1
|
Brocato RL, Wu H, Kwilas SA, Principe LM, Josleyn M, Shamblin J, Chivukula P, Bausch C, Luke T, Sullivan EJ, Hooper JW. Preclinical evaluation of a fully human, quadrivalent-hantavirus polyclonal antibody derived from a non-human source. mBio 2024; 15:e0160024. [PMID: 39258903 PMCID: PMC11481879 DOI: 10.1128/mbio.01600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Hantaviruses are rodent-borne viruses that cause severe disease in infected humans. In the New World, major hantaviruses include Andes virus (ANDV) and Sin Nombre virus (SNV) causing hantavirus pulmonary syndrome. In the Old World, major hantaviruses include Hantaan virus (HTNV) and Puumala virus (PUUV) causing hemorrhagic fever with renal syndrome. Here, we produced a pan-hantavirus therapeutic (SAB-163) comprised of fully human immunoglobulin purified from the plasma of transchromosomic bovines (TcB) vaccinated with hantavirus DNA plasmids coding for the major glycoproteins of ANDV, SNV, HTNV, and PUUV. SAB-163 has potent neutralizing antibodies (PRNT50 > 200,000) against the four targeted hantavirus and cross-neutralization against several other heterotypic hantaviruses. At a dosage of 10 mg/kg, SAB-163 is bioavailable in Syrian hamsters out to 70 days post-treatment with a half-life of 10-15 days. At this same dosage, SAB-163 administered 1 day before, or 5 days after exposure, protected all hamsters from lethal disease caused by ANDV. At a higher dose, partial but significant protection was achieved as late as day 6. SAB-163 also protected hamsters in the HTNV, PUUV, and SNV infection models when administered 1 day before or up to 3 days after challenge. This pan-hantavirus therapeutic is attractive because it is fully human, multi-targeted, safe, stable at 4°C, and effective in animal models. SAB-163 was evaluated for safety in GLP human tissue binding studies and a GLP rabbit toxicity study at 365 and 730 mg/kg and is investigational new drug enabled for phase 1 clinical trial(s). IMPORTANCE This candidate polyclonal human IgG product was produced using synthetic gene-based vaccines and transgenic cows. Having now gone through cGMP production, GLP safety testing, and efficacy testing in animals, SAB-163 is the world's most advanced anti-hantavirus antibody-based medical countermeasure, aside from convalescent human plasma. Importantly, SAB-163 targets the most prevalent hantaviruses on four continents.
Collapse
Affiliation(s)
- Rebecca L. Brocato
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | - Steven A. Kwilas
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Lucia M. Principe
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Matthew Josleyn
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Joshua Shamblin
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | | | | | - Thomas Luke
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | | | - Jay W. Hooper
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| |
Collapse
|
2
|
Gilliland T, Dunn M, Liu Y, Alcorn MD, Terada Y, Vasilatos S, Lundy J, Li R, Nambulli S, Larson D, Duprex P, Wu H, Luke T, Bausch C, Egland K, Sullivan E, Wang Z, Klimstra WB. Transchromosomic bovine-derived anti-SARS-CoV-2 polyclonal human antibodies protects hACE2 transgenic hamsters against multiple variants. iScience 2023; 26:107764. [PMID: 37736038 PMCID: PMC10509298 DOI: 10.1016/j.isci.2023.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation.
Collapse
Affiliation(s)
- Theron Gilliland
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Dunn
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yanan Liu
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Maria D.H. Alcorn
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yutaka Terada
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shauna Vasilatos
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeneveve Lundy
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rong Li
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Sham Nambulli
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Deanna Larson
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Paul Duprex
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hua Wu
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | - Thomas Luke
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | | | - Kristi Egland
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | | | - Zhongde Wang
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - William B. Klimstra
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Santus L, Sopena-Rios M, García-Pérez R, Lin AE, Adams GC, Barnes KG, Siddle KJ, Wohl S, Reverter F, Rinn JL, Bennett RS, Hensley LE, Sabeti PC, Melé M. Single-cell profiling of lncRNA expression during Ebola virus infection in rhesus macaques. Nat Commun 2023; 14:3866. [PMID: 37391481 PMCID: PMC10313701 DOI: 10.1038/s41467-023-39627-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.
Collapse
Affiliation(s)
- Luisa Santus
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Sopena-Rios
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
| | - Raquel García-Pérez
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gordon C Adams
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kayla G Barnes
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine J Siddle
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shirlee Wohl
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Ferran Reverter
- Department of Genetics, Microbiology and Statistics University of Barcelona, Barcelona, Spain
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, 80303, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain.
| |
Collapse
|
4
|
Biryukov SS, Wu H, Dankmeyer JL, Rill NO, Klimko CP, Egland KA, Shoe JL, Hunter M, Fetterer DP, Qiu J, Davies ML, Bausch CL, Sullivan EJ, Luke T, Cote CK. Polyclonal Antibodies Derived from Transchromosomic Bovines Vaccinated with the Recombinant F1-V Vaccine Increase Bacterial Opsonization In Vitro and Protect Mice from Pneumonic Plague. Antibodies (Basel) 2023; 12:antib12020033. [PMID: 37218899 DOI: 10.3390/antib12020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Plague is an ancient disease that continues to be of concern to both the public health and biodefense research communities. Pneumonic plague is caused by hematogenous spread of Yersinia pestis bacteria from a ruptured bubo to the lungs or by directly inhaling aerosolized bacteria. The fatality rate associated with pneumonic plague is significant unless effective antibiotic therapy is initiated soon after an early and accurate diagnosis is made. As with all bacterial pathogens, drug resistance is a primary concern when developing strategies to combat these Yersinia pestis infections in the future. While there has been significant progress in vaccine development, no FDA-approved vaccine strategy exists; thus, other medical countermeasures are needed. Antibody treatment has been shown to be effective in animal models of plague. We produced fully human polyclonal antibodies in transchromosomic bovines vaccinated with the recombinant F1-V plague vaccine. The resulting human antibodies opsonized Y. pestis bacteria in the presence of RAW264.7 cells and afforded significant protection to BALB/c mice after exposure to aerosolized Y. pestis. These data demonstrate the utility of this technology to produce large quantities of non-immunogenic anti-plague human antibodies to prevent or possibly treat pneumonic plague in human.
Collapse
Affiliation(s)
- Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Hua Wu
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Kristi A Egland
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - David P Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Ju Qiu
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | | | - Eddie J Sullivan
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Thomas Luke
- SAB Biotherapeutics, 2100 E 54th St. N, Sioux Falls, SD 57104, USA
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Saied AA, Nascimento MSL, do Nascimento Rangel AH, Skowron K, Grudlewska‐Buda K, Dhama K, Shah J, Abdeen A, El‐Mayet FS, Ahmed H, Metwally AA. Transchromosomic bovines-derived broadly neutralizing antibodies as potent biotherapeutics to counter important emerging viral pathogens with a special focus on SARS-CoV-2, MERS-CoV, Ebola, Zika, HIV-1, and influenza A virus. J Med Virol 2022; 94:4599-4610. [PMID: 35655326 PMCID: PMC9347534 DOI: 10.1002/jmv.27907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Historically, passive immunotherapy is an approved approach for protecting and treating humans against various diseases when other alternative therapeutic options are unavailable. Human polyclonal antibodies (hpAbs) can be made from convalescent human donor serum, although it is considered limited due to pandemics and the urgent requirement. Additionally, polyclonal antibodies (pAbs) could be generated from animals, but they may cause severe immunoreactivity and, once "humanized," may have lower neutralization efficiency. Transchromosomic bovines (TcBs) have been developed to address these concerns by creating robust neutralizing hpAbs, which are useful in preventing and/or curing human infections in response to hyperimmunization with vaccines holding adjuvants and/or immune stimulators over an extensive period. Unlike other animal-derived pAbs, potent hpAbs could be promptly produced from TcB in large amounts to assist against an outbreak scenario. Some of these highly efficacious TcB-derived antibodies have already neutralized and blocked diseases in clinical studies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has numerous variants classified into variants of concern (VOCs), variants of interest (VOIs), and variants under monitoring. Although these variants possess different mutations, such as N501Y, E484K, K417N, K417T, L452R, T478K, and P681R, SAB-185 has shown broad neutralizing activity against VOCs, such as Alpha, Beta, Gamma, Delta, and Omicron variants, and VOIs, such as Epsilon, Iota, Kappa, and Lambda variants. This article highlights recent developments in the field of bovine-derived biotherapeutics, which are seen as a practical platform for developing safe and effective antivirals with broad activity, particularly considering emerging viral infections such as SARS-CoV-2, Ebola, Middle East respiratory syndrome coronavirus, Zika, human immunodeficiency virus type 1, and influenza A virus. Antibodies in the bovine serum or colostrum, which have been proved to be more protective than their human counterparts, are also reviewed.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- National Food Safety Authority (NFSA)AswanEgypt
- Ministry of Tourism and AntiquitiesAswanEgypt
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | | | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Katarzyna Grudlewska‐Buda
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research Institute (IVRI)IzatnagarUttar PradeshIndia
| | - Jaffer Shah
- Medical Research CenterKateb UniversityKabulAfghanistan
- New York State Department of HealthNew York CityNew YorkUSA
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Fouad S. El‐Mayet
- Department of Virology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Hassan Ahmed
- Department of Physiology, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary MedicineAswan UniversityAswanEgypt
| |
Collapse
|
6
|
Liu Z, Wu H, Egland KA, Gilliland TC, Dunn MD, Luke TC, Sullivan EJ, Klimstra WB, Bausch CL, Whelan SPJ. Human immunoglobulin from transchromosomic bovines hyperimmunized with SARS-CoV-2 spike antigen efficiently neutralizes viral variants. Hum Vaccin Immunother 2022; 18:1940652. [PMID: 34228597 PMCID: PMC8290372 DOI: 10.1080/21645515.2021.1940652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with amino-acid substitutions and deletions in spike protein (S) can reduce the effectiveness of monoclonal antibodies (mAbs) and may compromise immunity induced by vaccines. We report a polyclonal, fully human, anti-SARS-CoV-2 immunoglobulin produced in transchromosomic bovines (Tc-hIgG-SARS-CoV-2) hyperimmunized with two doses of plasmid DNA encoding the SARS-CoV-2 Wuhan strain S gene, followed by repeated immunization with S protein purified from insect cells. The resulting Tc-hIgG-SARS-CoV-2, termed SAB-185, efficiently neutralizes SARS-CoV-2, and vesicular stomatitis virus (VSV) SARS-CoV-2 chimeras in vitro. Neutralization potency was retained for S variants including S477N, E484K, and N501Y, substitutions present in recent variants of concern. In contrast to the ease of selection of escape variants with mAbs and convalescent human plasma, we were unable to isolate VSV-SARS-CoV-2 mutants resistant to Tc-hIgG-SARS-CoV-2 neutralization. This fully human immunoglobulin that potently inhibits SARS-CoV-2 infection may provide an effective therapeutic to combat COVID-19.
Collapse
Affiliation(s)
- Zhuoming Liu
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Hua Wu
- , SAB Biotherapeutics Inc, Sioux Fall, SD, USA
| | | | | | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | - Sean P. J. Whelan
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
7
|
Tang J, Grubbs G, Lee Y, Wu H, Luke TC, Egland KA, Bausch CL, Sullivan EJ, Khurana S. OUP accepted manuscript. J Infect Dis 2022; 226:655-663. [PMID: 35106573 PMCID: PMC8903330 DOI: 10.1093/infdis/jiac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 12/01/2022] Open
Abstract
Passive antibody immunotherapeutics directed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are promising countermeasures for protection and treatment of coronavirus disease 2019 (COVID-19). SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) can impact the clinical efficacy of immunotherapeutics. A fully human polyclonal antibody immunotherapeutic purified from plasma of transchromosomic (Tc) bovines hyperimmunized with SARS-CoV-2 WA-1 spike (SAB-185) is being assessed for efficacy in a phase 2/3 clinical trial when different circulating SARS-CoV-2 variants predominated. We evaluated antibody binding, avidity maturation, and SARS-CoV-2 VOCs/VOIs virus-neutralizing capacity of convalescent plasma compared with different lots of SAB-185 and individual Tc bovine sera sequentially obtained after each vaccination against Alpha, Epsilon, Iota, Gamma, Beta, Kappa, and Delta variants. In contrast to convalescent plasma, sera and SAB-185 derived from hyperimmunized Tc bovines demonstrated higher antibody avidity and more potent cross-neutralizing activity of VOCs/VOIs. Thus, SAB-185 is a potential promising therapeutic candidate for the treatment of patients infected with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Youri Lee
- Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hua Wu
- SAB Biotherapeutics, Sioux Falls, South Dakota, USA
| | | | | | | | | | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, Maryland, USA
- Correspondence: Surender Khurana, PhD, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA ()
| |
Collapse
|
8
|
Lee HN, McWilliams IL, Lewkowicz AP, Engel K, Ireland DDC, Kelley-Baker L, Thacker S, Piccardo P, Manangeeswaran M, Verthelyi D. Characterization of the therapeutic effect of antibodies targeting the Ebola glycoprotein using a novel BSL2-compliant rVSVΔG-EBOV-GP infection model. Emerg Microbes Infect 2021; 10:2076-2089. [PMID: 34674613 PMCID: PMC8583756 DOI: 10.1080/22221751.2021.1997075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 11/15/2022]
Abstract
Ebola virus (EBOV) infections cause haemorrhagic fever, multi-organ failure and death, and survivors can experience neurological sequelae. Licensing of monoclonal antibodies targeting EBOV glycoprotein (EBOV-GP) improved its prognosis, however, this treatment is primarily effective during early stages of disease and its effectiveness in reducing neurological sequela remains unknown. Currently, the need for BSL4 containment hinders research and therapeutic development; development of an accessible BSL-2 in vivo mouse model would facilitate preclinical studies to screen and select therapeutics. Previously, we have shown that a subcutaneous inoculation with replicating EBOV-GP pseudotyped vesicular stomatitis virus (rVSVΔG-EBOV-GP or VSV-EBOV) in neonatal mice causes transient viremia and infection of the mid and posterior brain resulting in overt neurological symptoms and death. Here, we demonstrate that the model can be used to test therapeutics that target the EBOV-GP, by using an anti-EBOV-GP therapeutic (SAB-139) previously shown to block EBOV infection in mice and primates. We show that SAB-139 treatment decreases the severity of neurological symptoms and improves survival when administered before (1 day prior to infection) or up to 3 dpi, by which time animals have high virus titres in their brains. Improved survival was associated with reduced viral titres, microglia loss, cellular infiltration/activation, and inflammatory responses in the brain. Interestingly, SAB-139 treatment significantly reduced the severe VSV-EBOV-induced long-term neurological sequalae although convalescent mice showed modest evidence of abnormal fear responses. Together, these data suggest that the neonatal VSV-EBOV infection system can be used to facilitate assessment of therapeutics targeting EBOV-GP in the preclinical setting.
Collapse
Affiliation(s)
- Ha-Na Lee
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ian L. McWilliams
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Aaron P. Lewkowicz
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kaliroi Engel
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Derek D. C. Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Logan Kelley-Baker
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Seth Thacker
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Pedro Piccardo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Mohanraj Manangeeswaran
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
9
|
Gunn BM, Bai S. Building a better antibody through the Fc: advances and challenges in harnessing antibody Fc effector functions for antiviral protection. Hum Vaccin Immunother 2021; 17:4328-4344. [PMID: 34613865 PMCID: PMC8827636 DOI: 10.1080/21645515.2021.1976580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies can provide antiviral protection through neutralization and recruitment of innate effector functions through the Fc domain. While neutralization has long been appreciated for its role in antibody-mediated protection, a growing body of work indicates that the antibody Fc domain also significantly contributes to antiviral protection. Recruitment of innate immune cells such as natural killer cells, neutrophils, monocytes, macrophages, dendritic cells and the complement system by antibodies can lead to direct restriction of viral infection as well as promoting long-term antiviral immunity. Monoclonal antibody therapeutics against viruses are increasingly incorporating Fc-enhancing features to take advantage of the Fc domain, uncovering a surprising breadth of mechanisms through which antibodies can control viral infection. Here, we review the recent advances in our understanding of antibody-mediated innate immune effector functions in protection from viral infection and review the current approaches and challenges to effectively leverage innate immune cells via antibodies.
Collapse
Affiliation(s)
- Bronwyn M. Gunn
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Tshiani Mbaya O, Mukumbayi P, Mulangu S. Review: Insights on Current FDA-Approved Monoclonal Antibodies Against Ebola Virus Infection. Front Immunol 2021; 12:721328. [PMID: 34526994 PMCID: PMC8435780 DOI: 10.3389/fimmu.2021.721328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
The unprecedented 2013-2016 West Africa Ebola outbreak accelerated several medical countermeasures (MCMs) against Ebola virus disease (EVD). Several investigational products (IPs) were used throughout the outbreak but were not conclusive for efficacy results. Only the Randomized Controlled Trial (RCT) on ZMapp was promising but inconclusive. More recently, during the second-largest Ebola outbreak in North Kivu and Ituri provinces, Democratic Republic of the Congo (DRC), four IPs, including one small molecule (Remdesivir), two monoclonal antibody (mAb) cocktails (ZMapp and REGN-EB3) and a single mAb (mAb114), were evaluated in an RCT, the Pamoja Tulinde Maisha (PALM) study. Two products (REGN-EB3 and mAb114) demonstrated efficacy as compared to the control arm, ZMapp. There were remarkably few side effects recorded in the trial. The FDA approved both medications in this scientifically sound study, marking a watershed moment in the field of EVD therapy. These products can be produced relatively inexpensively and can be stockpiled. The administration of mAbs in EVD patients appears to be safe and effective, while several critical knowledge gaps remain; the impact of early administration of Ebola-specific mAbs on developing a robust immune response for future Ebola virus exposure is unknown. The viral mutation escape, leading to resistance, presents a potential limitation for single mAb therapy; further improvements need to be explored. Understanding the contribution of Fc-mediated antibody functions such as antibody-dependent cellular cytotoxicity (ADCC) of those approved mAbs is still critical. The potential merit of combination therapy and post-exposure prophylaxis (PEP) need to be demonstrated. Furthermore, the PALM trial has accounted for 30% of mortality despite the administration of specific treatments. The putative role of EBOV soluble Glycoprotein (sGP) as a decoy to the immune system, the virus persistence, and relapses might be investigated for treatment failure. The development of pan-filovirus or pan-species mAbs remains essential for protection. The interaction between FDA-approved mAbs and vaccines remains unclear and needs to be investigated. In this review, we summarize the efficacy and safety results of the PALM study and review current research questions for the further development of mAbs in pre-exposure or emergency post-exposure use.
Collapse
Affiliation(s)
- Olivier Tshiani Mbaya
- Clinical Monitoring Research Program Directorate, Leidos Biomedical Research, Frederick, MD, United States
| | - Philippe Mukumbayi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sabue Mulangu
- Global Medical Affairs, Ridgeback Biotherapeutics, Miami, FL, United States
| |
Collapse
|
11
|
Gilliland T, Liu Y, Li R, Dunn M, Cottle E, Terada Y, Ryckman Z, Alcorn M, Vasilatos S, Lundy J, Larson D, Wu H, Luke T, Bausch C, Egland K, Sullivan E, Wang Z, Klimstra WB. Protection of human ACE2 transgenic Syrian hamsters from SARS CoV-2 variants by human polyclonal IgG from hyper-immunized transchromosomic bovines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34341790 DOI: 10.1101/2021.07.26.453840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 in vitro and the protective efficacy of passive SAB-185 antibody (Ab) transfer in vivo . The Ab preparation was tested for neutralization against five variant SARS-CoV-2 strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1) and SA (B.1.3.5) variants, and a variant isolated from a chronically infected immunocompromised patient (Spike Δ144-146). For the in vivo studies, we used a new human ACE2 (hACE2) transgenic Syrian hamster model that exhibits lethality after SARS-Cov-2 challenge and the Munich, UK, SA and Δ144-146 variants. SAB-185 neutralized each of the SARS-CoV-2 strains equivalently on Vero E6 cells, however, a control convalescent human serum sample was less effective at neutralizing the SA variant. In the hamster model, prophylactic SAB-185 treatment protected the hamsters from fatal disease and minimized clinical signs of infection. These results suggest that SAB-185 may be an effective treatment for patients infected with SARS CoV-2 variants.
Collapse
|
12
|
Kumar D, Gauthami S, Bayry J, Kaveri SV, Hegde NR. Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclon Antib Immunodiagn Immunother 2021; 40:36-49. [PMID: 33900819 DOI: 10.1089/mab.2021.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dawn of the 20th century saw the formative years of developments in immunology. In particular, immunochemistry, specifically pertaining to antibodies, was extensively studied. These studies laid the foundations for employing antibodies in a variety of ways. Not surprisingly, antibodies have been used for applications ranging from biomedical research to disease diagnostics and therapeutics to evaluation of immune responses during natural infection and those elicited by vaccines. Despite recent advancements in cellular immunology and the excitement of T cell therapy, use of antibodies represents a large proportion of immunotherapeutic approaches as well as clinical interventions. Polyclonal antibodies in the form of plasma or sera continue to be used to treat a number of diseases, including autoimmune disorders, cancers, and infectious diseases. Historically, antisera to toxins have been the longest serving biotherapeutics. In addition, intravenous immunoglobulins (IVIg) have been extensively used to treat not only immunodeficiency conditions but also autoimmune disorders. Beyond the simplistic suppositions of their action, the IVIg have also unraveled the immune regulatory and homeostatic ramifications of their use. The advent of monoclonal antibodies (MAbs), on the other hand, has provided a clear pathway for their development as drug molecules. MAbs have found a clear place in the treatment of cancers and extending lives and have been used in a variety of other conditions. In this review, we capture the important developments in the therapeutic applications of antibodies to alleviate disease, with a focus on some of the recent developments.
Collapse
Affiliation(s)
| | - Sulgey Gauthami
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Bureau India, IFI, New Delhi, India
| | | |
Collapse
|
13
|
Fries L, Cho I, Krähling V, Fehling SK, Strecker T, Becker S, Hooper JW, Kwilas SA, Agrawal S, Wen J, Lewis M, Fix A, Thomas N, Flyer D, Smith G, Glenn G. Randomized, Blinded, Dose-Ranging Trial of an Ebola Virus Glycoprotein Nanoparticle Vaccine With Matrix-M Adjuvant in Healthy Adults. J Infect Dis 2021; 222:572-582. [PMID: 31603201 DOI: 10.1093/infdis/jiz518] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Ebola virus (EBOV) epidemics pose a major public health risk. There currently is no licensed human vaccine against EBOV. The safety and immunogenicity of a recombinant EBOV glycoprotein (GP) nanoparticle vaccine formulated with or without Matrix-M adjuvant were evaluated to support vaccine development. METHODS A phase 1, placebo-controlled, dose-escalation trial was conducted in 230 healthy adults to evaluate 4 EBOV GP antigen doses as single- or 2-dose regimens with or without adjuvant. Safety and immunogenicity were assessed through 1-year postdosing. RESULTS All EBOV GP vaccine formulations were well tolerated. Receipt of 2 doses of EBOV GP with adjuvant showed a rapid increase in anti-EBOV GP immunoglobulin G titers with peak titers observed on Day 35 representing 498- to 754-fold increases from baseline; no evidence of an antigen dose response was observed. Serum EBOV-neutralizing and binding antibodies using wild-type Zaire EBOV (ZEBOV) or pseudovirion assays were 3- to 9-fold higher among recipients of 2-dose EBOV GP with adjuvant, compared with placebo on Day 35, which persisted through 1 year. CONCLUSIONS Ebola virus GP vaccine with Matrix-M adjuvant is well tolerated and elicits a robust and persistent immune response. These data suggest that further development of this candidate vaccine for prevention of EBOV disease is warranted.
Collapse
Affiliation(s)
| | - Iksung Cho
- Novavax, Inc., Gaithersburg, Maryland, USA
| | - Verena Krähling
- Institute of Virology, Philipps University of Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Sarah K Fehling
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany.,German Center for Infection Research (DZIF), Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Jay W Hooper
- US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, USA
| | - Steven A Kwilas
- US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland, USA
| | | | - Judy Wen
- Novavax, Inc., Gaithersburg, Maryland, USA
| | | | - Amy Fix
- Novavax, Inc., Gaithersburg, Maryland, USA
| | | | | | - Gale Smith
- Novavax, Inc., Gaithersburg, Maryland, USA
| | | |
Collapse
|
14
|
Transgenic Animals for the Generation of Human Antibodies. LEARNING MATERIALS IN BIOSCIENCES 2021. [DOI: 10.1007/978-3-030-54630-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Paskey AC, Frey KG, Schroth G, Gross S, Hamilton T, Bishop-Lilly KA. Enrichment post-library preparation enhances the sensitivity of high-throughput sequencing-based detection and characterization of viruses from complex samples. BMC Genomics 2019; 20:155. [PMID: 30808306 PMCID: PMC6390631 DOI: 10.1186/s12864-019-5543-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/18/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Sequencing-based detection and characterization of viruses in complex samples can suffer from lack of sensitivity due to a variety of factors including, but not limited to, low titer, small genome size, and contribution of host or environmental nucleic acids. Hybridization-based target enrichment is one potential method for increasing the sensitivity of viral detection via high-throughput sequencing. RESULTS This study expands upon two previously developed panels of virus enrichment probes (for filoviruses and for respiratory viruses) to include other viruses of biodefense and/or biosurveillance concern to the U.S. Department of Defense and various international public health agencies. The newly expanded and combined panel is tested using carefully constructed synthetic metagenomic samples that contain clinically relevant amounts of viral genetic material. Target enrichment results in a dramatic increase in sensitivity for virus detection as compared to shotgun sequencing, yielding full, deeply covered viral genomes from materials with Ct values suggesting that amplicon sequencing would be likely to fail. Increased pooling to improve cost- and time-effectiveness does not negatively affect the ability to obtain full-length viral genomes, even in the case of co-infections, although as expected, it does decrease depth of coverage. CONCLUSIONS Hybridization-based target enrichment is an effective solution to obtain full-length viral genomes for samples from which virus detection would fail via unbiased, shotgun sequencing or even via amplicon sequencing. As the development and testing of probe sets for viral target enrichment expands and continues, the application of this technique, in conjunction with deeper pooling strategies, could make high-throughput sequencing more economical for routine use in biosurveillance, biodefense and outbreak investigations.
Collapse
Affiliation(s)
- Adrian C. Paskey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, Fort Detrick, Frederick, MD 21702 USA
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
- Leidos, Reston, VA 20190 USA
| | - Kenneth G. Frey
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, Fort Detrick, Frederick, MD 21702 USA
| | | | | | - Theron Hamilton
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, Fort Detrick, Frederick, MD 21702 USA
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center – Frederick, Fort Detrick, Frederick, MD 21702 USA
| |
Collapse
|
16
|
Equine-Origin Immunoglobulin Fragments Protect Nonhuman Primates from Ebola Virus Disease. J Virol 2019; 93:JVI.01548-18. [PMID: 30541860 PMCID: PMC6384060 DOI: 10.1128/jvi.01548-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
EBOV is one of the deadliest viruses to humans. It has been over 40 years since EBOV was first reported, but no cure is available. Research breakthroughs over the past 5 years have shown that MAbs constitute an effective therapy for EBOV infections. However, MAbs are expensive and difficult to produce in large amounts and therefore may only play a limited role during an epidemic. A cheaper alternative is required, especially since EBOV is endemic in several third world countries with limited medical resources. Here, we used a standard protocol to produce large amounts of antiserum F(ab′)2 fragments from horses vaccinated with an EBOV vaccine, and we tested the protectiveness in monkeys. We showed that F(ab′)2 was effective in 100% of monkeys even after the animals were visibly ill with EBOV disease. Thus, F(ab′)2 could be a very good option for large-scale treatments of patients and should be advanced to clinical testing. Ebola virus (EBOV) infections result in aggressive hemorrhagic fever in humans, with fatality rates reaching 90% and with no licensed specific therapeutics to treat ill patients. Advances over the past 5 years have firmly established monoclonal antibody (MAb)-based products as the most promising therapeutics for treating EBOV infections, but production is costly and quantities are limited; therefore, MAbs are not the best candidates for mass use in the case of an epidemic. To address this need, we generated EBOV-specific polyclonal F(ab′)2 fragments from horses hyperimmunized with an EBOV vaccine. The F(ab′)2 was found to potently neutralize West African and Central African EBOV in vitro. Treatment of nonhuman primates (NHPs) with seven doses of 100 mg/kg F(ab′)2 beginning 3 or 5 days postinfection (dpi) resulted in a 100% survival rate. Notably, NHPs for which treatment was initiated at 5 dpi were already highly viremic, with observable signs of EBOV disease, which demonstrated that F(ab′)2 was still effective as a therapeutic agent even in symptomatic subjects. These results show that F(ab′)2 should be advanced for clinical testing in preparation for future EBOV outbreaks and epidemics. IMPORTANCE EBOV is one of the deadliest viruses to humans. It has been over 40 years since EBOV was first reported, but no cure is available. Research breakthroughs over the past 5 years have shown that MAbs constitute an effective therapy for EBOV infections. However, MAbs are expensive and difficult to produce in large amounts and therefore may only play a limited role during an epidemic. A cheaper alternative is required, especially since EBOV is endemic in several third world countries with limited medical resources. Here, we used a standard protocol to produce large amounts of antiserum F(ab′)2 fragments from horses vaccinated with an EBOV vaccine, and we tested the protectiveness in monkeys. We showed that F(ab′)2 was effective in 100% of monkeys even after the animals were visibly ill with EBOV disease. Thus, F(ab′)2 could be a very good option for large-scale treatments of patients and should be advanced to clinical testing.
Collapse
|
17
|
Cross RW, Speranza E, Borisevich V, Widen SG, Wood TG, Shim RS, Adams RD, Gerhardt DM, Bennett RS, Honko AN, Johnson JC, Hensley LE, Geisbert TW, Connor JH. Comparative Transcriptomics in Ebola Makona-Infected Ferrets, Nonhuman Primates, and Humans. J Infect Dis 2018; 218:S486-S495. [PMID: 30476250 PMCID: PMC6249602 DOI: 10.1093/infdis/jiy455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The domestic ferret is a uniformly lethal model of infection for 3 species of Ebolavirus known to be pathogenic in humans. Reagents to systematically analyze the ferret host response to infection are lacking; however, the recent publication of a draft ferret genome has opened the potential for transcriptional analysis of ferret models of disease. In this work, we present comparative analysis of longitudinally sampled blood taken from ferrets and nonhuman primates infected with lethal doses of the Makona variant of Zaire ebolavirus. Strong induction of proinflammatory and prothrombotic signaling programs were present in both ferrets and nonhuman primates, and both transcriptomes were similar to previously published datasets of fatal cases of human Ebola virus infection.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Emily Speranza
- Department of Microbiology, Bioinformatics Program, National Emerging Infectious Disease Laboratories, Boston University, Massachusetts
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Steven G Widen
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston
| | - Thomas G Wood
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston
| | - Rebecca S Shim
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Ricky D Adams
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Dawn M Gerhardt
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Richard S Bennett
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Anna N Honko
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Joshua C Johnson
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - John H Connor
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston
- Department of Microbiology, Bioinformatics Program, National Emerging Infectious Disease Laboratories, Boston University, Massachusetts
| |
Collapse
|