1
|
Weth AF, Dangerfield EM, Timmer MSM, Stocker BL. Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants. Vaccines (Basel) 2024; 12:1320. [PMID: 39771982 PMCID: PMC11680293 DOI: 10.3390/vaccines12121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of TH1/TH17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines. In this review, we discuss those classes of Mincle agonists that have been explored for their adjuvant potential. These Mincle agonists have been used as stand-alone adjuvants or in combination with other pathogen-associated molecular patterns (PAMPs) or immunomodulatory agents. We will also highlight recently identified Mincle ligands with hitherto unknown adjuvanticity. Conjugate vaccines that contain covalently linked adjuvants and/or adjuvant-antigen combinations are also presented, as well as the different formulations (e.g., oil-in-water emulsions, liposomes, and particulate delivery systems) that have been used for the codelivery of antigens and adjuvants. Insofar the reader is presented with a thorough review of the potential of Mincle-mediated vaccine adjuvants, including historical context, present-day research and clinical trials, and outstanding research questions, such as the role of ligand presentation and Mincle clustering, which, if better understood, will aid in the development of the much-needed TH1/TH17-skewing vaccine adjuvants.
Collapse
Affiliation(s)
| | | | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
2
|
Alugupalli KR. A TLR4 ligand-based adjuvant for promoting the immunogenicity of typhoid subunit vaccines. Front Immunol 2024; 15:1383476. [PMID: 38799439 PMCID: PMC11116679 DOI: 10.3389/fimmu.2024.1383476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
Abstract
None of the typhoid Vi Polysaccharide (ViPS) subunit vaccines incorporate adjuvants, and the immunogenicity of ViPS vaccines (e.g. Typbar TCV® and Typhim Vi®) is in part due to associated TLR4 ligands such as endotoxin present in these vaccines. Since endotoxin content in vaccines is variable and kept very low due to inherent toxicity, it was hypothesized that incorporating a defined amount of a non-toxic TLR4-ligand such as monophosphoryl lipid A in ViPS vaccines would improve their immunogenicity. To test this hypothesis, a monophosphoryl lipid A-based adjuvant formulation named Turbo was developed. Admixing Turbo with Typbar TCV® (ViPS-conjugated to tetanus toxoid) increased the levels of anti-ViPS IgM, IgG1, IgG2b, IgG2a/c, and IgG3 in inbred and outbred mice. In infant mice, a single immunization with Turbo adjuvanted Typbar TCV® resulted in a significantly increased and durable IgG response and improved the control of bacterial burden compared to mice immunized without Turbo. Similarly, when adjuvanted with Turbo, the antibody response and control of bacteremia were also improved in mice immunized with Typhim Vi®, an unconjugated vaccine. The immunogenicity of unconjugated ViPS is inefficient in young mice and is lost in adult mice when immunostimulatory ligands in ViPS are removed. Nevertheless, when adjuvanted with Turbo, poorly immunogenic ViPS induced a robust IgG response in young and adult mice, and this was observed even under antigen-limiting conditions. These data suggest that incorporation of Turbo as an adjuvant will make typhoid vaccines more immunogenic regardless of their intrinsic immunogenicity or conjugation status and maximize the efficacy across all ages.
Collapse
Affiliation(s)
- Kishore R. Alugupalli
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
- TurboVax Inc, Philadelphia, PA, United States
| |
Collapse
|
3
|
Alugupalli KR. TLR4 Ligands in Typhoid Vi Polysaccharide Subunit Vaccines Contribute to Immunogenicity. Immunohorizons 2024; 8:29-34. [PMID: 38180344 PMCID: PMC10832388 DOI: 10.4049/immunohorizons.2300085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
Activation of B cells and T cells requires the engagement of costimulatory signaling pathways in addition to Ag receptor signaling for efficient immune responses. None of the typhoid Vi polysaccharide (ViPS) subunit vaccines contains adjuvants that could activate costimulatory signaling pathways, yet these vaccines are very immunogenic. I hypothesized that residual TLR ligands present in the ViPS preparation used for making typhoid subunit vaccines account for the robust immune response generated by these vaccines. I show the presence of endotoxin, a potent agonist of TLR4, in ViPS preparations and ViPS vaccines. Furthermore, I found that ViPS obtained from various sources induces the production of proinflammatory cytokines such as IL-6 from mouse peritoneal exudate cells. Unconjugated and tetanus toxoid-conjugated ViPS vaccines activate human and mouse TLR4. Mice deficient in TLR4 or the signaling adaptors MyD88 and Trif (Toll/IL-1R domain-containing adapter inducing IFN-β) are severely impaired in generating anti-ViPS responses to these vaccines. Elimination of the TLR4 agonist in ViPS preparation resulted in the loss of immunogenicity, and addition of lipid A, a known TLR4 agonist, restored the immunogenicity. These data highlight the importance of associated TLR ligands in the immunogenicity of ViPS subunit vaccines.
Collapse
Affiliation(s)
- Kishore R. Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
4
|
Spurrier MA, Jennings-Gee JE, Haas KM. Type I IFN Receptor Signaling on B Cells Promotes Antibody Responses to Polysaccharide Antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:148-157. [PMID: 36458995 PMCID: PMC9812919 DOI: 10.4049/jimmunol.2200538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 01/03/2023]
Abstract
We previously reported monophosphoryl lipid A (MPL) and synthetic cord factor trehalose-6,6'-dicorynomycolate (TDCM) significantly increase Ab responses to T cell-independent type 2 Ags (TI-2 Ags) in a manner dependent on B cell-intrinsic TLR4 expression, as well as MyD88 and TRIF proteins. Given the capacity of MPL to drive type I IFN production, we aimed to investigate the extent to which type I IFN receptor (IFNAR) signaling was required for TI-2 responses and adjuvant effects. Using Ifnar1-/- mice and IFNAR1 Ab blockade, we found that IFNAR signaling is required for optimal early B cell activation, expansion, and Ab responses to nonadjuvanted TI-2 Ags, including the pneumococcal vaccine. Further study demonstrated that B cell-intrinsic type I IFN signaling on B cells was essential for normal TI-2 Ab responses. In particular, TI-2 Ag-specific B-1b cell activation and expansion were significantly impaired in Ifnar1-/- mice; moreover, IFNAR1 Ab blockade similarly reduced activation, expansion, and differentiation of IFNAR1-sufficient B-1b cells in Ifnar1-/- recipient mice, indicating that B-1b cell-expressed IFNAR supports TI-2 Ab responses. Consistent with these findings, type I IFN significantly increased the survival of TI-2 Ag-activated B-1b cells ex vivo and promoted plasmablast differentiation. Nonetheless, MPL/TDCM adjuvant effects, which were largely carried out through innate B cells (B-1b and splenic CD23- B cells), were independent of type I IFN signaling. In summary, our study highlights an important role for B-1b cell-expressed IFNAR in promoting responses to nonadjuvanted TI-2 Ags, but it nonetheless demonstrates that adjuvants which support innate B cell responses may bypass this requirement.
Collapse
Affiliation(s)
- M Ariel Spurrier
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jamie E Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
5
|
Spurrier MA, Jennings-Gee JE, Daly CA, Haas KM. The PD-1 Regulatory Axis Inhibits T Cell-Independent B Cell Memory Generation and Reactivation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1978-1989. [PMID: 34535576 DOI: 10.4049/jimmunol.2100336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
The inability of T cell-independent type 2 (TI-2) Ags to induce recall responses is a poorly understood facet of humoral immunity, yet critically important for improving vaccines. Using normal and VHB1-8 transgenic mice, we demonstrate that B cell-intrinsic PD-1 expression negatively regulates TI-2 memory B cell (Bmem) generation and reactivation in part through interacting with PDL1 and PDL2 on non-Ag-specific cells. We also identified a significant role for PDL2 expression on Bmems in inhibiting reactivation and Ab production, thereby revealing a novel self-regulatory mechanism exists for TI-2 Bmems This regulation impacts responses to clinically relevant vaccines, because PD-1 deficiency was associated with significantly increased Ab boosting to the pneumococcal vaccine after both vaccination and infection. Notably, we found a B cell-activating adjuvant enabled even greater boosting of protective pneumococcal polysaccharide-specific IgG responses when PD-1 inhibition was relieved. This work highlights unique self-regulation by TI-2 Bmems and reveals new opportunities for significantly improving TI-2 Ag-based vaccine responses.
Collapse
Affiliation(s)
- M Ariel Spurrier
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jamie E Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Christina A Daly
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
6
|
Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun Ageing 2021; 18:38. [PMID: 34627326 PMCID: PMC8501352 DOI: 10.1186/s12979-021-00249-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Preserving good health in old age is of utmost importance to alleviate societal, economic and health care-related challenges caused by an aging society. The prevalence and severity of many infectious diseases is higher in older adults, and in addition to the acute disease, long-term sequelae, such as exacerbation of underlying chronic disease, onset of frailty or increased long-term care dependency, are frequent. Prevention of infections e.g. by vaccination is therefore an important measure to ensure healthy aging and preserve quality of life. Several vaccines are specifically recommended for older adults in many countries, and in the current SARS-CoV-2 pandemic older adults were among the first target groups for vaccination due to their high risk for severe disease. This review highlights clinical data on the influenza, Streptococcus pneumoniae and herpes zoster vaccines, summarizes recent developments to improve vaccine efficacy, such as the use of adjuvants or higher antigen dose for influenza, and gives an overview of SARS-CoV-2 vaccine development for older adults. Substantial research is ongoing to further improve vaccines, e.g. by developing universal influenza and pneumococcal vaccines to overcome the limitations of the current strain-specific vaccines, and to develop novel vaccines against pathogens, which cause considerable morbidity and mortality in older adults, but for which no vaccines are currently available. In addition, we need to improve uptake of the existing vaccines and increase awareness for life-long vaccination in order to provide optimal protection for the vulnerable older age group.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| |
Collapse
|
7
|
An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021; 13:pharmaceutics13040455. [PMID: 33801614 PMCID: PMC8066039 DOI: 10.3390/pharmaceutics13040455] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host’s in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.
Collapse
|
8
|
Daly CA, Spurrier MA, Jennings-Gee JE, Haas KM. B Cell Subsets Differentially Contribute to the T Cell-Independent Memory Pool. THE JOURNAL OF IMMUNOLOGY 2020; 205:2362-2374. [PMID: 32978280 DOI: 10.4049/jimmunol.1901453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/28/2020] [Indexed: 01/27/2023]
Abstract
The roles distinct B cell subsets play in clonal expansion, isotype switching, and memory B cell differentiation in response to T cell-independent type 2 Ags (TI-2 Ags) has been understudied. Using sorted B cells from VHB1-8 knock-in mice, we evaluated B-1b, marginal zone, and follicular B cell responses to the TI-2 Ag, NP-Ficoll. All subsets extensively divided in response to NP-Ficoll. Nonetheless, B-1b cells exhibited significantly increased IgG switching and differentiation into Ab-secreting cells (ASC)-a finding that coincided with increased AgR signaling capacity and Blimp1 expression by B-1b cells. All subsets formed memory cells and expressed markers previously identified for T cell-dependent memory B cells, including CD80, PDL2, and CD73, although B-1b cells generated the greatest number of memory cells with higher frequencies of IgG- and CD80-expressing cells. Despite memory formation, secondary immunization 4 wk after primary immunization did not increase NP-specific IgG. However, boosting occurred in B-1b cell-recipient mice when IgG levels declined. CD80+ memory B-1b cells divided, class switched, and differentiated into ASC in response to Ag in vivo, but this was inhibited in the presence of NP-specific IgG. Furthermore, CD80 blockade significantly increased memory B-1b cell division and differentiation to ASC upon Ag restimulation. Collectively, these findings demonstrate B-1b, marginal zone B, and follicular B subsets significantly contribute to the TI-2 Ag-specific memory B cell pool. In particular, we show B-1b cells generate a functional CD80-regulated memory population that can be stimulated to divide and differentiate into ASC upon Ag re-encounter when Ag-specific IgG levels decline.
Collapse
Affiliation(s)
- Christina A Daly
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - M Ariel Spurrier
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Jamie E Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
9
|
Dyevoich AM, Disher NS, Haro MA, Haas KM. A TLR4-TRIF-dependent signaling pathway is required for protective natural tumor-reactive IgM production by B1 cells. Cancer Immunol Immunother 2020; 69:2113-2124. [PMID: 32448982 PMCID: PMC7529868 DOI: 10.1007/s00262-020-02607-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Metastatic cancer involving spread to the peritoneal cavity is referred to as peritoneal carcinomatosis and has a very poor prognosis. Our previous studies demonstrated a toll-like receptor 4 (TLR4) and C-type lectin receptor (CLR; Mincle/MCL) agonist pairing of monophosphoryl lipid A (MPL) and trehalose-6,6'-dicorynomycolate (TDCM) effectively inhibits peritoneal tumor growth and ascites development through a mechanism dependent upon B1a cell-produced natural IgM, complement, and phagocytes. In the current study, we investigated the requirement for TLR4 and Fc receptor common γ chain (FcRγ), required for Mincle/MCL signaling, in the MPL/TDCM-elicited response. MPL/TDCM significantly increased macrophages and Ly6Chi monocytes in the peritoneal cavity of both TLR4-/- and FcRγ-/- mice, suggesting redundancy in the signals required for monocyte/macrophage recruitment. However, B1 cell activation, antibody secreting cell differentiation, and tumor-reactive IgM production were defective in TLR4-/-, but not FcRγ-/- mice. TRIF was required for production of IgM reactive against tumor- and mucin-related antigens, but not phosphorylcholine, whereas TLR4 was required for production of both types of reactivities. Consistent with this, B1 cells lacking TLR4 or TRIF did not proliferate or differentiate into tumor-reactive IgM-producing cells in vitro and did not reconstitute MPL/TDCM-dependent protection against peritoneal carcinomatosis in CD19-/- mice. Our results indicate a TLR4/TRIF-dependent pathway is required by B1 cells for MPL/TDCM-elicited production of protective tumor-reactive natural IgM. The dependency on TRIF signaling for tumor-reactive, but not phosphorylcholine-reactive, IgM production reveals unexpected heterogeneity in TLR4-dependent regulation of natural IgM production, thereby highlighting important differences to consider when designing vaccines or therapies targeting these specificities.
Collapse
Affiliation(s)
- Allison M Dyevoich
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Nataya S Disher
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Marcela A Haro
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA.
| |
Collapse
|
10
|
Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on vaccine responses. J Allergy Clin Immunol 2020; 145:1309-1321. [PMID: 32386655 PMCID: PMC7198995 DOI: 10.1016/j.jaci.2020.03.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Impaired vaccine responses in older individuals are associated with alterations in both the quantity and quality of the T-cell compartment with age. As reviewed herein, the T-cell response to vaccination requires a fine balance between the generation of inflammatory effector T cells versus follicular helper T (TFH) cells that mediate high-affinity antibody production in tandem with the induction of long-lived memory cells for effective recall immunity. During aging, we find that this balance is tipped where T cells favor short-lived effector but not memory or TFH responses. Consistently, vaccine-induced antibodies commonly display a lower protective capacity. Mechanistically, multiple, potentially targetable, changes in T cells have been identified that contribute to these age-related defects, including posttranscription regulation, T-cell receptor signaling, and metabolic function. Although research into the induction of tissue-specific immunity by vaccines and with age is still limited, current mechanistic insights provide a framework for improved design of age-specific vaccination strategies that require further evaluation in a clinical setting.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif.
| |
Collapse
|
11
|
Khan A, Hollwedel F, Maus UA, Stocker BL, Timmer MSM. Synthesis of α-Glucosyl Diacylglycerides as potential adjuvants for Streptococcus pneumoniae vaccines. Carbohydr Res 2020; 489:107951. [PMID: 32086019 DOI: 10.1016/j.carres.2020.107951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/01/2022]
Abstract
α-Glucosyl diacylglycerols (αGlc-DAGs) play an important role in providing protective immunity against Streptococcus pneumoniae infection through the engagement of the Macrophage inducible C-type lectin (Mincle). Herein, we efficiently synthesised αGlc-DAGs containing C12, C14, C16 and C18 acyl chains in 7 steps and 44-47% overall yields, and demonstrated that Mincle signaling was dependent on lipid length using mMincle and hMincle NFAT-GFP reporter cells. The greatest production of GFP in both cell types was elicited by C14 αGlc-DAG. Accordingly, C14 αGlc-DAG has potential to act as an adjuvant to augment the immune response against S. pneumoniae antigens.
Collapse
Affiliation(s)
- Ayesha Khan
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, P. O. Box 600, Wellington, 6140, New Zealand
| | - Femke Hollwedel
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany; German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany; German Center for Lung Research, partner site BREATH, Hannover, Germany
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, P. O. Box 600, Wellington, 6140, New Zealand.
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, P. O. Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|