1
|
Wang J, Feng Q, Duan Y, Ai J, Zhu Y, Wang R, Chen X, Lu G, Sun Y, Li C, Jin R, Shang Y, Xu B, Xie Z. Human adenovirus type 4 (HAdV-4) associated acute respiratory tract infection in children & genetic characteristics of HAdV-4 in China: a prospective multicenter study. BMC Infect Dis 2024; 24:936. [PMID: 39251906 PMCID: PMC11385803 DOI: 10.1186/s12879-024-09835-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Human adenovirus (HAdV) is an important pathogen causing acute respiratory infection (ARI) in children. Many countries, including China, have experienced sporadic or outbreaks related to HAdV-4, and death cases were reported. However, there is little research on HAdV-4 and the epidemic situation of HAdV-4 in China is little known. This study was designed to comprehend the prevalence and genetic characteristics of HAdV-4 in ARI children in China. METHODS Respiratory tract samples from ARI children hospitalized in six hospitals of Northern and Southern China from 2017 to 2020 were collected for HAdV detection and typing. Clinical information was collected from HAdV-4 positive patients for clinical characteristics and epidemiological analysis. The main capsid proteins and the whole genome sequences were amplified and sequenced for bioinformatics analysis. RESULTS There were 2847 ARI children enrolled, and 156 (5.48%) HAdV positive samples were detected. Eleven HAdV-4 positive samples were identified, accounting for 0.39% of the total samples and 7.05% of the HAdV positive samples. The main manifestations were fever and cough. Two children had conjunctivitis. Two children were diagnosed with severe pneumonia and developed respiratory failure. One of them developed hemophagocytic syndrome and checked in pediatric intensive care unit (PICU). This child had ventricular septal defect. All the children recovered. The isolated strains of HAdV-4 obtained in this study and the reference strains from China located in the same phylogenetic branch (HAdV-4a), while the prototype strain and vaccine strains formed another branch (HAdV-4p). Upon comparison with the prototype strain, there were a few amino acid mutations existing in three major capsid proteins. According to recombination analysis, no new recombination was found. CONCLUSIONS The detection rate of HAdV-4 in children hospitalized with ARI was 0.39% in the total samples and 7.05% of all HAdV positive samples. HAdV-4 isolates obtained in this study and other reference strains from China belonged to the HAdV-4a subtype. Our data provided reference for the monitoring, prevention and control of HAdV-4, as well as the research and development of vaccines and drugs.
Collapse
Affiliation(s)
- Jinjin Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qianyu Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yali Duan
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Gen Lu
- Department of Respiratory, GuangZhou Women and Children's Medical Center, GuangZhou, 510623, China
| | - Yun Sun
- Department of General Pediatrics, Yinchuan Women and Children Healthcare Hospital, Yinchuan, 750002, China
| | - Changchong Li
- Department of Respiratory, the 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325027, China
| | - Rong Jin
- Department of Respiratory, Guiyang Maternal and Child Health Hospital, Guiyang, 550003, China
| | - Yunxiao Shang
- Department of Pediatric Respiratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Baoping Xu
- National Clinical Research Center for Respiratory Diseases, Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
2
|
Wang S, Zou X, Fu J, Deng F, Yu H, Fan H, Dai Q, Shang Q, Xu K, Bao C. Genotypes and Phylogenetic Analysis of Human Adenovirus in Hospitalized Pneumonia and Influenza-Like Illness Patients in Jiangsu Province, China (2013-2021). Infect Drug Resist 2024; 17:2199-2211. [PMID: 38835492 PMCID: PMC11149707 DOI: 10.2147/idr.s456961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
Background Human adenovirus (HAdV) is common pathogens that cause various respiratory diseases. The genetic diversity of viruses caused by recombination is considered to be the main source of emerging outbreaks. The aim of this study is to explore the evolutionary relationship and recombination events of HAdV genome in respiratory tract infections in Jiangsu Province. Methods Whole-genome sequencing (WGS) technology was used to sequence 66 patients with HAdV infection (37 patients with influenza-like illness (ILI) and 29 hospitalized patients with pneumonia) from Jiangsu Province. Epidemiological analysis was performed on hospitalized pneumonia and ILI patients infected with HAdV. Subsequently, phylogenetic, recombination, and nucleotide and amino acid identity analyses were performed. Results Epidemiological analysis of patients undergoing WGS showed that 75.7% of ILI patients were infected with the HAdVB strain and 69.0% of hospitalized pneumonia patients were infected with the HAdVC strain. Moreover, the hospitalized pneumonia and ILI patients infected with HAdV were different in region and time. The strains of HAdVB3 and HAdVB7 genotypes were mainly infected in 2015 and 2017, and the strains of HAdVC1 and HAdVC2 genotypes were mainly infected in 2020. The results of histogram analysis showed that the HAdV strain mainly infected children under 5 years old. In addition, 36 novel recombinant strains were identified. The discovery of these recombinant strains may contribute to understanding the epidemiology of HAdV and research on related vaccines. Furthermore, the percentage of nucleotide and amino acid identities revealed a high level of genetic conservation within isolates from HAdVB3, HAdVB7, HAdVC1, HAdVC2 and HAdVC5 genotypes. Conclusion The WGS analysis reveals the evolutionary relationships and recombination events of HAdV strains in Jiangsu Province, which is helpful to deepen the understanding of HAdV epidemiology and evolution. In addition, it provides a basis for the formulation of public health strategies in Jiangsu Province.
Collapse
Affiliation(s)
- Shenjiao Wang
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, Jiangsu Province, People's Republic of China
- Ili Kazakh Autonomous Prefecture Center for Disease Control and Prevention, Ili, Xinjiang, People's Republic of China
| | - Xin Zou
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
- Chongqing Key Laboratory of Viral Infectious Diseases, Chongqing, People's Republic of China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jianguang Fu
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, Jiangsu Province, People's Republic of China
| | - Fei Deng
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, Jiangsu Province, People's Republic of China
| | - Huiyan Yu
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, Jiangsu Province, People's Republic of China
| | - Huan Fan
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, Jiangsu Province, People's Republic of China
| | - Qigang Dai
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, Jiangsu Province, People's Republic of China
| | - Qingxiang Shang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Ke Xu
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, Jiangsu Province, People's Republic of China
| | - Changjun Bao
- Acute Infectious Disease Control and Prevention Institute, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, Jiangsu Province, People's Republic of China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
3
|
Mahmood K, Ahmed W, Farooq S, Habib G, Sindhu MA, Asif A, Iftner T. Molecular characterization of human adenoviruses associated with pediatric respiratory infections in Karachi, Pakistan. BMC Infect Dis 2024; 24:538. [PMID: 38811902 PMCID: PMC11134642 DOI: 10.1186/s12879-024-09415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Human adenoviruses (HAdVs) are a diverse group of viruses associated with respiratory infections in humans worldwide. However, there is a lack of research on the genetic diversity and epidemiology of HAdVs in Pakistan. This study characterized HAdVs in pediatric patients with respiratory tract infections in Karachi, Pakistan, between 2022 and 2023. We analyzed 762 nasopharyngeal samples of children ≤ 5 years. DNA extraction, followed by PCR targeting E2B and hexon genes, was carried out. Data analysis was performed on SPSS 25.0, and phylogenetic analysis of hexon gene was performed on MEGA 11. HAdV was detected in 7.34% (56/762) of patients round the year, but at a significantly higher rate during the winter season. Age was insignificantly associated with HAdV incidence (p = 0.662), but more than 62.5% (35/56) of positive cases were younger than 10 months. The circulating HAdVs were identified as six different types from species B (78.57%) and C (21.42%), with the majority of isolates found to be like B3. HAdV was found to be co-infected with bocavirus (5.4%) and measles (7.14%). These findings revealed a high frequency and genetic diversity of respiratory HAdVs in Karachi, Pakistan. We conclude that periodic and continuous surveillance of adenoviruses and other respiratory pathogens is necessary to improve the prognosis and management of respiratory diseases, thereby reducing the child mortality rate in Pakistan.
Collapse
Affiliation(s)
- Khalid Mahmood
- National Institute of Virology, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Waqar Ahmed
- National Institute of Virology, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saba Farooq
- National Institute of Virology, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22010, Pakistan
| | - Muhammad Ashfaq Sindhu
- Department of Pediatrics, National Institute of Child Health, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Afshan Asif
- Department of Pediatrics, Sindh Government Children Hospital, Karachi, Pakistan
| | - Thomas Iftner
- National Institute of Virology, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tubingen, Germany
| |
Collapse
|
4
|
Wang F, Zhu R, Qian Y, Sun Y, Chen D, Wang F, Zhou Y, Guo Q, Liu L, Xu Y, Cao L, Qu D, Zhao L. The changed endemic pattern of human adenovirus from species B to C among pediatric patients under the pressure of non-pharmaceutical interventions against COVID-19 in Beijing, China. Virol J 2023; 20:4. [PMID: 36624458 PMCID: PMC9828375 DOI: 10.1186/s12985-023-01962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Under the pressure of non-pharmaceutical interventions (NPIs) targeting severe acute respiratory syndrome coronavirus 2, the prevalence of human adenovirus (HAdV) was monitored before and after NPIs launched on Jan 24, 2020 in pediatric patients in Beijing, China. METHODS Respiratory samples collected from children hospitalized with acute respiratory infections from Jan 2015 to Dec 2021 were screened by direct immunofluorescence test or capillary electrophoresis-based multiplex PCR assay. The hexon, penton base, and fiber genes were amplified from HAdV positive specimens, then sequenced. For HAdV typing, phylogenetic trees were built by MEGA X. Then clinical data of HAdV positive cases were collected. All data were evaluated using SPSS Statistics 22.0 software. RESULTS A total of 16,097 children were enrolled and 466 (2.89%, 466/16,097) were HAdV-positive. The positive rates of HAdV varied, ranging from 4.39% (151/3,438) in 2018 to1.25% (26/2,081) in 2021, dropped from 3.19% (428/13,408) to 1.41% (38/2,689) from before to after NPIs launched (P < 0.001). There were 350 cases typed into nine types of species B, C, or E and 34 recorded as undetermined. Among them, HAdV-B3 (51.56%, 198/384) was the most prevalent types from 2015 to 2017, and HAdV-B7 (29.17%, 112/384) co-circulated with HAdV-B3 from 2018 to 2019. After NPIs launched, HAdV-B3 and B7 decreased sharply with HAdV-B7 undetected in 2021, while HAdV-C1 became the dominant one and the undetermined were more. CONCLUSIONS The endemic pattern of HAdV changed in Beijing because of the NPIs launched for COVID-19. Especially, the dominant types changed from HAdV-B to HAdV-C.
Collapse
Affiliation(s)
- Fangming Wang
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China ,grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Beijing, 100730 China
| | - Runan Zhu
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Yuan Qian
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Yu Sun
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Dongmei Chen
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Fang Wang
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Yutong Zhou
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Qi Guo
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Liying Liu
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Yanpeng Xu
- grid.418633.b0000 0004 1771 7032Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Ling Cao
- grid.418633.b0000 0004 1771 7032Department of Respiratory Medicine, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Dong Qu
- grid.418633.b0000 0004 1771 7032Department of Critical Care Medicine, Affiliated Children’s Hospital, Capital Institute of Pediatrics, Beijing, 100020 China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Beijing, 100020, China. .,Graduate School of Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Akaishi T. Comparison of Insertion, Deletion, and Point Mutations in the Genomes of Human Adenovirus HAdvC-2 and SARS-CoV-2. TOHOKU J EXP MED 2022; 258:23-27. [PMID: 35705320 DOI: 10.1620/tjem.2022.j049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tetsuya Akaishi
- Division of General Internal Medicine, Tohoku University Hospital.,Department of Education and Support for Regional Medicine, Tohoku University Hospital.,COVID-19 Screening Test Center, Tohoku University
| |
Collapse
|
6
|
Wu X, Zhang J, Lan W, Quan L, Ou J, Zhao W, Wu J, Woo PCY, Seto D, Zhang Q. Molecular Typing and Rapid Identification of Human Adenoviruses Associated With Respiratory Diseases Using Universal PCR and Sequencing Primers for the Three Major Capsid Genes: Penton Base, Hexon, and Fiber. Front Microbiol 2022; 13:911694. [PMID: 35633710 PMCID: PMC9133664 DOI: 10.3389/fmicb.2022.911694] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human adenoviruses (HAdVs) within species B, C, and E are responsible for highly contagious and potentially severe respiratory disease infections. The traditional method to type these pathogens was based on virus neutralization and hemagglutination assays, which are both time-consuming and difficult, particularly due to the nonavailability of reagents. Subsequent molecular typing based on the partial characterization of the hexon gene and/or the restriction enzyme analysis (REA) of the genomes is inadequate, particularly in identifying recombinants. Here, a rapid, simple, and cost-effective method for molecular typing HAdV respiratory pathogens is presented. This incorporates three pairs of universal PCR primers that target the variable regions of the three major capsid genes, i.e., hexon, penton base, and fiber genes, that span the genome. The protocol enables typing and characterization of genotypes within species B, C, and E, as well as of some genotypes within species D and F. To validate this method, we surveyed 100 children with HAdV-associated acute respiratory infections identified by direct immunofluorescence (Hong Kong; July through October, 2014). Throat swab specimens were collected and analyzed by PCR amplification and sequencing; these sequences were characterized by BLAST. HAdVs were detected in 98 out of 100 (98%) samples, distributing as follows: 74 HAdV-B3 (74%); 10 HAdV-E4 (10%); 7 HAdV-C2 (7%); 2 HAdV-C6 (2%); 1 HAdV-B7 (1%); 1 HAdV-C1 (1%); 2 co-infection (2%); and 1 novel recombinant (1%). This study is the first detailed molecular epidemiological survey of HAdVs in Hong Kong. The developed method allows for the rapid identification of HAdV respiratory pathogens, including recombinants, and bypasses the need for whole genome sequencing for real-time surveillance of circulating adenovirus strains in outbreaks and populations by clinical virologists, public health officials, and epidemiologists.
Collapse
Affiliation(s)
- Xiaowei Wu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wendong Lan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lulu Quan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Patrick C. Y. Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, United States
- Donald Seto,
| | - Qiwei Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- *Correspondence: Qiwei Zhang,
| |
Collapse
|
7
|
Wang X, Wang D, Umar S, Qin S, Ling Q, Gray GC, Liu Y. Molecular typing of human adenoviruses among hospitalized patients with respiratory tract infections in a tertiary Hospital in Guangzhou, China between 2017 and 2019. BMC Infect Dis 2021; 21:748. [PMID: 34344310 PMCID: PMC8330471 DOI: 10.1186/s12879-021-06412-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/18/2021] [Indexed: 12/02/2022] Open
Abstract
Background Human Adenoviruses (HAdVs) cause a wide array of illnesses in all age groups. They particularly cause frequent morbidity among children. In China, human adenovirus types 3, 4, 7, 11, 14, 21, and 55 have caused at least seven outbreaks since 2000. However, limited studies are available regarding the epidemiological patterns and diversity of HAdVs types among hospitalized patients with respiratory tract infections (RTIs). Methods To understand the epidemiology and subtype distribution of HAdV infections associated with RTIs in China, nasal swab (NS) clinical samples were collected from 4129 patients in a Guangzhou hospital between August 2017 and October 2019. PCR, sequencing, and phylogenetic analysis were performed on these specimens to identify HAdV subtypes. Results HAdV was successfully sequenced in 99 (2.4%) of the 4129 NS specimens, with the highest HAdV prevalence (6.3%) found in children between the ages of 5 and 10 years. Among HAdV-positive specimens, the most prevalent genotypes identified were HAdV-B3 (55.6%) and HAdV-B7 (25.3%). The most common symptoms in the HAdV-infected patients were fever (100%), cough (80.8%), and rhinorrhea (71.8%). HAdV infections were detected throughout the year with a relatively higher prevalence in summer. Conclusion All ages suffer adenovirus infections, but young children are at the greatest risk. This study data demonstrates that at least three species of HAdVs (species B, C, and E) are circulating in Guangzhou City, China. As antiviral therapies and type-specific vaccines become available, such epidemiological data will be useful in guiding therapy and public health interventions. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06412-0.
Collapse
Affiliation(s)
- Xinye Wang
- Global Health Research Center, Duke Kunshan University, Kunshan, China.,Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dawei Wang
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, China
| | - Sajid Umar
- Global Health Research Center, Duke Kunshan University, Kunshan, China
| | - Sheng Qin
- Laboratory Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong Ling
- Laboratory Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gregory C Gray
- Global Health Research Center, Duke Kunshan University, Kunshan, China. .,Division of Infectious Diseases, Duke University, School of Medicine, DUMC Box 102359, Durham, NC, 27710, USA. .,Duke Global Health Institute, Duke University, Durham, NC, USA. .,Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Yuntao Liu
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Yuexiu District, Guangzhou, China.
| |
Collapse
|
8
|
Bai B, Xu Z, Hu Y, Qu M, Cheng J, Luo S, Yao Z, Gao H, Ma Y, Gao R, Hou J, Xin S, Mao P. Patient hematology during hospitalization for viral pneumonia caused by SARS-CoV-2 and non-SARS-CoV-2 agents: a retrospective study. Eur J Med Res 2021; 26:45. [PMID: 33990223 PMCID: PMC8120019 DOI: 10.1186/s40001-021-00515-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hematological comparison of coronavirus disease (COVID-19) and other viral pneumonias can provide insights into COVID-19 treatment. Methods In this retrospective case–control single-center study, we compared the data of 126 patients with viral pneumonia during different outbreaks [severe acute respiratory syndrome (SARS) in 2003, influenza A (H1N1) in 2009, human adenovirus type 7 in 2018, and COVID-19 in 2020]. Results One of the COVID-19 characteristics was a continuous decline in the hemoglobin level. The neutrophil count was related to the aggravation of COVID-19 and SARS. Thrombocytopenia occurred in patients with SARS and severe COVID-19 even at the recovery stage. Lymphocytes were related to the entire course of adenovirus infection, recovery of COVID-19, and disease development of SARS. Conclusions Dynamic changes in hematological counts could provide a reference for the pathogenesis and prognosis of pneumonia caused by respiratory viruses in clinics.
Collapse
Affiliation(s)
- Bingke Bai
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Yan Hu
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Mengmeng Qu
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Juan Cheng
- Treatment and Research Center for Infectious Diseases, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Shengdong Luo
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Zengtao Yao
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Hongyan Gao
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Yenv Ma
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Rong Gao
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Jun Hou
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Shaojie Xin
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China
| | - Panyong Mao
- Research Center of Clinical and Translational Medicine, Fifth Medical Center of Chinese, PLA General Hospital, 100 Middle Street of 4th West Ring Road, Beijing, 100039, China.
| |
Collapse
|
9
|
Complete Genome Sequences of Two Human Adenovirus Type 55 Isolates from South Korea and the United States. Microbiol Resour Announc 2021; 10:10/5/e01347-20. [PMID: 33541877 PMCID: PMC7862955 DOI: 10.1128/mra.01347-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here, we report two complete genome sequences of human adenovirus 55 (HAdV-55) isolates, from a patient in Pennsylvania in 2006 and a U.S. military member in South Korea in 2019. The findings demonstrate the continued global transmission of HAdV-55 viruses in both military and civilian populations. Here, we report two complete genome sequences of human adenovirus 55 (HAdV-55) isolates, from a patient in Pennsylvania in 2006 and a U.S. military member in South Korea in 2019. The findings demonstrate the continued global transmission of HAdV-55 viruses in both military and civilian populations.
Collapse
|
10
|
Tian X, Fan Y, Wang C, Liu Z, Liu W, Xu Y, Mo C, You A, Li X, Rong X, Zhou R. Seroprevalence of Neutralizing Antibodies against Six Human Adenovirus Types Indicates the Low Level of Herd Immunity in Young Children from Guangzhou, China. Virol Sin 2020; 36:373-381. [PMID: 33165772 PMCID: PMC7649710 DOI: 10.1007/s12250-020-00307-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/31/2020] [Indexed: 01/01/2023] Open
Abstract
Human adenoviruses (HAdVs) commonly cause many diseases such as respiratory diseases, gastroenteritis, cystitis worldwide. HAdV-3, -7, -4 and emergent HAdV-55 and HAdV-14 are the most important types causing severe respiratory diseases. There is no effective drug available for clinical treatment, and no vaccine available for the general population. Therefore, it is important to investigate the seroprevalence against HAdV for developing novel vaccines and vectors. In this study, we investigated the seroprevalence and titer levels of neutralizing antibodies (NAb) against HAdV-3, -4, -7, -14, -55, and -11 in total 278 healthy populations between 0 months and 49 years of age (228 children and 50 adults) from Guangzhou. In children under the age of 18 years, the seropositive rates were significantly increased against HAdV-3 at 12.07%, 33.96%, and 64.29% and against HAdV-7 at 0%, 18.87%, and 19.05% in age groups of 1–2, 3–5, and 6–17 years, respectively. The seroprevalence was very low (0% ~ 8.1%) for all other four types. In adults aged between 18 and 49 years, HAdV-3, -4, and -7 (> 50.00%) were the most common types, followed by HAdV-14 (38.00%), -55 (34.00%), and -11 (24.00%). Adults tended to have high NAb titers against HAdV-4 and -55. HAdV-55-seropositive donors tended to be HAdV-11- and HAdV-14-seropositive. These results indicated the low level of herd immunity against all six HAdV types in young children, and HAdV-14, -55, -11 in adults from Guangzhou City. Our findings demonstrate the importance of monitoring HAdV types and developing vaccines against HAdV for children and adults.
Collapse
Affiliation(s)
- Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Changbing Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China.,Central Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhenwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Yun Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Chuncong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Aiping You
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xia Rong
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou 510095, China.
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
11
|
Vanderburg S, Wijayaratne G, Danthanarayana N, Jayamaha J, Piyasiri B, Halloluwa C, Sheng T, Amarasena S, Kurukulasooriya R, Nicholson BP, Peiris JSM, Gray GC, Gunasena S, Nagahawatte A, Bodinayake CK, Woods CW, Devasiri V, Tillekeratne LG. Outbreak of severe acute respiratory infection in Southern Province, Sri Lanka in 2018: a cross-sectional study. BMJ Open 2020; 10:e040612. [PMID: 33158834 PMCID: PMC7651749 DOI: 10.1136/bmjopen-2020-040612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES To determine aetiology of illness among children and adults presenting during outbreak of severe respiratory illness in Southern Province, Sri Lanka, in 2018. DESIGN Prospective, cross-sectional study. SETTING 1600-bed, public, tertiary care hospital in Southern Province, Sri Lanka. PARTICIPANTS 410 consecutive patients, including 371 children and 39 adults, who were admitted with suspected viral pneumonia (passive surveillance) or who met case definition for acute respiratory illness (active surveillance) in May to June 2018. RESULTS We found that cocirculation of influenza A (22.6% of cases), respiratory syncytial virus (27.8%) and adenovirus (AdV) (30.7%; type B3) was responsible for the outbreak. Mortality was noted in 4.5% of paediatric cases identified during active surveillance. Virus type and viral coinfection were not significantly associated with mortality. CONCLUSIONS This is the first report of intense cocirculation of multiple respiratory viruses as a cause of an outbreak of severe acute respiratory illness in Sri Lanka, and the first time that AdV has been documented as a cause of a respiratory outbreak in the country. Our results emphasise the need for continued vigilance in surveying for known and emerging respiratory viruses in the tropics.
Collapse
Affiliation(s)
- Sky Vanderburg
- Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Medicine, University of California San Francisco School of Medicine, San Francisco, California, USA
| | | | | | - Jude Jayamaha
- Medical Research Institute Sri Lanka, Colombo, Sri Lanka
| | | | | | - Tianchen Sheng
- Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Global Health Institute, Durham, North Carolina, USA
| | | | | | | | | | - Gregory C Gray
- Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Global Health Institute, Durham, North Carolina, USA
| | | | - Ajith Nagahawatte
- Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
- Duke Global Health Institute, Durham, North Carolina, USA
| | - Champica K Bodinayake
- Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
- Duke Global Health Institute, Durham, North Carolina, USA
| | - Christopher W Woods
- Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Global Health Institute, Durham, North Carolina, USA
| | | | - L Gayani Tillekeratne
- Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
- Duke Global Health Institute, Durham, North Carolina, USA
| |
Collapse
|
12
|
Le YH, Nguyen KC, Coleman KK, Nguyen TT, Than ST, Phan HH, Nguyen MD, Ngu ND, Phan DT, Hoang PVM, Trieu LP, Bailey ES, Warkentien TE, Gray GC. Virus detections among patients with severe acute respiratory illness, Northern Vietnam. PLoS One 2020; 15:e0233117. [PMID: 32396550 PMCID: PMC7217455 DOI: 10.1371/journal.pone.0233117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
Severe acute respiratory illness (SARI) is a major cause of death and morbidity in low- and middle-income countries, however, the etiologic agents are often undetermined due to the lack of molecular diagnostics in hospitals and clinics. To examine evidence for select viral infections among patients with SARI in northern Vietnam, we studied 348 nasopharyngeal samples from military and civilian patients admitted to 4 hospitals in the greater Hanoi area from 2017–2019. Initial screening for human respiratory viral pathogens was performed in Hanoi, Vietnam at the National Institute of Hygiene and Epidemiology (NIHE) or the Military Institute of Preventative Medicine (MIPM), and an aliquot was shipped to Duke-NUS Medical School in Singapore for validation. Patient demographics were recorded and used to epidemiologically describe the infections. Among military and civilian cases of SARI, 184 (52.9%) tested positive for one or more respiratory viruses. Influenza A virus was the most prevalent virus detected (64.7%), followed by influenza B virus (29.3%), enterovirus (3.8%), adenovirus (1.1%), and coronavirus (1.1%). Risk factor analyses demonstrated an increased risk of influenza A virus detection among military hospital patients (adjusted OR, 2.0; 95% CI, 1.2–3.2), and an increased risk of influenza B virus detection among patients enrolled in year 2017 (adjusted OR, 7.9; 95% CI, 2.7–22.9). As influenza A and B viruses were commonly associated with SARI and are treatable, SARI patients entering these hospitals would benefit if the hospitals were able to adapt onsite molecular diagnostics.
Collapse
Affiliation(s)
- Yen H. Le
- Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Khanh C. Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Kristen K. Coleman
- Emerging Infectious Diseases Programme, Duke-National University of Singapore, Singapore
| | - Tham T. Nguyen
- Emerging Infectious Diseases Programme, Duke-National University of Singapore, Singapore
| | - Son T. Than
- Emerging Infectious Diseases Programme, Duke-National University of Singapore, Singapore
| | - Hai H. Phan
- Hai Phong Provincial Preventive Medicine Center, Hai Phong, Vietnam
| | - Manh D. Nguyen
- Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Nghia D. Ngu
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dan T. Phan
- Military Institute of Preventive Medicine, Hanoi, Vietnam
| | | | - Long P. Trieu
- Military Institute of Preventive Medicine, Hanoi, Vietnam
| | - Emily S. Bailey
- Division of Infectious Diseases, Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | | | - Gregory C. Gray
- Emerging Infectious Diseases Programme, Duke-National University of Singapore, Singapore
- Division of Infectious Diseases, Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Global Health Center, Duke Kunshan University, Kunshan, China
- * E-mail:
| |
Collapse
|