1
|
Kießling M, Cole JJ, Kübel S, Klein P, Korn K, Henry AR, Laboune F, Fourati S, Harrer E, Harrer T, Douek DC, Überla K, Nganou-Makamdop K. Chronic inflammation degrades CD4 T cell immunity to prior vaccines in treated HIV infection. Nat Commun 2024; 15:10200. [PMID: 39587133 PMCID: PMC11589758 DOI: 10.1038/s41467-024-54605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
To date, our understanding of how HIV infection impacts vaccine-induced cellular immunity is limited. Here, we investigate inflammation, immune activation and antigen-specific T cell responses in HIV-uninfected and antiretroviral-treated HIV-infected people. Our findings highlight lower recall responses of antigen-specific CD4 T cells that correlate with high plasma cytokines levels, T cell hyperactivation and an altered composition of the T subsets enriched with more differentiated cells in the HIV-infected group. Transcriptomic analysis reveals that antigen-specific CD4 T cells of the HIV-infected group have a reduced expression of gene sets previously reported to correlate with vaccine-induced pathogen-specific protective immunity and further identifies a consistent impairment of the IFNα and IFNγ response pathways as mechanism for the functional loss of recall CD4 T cell responses in antiretroviral-treated people. Lastly, in vitro treatment with drugs that reduce inflammation results in higher memory CD4 T cell IFNγ responses. Together, our findings suggest that vaccine-induced cellular immunity may benefit from strategies to counteract inflammation in HIV infection.
Collapse
Affiliation(s)
- Melissa Kießling
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John J Cole
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Sabrina Kübel
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paulina Klein
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Korn
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Slim Fourati
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Ellen Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Krystelle Nganou-Makamdop
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Schuind AE, Rees H, Schiller J, Mugo N, Dull P, Barnabas R, Clifford GM, Liu G, Madhi SA, Morse RB, Moscicki AB, Palefsky JM, Plotkin S, Sierra MS, Slifka MK, Vorsters A, Kreimer AR, Didierlaurent AM. State-of-the-Science of human papillomavirus vaccination in women with human immunodeficiency Virus: Summary of a scientific workshop. Prev Med Rep 2023; 35:102331. [PMID: 37576844 PMCID: PMC10413150 DOI: 10.1016/j.pmedr.2023.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
The burden of cervical cancer is disproportionately distributed globally, with the vast majority of cases occurring in low- and middle-income countries. Women with human immunodeficiency virus (HIV) (WWH) are at increased risk of human papillomavirus (HPV) infection and cervical cancer as compared to HIV-negative individuals. HPV vaccination remains a priority in regions with a high burden of cervical cancer and high HIV prevalence. With HPV vaccines becoming more accessible, optimal use beyond the initial World Health Organization-recommended target population of 9 to 14-year-old girls is an important question. In March 2022, a group of experts in epidemiology, immunology, and vaccinology convened to discuss the state-of-the-science of HPV vaccination in WWH. This report summarizes the proceedings: review of HIV epidemiology and its intersection with cervical cancer burden, immunology, HPV vaccination including reduced-dose schedules and experience with other vaccines in people with HIV (PWH), HPV vaccination strategies and knowledge gaps, and outstanding research questions. Studies of HPV vaccine effectiveness among WWH, including duration of protection, are limited. Until data from ongoing research is available, the current recommendation for WWH remains for a multi-dose HPV vaccination regimen. A focus of the discussion included the potential impact of HIV acquisition following HPV vaccination. With no data currently existing for HPV vaccines and limited information from non-HPV vaccines, this question requires further research. Implementation research on optimal HPV vaccine delivery approaches for WWH and other priority populations is also urgently needed.
Collapse
Affiliation(s)
| | - Helen Rees
- Wits Reproductive Health and HIV Institute (Wits RHI), University of the Witwatersrand, Johannesburg, South Africa
| | - John Schiller
- National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Nelly Mugo
- Kenya Medical Research Institute, Nairobi, Kenya and Department of Global Health, University of Washington, Seattle, United States
| | - Peter Dull
- Vaccine Development, Bill & Melinda Gates Foundation, Seattle, United States
| | - Ruanne Barnabas
- Division of Infectious Diseases, Mass General Hospital, Harvard Medical School, Boston, United States
| | - Gary M. Clifford
- Early Detection, Prevention, and Infections Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Gui Liu
- Department of Global Health, University of Washington, Seattle, United States
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Johannesburg, South Africa
| | | | - Anna-Barbara Moscicki
- Department of Pediatrics, University of California Los Angeles, Los Angeles, United States
| | - Joel M. Palefsky
- University of California, San Francisco School of Medicine, San Francisco, United States
| | - Stanley Plotkin
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Mónica S. Sierra
- National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Mark K. Slifka
- Oregon Health & Science University, Beaverton, United States
| | - Alex Vorsters
- Vaccine & Infectious Disease Institute, Centre for the Evaluation of Vaccination, University of Antwerp, Antwerp, Belgium
| | - Aimée R. Kreimer
- National Cancer Institute, National Institutes of Health, Bethesda, United States
| | | |
Collapse
|
3
|
Campbell GR, Rawat P, To RK, Spector SA. HIV-1 Tat Upregulates TREM1 Expression in Human Microglia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:429-442. [PMID: 37326481 PMCID: PMC10352590 DOI: 10.4049/jimmunol.2300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Because microglia are a reservoir for HIV and are resistant to the cytopathic effects of HIV infection, they are a roadblock for any HIV cure strategy. We have previously identified that triggering receptor expressed on myeloid cells 1 (TREM1) plays a key role in human macrophage resistance to HIV-mediated cytopathogenesis. In this article, we show that HIV-infected human microglia express increased levels of TREM1 and are resistant to HIV-induced apoptosis. Moreover, upon genetic inhibition of TREM1, HIV-infected microglia undergo cell death in the absence of increased viral or proinflammatory cytokine expression or the targeting of uninfected cells. We also show that the expression of TREM1 is mediated by HIV Tat through a TLR4, TICAM1, PG-endoperoxide synthase 2, PGE synthase, and PGE2-dependent manner. These findings highlight the potential of TREM1 as a therapeutic target to eradicate HIV-infected microglia without inducing a proinflammatory response.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Pratima Rawat
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rachel K. To
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA
- Rady Children’s Hospital, San Diego, CA
| |
Collapse
|
4
|
Bouabida K, Chaves BG, Anane E. Challenges and barriers to HIV care engagement and care cascade: viewpoint. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1201087. [PMID: 37547803 PMCID: PMC10398380 DOI: 10.3389/frph.2023.1201087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
Patients with human immunodeficiency virus (HIV) are subject to long-term management and a complex care process. Patients with HIV are clinically, socially, and emotionally vulnerable, face many challenges, and are often stigmatized. Healthcare providers should engage them with diligence in the HIV care cascade process. In this paper, we discuss from our viewpoint certain social and public health barriers and challenges that should be considered by healthcare providers to better engage patients in the HIV care cascade process and maximize its outcomes.
Collapse
Affiliation(s)
- Khayreddine Bouabida
- Research Center of the Hospital Center of the University of Montreal (CRCHUM), Montreal, MTL, Canada
- École de Santé Publique, Université de Montréal, Montreal, QC, Canada
- Department of Biomedical Research, St. George’s University School of Medicine, Great River, NY, United States
| | | | - Enoch Anane
- Department of Biomedical Research, St. George’s University School of Medicine, Great River, NY, United States
| |
Collapse
|
5
|
Dutta D, Liu J, Xiong H. The Impact of COVID-19 on People Living with HIV-1 and HIV-1-Associated Neurological Complications. Viruses 2023; 15:1117. [PMID: 37243203 PMCID: PMC10223371 DOI: 10.3390/v15051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of the coronavirus disease 2019 (COVID-19) pandemic, a fatal respiratory illness. The associated risk factors for COVID-19 are old age and medical comorbidities. In the current combined antiretroviral therapy (cART) era, a significant portion of people living with HIV-1 (PLWH) with controlled viremia is older and with comorbidities, making these people vulnerable to SARS-CoV-2 infection and COVID-19-associated severe outcomes. Additionally, SARS-CoV-2 is neurotropic and causes neurological complications, resulting in a health burden and an adverse impact on PLWH and exacerbating HIV-1-associated neurocognitive disorder (HAND). The impact of SARS-CoV-2 infection and COVID-19 severity on neuroinflammation, the development of HAND and preexisting HAND is poorly explored. In the present review, we compiled the current knowledge of differences and similarities between SARS-CoV-2 and HIV-1, the conditions of the SARS-CoV-2/COVID-19 and HIV-1/AIDS syndemic and their impact on the central nervous system (CNS). Risk factors of COVID-19 on PLWH and neurological manifestations, inflammatory mechanisms leading to the neurological syndrome, the development of HAND, and its influence on preexisting HAND are also discussed. Finally, we have reviewed the challenges of the present syndemic on the world population, with a particular emphasis on PLWH.
Collapse
Affiliation(s)
- Debashis Dutta
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| |
Collapse
|
6
|
Ex Vivo Blockade of the PD-1 Pathway Improves Recall IFNγ Responses of HIV-Infected Persons on Antiretroviral Therapy. Vaccines (Basel) 2023; 11:vaccines11020211. [PMID: 36851089 PMCID: PMC9965969 DOI: 10.3390/vaccines11020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Despite antiretroviral therapy (ART), immune exhaustion persists in HIV infection and limits T cell responses to HIV or other pathogens. Moreover, HIV infection results in the loss of pre-existing immunity. Here, we investigated the effect of blocking the PD-1 pathway on recall IFNγ responses to tetanus toxoid (TT) and measles virus (MV) antigens in HIV-infected persons on ART with prior TT and MV immunity. The ex vivo treatment of lymphocytes with anti-PD-1 and anti-PD-L1 antibodies significantly increased TT- and MV-specific IFNγ responses. The responses to TT and MV antigens alone or in combination with antibodies blocking the PD-1 pathway positively correlated with CD4 T cell levels. Furthermore, T cell PD-1 expression levels inversely correlated with recall IFNγ responses in combination with antibodies blocking the PD-1 pathway but not with IFNγ responses to antigens only. Our study suggested that targeting the PD-1 pathway may boost vaccine-induced pre-existing immunity in HIV-infected persons on ART depending on the degree of immune exhaustion.
Collapse
|
7
|
Campbell GR, Spector SA. Current strategies to induce selective killing of HIV-1-infected cells. J Leukoc Biol 2022; 112:1273-1284. [PMID: 35707952 PMCID: PMC9613504 DOI: 10.1002/jlb.4mr0422-636r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Indexed: 01/02/2023] Open
Abstract
Although combination antiretroviral therapy (ART) has led to significant HIV-1 suppression and improvement in immune function, persistent viral reservoirs remain that are refractory to intensified ART. ART poses many challenges such as adherence to drug regimens, the emergence of resistant virus, and cumulative toxicity resulting from long-term therapy. Moreover, latent HIV-1 reservoir cells can be stochastically activated to produce viral particles despite effective ART and contribute to the rapid viral rebound that typically occurs within 2 weeks of ART interruption; thus, lifelong ART is required for continued viral suppression. Several strategies have been proposed to address the HIV-1 reservoir such as reactivation of HIV-1 transcription using latency reactivating agents with a combination of ART, host immune clearance and HIV-1-cytotoxicity to purge the infected cells-a "shock and kill" strategy. However, these approaches do not take into account the multiple transcriptional and translational blocks that contribute to HIV-1 latency or the complex heterogeneity of the HIV-1 reservoir, and clinical trials have thus far failed to produce the desired results. Here, we describe alternative strategies being pursued that are designed to kill selectively HIV-1-infected cells while sparing uninfected cells in the absence of enhanced humoral or adaptive immune responses.
Collapse
Affiliation(s)
- Grant R. Campbell
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Stephen A. Spector
- Department of PediatricsDivision of Infectious DiseasesUniversity of California San DiegoLa JollaCaliforniaUSA,Division of Infectious DiseasesRady Children's HospitalSan DiegoCaliforniaUSA
| |
Collapse
|
8
|
Antela A, Rivero A, Llibre JM, Moreno S. Redefining therapeutic success in HIV patients: an expert view. J Antimicrob Chemother 2021; 76:2501-2518. [PMID: 34077524 PMCID: PMC8446931 DOI: 10.1093/jac/dkab168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Thanks to advances in the field over the years, HIV/AIDS has now become a manageable chronic condition. Nevertheless, a new set of HIV-associated complications has emerged, related in part to the accelerated ageing observed in people living with HIV/AIDS, the cumulative toxicities from exposure to antiretroviral drugs over decades and emerging comorbidities. As a result, HIV/AIDS can still have a negative impact on patients' quality of life (QoL). In this scenario, it is reasonable to believe that the concept of therapeutic success, traditionally associated with CD4 cell count restoration and HIV RNA plasma viral load suppression and the absence of drug resistances, needs to be redefined to include other factors that reach beyond antiretroviral efficacy. With this in mind, a group of experts initiated and coordinated the RET Project, and this group, using the available evidence and their clinical experience in the field, has proposed new criteria to redefine treatment success in HIV, arranged into five main concepts: rapid initiation, efficacy, simplicity, safety, and QoL. An extensive review of the literature was performed for each category, and results were discussed by a total of 32 clinicians with experience in HIV/AIDS (4 coordinators + 28 additional experts). This article summarizes the conclusions of these experts and presents the most updated overview on the five topics, along with a discussion of the experts' main concerns, conclusions and/or recommendations on the most controversial issues.
Collapse
Affiliation(s)
- Antonio Antela
- Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Antonio Rivero
- Hospital Universitario Reina Sofía, Cordoba, Spain
- Universidad de Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain
| | - Josep M Llibre
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Santiago Moreno
- Hospital Universitario Ramón y Cajal, Universidad de Alcalá, IRYCIS, Madrid, Spain
| |
Collapse
|
9
|
Zhou MJ, Huang HH, Song JW, Tu B, Fan X, Li J, Jin JH, Cao WJ, Hu W, Yang T, Zhou CB, Yuan JH, Fan J, Zhang JY, Jiao YM, Xu RN, Zhen C, Shi M, Zhang C, Wang FS. Compromised long-lived memory CD8 + T cells are associated with reduced IL-7 responsiveness in HIV-infected immunological nonresponders. Eur J Immunol 2021; 51:2027-2039. [PMID: 33974710 DOI: 10.1002/eji.202149203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/06/2021] [Indexed: 11/07/2022]
Abstract
Immune deficiency is one of the hallmarks of HIV infection and a major cause of adverse outcomes in people living with HIV (PLWH). Long-lived memory CD8+ T cells (LLMCs) are essential executors of long-term protective immunity; however, the generation and maintenance of LLMCs during chronic HIV infection are not well understood. In the present study, we analyzed circulating LLMCs in healthy controls (HCs) and PLWH with different disease statuses, including treatment naïve patients (TNs), complete responders (CRs), and immunological nonresponders (INRs). We found that both TNs and INRs showed severely compromised LLMCs compared with HCs and CRs, respectively. The decrease of LLMCs in TNs correlated positively with the reduction of their precursors, namely memory precursor effector T cells (MPECs), which might be associated with elevated pro-inflammatory cytokines. Strikingly, INRs showed an accumulation of MPECs, which exhibited diminished responsiveness to interleukin 7 (IL-7), thereby indicating abrogated differentiation into LLMCs. Moreover, in vitro studies showed that treatment with dexamethasone could improve the IL7-phosphorylated (p)-signal transducer and activator of transcription (STAT5) response by upregulating the expression of the interleukin 7 receptor (IL-7Rα) on MPECs in INRs. These findings provide insights that will encourage the development of novel therapeutics to improve immune function in PLWH.
Collapse
Affiliation(s)
- Ming-Ju Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Hui-Huang Huang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Wen Song
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Bo Tu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xing Fan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jing Li
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- 302 Clinical Medical School, Peking University, Beijing, China
| | - Jie-Hua Jin
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Wen-Jing Cao
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Bengbu Medical College, Bengbu, China
| | - Wei Hu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Tao Yang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chun-Bao Zhou
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin Fan
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yan-Mei Jiao
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruo-Nan Xu
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Cheng Zhen
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ming Shi
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
- 302 Clinical Medical School, Peking University, Beijing, China
- Bengbu Medical College, Bengbu, China
- Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize the clinical outcomes of people living with HIV (PWH) coinfected with SARS-CoV-2 during the first six months of the COVID-19 pandemic. RECENT FINDINGS Several reports from single centers have described increased, decreased, or no difference in outcomes of COVID-19 in PWH. These studies have come from a range of locations, each with different underlying HIV prevalence and access to various antiretroviral therapy (ART) regimens. Differences in healthcare quality, access and policies may also affect reported outcomes in PWH across different locations, making interpretation of results more challenging. Meanwhile, different components of ART have been proposed to protect against SARS-CoV-2 acquisition or disease progression. SUMMARY The current review considers 6 months of data across geographic regions with a range of healthcare quality and access and ART regimens to generate a wider view of COVID-19 outcomes in PWH. Taken together, these studies indicate that HIV infection may be associated with increased risk of COVID-19 diagnosis, but comorbidities appear to play a larger role than HIV-specific variables in outcomes of COVID-19 among PWH. ART does not appear to protect from COVID-19 disease acquisition, progression or death.
Collapse
Affiliation(s)
- Rowena Johnston
- amfAR, The Foundation for AIDS Research, New York, New York, USA
| |
Collapse
|