouei Mehrizi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| |
Collapse
|
14
|
Permar SR, Kaur A, Fruh K. Derisking Human Cytomegalovirus Vaccine Clinical Development in Relevant Preclinical Models. J Infect Dis 2022; 226:563-565. [PMID: 35415750 PMCID: PMC9441196 DOI: 10.1093/infdis/jiac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sallie R Permar
- Correspondence: S. R. Permar, MD, PhD, Department of Pediatrics, Weill Cornell Medicine, 525 East 68th Street, M-622, Box 225, New York, NY 10065, USA ()
| | - Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Klaus Fruh
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, Oregon, USA
| |
Collapse
|
15
|
Recent progress in development of monoclonal antibodies against human cytomegalovirus. Curr Opin Virol 2021; 52:166-173. [PMID: 34952264 DOI: 10.1016/j.coviro.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 01/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause permanent childhood disabilities following in utero infection and life threatening diseases in immune-compromised individuals such as those post transplantation. Without an effective vaccine, small molecule antiviral drugs are routinely used in high-risk transplant recipients, but the effectiveness of which is limited by side effects and drug resistance. The potentials of antibody-based passive immune therapies alone or in combination with the small molecule antivirals to treat or prevent HCMV infection have been actively studied. In this review, we focus on the recent publications on identification and characterization of monoclonal antibodies that have the potential to be developed as anti-HCMV therapies. We review the progress in clinical evaluation of antibody-based therapies to prevent HCMV-associated diseases.
Collapse
|
16
|
He L, Sun B, Guo Y, Yan K, Liu D, Zang Y, Jiang C, Zhang Y, Kong W. Immune response of C57BL/6J mice to herpes zoster subunit vaccines formulated with nanoemulsion-based and liposome-based adjuvants. Int Immunopharmacol 2021; 101:108216. [PMID: 34634689 DOI: 10.1016/j.intimp.2021.108216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Herpes zoster (HZ) is a recurrent nerve tissue infection caused by the reactivation of varicella-zoster virus (VZV). At present, two vaccines, the live attenuated vaccine Zostavax™ and AS01B-adjuvanted recombinant subunit vaccine Shingrix™, are commercially available for HZ. The latter is superior to the former in terms of efficacy and duration of immunity in the elderly. In this study, we used glycoprotein E (gE) as an antigen, and investigated the effects of various adjuvants (MF59, MF59/CpG 2006, and MF59/QS-21) on the immune response of C57BL/6J mice to find an alternative adjuvant to AS01B-like adjuvant of liposome/QS-21/MPL. In addition to safety, the gE-specific antibody, IgG antibody subtype, and cytokine secretion by splenocytes, and cell-mediated immune responses were determined using ELISA and ELISPOT assays, respectively. Our results showed no significant effects on the body weight, temperature, or behavior of mice vaccinated with PBS or all adjuvanted vaccines. All adjuvanted vaccine groups showed significantly higher gE-specific IgG antibody levels than the gE-alone group on day 28 after the first vaccine dose. In addition, all adjuvants induced a remarkable increase in both IgG1 and IgG2b levels. However, MF59/QS-21 and MF59/CpG 2006 showed comparable capacities to those of liposome/QS-21/MPL in increasing the IgG2c levels, being superior to MF59. Further investigation revealed that MF59 only induced a limited increase in the levels of Th1 and Th2 cytokines, while MF59/QS-21, MF59/CpG 2006, and liposome/QS-21/MPL led to a significant increase in the secretion of interferon gamma (IFN-γ), IL-2, IL-4, and IL-10 and showed a Th1-biased immune response. Moreover, MF59/QS-21, MF59/CpG 2006, and liposome/QS-21/MPL adjuvanted vaccines resulted in comparable gE-specific IFN-γ + immune cell responses. These results suggest that the combination of MF59 with QS-21 or CpG 2006 may be a promising adjuvant candidate for subunit HZ vaccines. Further investigations are needed to illustrate their durability and efficacy in aged mice.
Collapse
Affiliation(s)
- Lei He
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Changchun, China
| | - Yingnan Guo
- R&D Center, Changchun BCHT Biotechnology Co., Changchun 130012, China
| | - Kunming Yan
- R&D Center, Changchun BCHT Biotechnology Co., Changchun 130012, China
| | - Dawei Liu
- R&D Center, Changchun BCHT Biotechnology Co., Changchun 130012, China
| | - Yang Zang
- R&D Center, Changchun BCHT Biotechnology Co., Changchun 130012, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Changchun, China; R&D Center, Changchun BCHT Biotechnology Co., Changchun 130012, China.
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Changchun, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Changchun, China; R&D Center, Changchun BCHT Biotechnology Co., Changchun 130012, China
| |
Collapse
|
17
|
Jenks JA, Nelson CS, Roark HK, Goodwin ML, Pass RF, Bernstein DI, Walter EB, Edwards KM, Wang D, Fu TM, An Z, Chan C, Permar SR. Antibody binding to native cytomegalovirus glycoprotein B predicts efficacy of the gB/MF59 vaccine in humans. Sci Transl Med 2021; 12:12/568/eabb3611. [PMID: 33148624 DOI: 10.1126/scitranslmed.abb3611] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (CMV) is the most common infectious cause of infant brain damage and posttransplant complications worldwide. Despite the high global burden of disease, vaccine development to prevent infection remains hampered by challenges in generating protective immunity. The most efficacious CMV vaccine candidate tested to date is a soluble glycoprotein B (gB) subunit vaccine with MF59 adjuvant (gB/MF59), which achieved 50% protection in multiple historical phase 2 clinical trials. The vaccine-elicited immune responses that conferred this protection have remained unclear. We investigated the humoral immune correlates of protection from CMV acquisition in populations of CMV-seronegative adolescent and postpartum women who received the gB/MF59 vaccine. We found that gB/MF59 immunization elicited distinct CMV-specific immunoglobulin G (IgG)-binding profiles and IgG-mediated functional responses in adolescent and postpartum vaccinees, with heterologous CMV strain neutralization observed primarily in adolescent vaccinees. Using penalized multiple logistic regression analysis, we determined that protection against primary CMV infection in both cohorts was associated with serum IgG binding to gB present on a cell surface but not binding to the soluble vaccine antigen, suggesting that IgG binding to cell-associated gB is an immune correlate of vaccine efficacy. Supporting this, we identified gB-specific monoclonal antibodies that differentially recognized soluble or cell-associated gB, revealing that there are structural differences in cell-associated and soluble gB are relevant to the generation of protective immunity. Our results highlight the importance of the native, cell-associated gB conformation in future CMV vaccine design.
Collapse
Affiliation(s)
- Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27705, USA
| | - Cody S Nelson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27705, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hunter K Roark
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27705, USA
| | - Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27705, USA
| | - Robert F Pass
- Department of Pediatrics, University of Alabama of Birmingham, Birmingham, AL 35233, USA
| | - David I Bernstein
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27705, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dai Wang
- Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27705, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27705, USA. .,Department of Pediatrics, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
18
|
A conditionally replication-defective cytomegalovirus vaccine elicits potent and diverse functional monoclonal antibodies in a phase I clinical trial. NPJ Vaccines 2021; 6:79. [PMID: 34078915 PMCID: PMC8172929 DOI: 10.1038/s41541-021-00342-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
A conditionally replication-defective human cytomegalovirus (HCMV) vaccine, V160, was shown to be safe and immunogenic in a two-part, double-blind, randomized, placebo-controlled phase I clinical trial (NCT01986010). However, the specificities and functional properties of V160-elicited antibodies remain undefined. Here, we characterized 272 monoclonal antibodies (mAbs) isolated from single memory B cells of six V160-vaccinated subjects. The mAbs bind to diverse HCMV antigens, including multiple components of the pentamer, gB, and tegument proteins. The most-potent neutralizing antibodies target the pentamer-UL subunits. The binding sites of the antibodies overlap with those of antibodies responding to natural HCMV infection. The majority of the neutralizing antibodies target the gHgL subunit. The non-neutralizing antibodies predominantly target the gB and pp65 proteins. Sequence analysis indicated that V160 induced a class of gHgL antibodies expressing the HV1-18/KV1-5 germline genes in multiple subjects. This study provides valuable insights into primary targets for anti-HCMV antibodies induced by V160 vaccination.
Collapse
|
19
|
Siddiqui S, Hackl S, Ghoddusi H, McIntosh MR, Gomes AC, Ho J, Reeves MB, McLean GR. IgA binds to the AD-2 epitope of glycoprotein B and neutralizes human cytomegalovirus. Immunology 2021; 162:314-327. [PMID: 33283275 PMCID: PMC7884650 DOI: 10.1111/imm.13286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that is potentially pathogenic in immunosuppressed individuals and pregnant females during primary infection. The HCMV envelope glycoprotein B (gB) facilitates viral entry into all cell types and induces a potent immune response. AD-2 epitope is a highly conserved linear neutralizing epitope of gB and a critical target for antibodies; however, only 50% of sero-positive individuals make IgG antibodies to this site and IgA responses have not been fully investigated. This study aimed to compare IgG and IgA responses against gB and the AD-2 epitope in naturally exposed individuals and those receiving a recombinant gB/MF59 adjuvant vaccine. Thus, vaccination of sero-positive individuals improved pre-existing gB-specific IgA and IgG levels and induced de novo gB-specific IgA and IgG responses in sero-negative recipients. Pre-existing AD-2 IgG and IgA responses were boosted with vaccination, but de novo AD-2 responses were not detected. Naturally exposed individuals had dominant IgG responses towards gB and AD-2 compared with weaker and variable IgA responses, although a significant IgA binding response to AD-2 was observed within human breastmilk samples. All antibodies binding AD-2 contained kappa light chains, whereas balanced kappa/lambda light chain usage was found for those binding to gB. V region-matched AD-2-specific recombinant IgG and IgA bound both to gB and to AD-2 and neutralized HCMV infection in vitro. Overall, these results indicate that although human IgG responses dominate, IgA class antibodies against AD-2 are a significant component of human milk, which may function to protect neonates from HCMV.
Collapse
Affiliation(s)
- Saima Siddiqui
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK
| | - Sarah Hackl
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK
| | - Hamid Ghoddusi
- Microbiology Research UnitLondon Metropolitan UniversityLondonUK
| | - Megan R. McIntosh
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Ariane C. Gomes
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Joshua Ho
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Matthew B. Reeves
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Gary R. McLean
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK,National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
20
|
Potent Bispecific Neutralizing Antibody Targeting Glycoprotein B and the gH/gL/pUL128/130/131 Complex of Human Cytomegalovirus. Antimicrob Agents Chemother 2021; 65:AAC.02422-20. [PMID: 33361306 PMCID: PMC8092496 DOI: 10.1128/aac.02422-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause developmental disorders following congenital infection and life-threatening complications among transplant patients. Potent neutralizing monoclonal antibodies (MAbs) are promising drug candidates against HCMV infection. HCMV can infect a broad range of cell types. Therefore, single neutralizing antibodies targeting one HCMV glycoprotein often lack either potency or broad cell-type coverage. We previously characterized two human-derived HCMV neutralizing MAbs. One was the broadly neutralizing MAb 3-25, which targets the antigenic domain 2 of glycoprotein B (gB). The other was the highly potent MAb 2-18, which specifically recognizes the gH/gL/pUL128/130/131 complex (pentamer). To combine the strengths of gB- and pentamer-targeting MAbs, we developed an IgG-single-chain variable fragment (scFv) bispecific antibody by fusing the 2-18 scFv to the heavy-chain C terminus of MAb 3-25. The resulting bispecific antibody showed high-affinity binding to both gB and pentamer. Functionally, the bispecific antibody demonstrated a combined neutralization breadth and potency of the parental MAbs in multiple cell lines and inhibited postinfection viral spreading. Furthermore, the bispecific antibody was easily produced in CHO cells at a yield above 1 g/liter and showed a single-dose pharmacokinetic profile comparable to that of parental MAb 3-25 in rhesus macaques. Importantly, the bispecific antibody retained broadly and potent neutralizing activity after 21 days in circulation. Taken together, our research provides a proof-of-concept study for developing bispecific neutralizing antibody therapies against HCMV infection.
Collapse
|
21
|
Plotkin SA, Wang D, Oualim A, Diamond DJ, Kotton CN, Mossman S, Carfi A, Anderson D, Dormitzer PR. The Status of Vaccine Development Against the Human Cytomegalovirus. J Infect Dis 2021; 221:S113-S122. [PMID: 32134478 DOI: 10.1093/infdis/jiz447] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous candidate vaccines against cytomegalovirus (CMV) infection and disease are in development. Whereas the previous article [1] provides background and opinions about the issues relating to vaccination, this article provides specifics about the vaccines in active development, as reported at a National Institutes of Health-sponsored meeting in Bethesda on September 4-6, 2018. Here, vaccine developers provide synopses of their candidate vaccines to immunize women to protect against congenital CMV disease and to prevent the consequences of CMV disease in recipients of transplanted organs or hematopoietic stem calls. The projects are presented here roughly in the descending order of their stage of development in the opinion of the first author.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Vaxconsult, Doylestown, Pennsylvania, USA
| | - Dai Wang
- Merck & Co., Kenilworth, New Jersey, USA
| | | | - Don J Diamond
- City of Hope National Medical Center, Duarte, California, USA
| | | | | | - Andrea Carfi
- Moderna Therapeutics, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
22
|
Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat Rev Microbiol 2021; 19:759-773. [PMID: 34168328 PMCID: PMC8223196 DOI: 10.1038/s41579-021-00582-z] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects ~60% of adults in developed countries and more than 90% in developing countries. Usually, it is controlled by a vigorous immune response so that infections are asymptomatic or symptoms are mild. However, if the immune system is compromised, HCMV can replicate to high levels and cause serious end organ disease. Substantial progress is being made in understanding the natural history and pathogenesis of HCMV infection and disease in the immunocompromised host. Serial measures of viral load defined the dynamics of HCMV replication and are now used routinely to allow intervention with antiviral drugs in individual patients. They are also used as pharmacodynamic read-outs to evaluate prototype vaccines that may protect against HCMV replication and to define immune correlates of this protection. This novel information is informing the design of randomized controlled trials of new antiviral drugs and vaccines currently under evaluation. In this Review, we discuss immune responses to HCMV and countermeasures deployed by the virus, the establishment of latency and reactivation from it, exogenous reinfection with additional strains, pathogenesis, development of end organ disease, indirect effects of infection, immune correlates of control of replication, current treatment strategies and the evaluation of novel vaccine candidates.
Collapse
Affiliation(s)
- Paul Griffiths
- Institute for Immunity and Transplantation, University College London, London, UK.
| | - Matthew Reeves
- grid.83440.3b0000000121901201Institute for Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
23
|
Perotti M, Marcandalli J, Demurtas D, Sallusto F, Perez L. Rationally designed Human Cytomegalovirus gB nanoparticle vaccine with improved immunogenicity. PLoS Pathog 2020; 16:e1009169. [PMID: 33370407 PMCID: PMC7794029 DOI: 10.1371/journal.ppat.1009169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the primary viral cause of congenital birth defects and causes significant morbidity and mortality in immune-suppressed transplant recipients. Despite considerable efforts in vaccine development, HCMV infection still represents an unmet clinical need. In recent phase II trials, a MF59-adjuvanted gB vaccine showed only modest efficacy in preventing infection. These findings might be attributed to low level of antibodies (Abs) with a neutralizing activity induced by this vaccine. Here, we analyzed the immunogenicity of each gB antigenic domain (AD) and demonstrated that domain I of gB (AD5) is the main target of HCMV neutralizing antibodies. Furthermore, we designed, characterized and evaluated immunogenic responses to two different nanoparticles displaying a trimeric AD5 antigen. We showed that mice immunization with nanoparticles induces sera neutralization titers up to 100-fold higher compared to those obtained with the gB extracellular domain (gBECD). Collectively, these results illustrate with a medically relevant example the advantages of using a general approach combining antigen discovery, protein engineering and scaffold presentation for modern development of subunit vaccines against complex pathogens.
Collapse
Affiliation(s)
- Michela Perotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Jessica Marcandalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Davide Demurtas
- BioEM Facility, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, faculty of Biomedical Sciences, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Laurent Perez
- Institute for Research in Biomedicine, Università della Svizzera italiana, faculty of Biomedical Sciences, Bellinzona, Switzerland.,University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Department of Medicine, Division of Immunology and Allergy, Center for Human Immunology (CHIL), Lausanne, Switzerland
| |
Collapse
|
24
|
Goodwin ML, Webster HS, Wang HY, Jenks JA, Nelson CS, Tu JJ, Mangold JF, Valencia S, Pollara J, Edwards W, McLellan JS, Wrapp D, Fu TM, Zhang N, Freed DC, Wang D, An Z, Permar SR. Specificity and effector functions of non-neutralizing gB-specific monoclonal antibodies isolated from healthy individuals with human cytomegalovirus infection. Virology 2020; 548:182-191. [PMID: 32838941 PMCID: PMC7447913 DOI: 10.1016/j.virol.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/23/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Helen S Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Hsuan-Yuan Wang
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Cody S Nelson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jesse F Mangold
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Whitney Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tong-Ming Fu
- Merck & Co., Inc., Kenilworth, NJ, USA; Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
25
|
Ye X, Su H, Wrapp D, Freed DC, Li F, Yuan Z, Tang A, Li L, Ku Z, Xiong W, Jaijyan D, Zhu H, Wang D, McLellan JS, Zhang N, Fu TM, An Z. Recognition of a highly conserved glycoprotein B epitope by a bivalent antibody neutralizing HCMV at a post-attachment step. PLoS Pathog 2020; 16:e1008736. [PMID: 32745149 PMCID: PMC7425986 DOI: 10.1371/journal.ppat.1008736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/13/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causative agents of congenital viral infection in neonates. HCMV infection also causes serious morbidity and mortality among organ transplant patients. Glycoprotein B (gB) is a major target for HCMV neutralizing antibodies, yet the underlying neutralization mechanisms remain largely unknown. Here we report that 3–25, a gB-specific monoclonal antibody previously isolated from a healthy HCMV-positive donor, efficiently neutralized 14 HCMV strains in both ARPE-19 cells and MRC-5 cells. The core epitope of 3–25 was mapped to a highly conserved linear epitope on antigenic domain 2 (AD-2) of gB. A 1.8 Å crystal structure of 3–25 Fab in complex with the peptide epitope revealed the molecular determinants of 3–25 binding to gB at atomic resolution. Negative-staining electron microscopy (EM) 3D reconstruction of 3–25 Fab in complex with de-glycosylated postfusion gB showed that 3–25 Fab fully occupied the gB trimer at the N-terminus with flexible binding angles. Functionally, 3–25 efficiently inhibited HCMV infection at a post-attachment step by interfering with viral membrane fusion, and restricted post-infection viral spreading in ARPE-19 cells. Interestingly, bivalency was required for HCMV neutralization by AD-2 specific antibody 3–25 but not the AD-4 specific antibody LJP538. In contrast, bivalency was not required for HCMV binding by both antibodies. Taken together, our results reveal the structural basis of gB recognition by 3–25 and demonstrate that inhibition of viral membrane fusion and a requirement of bivalency may be common for gB AD-2 specific neutralizing antibody. HCMV infection is usually asymptomatic in healthy individuals. However, life-threatening diseases frequently accompany HCMV infection in individuals with under-developed or compromised immune systems. Glycoprotein B antigenic domain 2 (AD-2) is a major target for HCMV-neutralizing antibodies that potentially provide immune protection. We report the structure-based study of gB recognition by a potent neutralizing antibody named 3–25 that binds a highly conserved epitope on AD-2. Functionally, 3–25 efficiently inhibited HCMV infection at a post-attachment step by interfering with viral membrane fusion, and restricted post-infection viral spreading. Furthermore, bivalency of 3–25 is required for viral neutralization but not for binding. Our findings advance understanding of gB antibody-mediated HCMV neutralization and facilitate development of gB-targeted vaccines and antibody drugs against HCMV infection.
Collapse
Affiliation(s)
- Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Hang Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Daniel Wrapp
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel C. Freed
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Fengsheng Li
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Zihao Yuan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Aimin Tang
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dabbu Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Dai Wang
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (NZ); (TMF); (ZA)
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
- * E-mail: (NZ); (TMF); (ZA)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (NZ); (TMF); (ZA)
| |
Collapse
|
26
|
Forrest C, Gomes A, Reeves M, Male V. NK Cell Memory to Cytomegalovirus: Implications for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030394. [PMID: 32698362 PMCID: PMC7563466 DOI: 10.3390/vaccines8030394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that recognize and eliminate virally-infected and cancerous cells. Members of the innate immune system are not usually considered to mediate immune memory, but over the past decade evidence has emerged that NK cells can do this in several contexts. Of these, the best understood and most widely accepted is the response to cytomegaloviruses, with strong evidence for memory to murine cytomegalovirus (MCMV) and several lines of evidence suggesting that the same is likely to be true of human cytomegalovirus (HCMV). The importance of NK cells in the context of HCMV infection is underscored by the armory of NK immune evasion genes encoded by HCMV aimed at subverting the NK cell immune response. As such, ongoing studies that have utilized HCMV to investigate NK cell diversity and function have proven instructive. Here, we discuss our current understanding of NK cell memory to viral infection with a focus on the response to cytomegaloviruses. We will then discuss the implications that this will have for the development of a vaccine against HCMV with particular emphasis on how a strategy that can harness the innate immune system and NK cells could be crucial for the development of a vaccine against this high-priority pathogen.
Collapse
Affiliation(s)
- Calum Forrest
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Ariane Gomes
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
| | - Matthew Reeves
- Institute of Immunity & Transplantation, UCL, Royal Free Campus, London NW3 2PF, UK; (C.F.); (A.G.)
- Correspondence: (M.R.); (V.M.)
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Campus, London SW10 9NH, UK
- Correspondence: (M.R.); (V.M.)
| |
Collapse
|
27
|
Sandonís V, García-Ríos E, McConnell MJ, Pérez-Romero P. Role of Neutralizing Antibodies in CMV Infection: Implications for New Therapeutic Approaches. Trends Microbiol 2020; 28:900-912. [PMID: 32448762 DOI: 10.1016/j.tim.2020.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) infection elicits a potent immune response that includes the stimulation of antibodies with neutralizing activity. Recent studies have focused on elucidating the role of neutralizing antibodies in protecting against CMV infection and disease and characterizing viral antigens against which neutralizing antibodies are directed. Here, we provide a synthesis of recent data regarding the role of neutralizing antibodies in protection against CMV infection/disease. We consider the role of humoral immunity in the context of the global CMV-specific immune response, and the implications that recent findings have for vaccine and antibody-based therapy design.
Collapse
Affiliation(s)
- Virginia Sandonís
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael J McConnell
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
28
|
Past and ongoing adaptation of human cytomegalovirus to its host. PLoS Pathog 2020; 16:e1008476. [PMID: 32384127 PMCID: PMC7239485 DOI: 10.1371/journal.ppat.1008476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/20/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes. Human cytomegalovirus (HCMV), which represents the most common infectious cause of birth defects, is perfectly adapted to infect humans. We performed a two-tier analysis of HCMV evolution, by describing selective events that occurred during HCMV adaptation to our species and by identifying more recently emerged adaptive variants in clinical isolates. We show that distinct viral genes were targeted by natural selection over different time frames and we generate a catalog of adaptive variants that represent candidate determinants of viral phenotypic variation. As a proof of concept, we show that adaptive changes in the viral primase modulate viral growth in vitro and that selected variants in the UL144 signal peptide affect glycoprotein intracellular trafficking.
Collapse
|
29
|
Human Cytomegalovirus Congenital (cCMV) Infection Following Primary and Nonprimary Maternal Infection: Perspectives of Prevention through Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020194. [PMID: 32340180 PMCID: PMC7349293 DOI: 10.3390/vaccines8020194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/26/2023] Open
Abstract
Congenital cytomegalovirus (cCMV) might occur as a result of the human cytomegalovirus (HCMV) primary (PI) or nonprimary infection (NPI) in pregnant women. Immune correlates of protection against cCMV have been partly identified only for PI. Following either PI or NPI, HCMV strains undergo latency. From a diagnostic standpoint, while the serological criteria for the diagnosis of PI are well-established, those for the diagnosis of NPI are still incomplete. Thus far, a recombinant gB subunit vaccine has provided the best results in terms of partial protection. This partial efficacy was hypothetically attributed to the post-fusion instead of the pre-fusion conformation of the gB present in the vaccine. Future efforts should be addressed to verify whether a new recombinant gB pre-fusion vaccine would provide better results in terms of prevention of both PI and NPI. It is still a matter of debate whether human hyperimmune globulin are able to protect from HCMV vertical transmission. In conclusion, the development of an HCMV vaccine that would prevent a significant portion of PI would be a major step forward in the development of a vaccine for both PI and NPI.
Collapse
|
30
|
Nelson CS, Jenks JA, Pardi N, Goodwin M, Roark H, Edwards W, McLellan JS, Pollara J, Weissman D, Permar SR. Human Cytomegalovirus Glycoprotein B Nucleoside-Modified mRNA Vaccine Elicits Antibody Responses with Greater Durability and Breadth than MF59-Adjuvanted gB Protein Immunization. J Virol 2020; 94:e00186-20. [PMID: 32051265 PMCID: PMC7163130 DOI: 10.1128/jvi.00186-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
A vaccine to prevent maternal acquisition of human cytomegalovirus (HCMV) during pregnancy is a primary strategy to reduce the incidence of congenital disease. The MF59-adjuvanted glycoprotein B (gB) protein subunit vaccine (gB/MF59) is the most efficacious vaccine tested to date for this indication. We previously identified that gB/MF59 vaccination elicited poor neutralizing antibody responses and an immunodominant response against gB antigenic domain 3 (AD-3). Thus, we sought to test novel gB vaccines to improve functional antibody responses and reduce AD-3 immunodominance. Groups of juvenile New Zealand White rabbits were administered 3 sequential doses of the full-length gB protein with an MF59-like squalene-based adjuvant, the gB ectodomain protein (lacking AD-3) with squalene adjuvant, or lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA encoding full-length gB. All vaccines were highly immunogenic with similar kinetics and comparable peak gB-binding and functional antibody responses. The AD-3-immunodominant IgG response following human gB/MF59 vaccination was closely mimicked in rabbits. Though gB ectodomain subunit vaccination eliminated targeting of epitopes in AD-3, it did not improve vaccine-elicited neutralizing or nonneutralizing antibody functions. gB nucleoside-modified mRNA-LNP-immunized rabbits exhibited an enhanced durability of vaccine-elicited antibody responses. Furthermore, the gB mRNA-LNP vaccine enhanced the breadth of IgG binding responses against discrete gB peptides. Finally, low-magnitude gB-specific T cell activity was observed in the full-length gB protein and mRNA-LNP groups, though not in ectodomain-vaccinated rabbits. Altogether, these data suggest that the use of gB nucleoside-modified mRNA-LNP vaccines is a viable strategy for improving on the partial efficacy of gB/MF59 vaccination and should be further evaluated in preclinical models.IMPORTANCE Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects, resulting in permanent neurological disability for one newborn child every hour in the United States. After more than a half century of research and development, we remain without a clinically licensed vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease. In this study, we sought to improve upon the glycoprotein B protein vaccine (gB/MF59), the most efficacious HCMV vaccine evaluated in a clinical trial, via targeted modifications to either the protein structure or vaccine formulation. Utilization of a novel vaccine platform, nucleoside-modified mRNA formulated in lipid nanoparticles, increased the durability and breadth of vaccine-elicited antibody responses. We propose that an mRNA-based gB vaccine may ultimately prove more efficacious than the gB/MF59 vaccine and should be further evaluated for its ability to elicit antiviral immune factors that can prevent HCMV-associated disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew Goodwin
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Hunter Roark
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
31
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
32
|
Baraniak I, Kern F, Holenya P, Griffiths P, Reeves M. Original Antigenic Sin Shapes the Immunological Repertoire Evoked by Human Cytomegalovirus Glycoprotein B/MF59 Vaccine in Seropositive Recipients. J Infect Dis 2020; 220:228-232. [PMID: 30815685 DOI: 10.1093/infdis/jiz089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 11/14/2022] Open
Abstract
A human cytomegalovirus (HCMV) vaccine is urgently needed to protect against primary infection and enhance existing immunity in HCMV-infected individuals (HCMV+). Using sera from HCMV+ glycoprotein B/MF59 vaccine recipients prior to transplant, we investigated the composition of the immune response. Vaccination boosted preexisting humoral responses in our HCMV+ cohort but did not promote de novo responses against novel linear epitopes. This suggests that prior natural infection has a profound effect on shaping the antibody repertoire and subsequent response to vaccination ("original antigenic sin"). Thus, vaccination of HCMV+ may require strategies of epitope presentation distinct from those intended to prevent primary infection.
Collapse
Affiliation(s)
- Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Florian Kern
- Clinical and Experimental Medicine, Brighton and Sussex Medical School, United Kingdom
| | | | - Paul Griffiths
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Matthew Reeves
- Institute for Immunity and Transplantation, University College London, United Kingdom
| |
Collapse
|
33
|
Virus-Like Particles and Nanoparticles for Vaccine Development against HCMV. Viruses 2019; 12:v12010035. [PMID: 31905677 PMCID: PMC7019358 DOI: 10.3390/v12010035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects more than 70% of the human population worldwide. HCMV is responsible for high morbidity and mortality in immunocompromised patients and remains the leading viral cause of congenital birth defects. Despite considerable efforts in vaccine and therapeutic development, HCMV infection still represents an unmet clinical need and a life-threatening disease in immunocompromised individuals and newborns. Immune repertoire interrogation of HCMV seropositive patients allowed the identification of several potential antigens for vaccine design. However, recent HCMV vaccine clinical trials did not lead to a satisfactory outcome in term of efficacy. Therefore, combining antigens with orthogonal technologies to further increase the induction of neutralizing antibodies could improve the likelihood of a vaccine to reach protective efficacy in humans. Indeed, presentation of multiple copies of an antigen in a repetitive array is known to drive a more robust humoral immune response than its soluble counterpart. Virus-like particles (VLPs) and nanoparticles (NPs) are powerful platforms for multivalent antigen presentation. Several self-assembling proteins have been successfully used as scaffolds to present complex glycoprotein antigens on their surface. In this review, we describe some key aspects of the immune response to HCMV and discuss the scaffolds that were successfully used to increase vaccine efficacy against viruses with unmet medical need.
Collapse
|
34
|
Tabata T, Petitt M, Fang-Hoover J, Freed DC, Li F, An Z, Wang D, Fu TM, Pereira L. Neutralizing Monoclonal Antibodies Reduce Human Cytomegalovirus Infection and Spread in Developing Placentas. Vaccines (Basel) 2019; 7:vaccines7040135. [PMID: 31569508 PMCID: PMC6963214 DOI: 10.3390/vaccines7040135] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects worldwide, yet the most effective strategies for preventing virus transmission during pregnancy are unknown. We measured the efficacy of human monoclonal antibodies (mAbs) to HCMV attachment/entry factors glycoprotein B (gB) and the pentameric complex, gH/gL-pUL128–131, in preventing infection and spread of a clinical strain in primary placental cells and explants of developing anchoring villi. A total of 109 explants from five first-trimester placentas were cultured, and infection was analyzed in over 400 cell columns containing ~120,000 cytotrophoblasts (CTBs). mAbs to gB and gH/gL, 3-25 and 3-16, respectively, neutralized infection in stromal fibroblasts and trophoblast progenitor cells. mAbs to pUL128-131 of the pentameric complex, 1-103 and 2-18, neutralized infection of amniotic epithelial cells better than mAbs 3-25 and 3-16 and hyperimmune globulin. Select mAbs neutralized infection of cell column CTBs, with mAb 2-18 most effective, followed by mAb 3-25. Treatment of anchoring villi with mAbs postinfection reduced spread in CTBs and impaired formation of virion assembly compartments, with mAb 2-18 achieving better suppression at lower concentrations. These results predict that antibodies generated by HCMV vaccines or used for passive immunization have the potential to reduce transplacental transmission and congenital disease.
Collapse
Affiliation(s)
- Takako Tabata
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | - Matthew Petitt
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | | | | | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Tong-Ming Fu
- Merck & Co., Inc., Kenilworth, NJ 07033, USA.
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Lenore Pereira
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
35
|
Schleiss MR. Searching for a Serological Correlate of Protection for a CMV Vaccine. J Infect Dis 2019. [PMID: 29528437 DOI: 10.1093/infdis/jiy104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- M R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
36
|
Danquah BD, Röwer C, Opuni KM, El-Kased R, Frommholz D, Illges H, Koy C, Glocker MO. Intact Transition Epitope Mapping - Targeted High-Energy Rupture of Extracted Epitopes (ITEM-THREE). Mol Cell Proteomics 2019; 18:1543-1555. [PMID: 31147491 PMCID: PMC6683010 DOI: 10.1074/mcp.ra119.001429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Epitope mapping, which is the identification of antigenic determinants, is essential for the design of novel antibody-based therapeutics and diagnostic tools. ITEM-THREE is a mass spectrometry-based epitope mapping method that can identify epitopes on antigens upon generating an immune complex in electrospray-compatible solutions by adding an antibody of interest to a mixture of peptides from which at least one holds the antibody's epitope. This mixture is nano-electrosprayed without purification. Identification of the epitope peptide is performed within a mass spectrometer that provides an ion mobility cell sandwiched in-between two collision cells and where this ion manipulation setup is flanked by a quadrupole mass analyzer on one side and a time-of-flight mass analyzer on the other side. In a stepwise fashion, immune-complex ions are separated from unbound peptide ions and dissociated to release epitope peptide ions. Immune complex-released peptide ions are separated from antibody ions and fragmented by collision induced dissociation. Epitope-containing peptide fragment ions are recorded, and mass lists are submitted to unsupervised data base search thereby retrieving both, the amino acid sequence of the epitope peptide and the originating antigen. ITEM-THREE was developed with antiTRIM21 and antiRA33 antibodies for which the epitopes were known, subjecting them to mixtures of synthetic peptides of which one contained the respective epitope. ITEM-THREE was then successfully tested with an enzymatic digest of His-tagged recombinant human β-actin and an antiHis-tag antibody, as well as with an enzymatic digest of recombinant human TNFα and an antiTNFα antibody whose epitope was previously unknown.
Collapse
Affiliation(s)
- Bright D Danquah
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Claudia Röwer
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | | | - Reham El-Kased
- ¶Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - David Frommholz
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany
| | - Harald Illges
- ‖University of Applied Sciences Bonn-Rhein-Sieg, Immunology and Cell Biology, Rheinbach, Germany;; **University of Applied Sciences Bonn-Rhein-Sieg, Institute for Functional Gene Analytics, Rheinbach, Germany
| | - Cornelia Koy
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany
| | - Michael O Glocker
- ‡Proteome Center Rostock, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
37
|
Gomes AC, Griffiths PD, Reeves MB. The Humoral Immune Response Against the gB Vaccine: Lessons Learnt from Protection in Solid Organ Transplantation. Vaccines (Basel) 2019; 7:E67. [PMID: 31319553 PMCID: PMC6789498 DOI: 10.3390/vaccines7030067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (hCMV) is considered to be the highest priority for vaccine development. This view is underscored by the significant morbidity associated with congenital hCMV infection and viraemia in transplant patients. Although a number of vaccines have been trialed, none have been licensed. The hCMV vaccine candidate that has performed best in clinical trials to date is the recombinant glycoprotein B (gB) vaccine that has demonstrated protection, ranging from a 43% to 50% efficacy in three independent phase II trials. In this review, we focus on data from the phase II trial performed in solid organ transplant patients and the outcomes of follow-up studies attempting to identify immunological and mechanistic correlates of protection associated with this vaccine strategy. We relate this to other vaccine studies of gB as well as other vaccine strategies to determine areas of commonality and divergence. Finally, through the review, we discuss the unique challenges and opportunities presented with vaccine studies in transplant populations with recommendations that could empower subsequent trials.
Collapse
Affiliation(s)
- Ariane C Gomes
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK.
| |
Collapse
|
38
|
Foglierini M, Marcandalli J, Perez L. HCMV Envelope Glycoprotein Diversity Demystified. Front Microbiol 2019; 10:1005. [PMID: 31156572 PMCID: PMC6529531 DOI: 10.3389/fmicb.2019.01005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading viral cause of congenital birth defects and is responsible for morbidity and mortality in immunosuppressed individuals. Considerable efforts have been deployed over the last decade to develop a vaccine capable of preventing HCMV infection. However, in recent clinical trials, vaccines showed at best modest efficacy in preventing infection. These findings might be explained by the high level of sequence polymorphism at the genomic level. To investigate if genomic variation also leads to antigenic variation, we performed a bioinformatic sequence analysis and evaluated the percentage of conservation at the amino acid level of all the proteins present in the virion envelope. Using more than two hundred sequences per envelope glycoprotein and analyzing their degree of conservation, we observe that antigenic variation is in large part limited to three proteins. In addition, we demonstrate that the two leading vaccine candidates, the pentamer and gB complexes, are well conserved at the amino acid level. These results suggest that despite genomic polymorphism, antigenic variability is not involved in the modest efficacy observed in the recent clinical trials for a HCMV vaccine. We therefore propose that next-generation vaccines should focus on stabilizing and refining the gB domains needed to induce a protective humoral response.
Collapse
Affiliation(s)
- Mathilde Foglierini
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jessica Marcandalli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Laurent Perez
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
39
|
Survey of cellular immune responses to human cytomegalovirus infection in the microenvironment of the uterine-placental interface. Med Microbiol Immunol 2019; 208:475-485. [PMID: 31065796 DOI: 10.1007/s00430-019-00613-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects, yet there are no established treatments for preventing maternal-fetal transmission. During first trimester, HCMV replicates in basal decidua that functions as a reservoir for virus and source of transmission to the attached placenta and fetal hemiallograft but also contains immune cells, including natural killer cells, macrophages, and T cell subsets, that respond to pathogens, protecting the placenta and fetus. However, the specific cellular and cytokine responses to infection are unknown, nor are the immune correlates of protection that guide development of therapeutic strategies. Here we survey immune cell phenotypes in intact explants of basal decidua infected with a clinical pathogenic HCMV strain ex vivo and identify specific changes occurring in response to infection in the tissue environment. Using 4-color immunofluorescence microscopy, we found that at 3 days postinfection, virus replicates in decidual stromal cells and epithelial cells of endometrial glands. Infected cells and effector memory CD8+ T cells (TEM) in contact with them make IFN-γ. CD8+ TEM cells produce granulysin and cluster at sites of infection in decidua and the epithelium of endometrial glands. Quantification indicated expansion of two immune cell subtypes-CD8+ TEM cells and, to a lesser extent, iNKT cells. Approximately 20% of immune cells were found in pairs in both control and infected decidua, suggesting frequent cross-talk in the microenvironment of decidua. Our findings indicate a complex immune microenvironment in basal decidua and suggest CD8+ TEM cells play a role in early responses to decidual infection in seropositive women.
Collapse
|
40
|
Brey CU, Proff J, Teufert N, Salzer B, Brozy J, Münz M, Pendzialek J, Ensser A, Holter W, Lehner M. A gB/CD3 bispecific BiTE antibody construct for targeting Human Cytomegalovirus-infected cells. Sci Rep 2018; 8:17453. [PMID: 30487534 PMCID: PMC6261951 DOI: 10.1038/s41598-018-36055-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022] Open
Abstract
Bispecific T cell engager (BiTE) antibody constructs are successfully used as cancer therapeutics. We hypothesized that this treatment strategy could also be applicable for therapy of human cytomegalovirus (HCMV) infection, since HCMV-encoded proteins are abundantly expressed on the surface of infected cells. Here we show that a BiTE antibody construct directed against HCMV glycoprotein B (gB) and CD3 efficiently triggers T cells to secrete IFN-γ and TNF upon co-culture with fibroblasts infected with HCMV strain AD169, Towne or Toledo. Titration of gB expression levels in non-infected cells confirmed that already low levels of gB are sufficient for efficient triggering of T cells in presence of the BiTE antibody construct. Comparison of redirecting T cells with the bispecific antibody versus a chimeric antigen receptor (CAR) based on the same scFv showed a similar sensitivity for gB expression. Although lysis of infected target cells was absent, the BiTE antibody construct inhibited HCMV replication by triggering cytokine production. Notably, even strongly diluted supernatants of the activated T cells efficiently blocked the replication of HCMV in infected primary fibroblasts. In summary, our data prove the functionality of the first BiTE antibody construct targeting an HCMV-encoded glycoprotein for inhibiting HCMV replication in infected cells.
Collapse
Affiliation(s)
| | - Julia Proff
- Children's Cancer Research Institute, Vienna, Austria
| | - Natascha Teufert
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Markus Münz
- AMGEN Research (Munich) GmbH, Munich, Germany
| | | | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Holter
- Children's Cancer Research Institute, Vienna, Austria
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Manfred Lehner
- Children's Cancer Research Institute, Vienna, Austria.
- St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
41
|
Barrado L, Prieto C, Hernando S, Folgueira L. Detection of glycoproteins B and H genotypes to predict the development of Cytomegalovirus disease in solid organ transplant recipients. J Clin Virol 2018; 109:50-56. [PMID: 30500488 DOI: 10.1016/j.jcv.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/05/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Our study focuses on the role that human Cytomegalovirus (CMV) genotypes play in the development of disease. OBJECTIVES (1) To analyze the frequency of various genotype envelope proteins (gB, gH) in a group of solid organ transplant (SOT) recipients; (2) to assess their correlation with CMV disease; (3) to study the association between any of the genotypes and viral loads. STUDY DESIGN A retrospective observational study conducted by analyzing CMV gB and gH genotypes detected with real-time polymerase chain reaction (PCR)-specific assays in 162 CMV-positive blood samples from 62 SOT recipients. Demographic, clinical, and microbiological data were recorded. RESULTS Mixed gB genotypes were associated with viral syndrome (70%, p = .004), earlier presentation of symptoms (48.27 ± 27.03 versus 74.33 ± 47.25 days, respectively, p = .001), and higher median of the plasma viral load log10 (UI/ml) than infection with a single genotype (p = .004). Furthermore, the gB3 genotype was detected more frequently in patients who presented with asymptomatic viremia (77.27%, p < .0001). The gH1 genotype was more frequent (65%) in patients who presented with asymptomatic viremia (p = .003), and it caused infection later than gH2 or the mixed genotype (84.88 ± 48.10 versus 57.91 ± 39.18 days, respectively, p < .001). CONCLUSIONS Patients who presented mixed gB genotypes more frequently developed clinical manifestations and earlier, higher, plasma viral loads. The detection of gB and gH genotypes by real-time PCR can provide relevant information to stratify the risk of SOT recipients to develop symptomatic infection by CMV.
Collapse
Affiliation(s)
- Laura Barrado
- Virology Laboratory, Clinical Microbiology Department, University Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain.
| | - Columbiana Prieto
- Virology Laboratory, Clinical Microbiology Department, University Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Susana Hernando
- Virology Laboratory, Clinical Microbiology Department, University Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain
| | - Lola Folgueira
- Virology Laboratory, Clinical Microbiology Department, University Hospital 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain; Biomedical Research Institute i+12, University Hospital 12 de Octubre, Avda. de Córdoba, s/n, 28041 Madrid, Spain; Department of Medicine, School of Medicine, Complutense University, Pl. Ramón y Cajal, s/n, 28040 Madrid, Spain
| |
Collapse
|
42
|
Diamond DJ, LaRosa C, Chiuppesi F, Contreras H, Dadwal S, Wussow F, Bautista S, Nakamura R, Zaia JA. A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection. Expert Rev Vaccines 2018; 17:889-911. [PMID: 30246580 PMCID: PMC6343505 DOI: 10.1080/14760584.2018.1526085] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION It has been almost fifty years since the Towne strain was used by Plotkin and collaborators as the first vaccine candidate for cytomegalovirus (CMV). While that approach showed partial efficacy, there have been a multitude of challenges to improve on the promise of a CMV vaccine. Efforts have been dichotomized into a therapeutic vaccine for patients with CMV-infected allografts, either stem cells or solid organ, and a prophylactic vaccine for congenital infection. AREAS COVERED This review will evaluate research prospects for a therapeutic vaccine for transplant recipients that recognizes CMV utilizing primarily T cell responses. Similarly, we will provide an extensive discussion on attempts to develop a vaccine to prevent the manifestations of congenital infection, based on eliciting a humoral anti-CMV protective response. The review will also describe newer developments that have upended the efforts toward such a vaccine through the discovery of a second pathway of CMV infection that utilizes an alternative receptor for entry using a series of antigens that have been determined to be important for prevention of infection. EXPERT COMMENTARY There is a concerted effort to unify separate therapeutic and prophylactic vaccine strategies into a single delivery agent that would be effective for both transplant-related and congenital infection.
Collapse
Affiliation(s)
- Don J. Diamond
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Corinna LaRosa
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Heidi Contreras
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Sanjeet Dadwal
- Department of Medical Specialties, City of Hope National
Medical Center, Duarte, CA
| | - Felix Wussow
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Supriya Bautista
- Department of Experimental Therapeutics, Beckman Research
Institute of City of Hope, Duarte, CA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoetic Cell
Transplantation, City of Hope National Medical Center, Duarte, CA
| | - John A. Zaia
- Center for Gene Therapy, Hematological Malignancy and Stem
Cell Transplantation Institute, City of Hope, Duarte, CA
| |
Collapse
|
43
|
Nelson CS, Herold BC, Permar SR. A new era in cytomegalovirus vaccinology: considerations for rational design of next-generation vaccines to prevent congenital cytomegalovirus infection. NPJ Vaccines 2018; 3:38. [PMID: 30275984 PMCID: PMC6148244 DOI: 10.1038/s41541-018-0074-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV), a member of the beta-herpesvirus family, is the most common cause of congenital infection worldwide as well as an important cause of morbidity in transplant recipients and immunosuppressed individuals. An estimated 1 in 150 infants are infected with HCMV at birth, which can result in lifelong, debilitating neurologic sequelae including microcephaly, sensorineural hearing loss, and cognitive impairment. Natural maternal immunity to HCMV decreases the frequency of reinfection and reduces risk of congenital transmission but does not completely protect against neonatal disease. Thus, a vaccine to reduce the incidence and severity of infant infection is a public health priority. A variety of candidate HCMV vaccine approaches have been tried previously, including live-attenuated viruses, glycoprotein subunit formulations, viral vectors, and single/bivalent DNA plasmids, but all have failed to reach target endpoints in clinical trials. Nevertheless, there is a great deal to be learned from the successes and failures of the HCMV vaccine field (both congenital and transplant-associated), as well as from vaccine development efforts for other herpesvirus pathogens including herpes simplex virus 1 and 2, varicella zoster virus, and Epstein-Barr virus. Here, we review those successes and failures, evaluating recent cutting-edge discoveries that have shaped the HCMV vaccine field and identifying topics of critical importance for future investigation. These considerations will inform rational design and evaluation of next-generation vaccines to prevent HCMV-associated congenital infection and disease.
Collapse
Affiliation(s)
- Cody S. Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, NC USA
| | - Betsy C. Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC USA
| |
Collapse
|
44
|
Multiantigenic Modified Vaccinia Virus Ankara Vaccine Vectors To Elicit Potent Humoral and Cellular Immune Reponses against Human Cytomegalovirus in Mice. J Virol 2018; 92:JVI.01012-18. [PMID: 30045984 DOI: 10.1128/jvi.01012-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
As human cytomegalovirus (HCMV) is a common cause of disease in newborns and transplant recipients, developing an HCMV vaccine is considered a major public health priority. Yet an HCMV vaccine candidate remains elusive. Although the precise HCMV immune correlates of protection are unclear, both humoral and cellular immune responses have been implicated in protection against HCMV infection and disease. Here we describe a vaccine approach based on the well-characterized modified vaccinia virus Ankara (MVA) vector to stimulate robust HCMV humoral and cellular immune responses by an antigen combination composed of the envelope pentamer complex (PC), glycoprotein B (gB), and phosphoprotein 65 (pp65). We show that in mice, multiantigenic MVA vaccine vectors simultaneously expressing all five PC subunits, gB, and pp65 elicit potent complement-independent and complement-dependent HCMV neutralizing antibodies as well as mouse and human MHC-restricted, polyfunctional T cell responses by the individual antigens. In addition, we demonstrate that the PC/gB antigen combination of these multiantigenic MVA vectors can enhance the stimulation of humoral immune responses that mediate in vitro neutralization of different HCMV strains and antibody-dependent cellular cytotoxicity. These results support the use of MVA to develop a multiantigenic vaccine candidate for controlling HCMV infection and disease in different target populations, such as pregnant women and transplant recipients.IMPORTANCE The development of a human cytomegalovirus (HCMV) vaccine to prevent congenital disease and transplantation-related complications is an unmet medical need. While many HCMV vaccine candidates have been developed, partial success in preventing or controlling HCMV infection in women of childbearing age and transplant recipients has been observed with an approach based on envelope glycoprotein B (gB). We introduce a novel vaccine strategy based on the clinically deployable modified vaccinia virus Ankara (MVA) vaccine vector to elicit potent humoral and cellular immune responses by multiple immunodominant HCMV antigens, including gB, phosphoprotein 65, and all five subunits of the pentamer complex. These findings could contribute to development of a multiantigenic vaccine strategy that may afford more protection against HCMV infection and disease than a vaccine approach employing solely gB.
Collapse
|
45
|
Meesing A, Razonable RR. Pharmacologic and immunologic management of cytomegalovirus infection after solid organ and hematopoietic stem cell transplantation. Expert Rev Clin Pharmacol 2018; 11:773-788. [DOI: 10.1080/17512433.2018.1501557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Atibordee Meesing
- Division of Infectious Diseases and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science, Rochester, MI, USA
| | - Raymund R. Razonable
- Division of Infectious Diseases and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science, Rochester, MI, USA
| |
Collapse
|
46
|
Human cytomegalovirus (HCMV)-specific T cell but not neutralizing or IgG binding antibody responses to glycoprotein complexes gB, gHgLgO, and pUL128L correlate with protection against high HCMV viral load reactivation in solid-organ transplant recipients. J Med Virol 2018; 90:1620-1628. [DOI: 10.1002/jmv.25225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/12/2018] [Indexed: 01/07/2023]
|
47
|
|
48
|
Protection from cytomegalovirus viremia following glycoprotein B vaccination is not dependent on neutralizing antibodies. Proc Natl Acad Sci U S A 2018; 115:6273-6278. [PMID: 29686064 PMCID: PMC6004462 DOI: 10.1073/pnas.1800224115] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an important pathogen in transplant patients and in congenital infection. Previously, we demonstrated that vaccination with a recombinant viral glycoprotein B (gB)/MF59 adjuvant formulation before solid organ transplant reduced viral load parameters post transplant. Reduced posttransplant viremia was directly correlated with antibody titers against gB consistent with a humoral response against gB being important. Here we show that sera from the vaccinated seronegative patients displayed little evidence of a neutralizing antibody response against cell-free HCMV in vitro. Additionally, sera from seronegative vaccine recipients had minimal effect on the replication of a strain of HCMV engineered to be cell-associated in a viral spread assay. Furthermore, although natural infection can induce antibody-dependent cellular cytotoxicity (ADCC) responses, serological analysis of seronegative vaccinees again presented no evidence of a substantial ADCC-promoting antibody response being generated de novo. Finally, analyses for responses against major antigenic domains of gB following vaccination were variable, and their pattern was distinct compared with natural infection. Taken together, these data argue that the protective effect elicited by the gB vaccine is via a mechanism of action in seronegative vaccinees that cannot be explained by neutralization or the induction of ADCC. More generally, these data, which are derived from a human challenge model that demonstrated that the gB vaccine is protective, highlight the need for more sophisticated analyses of new HCMV vaccines over and above the quantification of an ability to induce potent neutralizing antibody responses in vitro.
Collapse
|
49
|
Recombinant cytomegalovirus glycoprotein B vaccine: Rethinking the immunological basis of protection. Proc Natl Acad Sci U S A 2018; 115:6110-6112. [PMID: 29875141 DOI: 10.1073/pnas.1806420115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|