1
|
Tamai N, Shinjoh M, Oikawa H, Hamada R, Morio T, Koinuma G, Takahashi T. Invasive pneumococcal disease caused by non-vaccine Streptococcus pneumoniae serotype 24B in an immunocompetent child. Radiol Case Rep 2024; 19:1642-1645. [PMID: 38327552 PMCID: PMC10847835 DOI: 10.1016/j.radcr.2024.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Invasive pneumococcal disease typically occurs in immunocompromised patients, although some vaccine strains of Streptococcus pneumoniae have been reported to cause invasive pneumococcal disease in immunocompetent vaccine recipients. In this study, we presented a case of a 16-month-old immunocompetent patient with lung abscess and empyema caused by nonvaccine S. pneumoniae serotype 24B. A consolidation occupying the right upper lobe in the chest computed tomography results, as observed at presentation, changed to thick-walled cavitary lesions at the end of a month of intravenous antibiotics, and antibiotics were continued for a total of two months. To the best of our knowledge this is the first report that focuses on the risk of invasive pneumococcal disease caused by S. pneumoniae serotype 24B in an immunocompetent child.
Collapse
Affiliation(s)
- Naotaka Tamai
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masayoshi Shinjoh
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroyuki Oikawa
- Pediatrics, Ariake child clinic, Ariake Garden Medical Mall 1F, 2-1-7 Ariake, Koto-ku, Tokyo 135-0063, Japan
| | - Riku Hamada
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Nephrology and Rheumatology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu-shi, Tokyo 183-8561, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Goro Koinuma
- Division of Pulmonology, Department of Medical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Center for developmental neurology, Shin-yurigaoka General Hospital, 255 Furusawa, Asao-ku, Kawasaki-shi, Kanagawa 215-0026, Japan
| |
Collapse
|
2
|
Ryman J, Sachs JR, Yee KL, Banniettis N, Weaver J, Weiss T. Predicted serotype-specific effectiveness of pneumococcal conjugate vaccines V114 and PCV20 against invasive pneumococcal disease in children. Expert Rev Vaccines 2024; 23:60-68. [PMID: 38073483 DOI: 10.1080/14760584.2023.2292773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Next-generation, higher-valency pneumococcal conjugate vaccines (PCVs), 15-valent PCV V114 and 20-valent PCV (PCV20), have been assessed by comparing their immune responses across serotypes shared with the 13-valent PCV (PCV13). Without efficacy or real-world vaccine effectiveness (VE) it becomes important to relate IgG titers to VE to aid in the interpretation of the immune response elicited by V114 and PCV20. METHODS We estimated the protective antibody concentrations for each serotype in 7-valent PCV (PCV7) and PCV13 which were then used to predict the serotype-specific VE for each PCV7 and PCV13 non PCV7 serotype present in V114 and PCV20. RESULTS The predicted effectiveness of V114 was comparable to PCV7 and PCV13 for 11 of the 13 shared serotypes (1, 4, 5, 6B, 7F, 9 V, 14, 18C, 19A, 19F, and 23F), with improved effectiveness against serotype 3 and decreased effectiveness against serotype 6A. PCV20 had predicted effectiveness comparable to PCV7 and PCV13 for 7 of the 13 shared serotypes (5, 6A, 7F, 9 V, 18C, 19F, and 23F), with decreased effectiveness against the remaining serotypes (1, 3, 4, 6B, 14, and 19A). CONCLUSIONS Prediction of serotype-specific VE values suggests that V114 retains greater effectiveness than PCV20 toward most serotypes present in PCV7 and PCV13.
Collapse
Affiliation(s)
- Josiah Ryman
- Quantitative Pharmacology and Pharmacometrics, Rahway, NJ, USA
| | - Jeffrey R Sachs
- Quantitative Pharmacology and Pharmacometrics, Rahway, NJ, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Rahway, NJ, USA
| | | | - Jessica Weaver
- Center for Observational and Real-World Evidence,Merck & Co, Inc, Rahway, NJ, USA
| | - Thomas Weiss
- Center for Observational and Real-World Evidence,Merck & Co, Inc, Rahway, NJ, USA
| |
Collapse
|
3
|
Cleary DW, Lo SW, Kumar N, Bentley SD, Faust SN, Clarke SC. Comparative genomic epidemiology of serotype 3 IPD and carriage isolates from Southampton, UK between 2005 and 2017. Microb Genom 2023; 9. [PMID: 36867094 PMCID: PMC10132069 DOI: 10.1099/mgen.0.000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Serotype 3 pneumococci remains a significant cause of disease despite its inclusion in PCV13. Whilst clonal complex 180 (CC180) represents the major clone, recent studies have refined the population structure into three clades: Iα, Iβ and II, with the last being a recent divergent and more antibiotic-resistant. We present a genomic analysis of serotype 3 isolates from paediatric carriage and all-age invasive disease, collected between 2005 and 2017 in Southampton, UK. Forty-one isolates were available for analysis. Eighteen were isolated during the annual cross-sectional surveillance of paediatric pneumococcal carriage. The remaining 23 were isolated from blood/cerebrospinal fluid specimens at the University Hospital Southampton NHS Foundation Trust laboratory. All carriage isolates were CC180 GPSC12. Greater diversity was seen with invasive pneumococcal disease (IPD) with three GPSC83 (ST1377: n=2, ST260: n=1) and one GPSC3 (ST1716). For both carriage and IPD, Clade Iα was dominant (94.4 and 73.9 % respectively). Two isolates were Clade II with one from carriage (a 34-month-old, October 2017) and one invasive isolate (49-year-old, August 2015). Four IPD isolates were outside the CC180 clade. All isolates were genotypically susceptible to penicillin, erythromycin, tetracycline, co-trimoxazole and chloramphenicol. Two isolates (one each from carriage and IPD; both CC180 GPSC12) were phenotypically resistant to erythromycin and tetracycline; the IPD isolate was also resistant to oxacillin.In the Southampton area, carriage and invasive disease associated with serotype 3 is predominantly caused by Clade Iα CC180 GPSC12.
Collapse
Affiliation(s)
- David W Cleary
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.,Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Narender Kumar
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | | | - Saul N Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK.,Southampton Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK.,Global Health Research Institute, University of Southampton, Southampton, UK
| |
Collapse
|
4
|
Miellet WR, Almeida ST, Trzciński K, Sá-Leão R. Streptococcus pneumoniae carriage studies in adults: Importance, challenges, and key issues to consider when using quantitative PCR-based approaches. Front Microbiol 2023; 14:1122276. [PMID: 36910231 PMCID: PMC9994646 DOI: 10.3389/fmicb.2023.1122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Streptococcus pneumoniae causes significant morbidity and mortality among older adults. Detection of pneumococcal carriage is an accepted endpoint in pneumococcal conjugate vaccine studies. However, low sensitivity of culture-based approaches and nasopharyngeal samples have hampered adult S. pneumoniae carriage studies in the past. In contrast, detection of adult S. pneumoniae carriers with qPCR-based approaches can achieve high sensitivity and specificity and qPCR-based testing of oral samples improves accuracy of adult carriage detection. In this Viewpoint we outline a strategy for accurate qPCR-based testing. We recommend a dual-target approach for S. pneumoniae qPCR detection as no genetic target is universally present among or solely unique to it. Furthermore, we advise the evaluation of concordance among quantified qPCR targets to improve the accuracy of S. pneumoniae testing and qPCR-based serotyping. We do not recommend omission of qPCR-based oral sample testing as it will likely result in an underestimation of true adult carrier rates.
Collapse
Affiliation(s)
- Willem R Miellet
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sónia T Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Kwun MJ, Ion AV, Cheng HC, D’Aeth JC, Dougan S, Oggioni MR, Goulding DA, Bentley SD, Croucher NJ. Post-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA. Genome Med 2022; 14:144. [PMID: 36539881 PMCID: PMC9764711 DOI: 10.1186/s13073-022-01147-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The respiratory pathogen Streptococcus pneumoniae (the pneumococcus) is a genetically diverse bacterium associated with over 101 immunologically distinct polysaccharide capsules (serotypes). Polysaccharide conjugate vaccines (PCVs) have successfully eliminated multiple targeted serotypes, yet the mucoid serotype 3 has persisted despite its inclusion in PCV13. This capsule type is predominantly associated with a single globally disseminated strain, GPSC12 (clonal complex 180). METHODS A genomic epidemiology study combined previous surveillance datasets of serotype 3 pneumococci to analyse the population structure, dynamics, and differences in rates of diversification within GPSC12 during the period of PCV introductions. Transcriptomic analyses, whole genome sequencing, mutagenesis, and electron microscopy were used to characterise the phenotypic impact of loci hypothesised to affect this strain's evolution. RESULTS GPSC12 was split into clades by a genomic analysis. Clade I, the most common, rarely underwent transformation, but was typically infected with the prophage ϕOXC141. Prior to the introduction of PCV13, this clade's composition shifted towards a ϕOXC141-negative subpopulation in a systematically sampled UK collection. In the post-PCV13 era, more rapidly recombining non-Clade I isolates, also ϕOXC141-negative, have risen in prevalence. The low in vitro transformation efficiency of a Clade I isolate could not be fully explained by the ~100-fold reduction attributable to the serotype 3 capsule. Accordingly, prophage ϕOXC141 was found to modify csRNA3, a non-coding RNA that inhibits the induction of transformation. This alteration was identified in ~30% of all pneumococci and was particularly common in the unusually clonal serotype 1 GPSC2 strain. RNA-seq and quantitative reverse transcriptase PCR experiments using a genetically tractable pneumococcus demonstrated the altered csRNA3 was more effective at inhibiting production of the competence-stimulating peptide pheromone. This resulted in a reduction in the induction of competence for transformation. CONCLUSION This interference with the quorum sensing needed to induce competence reduces the risk of the prophage being deleted by homologous recombination. Hence the selfish prophage-driven alteration of a regulatory RNA limits cell-cell communication and horizontal gene transfer, complicating the interpretation of post-vaccine population dynamics.
Collapse
Affiliation(s)
- Min Jung Kwun
- grid.7445.20000 0001 2113 8111MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, White City Campus, Imperial College London, London, W12 0BZ UK
| | - Alexandru V. Ion
- grid.7445.20000 0001 2113 8111MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, White City Campus, Imperial College London, London, W12 0BZ UK
| | - Hsueh-Chien Cheng
- grid.10306.340000 0004 0606 5382Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Joshua C. D’Aeth
- grid.7445.20000 0001 2113 8111MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, White City Campus, Imperial College London, London, W12 0BZ UK
| | - Sam Dougan
- grid.10306.340000 0004 0606 5382Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Marco R. Oggioni
- grid.9918.90000 0004 1936 8411Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH UK ,grid.6292.f0000 0004 1757 1758Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - David A. Goulding
- grid.10306.340000 0004 0606 5382Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Stephen D. Bentley
- grid.10306.340000 0004 0606 5382Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA UK
| | - Nicholas J. Croucher
- grid.7445.20000 0001 2113 8111MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, White City Campus, Imperial College London, London, W12 0BZ UK
| |
Collapse
|
6
|
Egorova E, Kumar N, Gladstone RA, Urban Y, Voropaeva E, Chaplin A, Rumiantseva E, Svistunova TS, Hawkins PA, Klugman KP, Breiman RF, McGee L, Bentley SD, Lo SW. Key features of pneumococcal isolates recovered in Central and Northwestern Russia in 2011–2018 determined through whole-genome sequencing. Microb Genom 2022; 8. [PMID: 36112007 PMCID: PMC9676041 DOI: 10.1099/mgen.0.000851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Invasive pneumococcal disease remains one of the leading causes of morbidity and mortality worldwide. In Russia, 13- valent pneumococcal conjugate vaccine (PCV13) was introduced into the childhood immunization programme nationwide in 2014. As part of the Global Pneumococcal Sequencing Project (GPS), we used genome data to characterize 179 pneumococcal isolates collected from Russia in 2011–2018 to investigate the circulating pneumococcal strains using a standardized genomic definition of pneumococcal lineages (global pneumococcal sequence clusters, GPSCs), prevalent serotypes and antimicrobial resistance profiles. We observed high serotype and lineage diversity among the 179 isolates recovered from cerebrospinal fluid (n=77), nasopharyngeal swabs (n=99) and other non-sterile site swabs (n=3). Overall, 60 GPSCs were identified, including 48 clonal complexes (CCs) and 14 singletons, and expressed 42 serotypes (including non-typable). Among PCV13 serotypes, 19F, 6B and 23F were the top three serotypes while 11A, 15B/C and 8 were the top three among non-PCV13 serotypes in the collection. Two lineages (GPSC6 and GPSC47) expressed both PCV13 and non-PCV13 serotypes that caused invasive disease, and were penicillin- and multidrug-resistant (MDR), highlighting their potential to adapt and continue to cause infections under vaccine and antibiotic selective pressure. PCV13 serotypes comprised 92 % (11/12) of the CSF isolates from the children aged below 5 years; however, the prevalence of PCV13 serotype isolates dropped to 53 % (31/58) among the nasopharyngeal isolates. Our analysis showed that 59 % (105/179) of the isolates were predicted to be non-susceptible to at least one class of antibiotics and 26 % (46/179) were MDR. Four MDR lineages (GPSC1, GPSC6, GPSC10 and GPSC47) accounted for 65 % (30/46) of the MDR isolates and expressed PCV13 serotypes (93 %, 28/30). This study provides evidence of high genetic and serotype diversity contributed by a mix of globally spreading and regionally circulating lineages in Russia. The observations suggest that the PCV13 vaccine could be important in reducing both invasive disease and antimicrobial resistance. We also identify potential lineages (GPSC6 and GPSC47) that may evade the vaccine.
Collapse
Affiliation(s)
- Ekaterina Egorova
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Narender Kumar
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Rebecca A. Gladstone
- Department of Biostatistics, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Yulia Urban
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Elena Voropaeva
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - A.V. Chaplin
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | - Keith P. Klugman
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, USA
| | - Stephen D. Bentley
- Department of Pathology, University of Cambridge, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Stephanie W. Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| |
Collapse
|
7
|
Changes in serotype prevalence of Streptococcus pneumoniae in Southampton, UK between 2006 and 2018. Sci Rep 2022; 12:13332. [PMID: 35922536 PMCID: PMC9349173 DOI: 10.1038/s41598-022-17600-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae continues to cause significant disease burden. Whilst pneumococcal conjugate vaccines (PCV) have substantially reduced this burden, serotype replacement partially negates this success due to increased disease associated with non-vaccine serotypes (NVTs). Continued surveillance is therefore essential to provide crucial epidemiological data. Annual cross-sectional surveillance of paediatric pneumococcal carriage was started in Southampton, UK following PCV7 roll-out in 2006. Nasopharyngeal swabs were collected from children < 5 years old each winter (October to March) from 2006/07 and for each consecutive year until 2017/18. Pneumococcal serotype was inferred from whole genome sequencing data. A total of 1429 (32.5%) pneumococci were isolated from 4093 children. Carriage ranged from 27.8% (95%CI 23.7–32.7) in 2008/09 to 37.9% (95%CI 32.8–43.2) in 2014/15. Analyses showed that carriage increased in children aged 24–35 months (p < 0.001) and 47–60 months (p < 0.05). Carriage of PCV serotypes decreased markedly following PCV7 and/or PCV13 introduction, apart from serotype 3 where the relative frequency was slightly lower post-PCV13 (pre-PCV13 n = 7, 1.67%; post-PCV13 n = 13, 1.27%). Prevalence of NVTs implicated in increased disease was low with 24F (n = 19, 1.4%) being the most common followed by 9N (n = 11, 0.8%), 8 (n = 7, 0.5%) and 12F (n = 3, 0.2%).
Collapse
|
8
|
Savulescu C, Krizova P, Valentiner-Branth P, Ladhani S, Rinta-Kokko H, Levy C, Mereckiene J, Knol M, Winje BA, Ciruela P, de Miguel S, Guevara M, MacDonald L, Kozakova J, Slotved HC, Fry NK, Pekka Nuorti J, Danis K, Corcoran M, van der Ende A, Vestrheim DF, Munoz-Almagro C, Sanz JC, Castilla J, Smith A, Colzani E, Pastore Celentano L, Hanquet G. Effectiveness of 10 and 13-valent pneumococcal conjugate vaccines against invasive pneumococcal disease in European children: SpIDnet observational multicentre study. Vaccine 2022; 40:3963-3974. [PMID: 35637067 DOI: 10.1016/j.vaccine.2022.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pneumococcal conjugate vaccines covering 10 (PCV10) and 13 (PCV13) serotypes have been introduced in the infant immunization schedule of most European countries in 2010-11. To provide additional real-life data, we measured the effectiveness of PCV10 and PCV13 against invasive pneumococcal disease (IPD) in children of 12 European sites (SpIDnet). METHODS We compared the vaccination status of PCV10 and PCV13 serotype IPD (cases) to that of nonPCV13 serotype IPD (controls) reported in 2012-2018. We calculated pooled effectiveness as (1-vaccination odds ratio)*100, and measured effectiveness over time since booster dose. RESULTS The PCV13 and PCV10 studies included 2522 IPD cases from ten sites and 486 cases from four sites, respectively. The effectiveness of ≥ 1 PCV13 dose was 84.2% (95 %CI: 79.0-88.1) against PCV13 serotypes (n = 2353) and decreased from 93.1% (87.8-96.1) < 12 months to 85.1% (72.0-92.1) ≥ 24 months after booster dose. PCV13 effectiveness of ≥ 1 dose was 84.7% (55.7-94.7) against fatal PCV13 IPD, 64.5% (43.7-77.6), 83.2% (73.7-89.3) and 85.1% (67.6-93.1) against top serotypes 3, 19A and 1, respectively, and 85.4% (62.3-94.4) against 6C. Serotype 3 and 19A effectiveness declined more rapidly. PCV10 effectiveness of ≥ 1 dose was 84.8% (69.4-92.5) against PCV10 serotypes (n = 370), 27.2% (-187.6 to 81.6) and 85.3% (35.2-96.7) against top serotypes 1 and 7F, 32.5% (-28.3 to 64.5) and -14.4% (-526.5 to 79.1) against vaccine-related serotypes 19A and 6C, respectively. CONCLUSIONS PCV10 and PCV13 provide similar protection against IPD due to the respective vaccine serotype groups but serotype-specific effectiveness varies by serotype and vaccine. PCV13 provided individual protection against serotype 3 and vaccine-related serotype 6C IPD. PCV10 effectiveness was not significant against vaccine-related serotypes 19A and 6C. PCV13 effectiveness declined with time after booster vaccination. This multinational study enabled measuring serotype-specific vaccine effectiveness with a precision rarely possible at the national level. Such large networks are crucial for the post-licensure evaluation of vaccines.
Collapse
Affiliation(s)
| | - Pavla Krizova
- National Institute of Public Health, Prague, Czech Republic
| | | | | | | | | | | | - Mirjam Knol
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Pilar Ciruela
- Health Agency of Catalunya, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | | | - Marcela Guevara
- Public Health Institute of Navarra - IdiSNA, Pamplona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | | | - Jana Kozakova
- National Institute of Public Health, Prague, Czech Republic
| | | | | | - J Pekka Nuorti
- National Institute for Health and Welfare, Helsinki, Finland; Tampere University, Tampere, Finland
| | - Kostas Danis
- Santé publique France, the National Public Health Institute, Saint-Maurice, France
| | - Mary Corcoran
- Temple Street Children's University Hospital, Irish Pneumococcal Reference Laboratory, Dublin, Ireland
| | - Arie van der Ende
- Academic Medical Centre, National Reference Laboratory for Bacterial Meningitis, Amsterdam, the Netherlands
| | | | - Carmen Munoz-Almagro
- Hospital Sant Joan de Déu, and International University of Catalunya, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | | | - Jesus Castilla
- Public Health Institute of Navarra - IdiSNA, Pamplona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Andrew Smith
- Bacterial Respiratory Infection Service, Scottish Microbiology Reference Laboratory, Glasgow Royal Infirmary & MVLS, University of Glasgow, Glasgow, Scotland, UK
| | - Edoardo Colzani
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Germaine Hanquet
- Epiconcept, Paris, France; Antwerp university, Antwerp, Belgium.
| | | |
Collapse
|
9
|
Molecular surveillance of pneumococcal carriage following completion of immunization with the 13-valent pneumococcal conjugate vaccine administered in a 3 + 1 schedule. Sci Rep 2021; 11:24534. [PMID: 34969968 PMCID: PMC8718523 DOI: 10.1038/s41598-021-03720-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
In a cross-sectional study, with the use of molecular methods, we aimed to gain insight into oropharyngeal pneumococcal colonization over time in 1212 Greek children recruited in general pediatric settings throughout the country; they were fully vaccinated with PCV13 (3 + 1 schedule). A single sample was obtained from each child at a time interval of 26 days to 70 months after administration of the 4th (booster) PCV13 dose; sampling time was divided into six time intervals. Carriage of Streptococcus pneumoniae was detected by real-time PCR targeting the lytA gene and isolates were serotyped by singleplex real-time PCR assays. Multiple control procedures to avoid false-positive results were applied. We showed an overall S. pneumoniae carriage rate of 48.6%. Serotyping identified typeable isolates in 82% of the total lytA-positive samples. Non-PCV13 serotypes represented 83.8% of total isolates when excluding serogroups with mixed PCV13 and non-PCV13 serotypes. In multivariate analysis daycare/school attendance emerged as the main contributing factor. Notably, serotypes 19A and 3 were the only two PCV13 serotypes the colonization rate of which increased over time (χ2 for trend P < 0.001 and P = 0.012, respectively). The application of the SP2020 gene on lytA-positive serotyped samples showed pneumococcal colonization in 97% of cases, and the overall colonization profile over time closely resembled that of the lytA gene. With the provisions of the methodological approach and age group of our study, the use of the oropharynx emerges as a reliable alternative to the nasopharynx in estimating pneumococcal carriage in epidemiological studies.
Collapse
|
10
|
Kalizang'oma A, Chaguza C, Gori A, Davison C, Beleza S, Antonio M, Beall B, Goldblatt D, Kwambana-Adams B, Bentley SD, Heyderman RS. Streptococcus pneumoniae serotypes that frequently colonise the human nasopharynx are common recipients of penicillin-binding protein gene fragments from Streptococcus mitis. Microb Genom 2021; 7. [PMID: 34550067 PMCID: PMC8715442 DOI: 10.1099/mgen.0.000622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is an important global pathogen that causes bacterial pneumonia, sepsis and meningitis. Beta-lactam antibiotics are the first-line treatment for pneumococcal disease, however, their effectiveness is hampered by beta-lactam resistance facilitated by horizontal genetic transfer (HGT) with closely related species. Although interspecies HGT is known to occur among the species of the genus Streptococcus, the rates and effects of HGT between Streptococcus pneumoniae and its close relatives involving the penicillin binding protein (pbp) genes remain poorly understood. Here we applied the fastGEAR tool to investigate interspecies HGT in pbp genes using a global collection of whole-genome sequences of Streptococcus mitis, Streptococcus oralis and S. pneumoniae. With these data, we established that pneumococcal serotypes 6A, 13, 14, 16F, 19A, 19F, 23F and 35B were the highest-ranking serotypes with acquired pbp fragments. S. mitis was a more frequent pneumococcal donor of pbp fragments and a source of higher pbp nucleotide diversity when compared with S. oralis. Pneumococci that acquired pbp fragments were associated with a higher minimum inhibitory concentration (MIC) for penicillin compared with pneumococci without acquired fragments. Together these data indicate that S. mitis contributes to reduced β-lactam susceptibility among commonly carried pneumococcal serotypes that are associated with long carriage duration and high recombination frequencies. As pneumococcal vaccine programmes mature, placing increasing pressure on the pneumococcal population structure, it will be important to monitor the influence of antimicrobial resistance HGT from commensal streptococci such as S. mitis.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | - Chrispin Chaguza
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK.,Darwin College, University of Cambridge, Silver Street, Cambridge, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrea Gori
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | - Charlotte Davison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Martin Antonio
- Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine, World Health Organization, Collaborating Centre for New Vaccines Surveillance, Banjul, Gambia
| | - Bernard Beall
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Atlanta, GA, USA
| | - David Goldblatt
- University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| | | | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
11
|
Smith KJ, Wateska AR, Nowalk MP, Lin CJ, Harrison LH, Schaffner W, Zimmerman RK. Higher-Valency Pneumococcal Conjugate Vaccines: An Exploratory Cost-Effectiveness Analysis in U.S. Seniors. Am J Prev Med 2021; 61:28-36. [PMID: 34148625 PMCID: PMC8221100 DOI: 10.1016/j.amepre.2021.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Use of the 13-valent pneumococcal conjugate vaccine in nonimmunocompromised adults aged ≥65 years is controversial. Higher-valency conjugate vaccines (15-valent and 20-valent ) are under development; their potential cost effectiveness in older adults is unknown, particularly when potential indirect (herd immunity) effects from childhood vaccination are considered. METHODS A Markov model estimated the cost effectiveness of current U.S. recommendations and alternative strategies using currently available and in-development pneumococcal conjugate vaccines in seniors. Separately, strategies using a hypothetical 20-valent vaccine adding the 7 most common disease-causing non-13-valent vaccine serotypes were considered. Sensitivity analyses were performed and alternative scenarios were examined. Data were gathered and the analyses were performed in 2020. RESULTS In analyses considering only existing and in-development vaccines, sole 20-valent vaccine use cost $172,491/quality-adjusted life year gained compared with current U.S. recommendations under baseline assumptions (equal serotype effectiveness and no childhood vaccination indirect effects). Strategies using 15-valent vaccine were more costly and less effective. When 13-valent/20-valent vaccines were assumed ineffective against pneumococcal serotype 3 and 15-valent vaccine was fully effective, 15-valent vaccine cost $237,431/quality-adjusted life year gained. With indirect effects considered, 15-valent or 20-valent vaccine cost >$449,000/quality-adjusted life year gained. When adding hypothetical 20-valent vaccine under baseline assumptions, hypothetical 20-valent vaccine cost $139,348/quality-adjusted life year gained. CONCLUSIONS In-development pneumococcal conjugate vaccines may be economically unreasonable in older adults, regardless of serotype effectiveness assumptions, particularly when considering potential indirect effects from use of those vaccines in children. Adult vaccines containing high-risk serotypes not contained in childhood vaccines may be more promising.
Collapse
Affiliation(s)
- Kenneth J Smith
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Angela R Wateska
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Lee H Harrison
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
12
|
Félix S, Handem S, Nunes S, Paulo AC, Candeias C, Valente C, Simões AS, Almeida ST, Tavares DA, Brito-Avô A, de Lencastre H, Sá-Leão R. Impact of private use of the 13-valent pneumococcal conjugate vaccine (PCV13) on pneumococcal carriage among Portuguese children living in urban and rural regions. Vaccine 2021; 39:4524-4533. [PMID: 34183206 DOI: 10.1016/j.vaccine.2021.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
In Portugal, the 13-valent pneumococcal conjugate vaccine (PCV13) was commercially available between 2010 and 2015, following a decade of private use of PCV7. We evaluated changes on serotype distribution and antimicrobial susceptibility of pneumococci carried by children living in two regions of Portugal (one urban and one rural). Three epidemiological periods were defined: pre-PCV13 (2009-2010), early-PCV13 (2011-2012), and late-PCV13 (2015-2016). Nasopharyngeal samples (n = 4,232) were obtained from children 0-6 years old attending day-care centers. Private use of PCVs was very high in both regions (>75%). Pneumococcal carriage remained stable and high over time (62.1%, 62.4% and 61.6% (p = 0.909) in the urban region; and 59.8%, 62.8%, 59.5% (p = 0.543) in the rural region). Carriage of PCV7 serotypes remained low (5.3%, 7.8% and 4.3% in the urban region; and 2.5%, 3.7% and 4.8% in the rural region). Carriage of PCV13 serotypes not targeted by PCV7 decreased in both the urban (16.4%, 7.3%, and 1.6%; p < 0.001) and rural regions (13.2%, 7.8%, and 1.9%; p < 0.001). This decline was mostly attributable to serotype 19A (14.1%, 4.4% and 1.3% in the urban region; and 11.1%, 3.6% and 0.8% in the rural region, both p < 0.001). Serotype 3 declined over time in the urban region (10.1%, 4.4%, 0.8%; p < 0.001) and had no obvious trend in the rural region (4.2%, 6.7%, 2.4%; p = 0.505). Serotype 6C decreased in both regions while serotypes 11D, 15A/B/C, 16F, 21, 22F, 23A/B, 24F, 35F, and NT were the most prevalent in the late-PCV13 period. Intermediate resistance to penicillin and non-susceptibility to erythromycin decreased significantly in both regions (19.5%, 13.3%, and 9.3%; and 25.4%, 25.9%, and 13.4%; both p < 0.001, respectively in the urban region; and 12.4%, 11.1%, and 2.8% (p < 0.001); and 15.3%, 14.7%, and 9.2% (p = 0.037), respectively, in the rural region). In conclusion, private use of PCV13 led to significant changes on the pneumococcal population carried by children in Portugal.
Collapse
Affiliation(s)
- Sofia Félix
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Sara Handem
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Sónia Nunes
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Ana Cristina Paulo
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Catarina Candeias
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Carina Valente
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Alexandra S Simões
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Sónia T Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Débora A Tavares
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | | | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, ITQB NOVA, Oeiras, Portugal; Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, NY, USA
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal.
| |
Collapse
|
13
|
Structural, Genetic, and Serological Elucidation of Streptococcus pneumoniae Serogroup 24 Serotypes: Discovery of a New Serotype, 24C, with a Variable Capsule Structure. J Clin Microbiol 2021; 59:e0054021. [PMID: 33883183 DOI: 10.1128/jcm.00540-21] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pneumococcal capsules are important in pneumococcal pathogenesis and vaccine development. Although conjugate vaccines have brought about a significant reduction in invasive pneumococcal disease (IPD) caused by vaccine serotypes, the relative serotype prevalence has shifted with the dramatic emergence of serotype 24F in some countries. Here, we describe 14 isolates (13 IPD and 1 non-IPD) expressing a new capsule type, 24C, which resembles 24F but has a novel serological profile. We also describe the antigenic, biochemical, and genetic basis of 24F and 24C and the related serotypes 24A and 24B. Structural studies show that 24B, 24C, and 24F have identical polysaccharide backbones [β-Ribf-(1→4)-α-Rhap-(1→3)-β-GlcpNAc-(1→4)-β-Rhap-(1→4)-β-Glcp] but with different side chains, as follows: 24F has arabinitol-phosphate and 24B has ribitol-phosphate. 24C has a mixture of 24F and 24B repeating units, with the ratio of ribitol to arabinitol being strain dependent. In contrast, the 24A capsule has a backbone without β-Ribf but with arabinitol-phosphate and phosphocholine side chains. These structures indicate that factor-sera 24d and 24e recognize arabinitol and ribitol, respectively, which explains the serology of serogroup 24, including those of 24C. The structures can be genetically described by the bispecificity of wcxG, which is capable of transferring arabinitol or ribitol when arabinitol is limiting. Arabinitol is likely not produced in 24B but is produced in reduced amounts in 24C due to various mutations in abpA or abpB genes. Our findings demonstrate how pneumococci modulate their capsule structure and immunologic properties with small genetic changes, thereby evading host immune responses. Our findings also suggest a potential for new capsule types within serogroup 24.
Collapse
|
14
|
Hansen CB, Fuursted K, Valentiner-Branth P, Dalby T, Jørgensen CS, Slotved HC. Molecular characterization and epidemiology of Streptococcus pneumoniae serotype 8 in Denmark. BMC Infect Dis 2021; 21:421. [PMID: 33952197 PMCID: PMC8097992 DOI: 10.1186/s12879-021-06103-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/22/2021] [Indexed: 12/05/2022] Open
Abstract
Background Streptococcus pneumoniae serotype 8 incidence has increased in Denmark after the introduction of pneumococcal conjugated vaccines (PCV). The mechanism behind the serotype 8 replacement is not well understood. In this study, we aimed to present epidemiological data on invasive pneumococcal disease (IPD) and molecular characterization of 96 serotype 8 clinical isolates. Methods IPD data from 1999 to 2019 were used to calculate the incidence and age distribution. Whole-genome sequencing (WGS) analysis was performed on 96 isolates (6.8% of the total serotype 8 IPD isolates in the period) to characterize the isolates with respect to pneumococcal lineage traits, a range of genes with potential species discrimination, presence of colonization and virulence factors, and molecular resistance pattern. Results The serotype 8 IPD incidence increased significantly (P < 0.05) for the age groups above 15 years after the introduction of PCV13, primarily affecting the elderly (65+). All isolates were phenotypically susceptible to penicillin, erythromycin and clindamycin. Molecular characterization revealed seven different MLST profiles with ST53 as the most prevalent lineage (87.5%) among the analyzed serotype 8 isolates. The genes covering the cell-surface proteins: lytA, rspB, pspA, psaA & Xisco and the pneumococcal toxin pneumolysin = ply were present in all isolates, while genes for the membrane transporter proteins: piaA/piaB/piaC; the capsular genes: cpsA (wzg) & psrP; the metallo-binding proteins zmpB & zmpC; and the neuroamidase proteins: nanA/nanB were variably present. Surprisingly, the putative transcriptional regulator gene SP2020 was not present in all isolates (98%). Susceptibility to penicillin, erythromycin and clindamycin was molecularly confirmed. Conclusion The observed serotype 8 replacement was not significantly reflected with a change in the MLST profile or changes in antibiotic resistance- or virulence determinants. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06103-w.
Collapse
Affiliation(s)
- Camilla Bülow Hansen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| | | | - Tine Dalby
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| | - Charlotte Sværke Jørgensen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - H-C Slotved
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark.
| |
Collapse
|
15
|
Ceyhan M, Karadag-Oncel E, Hascelik G, Ustundag G, Gurbuz V, Samlioglu P, Yilmaz N, Ozsurekci Y, Yilmaz E, Aykac K, Oz FN, Uzum O, Orsdemir-Hortu H, Tanir G, Yilmaz-Ciftdogan D, Kurugol Z. Nasopharyngeal carriage of Streptococcus pneumoniae in healthy children aged less than five years. Vaccine 2021; 39:2041-2047. [PMID: 33741188 DOI: 10.1016/j.vaccine.2021.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE In Turkey, pneumococcal conjugate vaccine (PCV) was introduced to the national immunization program as PCV7 in 2008, and was replaced with PCV13 in 2011. The aim of the study was to demonstrate the pneumococcal carriage rate and the serotype distribution in healthy children under 5 years in Turkey who were vaccinated with PCV13. METHODS We conducted a cross-sectional study including the collection of questionnaire data and nasopharyngeal (NP) specimens among children aged <5 years from five centers from March 2019 to March 2020. Pneumococcal isolates were identified using optochin sensitivity and bile solubility. Serotyping was performed using a latex agglutination kit and Quellung reaction. RESULTS NP swab samples were collected from 580 healthy children. The observed overall carriage rate was 17.8%. None of the hypothesised predictors of S. pneumoniae carriage, except maternal education level was statistically significant (p = 0.017). High maternal education level appeared to decrease the risk (lower vs. higher maternal education OR: 1.992 [95% CI; 1.089-3.643], p = 0.025). The overall NP S. pneumoniae carriage prevalence for the PCV13-vaccinated children was 17.8% (103/580). The most common serotypes detected were serotype 15B (n = 10, 9.7%), serotype 23F (n = 9, 8.7%), serotype 23A (n = 9, 8.7%), serotype 11A (n = 7, 6.7%), serotype 19F (n = 5, 4.8%) and serotype 15F (n = 5, 4.8%). Of the isolates, 28 (27.2%) were in PCV13 vaccine strains (VSs), and 75 (72.8%) strains were non-VS. The serotype coverage rate was 27.2% for PCV13. CONCLUSION The overall S. pneumoniae carriage rate was higher than in earlier studies from Turkey. Post-vaccine era studies from around the world have reported a decrease in VS serotypes and a 'serotype replacement' to non-VS serotypes, as we determined in our study.
Collapse
Affiliation(s)
- Mehmet Ceyhan
- Hacettepe University School of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Eda Karadag-Oncel
- University of Health Sciences, Tepecik Training and Research Hospital, Department of Pediatric Infectious Diseases, İzmir, Turkey
| | - Gulsen Hascelik
- Hacettepe University School of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Gulnihan Ustundag
- University of Health Sciences, Tepecik Training and Research Hospital, Department of Pediatric Infectious Diseases, İzmir, Turkey.
| | - Venhar Gurbuz
- Hacettepe University School of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Pinar Samlioglu
- University of Health Sciences, Tepecik Training and Research Hospital, Department of Medical Microbiology, İzmir, Turkey
| | - Nisel Yilmaz
- University of Health Sciences, Tepecik Training and Research Hospital, Department of Medical Microbiology, İzmir, Turkey
| | - Yasemin Ozsurekci
- Hacettepe University School of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Elif Yilmaz
- Ege University School of Medicine, Department of Pediatric Infectious Diseases, İzmir, Turkey
| | - Kubra Aykac
- University of Health Sciences, Ankara Training and Research Hospital, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Fatma Nur Oz
- University of Health Sciences, Sami Ulus Training and Research Hospital, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Ozlem Uzum
- University of Health Sciences, Tepecik Training and Research Hospital, Department of Pediatrics, İzmir, Turkey
| | - Hacer Orsdemir-Hortu
- University of Health Sciences, Tepecik Training and Research Hospital, Department of Pediatrics, İzmir, Turkey
| | - Gonul Tanir
- University of Health Sciences, Sami Ulus Training and Research Hospital, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Dilek Yilmaz-Ciftdogan
- University of Health Sciences, Tepecik Training and Research Hospital, Department of Pediatric Infectious Diseases, İzmir, Turkey
| | - Zafer Kurugol
- Ege University School of Medicine, Department of Pediatric Infectious Diseases, İzmir, Turkey
| |
Collapse
|
16
|
Tsang RSW. A Narrative Review of the Molecular Epidemiology and Laboratory Surveillance of Vaccine Preventable Bacterial Meningitis Agents: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae and Streptococcus agalactiae. Microorganisms 2021; 9:449. [PMID: 33671611 PMCID: PMC7926440 DOI: 10.3390/microorganisms9020449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
This narrative review describes the public health importance of four most common bacterial meningitis agents, Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, and S. agalactiae (group B Streptococcus). Three of them are strict human pathogens that normally colonize the nasopharynx and may invade the blood stream to cause systemic infections and meningitis. S. agalactiae colonizes the genito-gastrointestinal tract and is an important meningitis agent in newborns, but also causes invasive infections in infants or adults. These four bacteria have polysaccharide capsules that protect them against the host complement defense. Currently licensed conjugate vaccines (against S. pneumoniae, H. influenza, and N. meningitidis only but not S. agalactiae) can induce protective serum antibodies in infants as young as two months old offering protection to the most vulnerable groups, and the ability to eliminate carriage of homologous serotype strains in vaccinated subjects lending further protection to those not vaccinated through herd immunity. However, the serotype-specific nature of these vaccines have driven the bacteria to adapt by mechanisms that affect the capsule antigens through either capsule switching or capsule replacement in addition to the possibility of unmasking of strains or serotypes not covered by the vaccines. The post-vaccine molecular epidemiology of vaccine-preventable bacterial meningitis is discussed based on findings obtained with newer genomic laboratory surveillance methods.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Laboratory for Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
17
|
Izurieta P, Nieto Guevara J. Exploring the evidence behind the comparable impact of the pneumococcal conjugate vaccines PHiD-CV and PCV13 on overall pneumococcal disease. Hum Vaccin Immunother 2021; 18:1872341. [PMID: 33605846 PMCID: PMC8920200 DOI: 10.1080/21645515.2021.1872341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The worldwide implementation of pneumococcal conjugate vaccines (PCVs) in children has reduced the overall pneumococcal disease burden. Two PCVs are widely available for infant vaccination: the pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) and the 13-valent PCV (PCV13). While these PCVs differ in serotype composition (PCV13 includes polysaccharides of serotypes 3, 6A and 19A; PHiD-CV does not), their impact on the overall pneumococcal disease burden in children is comparable. This commentary summarizes the evidence of comparability between PHiD-CV and PCV13 and explores why differences in serotype composition may not necessarily translate into a differential clinical impact. Both vaccines confer similarly high protection against disease caused by vaccine serotypes and lead to a partial replacement by non-vaccine serotypes. PHiD-CV does not protect against serotype 3 disease (not included in the vaccine) and PCV13’s effect on this serotype has been inconsistent. PHiD-CV provides some cross-protection against disease caused by vaccine-related serotype 19A but neither vaccine has fully controlled 19A disease. While protection against 19A is higher for PCV13 than PHiD-CV, replacement by non-PCV13 serotypes in settings with a PCV13 program appears to compensate for this difference. This results in a similar residual overall disease burden with both vaccines.
What is the context?
The pneumococcus bacterium can cause infections of the meninges, blood, lung, middle ear and sinuses. Two vaccins, Synflorix (GSK) and Prevnar 13 (Pfizer Inc.), are widely used to protect young children against these infections. The vaccines’ compositions differ: Synflorix includes antigens from 10 pneumococcus strains (or “serotypes”) and Prevnar 13 from 13 serotypes. However, both have a similar effect on the total pneumococcal disease burden in children.
What does this commentary highlight?
This commentary summarizes the evidence beihnd the two vaccines’ comparable impact on pneumococcal disase. It also looks at why the vaccines have a similar effect on the total pneumococcal disease burden despite their different compositions.
What is the impact on current thinking?
Given that Synflorix and Prevnar 13 have a comparable impact on pneumococcal disease, a country’s choice between the two vaccines will depend on vaccine supply, cost, logistical factors (e.g., transport, storage, training requirements of health workers) and the local pneumococcal epidemiology.
Collapse
|
18
|
Buades J, Losada I, González-Moreno J, Peñaranda M, Vilaplana L, Roda N, Rey A, Rodriguez A, Garau M, de Gopegui ER, Serra A, Saurina J, Payeras A. Evolution, Clinical and Microbiological Characteristics of Invasive Pneumococcal Disease since the Introduction of the Pneumococcal Conjugate Vaccine 13-Valent in Adults over 18 Years Old. Vaccines (Basel) 2021; 9:93. [PMID: 33513726 PMCID: PMC7911783 DOI: 10.3390/vaccines9020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022] Open
Abstract
Invasive pneumococcal disease (IPD) presents high mortality in the population at risk. The aim of this work is to know the evolution, clinical and microbiological characteristics of IPD in the adult population of Majorca, since the introduction of a public funded program for pneumococcal conjugate vaccine (PCV-13) in the pediatric population in the Balearic Islands in 2016. For this purpose, a retrospective multicenter study was carried out in which all episodes of IPD in adult patients from the four hospitals of the public health system of Majorca were included, comparing the periods between 2012 and 2015 and between 2016 and 2019. Clinical variables, serotypes and antibiotic sensitivity were collected. There were 498 cases of IPD; 56.8% were male with a mean age of 67 (standard deviation: 16). Most infections were bacterial pneumonias (73.7%). Of the total cases, 264 (53%) presented complications. Of the 498 cases, 351 strains were obtained, of which 145 (41.3%) belong to vaccinal serotypes (included in the PCV-13 vaccine) and 206 (58.7%) to non-vaccinal serotypes (not included in the PCV-13 vaccine). The percentage of IPD caused by vaccinal serotypes was lower in the second period (47.8% vs. 34.5%; p = 0.012).
Collapse
Affiliation(s)
- Juan Buades
- Internal Medicine Service, Son Llàtzer University Hospital (HUSLL), 07198 Palma, Spain; (I.L.); (J.G.-M.); (A.R.); (A.P.)
| | - Ines Losada
- Internal Medicine Service, Son Llàtzer University Hospital (HUSLL), 07198 Palma, Spain; (I.L.); (J.G.-M.); (A.R.); (A.P.)
- Institute of Health Research of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Juan González-Moreno
- Internal Medicine Service, Son Llàtzer University Hospital (HUSLL), 07198 Palma, Spain; (I.L.); (J.G.-M.); (A.R.); (A.P.)
- Institute of Health Research of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Maria Peñaranda
- Infectious Diseases Section, Hospital Universitario Son Espases (HUSE), 07120 Palma, Spain;
| | - Laia Vilaplana
- Department of Internal Medicine, Hospital de Manacor, 07500 Manacor, Spain; (L.V.); (N.R.)
| | - Nuria Roda
- Department of Internal Medicine, Hospital de Manacor, 07500 Manacor, Spain; (L.V.); (N.R.)
| | - Adelaida Rey
- Internal Medicine Service, Hospital de Inca, 07300 Inca, Spain;
| | - Adrian Rodriguez
- Internal Medicine Service, Son Llàtzer University Hospital (HUSLL), 07198 Palma, Spain; (I.L.); (J.G.-M.); (A.R.); (A.P.)
| | - Margarita Garau
- Microbiology Service, Son Llàtzer University Hospital (HUSLL), 07198 Palma, Spain;
| | | | - Antoni Serra
- Microbiology Service, Hospital de Manacor, 07500 Manacor, Spain;
| | - Juan Saurina
- Microbiology Service, Hospital de Inca, 07300 Inca, Spain;
| | - Antoni Payeras
- Internal Medicine Service, Son Llàtzer University Hospital (HUSLL), 07198 Palma, Spain; (I.L.); (J.G.-M.); (A.R.); (A.P.)
- Institute of Health Research of the Balearic Islands (IdISBa), 07120 Palma, Spain
| |
Collapse
|
19
|
Lawrence H, Pick H, Baskaran V, Daniel P, Rodrigo C, Ashton D, Edwards-Pritchard RC, Sheppard C, Eletu SD, Litt D, Fry NK, Rose S, Trotter C, McKeever TM, Lim WS. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against vaccine serotype pneumococcal pneumonia in adults: A case-control test-negative design study. PLoS Med 2020; 17:e1003326. [PMID: 33095759 PMCID: PMC7584218 DOI: 10.1371/journal.pmed.1003326] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vaccination with the 23-valent pneumococcal polysaccharide vaccine (PPV23) is available in the United Kingdom to adults aged 65 years or older and those in defined clinical risk groups. We evaluated the vaccine effectiveness (VE) of PPV23 against vaccine-type pneumococcal pneumonia in a cohort of adults hospitalised with community-acquired pneumonia (CAP). METHODS AND FINDINGS Using a case-control test-negative design, a secondary analysis of data was conducted from a prospective cohort study of adults (aged ≥16 years) with CAP hospitalised at 2 university teaching hospitals in Nottingham, England, from September 2013 to August 2018. The exposure of interest was PPV23 vaccination at any time point prior to the index admission. A case was defined as PPV23 serotype-specific pneumococcal pneumonia and a control as non-PPV23 serotype pneumococcal pneumonia or nonpneumococcal pneumonia. Pneumococcal serotypes were identified from urine samples using a multiplex immunoassay or from positive blood cultures. Multivariable logistic regression was used to derive adjusted odds of case status between vaccinated and unvaccinated individuals; VE estimates were calculated as (1 - odds ratio) × 100%. Of 2,357 patients, there were 717 PPV23 cases (48% vaccinated) and 1,640 controls (54.5% vaccinated). The adjusted VE (aVE) estimate against PPV23 serotype disease was 24% (95% CI 5%-40%, p = 0.02). Estimates were similar in analyses restricted to vaccine-eligible patients (n = 1,768, aVE 23%, 95% CI 1%-40%) and patients aged ≥65 years (n = 1,407, aVE 20%, 95% CI -5% to 40%), but not in patients aged ≥75 years (n = 905, aVE 5%, 95% CI -37% to 35%). The aVE estimate in relation to PPV23/non-13-valent pneumococcal conjugate vaccine (PCV13) serotype pneumonia (n = 417 cases, 43.7% vaccinated) was 29% (95% CI 6%-46%). Key limitations of this study are that, due to high vaccination rates, there was a lack of power to reject the null hypothesis of no vaccine effect, and that the study was not large enough to allow robust subgroup analysis in the older age groups. CONCLUSIONS In the setting of an established national childhood PCV13 vaccination programme, PPV23 vaccination of clinical at-risk patient groups and adults aged ≥65 years provided moderate long-term protection against hospitalisation with PPV23 serotype pneumonia. These findings suggest that PPV23 vaccination may continue to have an important role in adult pneumococcal vaccine policy, including the possibility of revaccination of older adults.
Collapse
Affiliation(s)
- Hannah Lawrence
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Harry Pick
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Vadsala Baskaran
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Priya Daniel
- Department of Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, United Kingdom
| | - Chamira Rodrigo
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Deborah Ashton
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | | | - Carmen Sheppard
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England–National Infection Service, Colindale, London, United Kingdom
| | - Seyi D. Eletu
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England–National Infection Service, Colindale, London, United Kingdom
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England–National Infection Service, Colindale, London, United Kingdom
| | - Norman K. Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England–National Infection Service, Colindale, London, United Kingdom
- Immunisation and Countermeasures Division, Public Health England Colindale–National Infection Service, London, United Kingdom
| | - Samuel Rose
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England–National Infection Service, Colindale, London, United Kingdom
| | - Caroline Trotter
- Disease Dynamic Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tricia M. McKeever
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Wei Shen Lim
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
20
|
Renner LA, Usuf E, Mohammed NI, Ansong D, Dankwah T, Kusah JT, Owusu SK, Awunyo M, Arhin B, Addo Y, Asamoah J, Biey JNM, Ndow PS, Worwui A, Senghore M, Ntsama B, Mwenda JM, Diamenu SK, Adams BK, Antonio M. Hospital-based Surveillance for Pediatric Bacterial Meningitis in the Era of the 13-Valent Pneumococcal Conjugate Vaccine in Ghana. Clin Infect Dis 2020; 69:S89-S96. [PMID: 31505622 PMCID: PMC6736167 DOI: 10.1093/cid/ciz464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Global surveillance for vaccine preventable invasive bacterial diseases has been set up by the World Health Organization to provide disease burden data to support decisions on introducing pneumococcal conjugate vaccine (PCV). We present data from 2010 to 2016 collected at the 2 sentinel sites in Ghana. Methods Data were collected from children <5 years of age presenting at the 2 major teaching hospitals with clinical signs of meningitis. Cerebrospinal fluid specimens were collected and tested first at the sentinel site laboratory with conventional microbiology methods and subsequently with molecular analysis, at the World Health Organization Regional Reference Laboratory housed at the Medical Research Council Unit The Gambia, for identification of Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, the 3 most common bacteria causing meningitis. Results There were 4008 suspected cases of meningitis during the surveillance period, of which 31 (0.8%) were laboratory confirmed. Suspected meningitis cases decreased from 923 in 2010 to 219 in 2016. Of 3817 patients with available outcome data, 226 (5.9%) died. S. pneumoniae was the most common bacterial pathogen, accounting for 68.5% of confirmed cases (50 of 73). H. influenzae and N. meningitidis accounted for 6.8% (5 of 73) and 21.9% (16 of 73), respectively. The proportion of pneumococcal vaccine serotypes causing meningitis decreased from 81.3% (13 of 16) before the introduction of 13-valent PCV (2010–2012) to 40.0% (8 of 20) after its introduction (2013–2016). Conclusions Cases of suspected meningitis decreased among children <5 years of age between 2010 and 2016, with declines in the proportion of vaccine-type pneumococcal meningitis after the introduction of 13-valent PCV in Ghana.
Collapse
Affiliation(s)
- Lorna Awo Renner
- University of Ghana School of Medicine and Dentistry, Accra, United Kingdom
| | - Effua Usuf
- Regional Reference Laboratory, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Diseases, Fajara, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Nuredin Ibrahim Mohammed
- Regional Reference Laboratory, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Diseases, Fajara, United Kingdom
| | | | | | - Jonas Tettey Kusah
- University of Ghana School of Medicine and Dentistry, Accra, United Kingdom
| | | | | | | | | | | | - Joseph Nsiari-Muzeyi Biey
- World Health Organization (WHO) Inter-country Support Team, Ouagadougou, West Africa, Republic of Congo
| | - Peter Slyvanus Ndow
- Regional Reference Laboratory, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Diseases, Fajara, United Kingdom
| | - Archibald Worwui
- Regional Reference Laboratory, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Diseases, Fajara, United Kingdom
| | - Madikay Senghore
- Regional Reference Laboratory, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Diseases, Fajara, United Kingdom
| | - Bernard Ntsama
- World Health Organization (WHO) Inter-country Support Team, Ouagadougou, West Africa, Republic of Congo
| | - Jason M Mwenda
- WHO Regional Office for Africa, Brazzaville, Republic of Congo
| | | | - Brenda Kwanbana Adams
- Regional Reference Laboratory, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Diseases, Fajara, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Martin Antonio
- Regional Reference Laboratory, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Diseases, Fajara, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom.,Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
21
|
A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio 2020; 11:mBio.00937-20. [PMID: 32430472 PMCID: PMC7240158 DOI: 10.1128/mbio.00937-20] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The polysaccharide capsule is essential for the pathogenicity of pneumococcus, which is responsible for millions of deaths worldwide each year. Currently available pneumococcal vaccines are designed to elicit antibodies to the capsule polysaccharides of the pneumococcal isolates commonly causing diseases, and the antibodies provide protection only against the pneumococcus expressing the vaccine-targeted capsules. Since pneumococci can produce different capsule polysaccharides and therefore reduce vaccine effectiveness, it is important to track the appearance of novel pneumococcal capsule types and how these new capsules are created. Herein, we describe a new and the 100th pneumococcal capsule type with unique chemical and serological properties. The capsule type was named 10D for its serologic similarity to 10A. Genetic studies provide strong evidence that pneumococcus created 10D capsule polysaccharide by capturing a large genetic fragment from an oral streptococcus. Such interspecies genetic exchanges could greatly increase diversity of pneumococcal capsules and complicate serotype shifts. Streptococcus pneumoniae (pneumococcus) is a major human pathogen producing structurally diverse capsular polysaccharides. Widespread use of highly successful pneumococcal conjugate vaccines (PCVs) targeting pneumococcal capsules has greatly reduced infections by the vaccine types but increased infections by nonvaccine serotypes. Herein, we report a new and the 100th capsule type, named serotype 10D, by determining its unique chemical structure and biosynthetic roles of all capsule synthesis locus (cps) genes. The name 10D reflects its serologic cross-reaction with serotype 10A and appearance of cross-opsonic antibodies in response to immunization with 10A polysaccharide in a 23-valent pneumococcal vaccine. Genetic analysis showed that 10D cps has three large regions syntenic to and highly homologous with cps loci from serotype 6C, serotype 39, and an oral streptococcus strain (S. mitis SK145). The 10D cps region syntenic to SK145 is about 6 kb and has a short gene fragment of wciNα at the 5′ end. The presence of this nonfunctional wciNα fragment provides compelling evidence for a recent interspecies genetic transfer from oral streptococcus to pneumococcus. Since oral streptococci have a large repertoire of cps loci, widespread PCV usage could facilitate the appearance of novel serotypes through interspecies recombination.
Collapse
|
22
|
A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio 2020. [PMID: 32430472 DOI: 10.1128/mbio10.1128/mbio] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen producing structurally diverse capsular polysaccharides. Widespread use of highly successful pneumococcal conjugate vaccines (PCVs) targeting pneumococcal capsules has greatly reduced infections by the vaccine types but increased infections by nonvaccine serotypes. Herein, we report a new and the 100th capsule type, named serotype 10D, by determining its unique chemical structure and biosynthetic roles of all capsule synthesis locus (cps) genes. The name 10D reflects its serologic cross-reaction with serotype 10A and appearance of cross-opsonic antibodies in response to immunization with 10A polysaccharide in a 23-valent pneumococcal vaccine. Genetic analysis showed that 10D cps has three large regions syntenic to and highly homologous with cps loci from serotype 6C, serotype 39, and an oral streptococcus strain (S. mitis SK145). The 10D cps region syntenic to SK145 is about 6 kb and has a short gene fragment of wciNα at the 5' end. The presence of this nonfunctional wciNα fragment provides compelling evidence for a recent interspecies genetic transfer from oral streptococcus to pneumococcus. Since oral streptococci have a large repertoire of cps loci, widespread PCV usage could facilitate the appearance of novel serotypes through interspecies recombination.IMPORTANCE The polysaccharide capsule is essential for the pathogenicity of pneumococcus, which is responsible for millions of deaths worldwide each year. Currently available pneumococcal vaccines are designed to elicit antibodies to the capsule polysaccharides of the pneumococcal isolates commonly causing diseases, and the antibodies provide protection only against the pneumococcus expressing the vaccine-targeted capsules. Since pneumococci can produce different capsule polysaccharides and therefore reduce vaccine effectiveness, it is important to track the appearance of novel pneumococcal capsule types and how these new capsules are created. Herein, we describe a new and the 100th pneumococcal capsule type with unique chemical and serological properties. The capsule type was named 10D for its serologic similarity to 10A. Genetic studies provide strong evidence that pneumococcus created 10D capsule polysaccharide by capturing a large genetic fragment from an oral streptococcus. Such interspecies genetic exchanges could greatly increase diversity of pneumococcal capsules and complicate serotype shifts.
Collapse
|
23
|
Pilishvili T. Effects of Pneumococcal Conjugate Vaccine in the United Kingdom: Success of Vaccine Policy and Remaining Opportunities for Prevention. J Infect Dis 2020; 221:1235-1237. [PMID: 31004131 DOI: 10.1093/infdis/jiz182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/28/2023] Open
Affiliation(s)
- Tamara Pilishvili
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
24
|
Haggie S, Fitzgerald DA, Pandit C, Selvadurai H, Robinson P, Gunasekera H, Britton P. Increasing Rates of Pediatric Empyema and Disease Severity With Predominance of Serotype 3 S. pneumonia: An Australian Single-center, Retrospective Cohort 2011 to 2018. Pediatr Infect Dis J 2019; 38:e320-e325. [PMID: 31634299 DOI: 10.1097/inf.0000000000002474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The impact of universal 13-valent pneumococcal conjugate vaccine immunization on pediatric empyema rates and pathogens in Australia is not known. We aimed to describe empyema epidemiology, clinical characteristics and treatment during an 8-year period. METHODS A retrospective study between 2011 and 2018 of empyema cases admitted to a large pediatric referral hospital, for management with either pleural drainage and fibrinolytics or surgical intervention. RESULTS There were 195 cases in 8 years. Empyema incidence and ICU admission rates significantly increased during the study with a peak incidence of 7.1/1000 medical admissions in 2016 (χ for trend of incidence 37.8, P < 0.001 and for ICU admissions 15.3, P < 0.001). S. pneumoniae was the most common pathogen (75/195, 39%) with serotype 3 the most detected (27/75: 27%). S. pyogenes compared with S. pneumoniae had significantly fewer days of fever before admission (3.9 vs. 6.4, mean difference 2.4, 95% CI: 0.84-4.08, P = 0.003) and higher proportion requiring direct ICU admission (6/75; 8% vs. 7/15; 47%, P < 0.001). Compared with S. pneumoniae, cases with no pathogen detected by culture or PCR had fewer days of fever post intervention (4.4 vs. 7.4 days, mean difference 2.7 days, P = 0.002). S. aureus occurred more commonly in infants (10/25; 40% vs. 1/75; 1%, P < 0.001) and children of indigenous background (5/25; 20% vs. 1/75; 1%, P < 0.001) compared with S. pneumoniae. CONCLUSIONS We report increasing rates of pediatric empyema with higher proportions requiring ICU treatment. The most common pathogens detected were S. pneumoniae, S. aureus and S. pyogenes. Despite high 13-valent pneumococcal conjugate vaccine coverage, serotype 3 was the most common S. pneumoniae serotype identified.
Collapse
Affiliation(s)
- Stuart Haggie
- From the Department of Respiratory Medicine, the Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Dominic A Fitzgerald
- From the Department of Respiratory Medicine, the Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chetan Pandit
- From the Department of Respiratory Medicine, the Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hiran Selvadurai
- From the Department of Respiratory Medicine, the Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Paul Robinson
- From the Department of Respiratory Medicine, the Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Hasantha Gunasekera
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Philip Britton
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.,Department of Infectious Diseases, the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Groves N, Sheppard CL, Litt D, Rose S, Silva A, Njoku N, Rodrigues S, Amin-Chowdhury Z, Andrews N, Ladhani S, Fry NK. Evolution of Streptococcus pneumoniae Serotype 3 in England and Wales: A Major Vaccine Evader. Genes (Basel) 2019; 10:genes10110845. [PMID: 31731573 PMCID: PMC6896183 DOI: 10.3390/genes10110845] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022] Open
Abstract
Despite its inclusion in pneumococcal conjugate vaccine 13 (PCV13), Streptococcus pneumoniae serotype 3 remains a major cause of invasive pneumococcal disease in England and Wales. Previous studies have indicated that there are distinct lineages within serotype 3 clonal complex 180 and the clade distributions have shifted in recent years with the emergence of clade II. We undertook whole genome sequencing and genomic analysis of 616 serotype 3 isolates from England and Wales between 2003 and 2018, including invasive and carriage isolates. Our investigations showed that clade II has expanded since 2014 and now represents 50% of serotype 3 invasive pneumococcal disease (IPD) isolates in England and Wales. Genomic analysis of antibiotic resistance and protein antigen genes showed that distinct profiles are present within the clades which could account for the recent emergence of this clade. This investigation highlights the importance and utility of routine whole genome sequencing and its ability to identify new and emerging variation at the single nucleotide level which informs surveillance and will impact future vaccine development.
Collapse
Affiliation(s)
- Natalie Groves
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
- Correspondence:
| | - Carmen L. Sheppard
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - David Litt
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Samuel Rose
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Ana Silva
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Nina Njoku
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Sofia Rodrigues
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
| | - Zahin Amin-Chowdhury
- Immunisation and Countermeasures, Public Health England–National Infection Service, London NW9 5EQ, UK; (Z.A.-C.); (S.L.)
| | - Nicholas Andrews
- Statistics, Modelling and Economics, Public Health England–National Infection Service, London NW9 5EQ, UK;
| | - Shamez Ladhani
- Immunisation and Countermeasures, Public Health England–National Infection Service, London NW9 5EQ, UK; (Z.A.-C.); (S.L.)
| | - Norman K. Fry
- Vaccine Preventable Bacteria Section, Public Health England–National Infection Service, London NW9 5EQ, UK; (C.L.S.); (D.L.); (S.R.); (A.S.); (N.N.); (S.R.); (N.K.F.)
- Immunisation and Countermeasures, Public Health England–National Infection Service, London NW9 5EQ, UK; (Z.A.-C.); (S.L.)
| |
Collapse
|
26
|
Dewé TCM, D'Aeth JC, Croucher NJ. Genomic epidemiology of penicillin-non-susceptible Streptococcus pneumoniae. Microb Genom 2019; 5. [PMID: 31609685 PMCID: PMC6861860 DOI: 10.1099/mgen.0.000305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Penicillin-non-susceptible Streptococcus pneumoniae (PNSP) were first detected in the 1960s, and are now common worldwide, predominantly through the international spread of a limited number of strains. Extant PNSP are characterized by mosaic pbp2x, pbp2b and pbp1a genes generated by interspecies recombinations, with the extent of these alterations determining the range and concentrations of β-lactams to which the genotype is non-susceptible. The complexity of the genetics underlying these phenotypes has been the subject of both molecular microbiology and genome-wide association and epistasis analyses. Such studies can aid our understanding of PNSP evolution and help improve the already highly-performing bioinformatic methods capable of identifying PNSP from genomic surveillance data.
Collapse
Affiliation(s)
- Tamsin C M Dewé
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Joshua C D'Aeth
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
27
|
Levy C, Ouldali N, Caeymaex L, Angoulvant F, Varon E, Cohen R. Diversity of Serotype Replacement After Pneumococcal Conjugate Vaccine Implementation in Europe. J Pediatr 2019; 213:252-253.e3. [PMID: 31561776 DOI: 10.1016/j.jpeds.2019.07.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Corinne Levy
- Université Paris Est, Mondor Institute of Biomedical Research-Groupement de Recherche Clinique (IMRB-GRC) Groupe d'étude de Maladies Infectieuses Néonatales et Infantiles (GEMINI), Créteil, France; Association Clinique Thérapeutique Infantile du Val de Marne (ACTIV), Pediatric Clinical and Therapeutical Association of the Val de Marne, Saint-Maur des Fossés, France; Clinical Research Center (CRC), Centre Hospitalier Intercommunal de Créteil, Créteil, France; Association Française de Pédiatrie Ambulatoire (GPIP), Pediatric Infectious Disease Group, France; AFPA, French Association of Ambulatory Pediatricians, Saint-Germain-en-Laye, France.
| | - Naim Ouldali
- Association Clinique Thérapeutique Infantile du Val de Marne (ACTIV), Pediatric Clinical and Therapeutical Association of the Val de Marne, Saint-Maur des Fossés, France; Association Française de Pédiatrie Ambulatoire (GPIP), Pediatric Infectious Disease Group, France; Unité d'épidémiologie clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, ECEVE INSERM UMR 1123, Paris, France
| | - Laurence Caeymaex
- Clinical Research Center (CRC), Centre Hospitalier Intercommunal de Créteil, Créteil, France; Neonatal Intensive Care Unit, Centre Hospitalier Intercommunal de Créteil, University Paris Est Créteil, Créteil, France
| | - François Angoulvant
- Association Française de Pédiatrie Ambulatoire (GPIP), Pediatric Infectious Disease Group, France; Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris, France
| | - Emmanuelle Varon
- Association Française de Pédiatrie Ambulatoire (GPIP), Pediatric Infectious Disease Group, France; National Reference Centre for Pneumococci, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Robert Cohen
- Université Paris Est, Mondor Institute of Biomedical Research-Groupement de Recherche Clinique (IMRB-GRC) Groupe d'étude de Maladies Infectieuses Néonatales et Infantiles (GEMINI), Créteil, France; Association Clinique Thérapeutique Infantile du Val de Marne (ACTIV), Pediatric Clinical and Therapeutical Association of the Val de Marne, Saint-Maur des Fossés, France; Clinical Research Center (CRC), Centre Hospitalier Intercommunal de Créteil, Créteil, France; Association Française de Pédiatrie Ambulatoire (GPIP), Pediatric Infectious Disease Group, France; AFPA, French Association of Ambulatory Pediatricians, Saint-Germain-en-Laye, France; Unité Court Séjour, Petits Nourrissons, Service de Néonatologie, Centre Hospitalier Intercommunal de Créteil, France
| |
Collapse
|
28
|
Esposito S, Principi N. Pneumococcal immunization with conjugate vaccines: are 10-valent and 13-valent vaccines similar? Future Microbiol 2019; 14:921-923. [PMID: 31373218 DOI: 10.2217/fmb-2019-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Susanna Esposito
- Department of Surgical & Biomedical Sciences, Pediatric Clinic, Università degli Studi di Perugia, Umbria, Italy
| | | |
Collapse
|
29
|
Varghese R, Neeravi A, Subramanian N, Pavithra B, Kavipriya A, Kumar JL, Girish Kumar CP, Jeyraman Y, Karthik G, Verghese VP, Veeraraghavan B. Clonal similarities and sequence-type diversity of invasive and carriage Streptococcus pneumoniae in India among children under 5 Years. Indian J Med Microbiol 2019; 37:358-362. [PMID: 32003333 DOI: 10.4103/ijmm.ijmm_19_348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Pneumococcal pneumonia is one of the major causes of mortality in children less than 5 years in Asia, especially in India. Available PCVs have less serotype coverage in India compared to western countries. Moreover, the baseline pneumococcal serotype and sequence type data is limited and available data doesn't represent the entire India. With this background we aimed to characterize invasive and carriage isolates of S. pneumoniae from a tertiary care hospital in South India. Materials and Methods A total of 221 S. pneumoniae isolates, invasive (n=138) and carriage (n=83) between the time period of 2012-2018 were included. Isolates was identified and confirmed using standard laboratory protocols. Serotyping was performed by Customized sequential multiplex PCR and MLST as described in www.pubmlst.org. Results The major serotypes were 19F, 6B, 14, 6A and 19A and the sequence types (ST) were ST63, 236 and 230. Predominant STs in invasive was ST 63 whereas in carriage were ST4894 and 1701. High level ST diversity in carriage was observed. Majority of the STs were SLVs or DLVs of previously reported STs or PMEN clones. Phylogenetic analyses of the STs revealed gradual expansion of three PMEN CCs CC320, 63 and 230. Conclusion The vaccine serotypes were the predominant ones found to be associated with IPD, PMEN clones, new STs and antimicrobial resistance. Accordingly, PCV13 is expected to provide invasive serotype coverage of 75% in Indian children less than 5 years. This study provides baseline serotype and sequence type data prior to the introduction of PCV in South India.
Collapse
Affiliation(s)
- Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Nithya Subramanian
- Department of Paediatrics, Christian Medical College, Chennai, Tamil Nadu, India
| | - B Pavithra
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - A Kavipriya
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jones Lionel Kumar
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - C P Girish Kumar
- ICMR, National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Yuvraj Jeyraman
- ICMR, National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - G Karthik
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Valsan P Verghese
- Department of Paediatrics, Christian Medical College, Chennai, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
30
|
Goldblatt D, Madhi SA. Efficacy and effectiveness of ten-valent versus 13-valent pneumococcal conjugate vaccines - Authors' reply. THE LANCET. INFECTIOUS DISEASES 2019; 19:693-694. [PMID: 31250817 DOI: 10.1016/s1473-3099(19)30286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Affiliation(s)
- David Goldblatt
- Immunobiology Section, University College London Great Ormond Street Institute of Child Health Biomedical Research Centre, London, UK
| | - Shabir A Madhi
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg 2013, South Africa; Department of Science, National Research Foundation, Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg 2013, South Africa.
| |
Collapse
|