1
|
Wells TJ, Esposito T, Henderson IR, Labzin LI. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 2025; 25:6-21. [PMID: 39122820 DOI: 10.1038/s41577-024-01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/12/2024]
Abstract
Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.
Collapse
Affiliation(s)
- Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | - Tyron Esposito
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Larisa I Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Ghosh P, Saha B, Kaveri K, Tripathi A. Significance of diagnostic and therapeutic potential of serum endothelial and inflammatory biomarkers in defining disease severity of dengue infected patients. Med Microbiol Immunol 2024; 214:3. [PMID: 39674822 DOI: 10.1007/s00430-024-00810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
Dengue virus (DENV) mediated disease severity leads to fatality among infected patients. Immune sentinels recognize DENV thereby secreting inflammatory mediators, endothelial biomarkers and anticoagulation factors. Absence of any diagnostic biomarkers for early identification of severe dengue (SD) patients has hindered disease management. Present study is aimed to evaluate diagnostic potential of these biomarkers along with their therapeutic targets for disease severity. Dengue infection was screened among 214 symptomatic patients and 25 healthy individuals by qRT-PCR, NS1-antigen, anti-dengue-IgM, anti-dengue-IgG ELISA and categorized them according to WHO-classification, 2009. Dengue viral-load and serotypes were determined by qRT-PCR. Serum-protein concentrations of inflammatory mediators (MIF, PAF, MMP2, MMP9, MCP1, RANTES, STNFRI, ST2, EOTAXIN), endothelial biomarkers (SDC1, VEGF, ANGPT2), anticoagulation factors (sTM, vWF, TF, PAI) were determined by sandwich ELISA. Statistical, PPI-network, hub-proteins, drug prediction analysis were performed by GraphPad-Prism9, STRING, Cytoscape-cytoHubba, DrugBank online, TTD, respectively. Among 81 dengue infected patients, significantly higher levels of MIF, PAF, sTNFRI, MMP9, VEGF, ANGPT2, MMP2, RANTES, SDC1 were detected among SD patients compared to non-severe ones, with excellent and good diagnostic potential of first (> 77.11, > 57.57 ng/ml, > 3226 pg/ml) and next three (> 105.3 ng/ml, > 12,380, > 8284 pg/ml) biomarkers, respectively. Serum MIF, PAF, MMP9, sTNFRI levels were significantly higher among hospitalized (p-value: 0.0081-0.0499), high-viral-load (p-value: 0.0266-0.0466) and DENV-2, 4 (p-value: < 0.0001-0.0298) infected patients. PPI-network analysed MMP9, PAI, vWF, ANGPT2, sTM, sTNFRI, MIF as hub-proteins targeted by FDA-approved/experimental drugs. This study recognized serum-biomarkers: MIF, PAF, sTNFRI, MMP9, VEGF, ANGPT2 to have significant diagnostic potential for identification of SD cases.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Bibhuti Saha
- Department of Tropical Medicine, Infectious Diseases and Advanced Microbiology, Calcutta School of Tropical Medicine, 108, C. R. Avenue, Kolkata, 700073, West Bengal, India
| | - Krishnasamy Kaveri
- Department of Virology, King Institute of Preventive Medicine and Research, Chennai, 600 032, Tamil Nadu, India
| | - Anusri Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C. R. Avenue, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
3
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. J Virol 2024; 98:e0158224. [PMID: 39377586 DOI: 10.1128/jvi.01582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Under some conditions, dengue virus (DENV) can hijack IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR)-a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this unusual IgG-mediated infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout (KO) screens in an in vitro system poorly permissive to infection in the absence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates the binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired the binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that promote efficient ADE of DENV infection. Our findings represent a first step toward advancing fundamental knowledge behind the biology of a non-canonical infection route implicated in disease.IMPORTANCEAntibodies can paradoxically enhance rather than inhibit dengue virus (DENV) infection in some cases. To advance knowledge of the functional requirements of antibody-dependent enhancement (ADE) of infection beyond existing descriptive studies, we performed a genome-scale CRISPR knockout (KO) screen in an optimized in vitro system permissive to efficient DENV infection only in the presence of IgG. In addition to FcgRIIa, a known receptor that facilitates IgG-mediated uptake of IgG-bound, but not naked DENV particles, our screens identified TBC1D24 and SV2B, cellular factors with no known role in DENV infection. We validated a functional role for TBC1D24 and SV2B in mediating ADE of all four DENV serotypes in different cell lines and using various antibodies. Thus, we identify cellular factors beyond Fc gamma receptors that promote ADE mechanisms. This study represents a first step toward advancing fundamental knowledge beyond a poorly understood non-canonical viral entry mechanism.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
4
|
Dayarathna S, Kuruppu H, Silva T, Gomes L, Shyamali NLA, Jeewandara C, Ariyaratne D, Ramu ST, Wijewickrama A, Ogg GS, Malavige GN. Are viral loads in the febrile phase a predictive factor of dengue disease severity? BMC Infect Dis 2024; 24:1248. [PMID: 39501205 PMCID: PMC11539692 DOI: 10.1186/s12879-024-10152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND As many studies have shown conflicting results regarding the extent of viraemia and clinical disease severity, we sought to investigate if viraemia during early dengue illness is associated with subsequent clinical disease severity. METHODS Realtime PCR was carried out to identify the dengue virus (DENV serotype), in 362 patients, presenting within the first 4 days of illness, from 2017 to 2022, in Colombo Sri Lanka. To characterize subsequent clinical disease severity, all patients were followed throughout their illness daily and disease severity classified according to WHO 1997 and 2009 disease classification. RESULTS 263 patients had DF, 99 progressed to develop DHF, and 15/99 with DHF developed shock (DSS). Although the viral loads were higher in the febrile phase in patients who progressed to develop DHF than in patients with DF this was not significant (p = 0.5). Significant differences were observed in viral loads in patients infected with different DENV serotypes (p = 0.0009), with lowest viral loads detected in DENV2 and the highest viral loads in DENV3. Sub-analysis for association of viraemia with disease severity for each DENV serotype was again not significant. Although those infected with DENV2 had lower viral loads, infection with DENV2 was significantly associated with a higher risk of developing DHF (p = 0.011, Odds ratio 1.9; 95% CI 1.164 to 3.078). Based on the WHO 2009 disease classification, 233 had dengue with warning signs (DWW), 114 dengue without warning signs (DWoWS), and 15 had severe dengue (SD). No significant difference was observed in the viral loads between those with SD, DWW and DWoWS (p = 0.27). CONCLUSIONS Viral loads were significantly different in the febrile phase between different DENV serotypes, and do not appear to significantly associate with subsequent clinical disease severity in a large Sri Lankan cohort.
Collapse
Affiliation(s)
- Shashika Dayarathna
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Heshan Kuruppu
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Tehani Silva
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Faculty of Medicine, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Laksiri Gomes
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - N L Ajantha Shyamali
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chandima Jeewandara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinuka Ariyaratne
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Shyrar Tanussiya Ramu
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Desprès P, Salmon D, Bellec L, Cabié A, Gougeon ML. [The dengue vaccine: a major scientific challenge and a public health issue]. Med Sci (Paris) 2024; 40:737-747. [PMID: 39450959 DOI: 10.1051/medsci/2024116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Almost half of the world's population is exposed to the risk of transmission of the four dengue virus serotypes (DENV 1-4), by mosquitoes of the genus Aedes. A dengue vaccine is effective if it induces prolonged protective immunity against all circulating viral strains, irrespective of the age and infection history of the vaccinated subject. An effective vaccine strategy against dengue is based on the injection of live attenuated viruses in a tetravalent formulation. In this review, we present the most promising candidate vaccines against dengue, their successes and also the questions raised by the correlates of protection that have been adopted to assess their level of effectiveness against the disease.
Collapse
Affiliation(s)
- Philippe Desprès
- Processus infectieux en milieu insulaire tropical (PIMIT), Université de La Réunion, Inserm U1187, CNRS 9192, IRD 249, Plateforme technologique CYROI, Sainte-Clotilde La Réunion France
| | | | | | - André Cabié
- Service de maladies infectieuses et tropicales, CHU de Martinique Fort-de-France, France ; PCCEI, Univ Montpellier, Inserm, EFS Montpellier, France ; CIC Antilles Guyane, Inserm CIC1424 Fort-de-France France
| | | |
Collapse
|
6
|
Leng X, Yang H, Hong W, He J, Wang J, He X, Zhao L, Liao B, Chen X, Xie D, Peng J, Wang C, Feng J, Liao L, Jin K, Li L, Tang X, Qin C, Zhang F. Severe Organ Impairment Was Common in Elderly Individuals with Dengue in Guangdong, China. Am J Trop Med Hyg 2024; 111:610-616. [PMID: 38981501 PMCID: PMC11376186 DOI: 10.4269/ajtmh.24-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 07/11/2024] Open
Abstract
Guangdong, China, has experienced several dengue epidemics involving thousands of confirmed cases in recent decades, and elderly individuals suffered severe dengue (SD) most seriously. However, the clinical characteristics and risk factors for SD among elderly patients in Guangdong have not been investigated. Patients older than 65 years were recruited and divided into a dengue fever (DF) group and an SD group according to the 2009 Dengue Guidelines of the WHO. We analyzed the clinical manifestations of the elderly patients with dengue and then assessed the risk factors for SD. Of a total of 1,027 patients, 868 patients were diagnosed as having DF and 159 as having SD. Of the 159 elderly patients with SD, 129 (81%) had comorbidities, with hypertension being the most common. Severe organ impairment (SOI) (115, 54%) was the most common presentation in SD patients, followed by severe plasma leakage (52, 24.4%) and severe hemorrhage (46, 21.6%). The most common symptom of SOI was kidney injury, followed by heart injury and central nervous system injury. Furthermore, multivariate regression revealed that the presence of chronic obstructive pulmonary disease (COPD), a lower red blood cell (RBC) count (≤3.5 × 1012/L; odds ratio [OR], 0.35; 95% CI, 0.17-0.55; P <0.001), lower serum albumin (ALB) (≤35 U/L; OR, 0.18; 95% CI, 0.09-0.32; P <0.001), and hyperpyrexia (body temperature ≥39°C; OR, 1.8; 95% CI, 1.2-2.6, P <0.001) were risk factors for SD. Severe organ impairment was the predominant manifestation in elderly individuals with SD characterized by kidney injury. The potential risk factors of SD such as presence of COPD and hyperpyrexia and lower RBC and ALB levels might help clinicians identify patients with SD early.
Collapse
Affiliation(s)
- Xingyu Leng
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huiqin Yang
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenxin Hong
- Department of Infectious Diseases, Guangzhou Red Cross Hospital, Guangzhou, People's Republic of China
| | - Jianfeng He
- Guangdong Provincial Centre for Disease Control and Prevention, Guangzhou, People's Republic of China
| | - Jian Wang
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xi He
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lingzhai Zhao
- Department of Clinical Laboratory, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baolin Liao
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xuefu Chen
- Department of Infectious Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Dongying Xie
- Department of Infectious Disease, the Third Affiliated Hospital, Sun Yat Sen University, Guangzhou, People's Republic of China
| | - Jie Peng
- Department of Infectious Disease, Nanfang Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Changtai Wang
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Department of Infectious Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jiamin Feng
- Institution of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lu Liao
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Kanghong Jin
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linghua Li
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoping Tang
- Institution of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Fuchun Zhang
- Guangzhou Medical Research Institute of Infectious Diseases, Department of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
- Institution of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Dayarathna S, Kuruppu H, Silva T, Gomes L, Shyamali NLA, Jeewandara C, Ariyaratne D, Ramu ST, Wijewickrama A, Ogg GS, Malavige GN. Are viral loads in the febrile phase a predictive factor of dengue disease severity? RESEARCH SQUARE 2024:rs.3.rs-4771323. [PMID: 39257995 PMCID: PMC11384800 DOI: 10.21203/rs.3.rs-4771323/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Background As many studies have shown conflicting results regarding the extent of viraemia and clinical disease severity, we sought to investigate if viraemia during early dengue illness is associated with subsequent clinical disease severity. Methods Realtime PCR was carried out to identify the dengue virus (DENV serotype), in 362 patients, presenting within the first 4 days of illness, from 2017 to 2022, in Colombo Sri Lanka. To characterize subsequent clinical disease severity, all patients were followed throughout their illness daily and disease severity classified according to WHO 1997 and 2009 disease classification. Results 263 patients had DF, 99 progressed to develop DHF, and 15/99 with DHF developed shock (DSS). Although the viral loads were higher in the febrile phase in patients who progressed to develop DHF than in patients with DF this was not significant (p=0.5). Significant differences were observed in viral loads in patients infected with different DENV serotypes (p=0.0009), with lowest viral loads detected in DENV2 and the highest viral loads in DENV3. Sub-analysis for association of viraemia with disease severity for each DENV serotyped was again not significant. Although those infected with DENV2 had lower viral loads, infection with DENV2 was significantly associated with a higher risk of developing DHF (p=0.011, Odds ratio 1.9; 95% CI 1.164 to 3.078). Based on the WHO 2009 disease classification, 233 had dengue with warning signs (DWW), 114 dengue without warning signs (DWoWS), and 15 had severe dengue (SD). No significant difference was observed in the viral loads between those with SD, DWW and DWoWS (p=0.27). Conclusions Viral loads were significantly different in the febrile phase between different DENV serotypes, and do not appear to significantly associate with subsequent clinical disease severity in a large Sri Lankan cohort.
Collapse
|
8
|
Mpingabo PI, Ylade M, Aogo RA, Crisostomo MV, Thiono DJ, Daag JV, Agrupis KA, Escoto AC, Raimundi-Rodriguez GL, Odio CD, Fernandez MA, White L, de Silva AM, Deen J, Katzelnick LC. Envelope-dimer epitope-like broadly protective antibodies against dengue in children following natural infection and vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306574. [PMID: 38746253 PMCID: PMC11092691 DOI: 10.1101/2024.04.30.24306574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cross-reactive antibodies (Abs) to epitopes that span envelope proteins on the virion surface are hypothesized to protect against dengue. Here, we measured Abs targeting the quaternary envelope dimer epitope (EDE) as well as neutralizing and binding Abs and evaluate their association with dengue virus (DENV) infection, vaccine response, and disease outcome in dengue vaccinated and unvaccinated children (n=252) within a longitudinal cohort in Cebu, Philippines (n=2,996). Abs targeting EDE were prevalent and strongly associated with broad neutralization of DENV1-4 in those with baseline multitypic immunity. Subsequent natural infection and vaccination boosted EDE-like, neutralizing, and binding Abs. EDE-like Abs were associated with reduced dengue risk and mediated the protective effect of binding and neutralizing Abs on symptomatic and severe dengue. Thus, Abs targeting quaternary epitopes help explain broad cross protection in those with multiple prior DENV exposures, making them useful for evaluation and development of future vaccines and therapeutics.
Collapse
|
9
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591029. [PMID: 38712102 PMCID: PMC11071485 DOI: 10.1101/2024.04.26.591029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dengue virus (DENV) can hijack non-neutralizing IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR) - a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this non-canonical infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout screens in an in vitro system permissive to infection only in the presence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, both of which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that are required for ADE of DENV infection. Our findings represent a first step towards advancing fundamental knowledge behind the biology of ADE that can ultimately be exploited to inform vaccination and therapeutic approaches.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
10
|
Wong MP, Juan EYW, Pahmeier F, Chelluri SS, Wang P, Castillo-Rojas B, Blanc SF, Biering SB, Vance RE, Harris E. The inflammasome pathway is activated by dengue virus non-structural protein 1 and is protective during dengue virus infection. PLoS Pathog 2024; 20:e1012167. [PMID: 38662771 DOI: 10.1371/journal.ppat.1012167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/07/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1β in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1β. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.
Collapse
Affiliation(s)
- Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Evan Y W Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sai S Chelluri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Phoebe Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
11
|
Paz-Bailey G, Adams LE, Deen J, Anderson KB, Katzelnick LC. Dengue. Lancet 2024; 403:667-682. [PMID: 38280388 DOI: 10.1016/s0140-6736(23)02576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 01/29/2024]
Abstract
Dengue, caused by four closely related viruses, is a growing global public health concern, with outbreaks capable of overwhelming health-care systems and disrupting economies. Dengue is endemic in more than 100 countries across tropical and subtropical regions worldwide, and the expanding range of the mosquito vector, affected in part by climate change, increases risk in new areas such as Spain, Portugal, and the southern USA, while emerging evidence points to silent epidemics in Africa. Substantial advances in our understanding of the virus, immune responses, and disease progression have been made within the past decade. Novel interventions have emerged, including partially effective vaccines and innovative mosquito control strategies, although a reliable immune correlate of protection remains a challenge for the assessment of vaccines. These developments mark the beginning of a new era in dengue prevention and control, offering promise in addressing this pressing global health issue.
Collapse
Affiliation(s)
| | - Laura E Adams
- Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Jacqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines, Manila, Philippines
| | - Kathryn B Anderson
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Wong MP, Juan EYW, Chelluri SS, Wang P, Pahmeier F, Castillo-Rojas B, Blanc SF, Biering SB, Vance RE, Harris E. The Inflammasome Pathway is Activated by Dengue Virus Non-structural Protein 1 and is Protective During Dengue Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558875. [PMID: 37790301 PMCID: PMC10543007 DOI: 10.1101/2023.09.21.558875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1β in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1β. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.
Collapse
Affiliation(s)
- Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Evan Y W Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sai S Chelluri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Phoebe Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
13
|
Guterres A. Viral load: We need a new look at an old problem? J Med Virol 2023; 95:e29061. [PMID: 37638475 DOI: 10.1002/jmv.29061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
The concept of viral load was introduced in the 1980s to measure the amount of viral genetic material in a person's blood, primarily for human immunodeficiency virus (HIV). It has since become crucial for monitoring HIV infection progression and assessing the efficacy of antiretroviral therapy. However, during the coronavirus disease 2019 pandemic, the term "viral load" became widely popularized, not only for the scientific community but for the general population. Viral load plays a critical role in both clinical patient management and research, providing valuable insights for antiviral treatment strategies, vaccination efforts, and epidemiological control measures. As measuring viral load is so important, why don't researchers discuss the best way to do it? Is it simply acceptable to use raw Ct values? Relying solely on Ct values for viral load estimation can be problematic due to several reasons. First, Ct values can vary between different quantitative polymerase chain reaction assays, platforms, and laboratories, making it difficult to compare data across studies. Second, Ct values do not directly measure the quantity of viral particles in a sample and they can be influenced by various factors such as initial viral load, sample quality, and assay sensitivity. Moreover, variations in viral RNA extraction and reverse-transcription steps can further impact the accuracy of viral load estimation, emphasizing the need for careful interpretation of Ct values in viral load assessment. Interestingly, we did not observe scientific articles addressing different strategies to quantify viral load. The absence of standardized and validated methods impedes the implementation of viral load monitoring in clinical management. The variability in cell quantities within samples and the variation in viral particle numbers within infected cells further challenge accurate viral load measurement and interpretation. To advance the field and improve patient outcomes, there is an urgent need for the development and validation of tailored, standardized methods for precise viral load quantification.
Collapse
Affiliation(s)
- Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos, Vice-Diretoria de Desenvolvimento Tecnológico, Bio-Manguinhos, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Hussain Z, Rani S, Ma F, Li W, Shen W, Gao T, Wang J, Pei R. Dengue determinants: Necessities and challenges for universal dengue vaccine development. Rev Med Virol 2023; 33:e2425. [PMID: 36683235 DOI: 10.1002/rmv.2425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Dengue illness can range from mild illness to life-threatening haemorrhage. It is an Aedes-borne infectious disease caused by the dengue virus, which has four serotypes. Each serotype acts as an independent infectious agent. The antibodies against one serotype confer homotypic immunity but temporary protection against heterotypic infection. Dengue has become a growing health concern for up to one third of the world's population. Currently, there is no potent anti-dengue medicine, and treatment for severe dengue relies on intravenous fluid management and pain medications. The burden of dengue dramatically increases despite advances in vector control measures. These factors underscore the need for a vaccine. Various dengue vaccine strategies have been demonstrated, that is, live attenuated vaccine, inactivated vaccine, DNA vaccine, subunit vaccine, and viral-vector vaccines, some of which are at the stage of clinical testing. Unfortunately, the forefront candidate vaccine is less than satisfactory, and its performance depends on serostatus and age factors. The lessons from clinical studies depicted ambiguity concerning the efficacy of dengue vaccine. Our study highlighted that viral structural heterogeneity, epitope accessibility, autoimmune complications, genetic variants, genetic diversities, antigen competition, virulence variation, host-pathogen specific interaction, antibody-dependent enhancement, cross-reactive immunity among Flaviviruses, and host-susceptibility determinants not only influence infection outcomes but also hampered successful vaccine development. This review integrates dengue determinants allocated necessities and challenges, which would provide insight for universal dengue vaccine development.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China.,Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Saima Rani
- Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenqi Shen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Jine Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
15
|
Serum biomarkers and anti-flavivirus antibodies at presentation as indicators of severe dengue. PLoS Negl Trop Dis 2023; 17:e0010750. [PMID: 36848385 PMCID: PMC9997924 DOI: 10.1371/journal.pntd.0010750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/09/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Dengue is the most common vector-borne viral disease worldwide. Most cases are mild, but some evolve into severe dengue (SD), with high lethality. Therefore, it is important to identify biomarkers of severe disease to improve outcomes and judiciously utilize resources. METHODS/PRINCIPAL FINDINGS One hundred forty-five confirmed dengue cases (median age, 42; range <1-91 years), enrolled from February 2018 to March 2020, were selected from an ongoing study of suspected arboviral infections in metropolitan Asunción, Paraguay. Cases included dengue virus types 1, 2, and 4, and severity was categorized according to the 2009 World Health Organization guidelines. Testing for anti-dengue virus IgM and IgG and serum biomarkers (lipopolysaccharide binding protein and chymase) was performed on acute-phase sera in plate-based ELISAs; in addition, a multiplex ELISA platform was used to measure anti-dengue virus and anti-Zika virus IgM and IgG. Complete blood counts and chemistries were performed at the discretion of the care team. Age, gender, and pre-existing comorbidities were associated with SD vs. dengue with/without warning signs in logistic regression with odds ratios (ORs) of 1.07 (per year; 95% confidence interval, 1.03, 1.11), 0.20 (female; 0.05,0.77), and 2.09 (presence; 1.26, 3.48) respectively. In binary logistic regression, for every unit increase in anti-DENV IgG in the multiplex platform, odds of SD increased by 2.54 (1.19-5.42). Platelet count, lymphocyte percent, and elevated chymase were associated with SD in a combined logistic regression model with ORs of 0.99 (1,000/μL; 0.98,0.999), 0.92 (%; 0.86,0.98), and 1.17 (mg/mL; 1.03,1.33) respectively. CONCLUSIONS Multiple, readily available factors were associated with SD in this population. These findings will aid in the early detection of potentially severe dengue cases and inform the development of new prognostics for use in acute-phase and serial samples from dengue cases.
Collapse
|
16
|
Cardona-Ospina JA, Stittleburg V, Millan-Benavidez N, Restrepo-Chica J, Key A, Rojas-Gallardo DM, Piantadosi A, Collins MH, Waggoner JJ. Sensitive and Stable Molecular Detection of Dengue, Chikungunya, and Zika Viruses from Dried Blood Spots. Am J Trop Med Hyg 2022; 107:296-299. [PMID: 35895398 PMCID: PMC9393429 DOI: 10.4269/ajtmh.21-1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/05/2022] [Indexed: 08/03/2023] Open
Abstract
Standard molecular detection of many pathogens, in particular RNA viruses, requires appropriate handling in the field for preserving the quality of the sample until processing. This could be challenging in remote tropical areas. Dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV) are RNA viruses, prominent among the causes of fever in the tropics. We aimed to test the stability of arboviral RNA in contrived dried blood spots prepared on Whatman 903 Protein saver cards as a means of sample collection and storage. We were able to detect DENV, CHIKV, and ZIKV by real-time RT-PCR up to 180 days after card inoculation with stable Ct values across the study period. Our study supports dried blood spots (DBS) on protein saver cards as a platform for stable detection of arboviral RNA of sufficient quality to be used in diagnostic RT-PCR assays and next generation sequencing.
Collapse
Affiliation(s)
- Jaime A. Cardona-Ospina
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Sci-help, Pereira, Risaralda, Colombia
| | - Victoria Stittleburg
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
| | - Natalia Millan-Benavidez
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
| | - Juliana Restrepo-Chica
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
| | - Autum Key
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Diana Marcela Rojas-Gallardo
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
| | - Anne Piantadosi
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Matthew H. Collins
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia
| | - Jesse J. Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia
| |
Collapse
|
17
|
Dudley DM, Koenig MR, Stewart LM, Semler MR, Newman CM, Shepherd PM, Yamamoto K, Breitbach ME, Schotzko M, Kohn S, Antony KM, Qiu H, Tunga P, Anderson DM, Guo W, Dennis M, Singh T, Rybarczyk S, Weiler AM, Razo E, Mitzey A, Zeng X, Eickhoff JC, Mohr EL, Simmons HA, Fritsch MK, Mejia A, Aliota MT, Friedrich TC, Golos TG, Kodihalli S, Permar SR, O’Connor DH. Human immune globulin treatment controls Zika viremia in pregnant rhesus macaques. PLoS One 2022; 17:e0266664. [PMID: 35834540 PMCID: PMC9282477 DOI: 10.1371/journal.pone.0266664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
There are currently no approved drugs to treat Zika virus (ZIKV) infection during pregnancy. Hyperimmune globulin products such as VARIZIG and WinRho are FDA-approved to treat conditions during pregnancy such as Varicella Zoster virus infection and Rh-incompatibility. We administered ZIKV-specific human immune globulin as a treatment in pregnant rhesus macaques one day after subcutaneous ZIKV infection. All animals controlled ZIKV viremia following the treatment and generated robust levels of anti-Zika virus antibodies in their blood. No adverse fetal or infant outcomes were identified in the treated animals, yet the placebo control treated animals also did not have signs related to congenital Zika syndrome (CZS). Human immune globulin may be a viable prophylaxis and treatment option for ZIKV infection during pregnancy, however, more studies are required to fully assess the impact of this treatment to prevent CZS.
Collapse
Affiliation(s)
- Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Michelle R. Koenig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Laurel M. Stewart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Matthew R. Semler
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Phoenix M. Shepherd
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Keisuke Yamamoto
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Michele Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Sarah Kohn
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Hongyu Qiu
- Emergent BioSolutions, Canada Inc., Winnipeg, MB, Canada
| | | | | | - Wendi Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Maria Dennis
- Department of Pediatrics and Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Tulika Singh
- Department of Pediatrics and Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States of America
| | - Sierra Rybarczyk
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Elaina Razo
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Ann Mitzey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States of America
| | - Jens C. Eickhoff
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Heather A. Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Michael K. Fritsch
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States of America
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Thaddeus G. Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States of America
| | | | - Sallie R. Permar
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
18
|
Innate Immune Response to Dengue Virus: Toll-like Receptors and Antiviral Response. Viruses 2022; 14:v14050992. [PMID: 35632732 PMCID: PMC9147118 DOI: 10.3390/v14050992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Dengue is a mosquito-borne viral disease caused by the dengue virus (DENV1-4). The clinical manifestations range from asymptomatic to life-threatening dengue hemorrhagic fever (DHF) and/or Dengue Shock Syndrome (DSS). Viral and host factors are related to the clinical outcome of dengue, although the disease pathogenesis remains uncertain. The innate antiviral response to DENV is implemented by a variety of immune cells and inflammatory mediators. Blood monocytes, dendritic cells (DCs) and tissue macrophages are the main target cells of DENV infection. These cells recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Pathogen recognition is a critical step in eliciting the innate immune response. Toll-like receptors (TLRs) are responsible for the innate recognition of pathogens and represent an essential component of the innate and adaptive immune response. Ten different TLRs are described in humans, which are expressed in many different immune cells. The engagement of TLRs with viral PAMPs triggers downstream signaling pathways leading to the production of inflammatory cytokines, interferons (IFNs) and other molecules essential for the prevention of viral replication. Here, we summarize the crucial TLRs’ roles in the antiviral innate immune response to DENV and their association with viral pathogenesis.
Collapse
|
19
|
García-Carreras B, Yang B, Grabowski MK, Sheppard LW, Huang AT, Salje H, Clapham HE, Iamsirithaworn S, Doung-Ngern P, Lessler J, Cummings DAT. Periodic synchronisation of dengue epidemics in Thailand over the last 5 decades driven by temperature and immunity. PLoS Biol 2022; 20:e3001160. [PMID: 35302985 PMCID: PMC8967062 DOI: 10.1371/journal.pbio.3001160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/30/2022] [Accepted: 02/24/2022] [Indexed: 01/15/2023] Open
Abstract
The spatial distribution of dengue and its vectors (spp. Aedes) may be the widest it has ever been, and projections suggest that climate change may allow the expansion to continue. However, less work has been done to understand how climate variability and change affects dengue in regions where the pathogen is already endemic. In these areas, the waxing and waning of immunity has a large impact on temporal dynamics of cases of dengue haemorrhagic fever. Here, we use 51 years of data across 72 provinces and characterise spatiotemporal patterns of dengue in Thailand, where dengue has caused almost 1.5 million cases over the last 30 years, and examine the roles played by temperature and dynamics of immunity in giving rise to those patterns. We find that timescales of multiannual oscillations in dengue vary in space and time and uncover an interesting spatial phenomenon: Thailand has experienced multiple, periodic synchronisation events. We show that although patterns in synchrony of dengue are similar to those observed in temperature, the relationship between the two is most consistent during synchronous periods, while during asynchronous periods, temperature plays a less prominent role. With simulations from temperature-driven models, we explore how dynamics of immunity interact with temperature to produce the observed patterns in synchrony. The simulations produced patterns in synchrony that were similar to observations, supporting an important role of immunity. We demonstrate that multiannual oscillations produced by immunity can lead to asynchronous dynamics and that synchrony in temperature can then synchronise these dengue dynamics. At higher mean temperatures, immune dynamics can be more predominant, and dengue dynamics more insensitive to multiannual fluctuations in temperature, suggesting that with rising mean temperatures, dengue dynamics may become increasingly asynchronous. These findings can help underpin predictions of disease patterns as global temperatures rise. This study shows that spatially large-scale shifts in temperature can synchronize dengue dynamics across Thailand; however, as average temperatures rise, dengue dynamics may increasingly be dictated by dynamics of immunity, which may in turn mean fewer synchronous outbreaks in the future.
Collapse
Affiliation(s)
- Bernardo García-Carreras
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Bingyi Yang
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Mary K. Grabowski
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Lawrence W. Sheppard
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Lawrence, Kansas, United States of America
- The Marine Biological Association, Plymouth, United Kingdom
| | - Angkana T. Huang
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Hannah Eleanor Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | | | - Pawinee Doung-Ngern
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Derek A. T. Cummings
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
20
|
Abernathy ME, Dam KMA, Esswein SR, Jette CA, Bjorkman PJ. How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Viruses 2021; 13:2106. [PMID: 34696536 PMCID: PMC8537525 DOI: 10.3390/v13102106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
The H1N1 pandemic of 2009-2010, MERS epidemic of 2012, Ebola epidemics of 2013-2016 and 2018-2020, Zika epidemic of 2015-2016, and COVID-19 pandemic of 2019-2021, are recent examples in the long history of epidemics that demonstrate the enormous global impact of viral infection. The rapid development of safe and effective vaccines and therapeutics has proven vital to reducing morbidity and mortality from newly emerging viruses. Structural biology methods can be used to determine how antibodies elicited during infection or vaccination target viral proteins and identify viral epitopes that correlate with potent neutralization. Here we review how structural and molecular biology approaches have contributed to our understanding of antibody recognition of pathogenic viruses, specifically HIV-1, SARS-CoV-2, and Zika. Determining structural correlates of neutralization of viruses has guided the design of vaccines, monoclonal antibodies, and small molecule inhibitors in response to the global threat of viral epidemics.
Collapse
Affiliation(s)
- Morgan E. Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Kim-Marie A. Dam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Shannon R. Esswein
- David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA;
| | - Claudia A. Jette
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; (M.E.A.); (K.-M.A.D.); (C.A.J.)
| |
Collapse
|
21
|
Katzelnick LC, Zambrana JV, Elizondo D, Collado D, Garcia N, Arguello S, Mercado JC, Miranda T, Ampie O, Mercado BL, Narvaez C, Gresh L, Binder RA, Ojeda S, Sanchez N, Plazaola M, Latta K, Schiller A, Coloma J, Carrillo FB, Narvaez F, Halloran ME, Gordon A, Kuan G, Balmaseda A, Harris E. Dengue and Zika virus infections in children elicit cross-reactive protective and enhancing antibodies that persist long term. Sci Transl Med 2021; 13:eabg9478. [PMID: 34613812 DOI: 10.1126/scitranslmed.abg9478] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.,Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3203, USA
| | | | | | | | - Nadezna Garcia
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Sonia Arguello
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Juan Carlos Mercado
- Sustainable Sciences Institute, Managua 14007, Nicaragua.,Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua 16064, Nicaragua
| | | | | | | | - César Narvaez
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Raquel A Binder
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.,Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua 14007, Nicaragua
| | | | - Krista Latta
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Amy Schiller
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Fausto Bustos Carrillo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | | | - M Elizabeth Halloran
- Department of Biostatistics, University of Washington, Seattle, WA 98195-1617, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua 14007, Nicaragua.,Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua 12014, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua 14007, Nicaragua.,Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua 16064, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| |
Collapse
|
22
|
Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus. Viruses 2021; 13:v13091789. [PMID: 34578370 PMCID: PMC8473164 DOI: 10.3390/v13091789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022] Open
Abstract
The incidence of dengue in Latin America has increased dramatically during the last decade. Understanding the pathogenic mechanisms in dengue is crucial for the identification of biomarkers for the triage of patients. We aimed to characterize the profile of cytokines (IFN-γ, TNF-α, IL-1β, IL-6, IL-18 and IL-10), chemokines (CXCL8/IL-8, CCL2/MCP-1 and CXCL10/IP-10) and coagulation mediators (Fibrinogen, D-dimer, Tissue factor-TF, Tissue factor pathway inhibitor-TFPI and Thrombomodulin) during the dengue-4 epidemic in Brazil. Laboratory-confirmed dengue cases had higher levels of TNF-α (p < 0.001), IL-6 (p = 0.005), IL-10 (p < 0.001), IL-18 (p = 0.001), CXCL8/IL-8 (p < 0.001), CCL2/MCP-1 (p < 0.001), CXCL10/IP-10 (p = 0.001), fibrinogen (p = 0.037), D-dimer (p = 0.01) and TFPI (p = 0.042) and lower levels of TF (p = 0.042) compared to healthy controls. A principal component analysis (PCA) distinguished between two profiles of mediators of inflammation and coagulation: protective (TNF-α, IL-1β and CXCL8/IL-8) and pathological (IL-6, TF and TFPI). Lastly, multivariate logistic regression analysis identified high aspartate aminotransferase-to-platelet ratio index (APRI) as independent risk factors associated with severity (adjusted OR: 1.33; 95% CI 1.03–1.71; p = 0.027), the area under the receiver operating characteristics curve (AUC) was 0.775 (95% CI 0.681–0.869) and an optimal cutoff value was 1.4 (sensitivity: 76%; specificity: 79%), so it could be a useful marker for the triage of patients attending primary care centers.
Collapse
|
23
|
Pinto AK, Hassert M, Han X, Barker D, Carnelley T, Branche E, Steffen TL, Stone ET, Geerling E, Viramontes KM, Nykiforuk C, Toth D, Shresta S, Kodihalli S, Brien JD. The Ability of Zika virus Intravenous Immunoglobulin to Protect From or Enhance Zika Virus Disease. Front Immunol 2021; 12:717425. [PMID: 34552587 PMCID: PMC8450494 DOI: 10.3389/fimmu.2021.717425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
The closely related flaviviruses, dengue and Zika, cause significant human disease throughout the world. While cross-reactive antibodies have been demonstrated to have the capacity to potentiate disease or mediate protection during flavivirus infection, the mechanisms responsible for this dichotomy are still poorly understood. To understand how the human polyclonal antibody response can protect against, and potentiate the disease in the context of dengue and Zika virus infection we used intravenous hyperimmunoglobulin (IVIG) preparations in a mouse model of the disease. Three IVIGs (ZIKV-IG, Control-Ig and Gamunex®) were evaluated for their ability to neutralize and/or enhance Zika, dengue 2 and 3 viruses in vitro. The balance between virus neutralization and enhancement provided by the in vitro neutralization data was used to predict the IVIG concentrations which could protect or enhance Zika, and dengue 2 disease in vivo. Using this approach, we were able to define the unique in vivo dynamics of complex polyclonal antibodies, allowing for both enhancement and protection from flavivirus infection. Our results provide a novel understanding of how polyclonal antibodies interact with viruses with implications for the use of polyclonal antibody therapeutics and the development and evaluation of the next generation flavivirus vaccines.
Collapse
Affiliation(s)
- Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Mariah Hassert
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Xiaobing Han
- Emergent BioSolutions Canada Inc, Winnipeg, Canada
| | | | | | - Emilie Branche
- La Jolla Institute for Immunology, Center for Infectious Disease and Vaccine Research, La Jolla, CA, United States
| | - Tara L. Steffen
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| | - Karla M. Viramontes
- La Jolla Institute for Immunology, Center for Infectious Disease and Vaccine Research, La Jolla, CA, United States
| | | | - Derek Toth
- Emergent BioSolutions Canada Inc, Winnipeg, Canada
| | - Sujan Shresta
- La Jolla Institute for Immunology, Center for Infectious Disease and Vaccine Research, La Jolla, CA, United States
| | | | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO, United States
| |
Collapse
|
24
|
Sethi SK, Rana A, Adnani H, McCulloch M, Alhasan K, Sultana A, Safadi R, Agrawal N, Raina R. Kidney involvement in multisystem inflammatory syndrome in children: a pediatric nephrologist's perspective. Clin Kidney J 2021; 14:2000-2011. [PMID: 34471522 PMCID: PMC8083308 DOI: 10.1093/ckj/sfab073] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 12/28/2022] Open
Abstract
The initial report of the multisystem inflammatory syndrome in children (MIS-C) was from the UK in April 2020; since then, cases have been reported worldwide. Renal involvement has been seen commonly, ranging from 10% to 46%. Kidney involvement following severe acute respiratory syndrome coronavirus 2 infection in children with MIS-C is more common than initially thought and is associated with higher morbidity and mortality. There are several reports of a direct viral tropism of coronavirus disease 2019 and MIS-C-associated renal damage. This study’s objective was to systematically review the current understanding of kidney involvement in children suffering from MIS-C. Based on our systemic literature search, 19 studies have either partially or fully discussed kidney involvement in MIS-C patients. Furthermore, we discuss the multifactorial pathogenesis contributing to acute kidney injury (AKI) development in MIS-C. The current review gives a pediatric nephrologist’s perspective of the renal involvement in MIS-C, the incidence of AKI, the pathophysiology of AKI in MIS-C and the proposed therapeutic regimens available, including the need for kidney replacement therapy for a child with AKI associated with MIS-C. As the disease is rapidly evolving, more detailed clinical prospective studies are required to understand MIS-C and its role in AKI better.
Collapse
Affiliation(s)
- Sidharth Kumar Sethi
- Division of Pediatric Nephrology, Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Abhyuday Rana
- Kidney Institute, Medanta, The Medicity, Gurgaon, Haryana, India
| | - Harsha Adnani
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Mignon McCulloch
- Department of Renal and Organ Transplant, Red Cross War Memorial Children's Hospital, Rondebosch, Cape Town, South Africa
| | - Khalid Alhasan
- Pediatric Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azmeri Sultana
- Pediatric Nephrology, M R Khan Children Hospital, and Institute of Child Health, Dhaka, Bangladesh
| | - Rama Safadi
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA
| | - Nirav Agrawal
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Rupesh Raina
- Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, OH, USA.,Department of Nephrology, Akron Children's Hospital, Akron, OH, USA
| |
Collapse
|
25
|
Rojas A, Natrajan MS, Weber J, Cardozo F, Cantero C, Ananta JS, Kost J, Tang M, López S, Bernal C, Guillén Y, Mendoza L, Páez M, Pinsky BA, Waggoner JJ. Comparison of Anti-Dengue and Anti-Zika IgG on a Plasmonic Gold Platform with Neutralization Testing. Am J Trop Med Hyg 2021; 104:1729-1733. [PMID: 33782214 PMCID: PMC8103464 DOI: 10.4269/ajtmh.20-1449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/02/2021] [Indexed: 01/03/2023] Open
Abstract
Antibody cross-reactivity confounds testing for dengue virus (DENV) and Zika virus (ZIKV). We evaluated anti-DENV and anti-ZIKV IgG detection using a multiplex serological platform (the pGOLD assay, Nirmidas, Palo Alto, CA) in patients from the Asunción metropolitan area in Paraguay, which experiences annual DENV outbreaks but has reported few autochthonous ZIKV infections. Acute-phase sera were tested from 77 patients who presented with a suspected arboviral illness from January to May 2018. Samples were tested for DENV and ZIKV RNA by real-time reverse transcription-PCR, and for DENV nonstructural protein 1 with a lateral-flow immunochromatographic test. Forty-one patients (51.2%) had acute dengue; no acute ZIKV infections were detected. Sixty-five patients (84.4%) had anti-DENV-neutralizing antibodies by focus reduction neutralization testing (FRNT50). Qualitative detection with the pGOLD assay demonstrated good agreement with FRNT50 (kappa = 0.74), and quantitative results were highly correlated between methods (P < 0.001). Only three patients had anti-ZIKV-neutralizing antibodies at titers of 1:55-1:80, and all three had corresponding DENV-neutralizing titers > 1:4,000. Hospitalized dengue cases had significantly higher anti-DENV IgG levels (P < 0.001). Anti-DENV IgG results from the pGOLD assay correlate well with FRNT, and quantitative results may inform patient risk stratification.
Collapse
Affiliation(s)
- Alejandra Rojas
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Muktha S. Natrajan
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia
| | - Jenna Weber
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Fátima Cardozo
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - César Cantero
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | | | | | - Meijie Tang
- Nirmidas Biotech Inc., Palo Alto, California
| | - Sanny López
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Yvalena Guillén
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Laura Mendoza
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Malvina Páez
- Departamento de Salud Pública, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California;,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Jesse J. Waggoner
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia;,Department of Global Health, Rollins School of Public Health, Atlanta, Georgia,Address correspondence to Jesse J. Waggoner, Emory University Department of Medicine, Division of Infectious Diseases, 1760 Haygood Dr. NE, Rm. E-132, Atlanta, GA 30322. E-mail:
| |
Collapse
|
26
|
Alexander LW, Ben-Shachar R, Katzelnick LC, Kuan G, Balmaseda A, Harris E, Boots M. Boosting can explain patterns of fluctuations of ratios of inapparent to symptomatic dengue virus infections. Proc Natl Acad Sci U S A 2021; 118:e2013941118. [PMID: 33811138 PMCID: PMC8040803 DOI: 10.1073/pnas.2013941118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dengue is the most prevalent arboviral disease worldwide, and the four dengue virus (DENV) serotypes circulate endemically in many tropical and subtropical regions. Numerous studies have shown that the majority of DENV infections are inapparent, and that the ratio of inapparent to symptomatic infections (I/S) fluctuates substantially year-to-year. For example, in the ongoing Pediatric Dengue Cohort Study (PDCS) in Nicaragua, which was established in 2004, the I/S ratio has varied from 16.5:1 in 2006-2007 to 1.2:1 in 2009-2010. However, the mechanisms explaining these large fluctuations are not well understood. We hypothesized that in dengue-endemic areas, frequent boosting (i.e., exposures to DENV that do not lead to extensive viremia and result in a less than fourfold rise in antibody titers) of the immune response can be protective against symptomatic disease, and this can explain fluctuating I/S ratios. We formulate mechanistic epidemiologic models to examine the epidemiologic effects of protective homologous and heterologous boosting of the antibody response in preventing subsequent symptomatic DENV infection. We show that models that include frequent boosts that protect against symptomatic disease can recover the fluctuations in the I/S ratio that we observe, whereas a classic model without boosting cannot. Furthermore, we show that a boosting model can recover the inverse relationship between the number of symptomatic cases and the I/S ratio observed in the PDCS. These results highlight the importance of robust dengue control efforts, as intermediate dengue control may have the potential to decrease the protective effects of boosting.
Collapse
Affiliation(s)
| | - Rotem Ben-Shachar
- Integrative Biology, University of California, Berkeley, CA 94720
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| | - Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, 12014 Managua, Nicaragua
- Sustainable Sciences Institute, 14007 Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, 14007 Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, 16064 Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720
| | - Mike Boots
- Integrative Biology, University of California, Berkeley, CA 94720;
- Biosciences, University of Exeter, Penryn TR10 9EZ, United Kingdom
| |
Collapse
|
27
|
Shakeel S, Ahmad Hassali MA. Post-COVID-19 Outbreak of Severe Kawasaki-like Multisystem Inflammatory Syndrome in Children. Malays J Med Sci 2021; 28:109-116. [PMID: 33679227 PMCID: PMC7909350 DOI: 10.21315/mjms2021.28.1.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
With the continuation of the second wave of a novel coronavirus disease (COVID-19), which is likely to be even more devastating, there are several associated health problems. COVID-19 is usually mild and non-fatal in children. However, in rare cases, children could severely be affected, and clinical manifestations may differ from adults. A multisystem inflammatory syndrome in children (MIS-C) is a rare but serious complication associated with COVID-19, initiated by an overactive immune response in kids that usually hits weeks after exposure to the COVID-19. MIS-C is a disorder in which inflammation could occur in different parts of the body. The disease puts pressure on the heart, as blood vessels leading towards the heart get inflamed and incapable of carrying adequate blood, hence producing cardiac complications in children hospitalised with MIS-C. The problem seems to be associated with COVID-19 in children; however, the association between MIS-C and COVID-19 is still unidentified. There is very little understanding of what triggers the MIS-C, which necessitates a rigorous mapping of the disease and associated risk elements for better disease management and navigating through this crisis.
Collapse
Affiliation(s)
- Sadia Shakeel
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohamed Azmi Ahmad Hassali
- Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
28
|
Jiang L, Tang K, Levin M, Irfan O, Morris SK, Wilson K, Klein JD, Bhutta ZA. COVID-19 and multisystem inflammatory syndrome in children and adolescents. THE LANCET. INFECTIOUS DISEASES 2020; 20:e276-e288. [PMID: 32818434 PMCID: PMC7431129 DOI: 10.1016/s1473-3099(20)30651-4] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 continues to spread worldwide, there have been increasing reports from Europe, North America, Asia, and Latin America describing children and adolescents with COVID-19-associated multisystem inflammatory conditions. However, the association between multisystem inflammatory syndrome in children and COVID-19 is still unknown. We review the epidemiology, causes, clinical features, and current treatment protocols for multisystem inflammatory syndrome in children and adolescents associated with COVID-19. We also discuss the possible underlying pathophysiological mechanisms for COVID-19-induced inflammatory processes, which can lead to organ damage in paediatric patients who are severely ill. These insights provide evidence for the need to develop a clear case definition and treatment protocol for this new condition and also shed light on future therapeutic interventions and the potential for vaccine development. TRANSLATIONS: For the French, Chinese, Arabic, Spanish and Russian translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Li Jiang
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kun Tang
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada; Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Mike Levin
- Department of Infectious Disease, Imperial College London, London, UK
| | - Omar Irfan
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shaun K Morris
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada; Division of Infectious Diseases, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karen Wilson
- Mount Sinai Kravis Children's Hospital, New York, NY, USA
| | - Jonathan D Klein
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada; Institute for Global Health and Development, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
29
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Katzelnick LC, Bos S, Harris E. Protective and enhancing interactions among dengue viruses 1-4 and Zika virus. Curr Opin Virol 2020; 43:59-70. [PMID: 32979816 DOI: 10.1016/j.coviro.2020.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Dengue viruses 1-4 (DENV 1-4) and Zika virus (ZIKV) are closely related flaviviruses transmitted by Aedes mosquitoes that co-circulate in Asia, the Americas, Africa, and Oceania. Here, we review recent and historical literature on in vitro experiments, animal models, and clinical and epidemiological studies to describe how the sequence of DENV 1-4 and ZIKV infections modulates subsequent dengue and Zika disease outcome. Overall, we find these interactions are asymmetric. Immunity from a prior DENV infection or a prior ZIKV infection can enhance future severe dengue disease for some DENV serotypes while protecting against other serotypes. Further, prior DENV immunity has not been shown to enhance future uncomplicated or severe Zika and instead appears to be protective. Interestingly, secondary ZIKV infection induces type-specific ZIKV immunity but only generates weakly cross-neutralizing anti-DENV/ZIKV immunity, consistent with risk of future dengue disease. In contrast, secondary DENV infection induces strongly cross-neutralizing antibodies that protect against subsequent severe dengue disease. These immunologic interactions may be explained by differences in virion structure between DENV 1-4 and ZIKV, which modulate thermostability, susceptibility to neutralization, and cell infectivity. Overall, these observations are important for the understanding and prediction of epidemics and the development and evaluation of dengue and Zika vaccines.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States.
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, CA 94720-3370, United States.
| |
Collapse
|
31
|
O'Donnell KL, Espinosa DA, Puerta-Guardo H, Biering SB, Warnes CM, Schiltz J, Nilles ML, Li J, Harris E, Bradley DS. Avian anti-NS1 IgY antibodies neutralize dengue virus infection and protect against lethal dengue virus challenge. Antiviral Res 2020; 183:104923. [PMID: 32979401 DOI: 10.1016/j.antiviral.2020.104923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023]
Abstract
Dengue is the most prevalent arboviral disease in humans and a continually increasing global public health burden. To date, there are no approved antiviral therapies against dengue virus (DENV) and the only licensed vaccine, Dengvaxia, is exclusively indicated for individuals with prior DENV infection. Endothelial hyperpermeability and vascular leak, pathogenic hallmarks of severe dengue disease, can be directly triggered by DENV non-structural protein 1 (NS1). As such, anti-NS1 antibodies can prevent NS1-triggered endothelial dysfunction in vitro and pathogenesis in vivo. Recently, goose-derived anti-DENV immunoglobulin Y (IgY) antibodies were shown to neutralize DENV and Zika virus (ZIKV) infection without adverse effects, such as antibody-dependent enhancement (ADE). In this study, we used egg yolks from DENV-immunized geese to purify IgY antibodies specific to DENV NS1 epitopes. We determined that 2 anti-NS1 IgY antibodies, NS1-1 and NS1-8, were capable of neutralizing DENV infection in vitro. In addition, these antibodies did not cross-react with the DENV Envelope (E) protein nor enhance DENV or ZIKV infection in vitro. Intriguingly, NS1-8, but not NS1-1, partially blocked NS1-induced endothelial dysfunction in vitro while neither antibody blocked binding of soluble NS1 to cells. Finally, prophylactic treatment of mice with NS1-8 conferred significant protection against lethal DENV challenge. Although further research is needed to define the mechanism of action of these antibodies, our findings highlight the potential of anti-NS1 IgY as a promising prophylactic approach against DENV infection.
Collapse
Affiliation(s)
- Kyle L O'Donnell
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Colin M Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Matthew L Nilles
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Jeffrey Li
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - David S Bradley
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| |
Collapse
|
32
|
Araujo SC, Pereira LR, Alves RPS, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines (Basel) 2020; 8:vaccines8030492. [PMID: 32878023 PMCID: PMC7564369 DOI: 10.3390/vaccines8030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
This article aims to review the present status of anti-flavivirus subunit vaccines, both those at the experimental stage and those already available for clinical use. Aspects regarding development of vaccines to Yellow Fever virus, (YFV), Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) are highlighted, with particular emphasis on purified recombinant proteins generated in bacterial cells. Currently licensed anti-flavivirus vaccines are based on inactivated, attenuated, or virus-vector vaccines. However, technological advances in the generation of recombinant antigens with preserved structural and immunological determinants reveal new possibilities for the development of recombinant protein-based vaccine formulations for clinical testing. Furthermore, novel proposals for multi-epitope vaccines and the discovery of new adjuvants and delivery systems that enhance and/or modulate immune responses can pave the way for the development of successful subunit vaccines. Nonetheless, advances in this field require high investments that will probably not raise interest from private pharmaceutical companies and, therefore, will require support by international philanthropic organizations and governments of the countries more severely stricken by these viruses.
Collapse
Affiliation(s)
- Sergio C. Araujo
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Lennon R. Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Rubens P. S. Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Alex I. Kanno
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Luis Carlos S. Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| |
Collapse
|
33
|
Katzelnick LC, Narvaez C, Arguello S, Lopez Mercado B, Collado D, Ampie O, Elizondo D, Miranda T, Bustos Carillo F, Mercado JC, Latta K, Schiller A, Segovia-Chumbez B, Ojeda S, Sanchez N, Plazaola M, Coloma J, Halloran ME, Premkumar L, Gordon A, Narvaez F, de Silva AM, Kuan G, Balmaseda A, Harris E. Zika virus infection enhances future risk of severe dengue disease. Science 2020; 369:1123-1128. [PMID: 32855339 PMCID: PMC8274975 DOI: 10.1126/science.abb6143] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
The Zika pandemic sparked intense interest in whether immune interactions among dengue virus serotypes 1 to 4 (DENV1 to -4) extend to the closely related Zika virus (ZIKV). We investigated prospective pediatric cohorts in Nicaragua that experienced sequential DENV1 to -3 (2004 to 2015), Zika (2016 to 2017), and DENV2 (2018 to 2020) epidemics. Risk of symptomatic DENV2 infection and severe disease was elevated by one prior ZIKV infection, one prior DENV infection, or one prior DENV infection followed by one ZIKV infection, compared with being flavivirus-naïve. By contrast, multiple prior DENV infections reduced dengue risk. Further, although high preexisting anti-DENV antibody titers protected against DENV1, DENV3, and ZIKV disease, intermediate titers induced by previous ZIKV or DENV infection enhanced future risk of DENV2 disease and severity, as well as DENV3 severity. The observation that prior ZIKV infection can modulate dengue disease severity like a DENV serotype poses challenges to development of dengue and Zika vaccines.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | | | | | | | - Fausto Bustos Carillo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Juan Carlos Mercado
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Krista Latta
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Amy Schiller
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bruno Segovia-Chumbez
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Nery Sanchez
- Sustainable Sciences Institute, Managua, Nicaragua
| | | | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - M Elizabeth Halloran
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Centro de Salud Sócrates Flores Vivas, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
34
|
Cyclin-Dependent Kinases 8 and 19 Regulate Host Cell Metabolism during Dengue Virus Serotype 2 Infection. Viruses 2020; 12:v12060654. [PMID: 32560467 PMCID: PMC7354599 DOI: 10.3390/v12060654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus infection is associated with the upregulation of metabolic pathways within infected cells. This effect is common to infection by a broad array of viruses. These metabolic changes, including increased glucose metabolism, oxidative phosphorylation and autophagy, support the demands of viral genome replication and infectious particle formation. The mechanisms by which these changes occur are known to be, in part, directed by viral nonstructural proteins that contact and control cellular structures and metabolic enzymes. We investigated the roles of host proteins with overarching control of metabolic processes, the transcriptional regulators, cyclin-dependent kinase 8 (CDK8) and its paralog, CDK19, as mediators of virally induced metabolic changes. Here, we show that expression of CDK8, but not CDK19, is increased during dengue virus infection in Huh7 human hepatocellular carcinoma cells, although both are required for efficient viral replication. Chemical inhibition of CDK8 and CDK19 with Senexin A during infection blocks virus-induced expression of select metabolic and autophagic genes, hexokinase 2 (HK2) and microtubule-associated protein 1 light chain 3 (LC3), and reduces viral genome replication and infectious particle production. The results further define the dependence of virus replication on increased metabolic capacity in target cells and identify CDK8 and CDK19 as master regulators of key metabolic genes. The common inhibition of CDK8 and CDK19 offers a host-directed therapeutic intervention that is unlikely to be overcome by viral evolution.
Collapse
|
35
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|