1
|
Yang M, Niu X, Yang X, Sun Y, Su W, Zhang J, Wu Q, Wang Y, Zhang Q, Ji H. Identification and validation of hub genes in CD5-positive diffuse large B-cell lymphoma. Exp Biol Med (Maywood) 2023; 248:1469-1478. [PMID: 36847415 PMCID: PMC10666729 DOI: 10.1177/15353702231151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023] Open
Abstract
CD5+ diffuse large B-cell lymphoma (DLBCL), as a significant heterogeneity category of DLBCL, is reflected in both the molecular biological and genetic levels, which in turn induces ever-changing clinical manifestations, and what mediates tumor survival mechanisms are still unclear. This study aimed to predict the potential hub genes in CD5+ DLBCL. A total of 622 patients with DLBCL diagnosed between 2005 and 2019 were included. High expression of CD5 was correlated with IPI, LDH, and Ann Arbor stage, patients with CD5-DLBCL have longer overall survival. We identified 976 DEGs between CD5-negative and positive DLBCL patients in the GEO database and performed GO and KEGG enrichment analysis. After intersecting the genes obtained through the Cytohubba and MCODE, further external verification was performed in the TCGA database. Three hub genes were screened: VSTM2B, GRIA3, and CCND2, of which CCND2 were mainly involved in cell cycle regulation and JAK-STAT signaling pathways. Analysis of clinical samples showed that the expression of CCND2 was found to be correlated with CD5 (p = 0.001), and patients with overexpression of CCND2 in CD5+ DLBCL had poor prognosis (p = 0.0455). Cox risk regression analysis showed that, for DLBCL, CD5, and CCND2 double positive was an independent poor prognostic factor (HR: 2.545; 95% CI: 1.072-6.043; p = 0.034). These findings demonstrate that CD5 and CCND2 double-positive tumors should be stratified into specific subgroups of DLBCL with poor prognosis. CD5 may regulate CCND2 through JAK-STAT signaling pathways, mediating tumor survival. This study provides independent adverse prognostic factors for risk assessment and treatment strategies for newly diagnosed DLBCL.
Collapse
Affiliation(s)
- Ming Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xingjian Niu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xudong Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Yutian Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Wenjia Su
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jing Zhang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Qianjiang Wu
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Yiran Wang
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, Heilongjiang, China
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Hongfei Ji
- Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin 150081, Heilongjiang, China
- Heilongjiang Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
2
|
Adori M, Khoenkhoen S, Zhang J, Dopico XC, Karlsson Hedestam GB. Enhanced B Cell Receptor Signaling Partially Compensates for Impaired Toll-like Receptor 4 Responses in LPS-Stimulated IκBNS-Deficient B Cells. Cells 2023; 12:cells12091229. [PMID: 37174629 PMCID: PMC10177494 DOI: 10.3390/cells12091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Lipopolysaccharide (LPS) stimulates dual receptor signaling by bridging the B cell receptor and Toll-like receptor 4 (BCR/TLR4). B cells from IκBNS-deficient bumble mice treated with LPS display reduced proliferative capacity and impaired plasma cell differentiation. To improve our understanding of the regulatory role of IκBNS in B cell activation and differentiation, we investigated the BCR and TLR4 signaling pathways separately by using dimeric anti-IgM Fab (F(ab')2) or lipid A, respectively. IκBNS-deficient B cells exhibited reduced survival and defective proliferative capacity in response to lipid A compared to B cells from wildtype (wt) control mice. In contrast, anti-IgM stimulation of bumble B cells resulted in enhanced viability and increased differentiation into CD138+ cells compared to control B cells. Anti-IgM-stimulated IκBNS-deficient B cells also showed enhanced cycle progression with increased levels of c-Myc and cyclin D2, and augmented levels of pCD79a, pSyk, and pERK compared to control B cells. These results suggest that IκBNS acts as a negative regulator of BCR signaling and a positive regulator of TLR4 signaling in mouse B cells.
Collapse
Affiliation(s)
- Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism and Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
3
|
Syahirah R, Hsu AY, Deng Q. A curious case of cyclin‐dependent kinases in neutrophils. J Leukoc Biol 2022; 111:1057-1068. [PMID: 35188696 PMCID: PMC9035055 DOI: 10.1002/jlb.2ru1021-573r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are terminally differentiated, short-lived white blood cells critical for innate immunity. Although cyclin-dependent kinases (CDKs) are typically related to cell cycle progression, increasing evidence has shown that they regulate essential functions of neutrophils. This review highlights the roles of CDKs and their partners, cyclins, in neutrophils, outside of cell cycle regulation. CDK1-10 and several cyclins are expressed in neutrophils, albeit at different levels. Observed phenotypes associated with specific inhibition or genetic loss of CDK2 indicate its role in modulating neutrophil migration. CDK4 and 6 regulate neutrophil extracellular traps (NETs) formation, while CDK5 regulates neutrophil degranulation. CDK7 and 9 are critical in neutrophil apoptosis, contributing to inflammation resolution. In addition to the CDKs that regulate mature neutrophil functions, cyclins are essential in hematopoiesis and granulopoiesis. The pivotal roles of CDKs in neutrophils present an untapped potential in targeting CDKs for treating neutrophil-dominant inflammatory diseases and understanding the regulation of the neutrophil life cycle.
Collapse
Affiliation(s)
- Ramizah Syahirah
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Alan Y. Hsu
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
- Department of Pathology Harvard Medical School Boston Massachusetts USA
- Department of Laboratory Medicine The Stem Cell Program, Boston Children's Hospital Boston Massachusetts USA
| | - Qing Deng
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
- Purdue Institute of Inflammation Immunology and Infectious Disease, Purdue University West Lafayette Indiana USA
- Purdue University Center for Cancer Research, Purdue University West Lafayette Indiana USA
| |
Collapse
|
4
|
Thomsen I, Kunowska N, de Souza R, Moody AM, Crawford G, Wang YF, Khadayate S, Whilding C, Strid J, Karimi MM, Barr AR, Dillon N, Sabbattini P. RUNX1 Regulates a Transcription Program That Affects the Dynamics of Cell Cycle Entry of Naive Resting B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2976-2991. [PMID: 34810221 PMCID: PMC8675107 DOI: 10.4049/jimmunol.2001367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/28/2021] [Indexed: 11/19/2022]
Abstract
RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.
Collapse
Affiliation(s)
- Inesa Thomsen
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Natalia Kunowska
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Roshni de Souza
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Anne-Marie Moody
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Greg Crawford
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Yi-Fang Wang
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Sanjay Khadayate
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Chad Whilding
- Microscopy Facility, MRC London Institute of Medical Sciences, London, United Kingdom
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- Bioinformatics and Computing, MRC London Institute of Medical Sciences, London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alexis R Barr
- Cell Cycle Control Group, MRC London Institute of Medical Sciences, London, United Kingdom; and
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Pierangela Sabbattini
- Gene Regulation and Chromatin Group, MRC London Institute of Medical Sciences, London, United Kingdom;
| |
Collapse
|
5
|
Pieters T, T’Sas S, Vanhee S, Almeida A, Driege Y, Roels J, Van Loocke W, Daneels W, Baens M, Marchand A, Van Trimpont M, Matthijssens F, Morscio J, Lemeire K, Lintermans B, Reunes L, Chaltin P, Offner F, Van Dorpe J, Hochepied T, Berx G, Beyaert R, Staal J, Van Vlierberghe P, Goossens S. Cyclin D2 overexpression drives B1a-derived MCL-like lymphoma in mice. J Exp Med 2021; 218:e20202280. [PMID: 34406363 PMCID: PMC8377631 DOI: 10.1084/jem.20202280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/24/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with poor long-term overall survival. Currently, MCL research and development of potential cures is hampered by the lack of good in vivo models. MCL is characterized by recurrent translocations of CCND1 or CCND2, resulting in overexpression of the cell cycle regulators cyclin D1 or D2, respectively. Here, we show, for the first time, that hematopoiesis-specific activation of cyclin D2 is sufficient to drive murine MCL-like lymphoma development. Furthermore, we demonstrate that cyclin D2 overexpression can synergize with loss of p53 to form aggressive and transplantable MCL-like lymphomas. Strikingly, cyclin D2-driven lymphomas display transcriptional, immunophenotypic, and functional similarities with B1a B cells. These MCL-like lymphomas have B1a-specific B cell receptors (BCRs), show elevated BCR and NF-κB pathway activation, and display increased MALT1 protease activity. Finally, we provide preclinical evidence that inhibition of MALT1 protease activity, which is essential for the development of early life-derived B1a cells, can be an effective therapeutic strategy to treat MCL.
Collapse
MESH Headings
- Allografts
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cyclin D2/genetics
- Cyclin D2/metabolism
- Gene Expression Regulation, Neoplastic
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors
- Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Neoplastic Cells, Circulating
- Tumor Suppressor Protein p53/genetics
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Sara T’Sas
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Stijn Vanhee
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Yasmine Driege
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Willem Daneels
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Mathijs Baens
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
| | - Arnaud Marchand
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
| | - Maaike Van Trimpont
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Julie Morscio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Kelly Lemeire
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Béatrice Lintermans
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Lindy Reunes
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Patrick Chaltin
- Center for Innovation and Stimulation of Drug Discovery Leuven, Leuven, Belgium
- Center for Drug Design and Discovery, Catholic University of Leuven, Leuven, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Tino Hochepied
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent, Ghent, Belgium
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Center for Inflammation Research, Flemish Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University and University Hospital, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne-Steele M, Hong R, Min Q, Zhou G, Cheng Y, Qin G, Youngyunpipatkul JV, Wing JB, Sakaguchi S, Toonstra C, Wang LX, Vilches-Moure JG, Wang D, Snyder MP, Wang JY, Han J, Herzenberg LA. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun 2021; 12:525. [PMID: 33483505 PMCID: PMC7822855 DOI: 10.1038/s41467-020-20874-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 01/11/2023] Open
Abstract
CTLA-4 is an important regulator of T-cell function. Here, we report that expression of this immune-regulator in mouse B-1a cells has a critical function in maintaining self-tolerance by regulating these early-developing B cells that express a repertoire enriched for auto-reactivity. Selective deletion of CTLA-4 from B cells results in mice that spontaneously develop autoantibodies, T follicular helper (Tfh) cells and germinal centers (GCs) in the spleen, and autoimmune pathology later in life. This impaired immune homeostasis results from B-1a cell dysfunction upon loss of CTLA-4. Therefore, CTLA-4-deficient B-1a cells up-regulate epigenetic and transcriptional activation programs and show increased self-replenishment. These activated cells further internalize surface IgM, differentiate into antigen-presenting cells and, when reconstituted in normal IgH-allotype congenic recipient mice, induce GCs and Tfh cells expressing a highly selected repertoire. These findings show that CTLA-4 regulation of B-1a cells is a crucial immune-regulatory mechanism.
Collapse
Affiliation(s)
- Yang Yang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Xiao Li
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | - Rongjian Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Min
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Gao Zhou
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - Yong Cheng
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guang Qin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - James B Wing
- Laboratory of Human Immunology (Single Cell Immunology), World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Christian Toonstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Jose G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Immunology, Children's Hospital of Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Han
- iRepertoire Inc, Huntsville, AL, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Leonore A Herzenberg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Pae J, Ersching J, Castro TBR, Schips M, Mesin L, Allon SJ, Ordovas-Montanes J, Mlynarczyk C, Melnick A, Efeyan A, Shalek AK, Meyer-Hermann M, Victora GD. Cyclin D3 drives inertial cell cycling in dark zone germinal center B cells. J Exp Med 2020; 218:211603. [PMID: 33332554 PMCID: PMC7754672 DOI: 10.1084/jem.20201699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
During affinity maturation, germinal center (GC) B cells alternate between proliferation and somatic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by “inertia.” We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma–associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.
Collapse
Affiliation(s)
- Juhee Pae
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Marta Schips
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Samuel J Allon
- Institute for Medical Engineering and Science, Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Jose Ordovas-Montanes
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA.,Program in Immunology Harvard Medical School, Boston, MA.,Harvard Stem Cell Institute, Cambridge, MA
| | - Coraline Mlynarczyk
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Ari Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Alejo Efeyan
- Spanish National Cancer Research Center, Madrid, Spain
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA.,Program in Immunology Harvard Medical School, Boston, MA.,Harvard Stem Cell Institute, Cambridge, MA
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
8
|
Ramezani-Rad P, Chen C, Zhu Z, Rickert RC. Cyclin D3 Governs Clonal Expansion of Dark Zone Germinal Center B Cells. Cell Rep 2020; 33:108403. [PMID: 33207194 PMCID: PMC7714654 DOI: 10.1016/j.celrep.2020.108403] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Germinal center (GC) B cells surge in their proliferative capacity, which poses a direct risk for B cell malignancies. G1- to S-phase transition is dependent on the expression and stability of D-type cyclins. We show that cyclin D3 expression specifically regulates dark zone (DZ) GC B cell proliferation. B cell receptor (BCR) stimulation of GC B cells downregulates cyclin D3 but induces c-Myc, which subsequently requires cyclin D3 to exert GC expansion. Control of DZ proliferation requires degradation of cyclin D3, which is dependent on phosphorylation of residue Thr283 and can be bypassed by cyclin D3T283A hyperstabilization as observed in B cell lymphoma. Thereby, selected GC B cells in the light zone potentially require disengagement from BCR signaling to accumulate cyclin D3 and undergo clonal expansion in the DZ. Mutations of cyclin D3 occur in B cell lymphomas, which derive from highly proliferating germinal center (GC) B cells. Ramezani-Rad et al. show that cyclin D3 in GC B cells is controlled by B cell receptor signaling and is required for proliferation of dark zone GC B cells.
Collapse
Affiliation(s)
- Parham Ramezani-Rad
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Cindi Chen
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zilu Zhu
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Robert C Rickert
- Tumor Microenvironment and Cancer Immunology Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Sippel D, Schwabedal J, Snyder JC, Oyanedel CN, Bernas SN, Garthe A, Tröndle A, Storch A, Kempermann G, Brandt MD. Disruption of NREM sleep and sleep-related spatial memory consolidation in mice lacking adult hippocampal neurogenesis. Sci Rep 2020; 10:16467. [PMID: 33020501 PMCID: PMC7536189 DOI: 10.1038/s41598-020-72362-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Abstract
Cellular plasticity at the structural level and sleep at the behavioural level are both essential for memory formation. The link between the two is not well understood. A functional connection between adult neurogenesis and hippocampus-dependent memory consolidation during NREM sleep has been hypothesized but not experimentally shown. Here, we present evidence that during a three-day learning session in the Morris water maze task a genetic knockout model of adult neurogenesis (Cyclin D2-/-) showed changes in sleep macro- and microstructure. Sleep EEG analyses revealed a lower total sleep time and NREM fraction in Cyclin D2-/- mice as well as an impairment of sleep specific neuronal oscillations that are associated with memory consolidation. Better performance in the memory task was associated with specific sleep parameters in wild-type, but not in Cyclin D2-/- mice. In wild-type animals the number of proliferating cells correlated with the amount of NREM sleep. The lack of adult neurogenesis led to changes in sleep architecture and oscillations that represent the dialog between hippocampus and neocortex during sleep. We suggest that adult neurogenesis-as a key event of hippocampal plasticity-might play an important role for sleep-dependent memory consolidation and modulates learning-induced changes of sleep macro- and microstructure.
Collapse
Affiliation(s)
- D Sippel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Hospital Tübingen, 72076, Tübingen, Germany
| | - J Schwabedal
- Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany
| | - J C Snyder
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany
| | - C N Oyanedel
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| | - S N Bernas
- Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - A Garthe
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany
| | - A Tröndle
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany.,Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - A Storch
- German Center for Neurodegenerative Diseases (DZNE) Rostock, 18147, Rostock, Germany.,Department of Neurology, University of Rostock, 18147, Rostock, Germany
| | - G Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany.,Center for Regenerative Therapies TU Dresden, 01307, Dresden, Germany
| | - M D Brandt
- Department of Neurology, University Hospital, Technische Universität Dresden, 01307, Dresden, Germany. .,German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany.
| |
Collapse
|
10
|
Petkova SP, Pride M, Klocke C, Fenton TA, White J, Lein PJ, Ellegood J, Lerch JP, Silverman JL, Waldau B. Cyclin D2-knock-out mice with attenuated dentate gyrus neurogenesis have robust deficits in long-term memory formation. Sci Rep 2020; 10:8204. [PMID: 32424171 PMCID: PMC7235216 DOI: 10.1038/s41598-020-65090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Neurobehavioral studies have produced contradictory findings concerning the function of neurogenesis in the adult dentate gyrus. Previous studies have proved inconsistent across several behavioral endpoints thought to be dependent on dentate neurogenesis, including memory acquisition, short-term and long-term retention of memory, pattern separation, and reversal learning. We hypothesized that the main function of dentate neurogenesis is long-term memory formation because we assumed that a newly formed and integrated neuron would have a long-term impact on the local neural network. We used a cyclin D2-knock-out (cyclin D2−/−) mouse model of endogenously deficient dentate neurogenesis to test this hypothesis. We found that cyclin D2−/− mice had robust and sustained loss of long-term memory in two separate behavioral tasks, Morris water maze (MWM) and touchscreen intermediate pattern separation. Moreover, after adjusting for differences in brain volumes determined by magnetic resonance (MR) imaging, reduced dentate neurogenesis moderately correlated with deficits in memory retention after 24 hours. Importantly, cyclin D2−/− mice did not show deficits in learning acquisition in a touchscreen paradigm of intermediate pattern separation or MWM platform location, indicating intact short-term memory. Further evaluation of cyclin D2−/− mice is necessary to confirm that deficits are specifically linked to dentate gyrus neurogenesis since cyclin D2−/− mice also have a reduced size of the olfactory bulb, hippocampus, cerebellum and cortex besides reduced dentate gyrus neurogenesis.
Collapse
Affiliation(s)
- Stela P Petkova
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, US
| | - Michael Pride
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, US
| | - Carolyn Klocke
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA, 95616, US
| | - Timothy A Fenton
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, US
| | - Jeannine White
- Institute for Regenerative Cures, Sacramento, CA, 95817, US
| | - Pamela J Lein
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA, 95616, US.,MIND Institute, UC Davis, Sacramento, CA, 95817, US
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience,The University of Oxford, Oxford, OX3 9DU, UK
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, US.,MIND Institute, UC Davis, Sacramento, CA, 95817, US
| | - Ben Waldau
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, 95817, US.
| |
Collapse
|
11
|
Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 2020; 20:669-679. [PMID: 32346095 DOI: 10.1038/s41577-020-0300-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Cell cycle proteins that are often dysregulated in malignant cells, such as cyclin-dependent kinase 4 (CDK4) and CDK6, have attracted considerable interest as potential targets for cancer therapy. In this context, multiple inhibitors of CDK4 and CDK6 have been developed, including three small molecules (palbociclib, abemaciclib and ribociclib) that are currently approved for the treatment of patients with breast cancer and are being extensively tested in individuals with other solid and haematological malignancies. Accumulating preclinical and clinical evidence indicates that the anticancer activity of CDK4/CDK6 inhibitors results not only from their ability to block the cell cycle in malignant cells but also from a range of immunostimulatory effects. In this Review, we discuss the ability of anticancer cell cycle inhibitors to modulate various immune functions in support of effective antitumour immunity.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Selina Chen-Kiang
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Pathology, Weill Cornell Medical College, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA. .,Sandra and Edward Meyer Cancer Center, New York, NY, USA. .,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA. .,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA. .,Université de Paris, Paris, France.
| |
Collapse
|
12
|
Abstract
The mammalian cell cycle is driven by a complex of cyclins and their associated cyclin-dependent kinases (CDKs). Abnormal dysregulation of cyclin-CDK is a hallmark of cancer. D-type cyclins and their associated CDKs (CDK4 and CDK6) are key components of cell cycle machinery in driving G1 to S phase transition via phosphorylating and inactivating the retinoblastoma protein (RB). A body of evidence shows that the cyclin Ds-CDKs axis plays a critical role in cancer through various aspects, such as control of proliferation, senescence, migration, apoptosis, and angiogenesis. CDK4/6 dual-inhibitors show significant efficacy in pre-clinical or clinical cancer therapies either as single agents or in combination with hormone, chemotherapy, irradiation or immune treatments. Of note, as the associated partner of D-type cyclins, CDK6 shows multiple distinct functions from CDK4 in cancer. Depletion of the individual CDK may provide a therapeutic strategy for patients with cancer.
Collapse
Affiliation(s)
- Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Gustavo W Leone
- Department of Biochemistry & Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
13
|
Bartholdy BA, Wang X, Yan XJ, Pascual M, Fan M, Barrientos J, Allen SL, Martinez-Climent JA, Rai KR, Chiorazzi N, Scharff MD, Roa S. CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Adv 2020; 4:893-905. [PMID: 32150608 PMCID: PMC7065474 DOI: 10.1182/bloodadvances.2019000817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Intraclonal subpopulations of circulating chronic lymphocytic leukemia (CLL) cells with different proliferative histories and reciprocal surface expression of CXCR4 and CD5 have been observed in the peripheral blood of CLL patients and named proliferative (PF), intermediate (IF), and resting (RF) cellular fractions. Here, we found that these intraclonal circulating fractions share persistent DNA methylation signatures largely associated with the mutation status of the immunoglobulin heavy chain locus (IGHV) and their origins from distinct stages of differentiation of antigen-experienced B cells. Increased leukemic birth rate, however, showed a very limited impact on DNA methylation of circulating CLL fractions independent of IGHV mutation status. Additionally, DNA methylation heterogeneity increased as leukemic cells advanced from PF to RF in the peripheral blood. This frequently co-occurred with heterochromatin hypomethylation and hypermethylation of Polycomb-repressed regions in the PF, suggesting accumulation of longevity-associated epigenetic features in recently born cells. On the other hand, transcriptional differences between paired intraclonal fractions confirmed their proliferative experience and further supported a linear advancement from PF to RF in the peripheral blood. Several of these differentially expressed genes showed unique associations with clinical outcome not evident in the bulk clone, supporting the pathological and therapeutic relevance of studying intraclonal CLL fractions. We conclude that independent methylation and transcriptional landscapes reflect both preexisting cell-of-origin fingerprints and more recently acquired hallmarks associated with the life cycle of circulating CLL cells.
Collapse
Affiliation(s)
- Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Xiahoua Wang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
| | - Marién Pascual
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Manxia Fan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline Barrientos
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Jose Angel Martinez-Climent
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Kanti R Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY; and
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Matthew D Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Sergio Roa
- Hemato-Oncology Program, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Gupta R, Li W, Yan XJ, Barrientos J, Kolitz JE, Allen SL, Rai K, Chiorazzi N, Mongini PKA. Mechanism for IL-15-Driven B Cell Chronic Lymphocytic Leukemia Cycling: Roles for AKT and STAT5 in Modulating Cyclin D2 and DNA Damage Response Proteins. THE JOURNAL OF IMMUNOLOGY 2019; 202:2924-2944. [PMID: 30988120 DOI: 10.4049/jimmunol.1801142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022]
Abstract
Clonal expansion of B cell chronic lymphocytic leukemia (B-CLL) occurs within lymphoid tissue pseudofollicles. IL-15, a stromal cell-associated cytokine found within spleens and lymph nodes of B-CLL patients, significantly boosts in vitro cycling of blood-derived B-CLL cells following CpG DNA priming. Both IL-15 and CpG DNA are elevated in microbe-draining lymphatic tissues, and unraveling the basis for IL-15-driven B-CLL growth could illuminate new therapeutic targets. Using CpG DNA-primed human B-CLL clones and approaches involving both immunofluorescent staining and pharmacologic inhibitors, we show that both PI3K/AKT and JAK/STAT5 pathways are activated and functionally important for IL-15→CD122/ɣc signaling in ODN-primed cells expressing activated pSTAT3. Furthermore, STAT5 activity must be sustained for continued cycling of CFSE-labeled B-CLL cells. Quantitative RT-PCR experiments with inhibitors of PI3K and STAT5 show that both contribute to IL-15-driven upregulation of mRNA for cyclin D2 and suppression of mRNA for DNA damage response mediators ATM, 53BP1, and MDC1. Furthermore, protein levels of these DNA damage response molecules are reduced by IL-15, as indicated by Western blotting and immunofluorescent staining. Bioinformatics analysis of ENCODE chromatin immunoprecipitation sequencing data from cell lines provides insight into possible mechanisms for STAT5-mediated repression. Finally, pharmacologic inhibitors of JAKs and STAT5 significantly curtailed B-CLL cycling when added either early or late in a growth response. We discuss how the IL-15-induced changes in gene expression lead to rapid cycling and possibly enhanced mutagenesis. STAT5 inhibitors might be an effective modality for blocking B-CLL growth in patients.
Collapse
Affiliation(s)
- Rashmi Gupta
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Wentian Li
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | - Xiao J Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030
| | | | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and
| | - Kanti Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030.,Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549; and.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| | - Patricia K A Mongini
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030; .,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549
| |
Collapse
|
15
|
Repository corticotropin injection reverses critical elements of the TLR9/B cell receptor activation response in human B cells in vitro. Clin Immunol 2019; 201:70-78. [DOI: 10.1016/j.clim.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
|
16
|
Laphanuwat P, Jirawatnotai S. Immunomodulatory Roles of Cell Cycle Regulators. Front Cell Dev Biol 2019; 7:23. [PMID: 30863749 PMCID: PMC6399147 DOI: 10.3389/fcell.2019.00023] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/08/2019] [Indexed: 01/11/2023] Open
Abstract
Core cell cycle regulators, including cyclin-dependent kinases (CDKs), cyclins, and cyclin-dependent kinase inhibitors (CKIs), are known for their well-characterized roles in cell division. Several recent studies have shed light on the roles of these proteins in immune modulation. The development and activation of cells in the immune system take place not only during embryonic development but throughout the life of a multicellular organism. Cell cycle regulators are involved in the development of immune cells, partly as the machinery controlling the expansion and differentiation of the populations of immune cells. In addition, these proteins serve non-cell cycle functions. In this review, we summarize the emerging roles of cell cycle regulators in modulating functions of the immune system and discuss how they may be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Phatthamon Laphanuwat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Siriraj Center of Research for Excellence for Systems Pharmacology, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Siriraj Center of Research for Excellence for Systems Pharmacology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Ozer HG, El-Gamal D, Powell B, Hing ZA, Blachly JS, Harrington B, Mitchell S, Grieselhuber NR, Williams K, Lai TH, Alinari L, Baiocchi RA, Brinton L, Baskin E, Cannon M, Beaver L, Goettl VM, Lucas DM, Woyach JA, Sampath D, Lehman AM, Yu L, Zhang J, Ma Y, Zhang Y, Spevak W, Shi S, Severson P, Shellooe R, Carias H, Tsang G, Dong K, Ewing T, Marimuthu A, Tantoy C, Walters J, Sanftner L, Rezaei H, Nespi M, Matusow B, Habets G, Ibrahim P, Zhang C, Mathé EA, Bollag G, Byrd JC, Lapalombella R. BRD4 Profiling Identifies Critical Chronic Lymphocytic Leukemia Oncogenic Circuits and Reveals Sensitivity to PLX51107, a Novel Structurally Distinct BET Inhibitor. Cancer Discov 2018; 8:458-477. [PMID: 29386193 PMCID: PMC5882533 DOI: 10.1158/2159-8290.cd-17-0902] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/12/2017] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
Bromodomain and extra-terminal (BET) family proteins are key regulators of gene expression in cancer. Herein, we utilize BRD4 profiling to identify critical pathways involved in pathogenesis of chronic lymphocytic leukemia (CLL). BRD4 is overexpressed in CLL and is enriched proximal to genes upregulated or de novo expressed in CLL with known functions in disease pathogenesis and progression. These genes, including key members of the B-cell receptor (BCR) signaling pathway, provide a rationale for this therapeutic approach to identify new targets in alternative types of cancer. Additionally, we describe PLX51107, a structurally distinct BET inhibitor with novel in vitro and in vivo pharmacologic properties that emulates or exceeds the efficacy of BCR signaling agents in preclinical models of CLL. Herein, the discovery of the involvement of BRD4 in the core CLL transcriptional program provides a compelling rationale for clinical investigation of PLX51107 as epigenetic therapy in CLL and application of BRD4 profiling in other cancers.Significance: To date, functional studies of BRD4 in CLL are lacking. Through integrated genomic, functional, and pharmacologic analyses, we uncover the existence of BRD4-regulated core CLL transcriptional programs and present preclinical proof-of-concept studies validating BET inhibition as an epigenetic approach to target BCR signaling in CLL. Cancer Discov; 8(4); 458-77. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 371.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Cycle Proteins
- Cell Line, Tumor
- Cell Proliferation
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Isoxazoles/pharmacology
- Isoxazoles/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology
- Mice
- Mice, SCID
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Pyridines/pharmacology
- Pyridines/therapeutic use
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hatice Gulcin Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Dalia El-Gamal
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Zachary A Hing
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Bonnie Harrington
- College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Shaneice Mitchell
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Katie Williams
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Tzung-Huei Lai
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Lapo Alinari
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Robert A Baiocchi
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Lindsey Brinton
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Elizabeth Baskin
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Cannon
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Larry Beaver
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Virginia M Goettl
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - David M Lucas
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Jennifer A Woyach
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Deepa Sampath
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | | | - Yan Ma
- Plexxikon Inc., Berkeley, California
| | | | | | | | | | | | | | | | - Ken Dong
- Plexxikon Inc., Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | - Ewy A Mathé
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | | | - John C Byrd
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio.
| | - Rosa Lapalombella
- Division of Hematology, Department of Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
18
|
Tao S, Niu L, Cai L, Geng Y, Hua C, Ni Y, Zhao R. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells. Life Sci 2018; 201:81-88. [PMID: 29596921 DOI: 10.1016/j.lfs.2018.03.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/17/2018] [Accepted: 03/25/2018] [Indexed: 02/08/2023]
Abstract
AIMS The quorum-sensing molecule N‑(3‑oxododecanoyl)‑l‑homoserine lactone (C12-HSL), produced by the Gram negative human pathogenic bacterium Pseudomonas aeruginosa, modulates mammalian cell behavior. Our previous findings suggested that C12-HSL rapidly decreases viability and induces apoptosis in LS174T goblet cells. MAIN METHODS In this study, the effects of 100 μM C12-HSL on mitochondrial function and cell proliferation in LS174T cells treated for 4 h were evaluated by real-time PCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. KEY FINDINGS The results showed that the activities of mitochondrial respiratory chain complexes IV and V were significantly increased (P < 0.05) in LS174T cells after C12-HSL treatment, with elevated intracellular ATP generation (P < 0.05). Flow cytometry analysis revealed significantly increased intracellular Ca2+ levels (P < 0.05), as well as disrupted mitochondrial activity and cell cycle arrest upon C12-HSL treatment. Apoptosis and cell proliferation related genes showed markedly altered expression levels (P < 0.05) in LS174T cells after C12-HSL treatment. Moreover, the paraoxonase 2 (PON2) inhibitor TQ416 (1 μM) remarkably reversed the above C12-HSL associated effects in LS174T cells. SIGNIFICANCE These findings indicated that C12-HSL alters mitochondrial energy production and function, and inhibits cell proliferation in LS174T cells, with PON2 involvement.
Collapse
Affiliation(s)
- Shiyu Tao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liqiong Niu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liuping Cai
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yali Geng
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Canfeng Hua
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Filipkowski RK, Kaczmarek L. Severely impaired adult brain neurogenesis in cyclin D2 knock-out mice produces very limited phenotypic changes. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:63-67. [PMID: 28433461 DOI: 10.1016/j.pnpbp.2017.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/02/2023]
Abstract
The discovery of new neurons being produced in the brains of adult mammals (adult brain neurogenesis) began a quest to determine the function(s) of these cells. Major hypotheses in the field have assumed that these neurons play pivotal role, in particular, in learning and memory phenomena, mood control, and epileptogenesis. In our studies summarized herein, we used cyclin D2 knockout (KO) mice, as we have shown that cyclin D2 is the key factor in adult brain neurogenesis and thus its lack produces profound impairment of the process. On the other hand, developmental neurogenesis responsible for the brain formation depends only slightly on cyclin D2, as the mutants display minor structural abnormalities, such as smaller hippocampus and more severe disturbances in the structure of the olfactory bulbs. Surprisingly, the studies have revealed that cyclin D2 KO mice did not show major deficits in several behavioral paradigms assessing hippocampal learning and memory. Furthermore, missing adult brain neurogenesis affected neither action of antidepressants, nor epileptogenesis. On the other hand, minor deficits observed in cyclin D2 KO mice in fine tuning of cognitive functions, species-typical behaviors and alcohol consumption might be explained by a reduced hippocampal size and/or other developmentally driven brain impairments observed in these mutant mice. In aggregate, surprisingly, missing almost entirely adult brain neurogenesis produces only very limited behavioral phenotype that could be attributed to the consequences of the development-dependent minor brain abnormalities.
Collapse
Affiliation(s)
- Robert K Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St., 02-106 Warsaw, Poland.
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3 St., 02-093 Warsaw, Poland.
| |
Collapse
|
20
|
Sherr CJ, Sicinski P. The D-Type Cyclins: A Historical Perspective. D-TYPE CYCLINS AND CANCER 2018. [DOI: 10.1007/978-3-319-64451-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Whiteley AM, Prado MA, Peng I, Abbas AR, Haley B, Paulo JA, Reichelt M, Katakam A, Sagolla M, Modrusan Z, Lee DY, Roose-Girma M, Kirkpatrick DS, McKenzie BS, Gygi SP, Finley D, Brown EJ. Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins. eLife 2017; 6. [PMID: 28933694 PMCID: PMC5608509 DOI: 10.7554/elife.26435] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquilins (Ubqlns) are a family of ubiquitin receptors that promote the delivery of hydrophobic and aggregated ubiquitinated proteins to the proteasome for degradation. We carried out a proteomic analysis of a B cell lymphoma-derived cell line, BJAB, that requires UBQLN1 for survival to identify UBQLN1 client proteins. When UBQLN1 expression was acutely inhibited, 120 mitochondrial proteins were enriched in the cytoplasm, suggesting that the accumulation of mitochondrial client proteins in the absence of UBQLN1 is cytostatic. Using a Ubqln1−/− mouse strain, we found that B cell receptor (BCR) ligation of Ubqln1−/− B cells led to a defect in cell cycle entry. As in BJAB cells, mitochondrial proteins accumulated in BCR-stimulated cells, leading to protein synthesis inhibition and cell cycle block. Thus, UBQLN1 plays an important role in clearing mislocalized mitochondrial proteins upon cell stimulation, and its absence leads to suppression of protein synthesis and cell cycle arrest.
Collapse
Affiliation(s)
- Alexandra M Whiteley
- Department of Infectious Disease, Genentech, South San Francisco, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Ivan Peng
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Alexander R Abbas
- Department of Bioinformatics, Genentech, South San Francisco, United States
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, South San Francisco, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Mike Reichelt
- Department of Pathology, Genentech, South San Francisco, United States
| | - Anand Katakam
- Department of Pathology, Genentech, South San Francisco, United States
| | - Meredith Sagolla
- Department of Pathology, Genentech, South San Francisco, United States
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Dong Yun Lee
- Department of Infectious Disease, Genentech, South San Francisco, United States
| | - Merone Roose-Girma
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics, and Lipidomics, Genentech, South San Francisco, United States
| | - Brent S McKenzie
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Eric J Brown
- Department of Infectious Disease, Genentech, South San Francisco, United States
| |
Collapse
|
22
|
DiMenna LJ, Yen WF, Nicolas L, Sharma R, Saldanha ZN, Chaudhuri J. Cutting Edge: The Transcription Factor Sox2 Regulates AID Expression in Class-Switched B Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:2244-2248. [PMID: 28188246 DOI: 10.4049/jimmunol.1502266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
IgH class switch recombination (CSR) occurs through the deliberate introduction of activation-induced cytidine deaminase (AID)-instigated DNA double-strand breaks into the IgH loci. Because double-strand breaks are generally highly toxic, mechanisms that regulate AID expression are of much relevance to CSR and genomic integrity; however, effectors of such regulatory processes are still poorly understood. In this article, we show that the transcription factor sex determining region Y-box 2 (Sox2) is expressed in activated B cells, but almost exclusively in those that have undergone CSR. We demonstrate that enforced expression of Sox2 in splenic B cells severely inhibits AID expression and CSR, whereas deletion of Sox2 increases the frequency of IgH:c-Myc translocations. These results suggest that Sox2 may regulate AID expression in class-switched B cells to suppress genomic instability associated with CSR.
Collapse
Affiliation(s)
- Lauren J DiMenna
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021; and.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Wei-Feng Yen
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021; and
| | - Laura Nicolas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021; and
| | - Rahul Sharma
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021; and
| | - Zara N Saldanha
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021; and
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021; and .,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| |
Collapse
|
23
|
Soutar DA, Doucette CD, Liwski RS, Hoskin DW. Piperine, a Pungent Alkaloid from Black Pepper, Inhibits B Lymphocyte Activation and Effector Functions. Phytother Res 2017; 31:466-474. [PMID: 28102026 DOI: 10.1002/ptr.5772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 12/28/2016] [Indexed: 11/09/2022]
Abstract
Piperine has several well-documented anti-inflammatory properties; however, little is known regarding its effect on humoral immunity. In this study, we describe the immunosuppressive effect of piperine on B lymphocytes, which are integral to the humoral immune response. Mouse B cells were cultured in the absence or presence of non-cytotoxic concentrations (25, 50, and 100 μM) of piperine during T-dependent or T-independent stimulation. Piperine inhibited B cell proliferation by causing G0/G1 phase cell cycle arrest in association with reduced expression of cyclin D2 and D3. The inhibitory effect of piperine was not mediated through transient receptor potential vanilloid-1 ion channel (TRPV1) because piperine also inhibited the proliferation of B cells from TRPV1-deficient mice. Expression of class II major histocompatibility complex molecules and costimulatory CD40 and CD86 on B lymphocytes was reduced in the presence of piperine, as was B cell-mediated antigen presentation to syngeneic T cells. In addition, piperine inhibited B cell synthesis of interleukin (IL)-6 and IL-10 cytokines, as well as IgM, IgG2b, and IgG3 immunoglobulins. The inhibitory effect of piperine on B lymphocyte activation and effector function warrants further investigation for possible application in the treatment of pathologies related to inappropriate humoral immune responses. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- David A Soutar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Carolyn D Doucette
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Robert S Liwski
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - David W Hoskin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
24
|
Hayakawa K, Formica AM, Brill-Dashoff J, Shinton SA, Ichikawa D, Zhou Y, Morse HC, Hardy RR. Early generated B1 B cells with restricted BCRs become chronic lymphocytic leukemia with continued c-Myc and low Bmf expression. J Exp Med 2016; 213:3007-3024. [PMID: 27899442 PMCID: PMC5154941 DOI: 10.1084/jem.20160712] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/01/2016] [Accepted: 10/21/2016] [Indexed: 01/22/2023] Open
Abstract
Hayakawa et al. show that distinctive B-lineage progression from B-1 development allows for generation of B1a cells with restricted BCRs and self-renewal capacity, both contributing to potential for CLL progression. In mice, generation of autoreactive CD5+ B cells occurs as a consequence of BCR signaling induced by (self)-ligand exposure from fetal/neonatal B-1 B cell development. A fraction of these cells self-renew and persist as a minor B1 B cell subset throughout life. Here, we show that transfer of early generated B1 B cells from Eμ-TCL1 transgenic mice resulted in chronic lymphocytic leukemia (CLL) with a biased repertoire, including stereotyped BCRs. Thus, B1 B cells bearing restricted BCRs can become CLL during aging. Increased anti-thymocyte/Thy-1 autoreactive (ATA) BCR cells in the B1 B cell subset by transgenic expression yielded spontaneous ATA B-CLL/lymphoma incidence, enhanced by TCL1 transgenesis. In contrast, ATA B-CLL did not develop from other B cell subsets, even when the identical ATA BCR was expressed on a Thy-1 low/null background. Thus, both a specific BCR and B1 B cell context were important for CLL progression. Neonatal B1 B cells and their CLL progeny in aged mice continued to express moderately up-regulated c-Myc and down-regulated proapoptotic Bmf, unlike most mature B cells in the adult. Thus, there is a genetic predisposition inherent in B-1 development generating restricted BCRs and self-renewal capacity, with both features contributing to potential for progression to CLL.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | | |
Collapse
|
25
|
Canonical NF-κB signaling is uniquely required for the long-term persistence of functional mature B cells. Proc Natl Acad Sci U S A 2016; 113:5065-70. [PMID: 27099294 DOI: 10.1073/pnas.1604529113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although canonical NF-κB signaling is crucial to generate a normal mature B-cell compartment, its role in the persistence of resting mature B cells is controversial. To resolve this conflict, we ablated NF-κB essential modulator (NEMO) and IκB kinase 2 (IKK2), two essential mediators of the canonical pathway, either early on in B-cell development or specifically in mature B cells. Early ablation severely inhibited the generation of all mature B-cell subsets, but follicular B-cell numbers could be largely rescued by ectopic expression of B-cell lymphoma 2 (Bcl2), despite a persisting block at the transitional stage. Marginal zone (MZ) B and B1 cells were not rescued, indicating a possible role of canonical NF-κB signals beyond the control of cell survival in these subsets. When canonical NF-κB signaling was ablated specifically in mature B cells, the differentiation and/or persistence of MZ B cells was still abrogated, but follicular B-cell numbers were only mildly affected. However, the mutant cells exhibited increased turnover as well as functional deficiencies upon activation, suggesting that canonical NF-κB signals contribute to their long-term persistence and functional fitness.
Collapse
|
26
|
Maternal gestational betaine supplementation-mediated suppression of hepatic cyclin D2 and presenilin1 gene in newborn piglets is associated with epigenetic regulation of the STAT3-dependent pathway. J Nutr Biochem 2015; 26:1622-31. [DOI: 10.1016/j.jnutbio.2015.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/19/2023]
|
27
|
CTLA-4 affects expression of key cell cycle regulators of G0/G1 phase in neoplastic lymphocytes from patients with chronic lymphocytic leukaemia. Clin Exp Med 2015; 16:317-32. [PMID: 26003188 PMCID: PMC4969362 DOI: 10.1007/s10238-015-0360-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/14/2015] [Indexed: 10/31/2022]
Abstract
Previously, we showed that cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) is overexpressed in chronic lymphocytic leukaemia (CLL) and its expression is correlated with the expression of the major regulators of G1 phase progression: cyclins D2 and D3, and cyclin-dependent kinase inhibitory protein 1 (p27 (KIP1) ). In the present study, we blocked CTLA-4 on the surface of both CLL cells and normal B lymphocytes to investigate the impact of CTLA-4 on the expression of the mentioned G1 phase regulators. We found that in CLL patients and in healthy individuals, the median proportions of cyclin D2-positive cells as well as cyclin D3(+) cells significantly decreased following CTLA-4 blockade. Moreover, CTLA-4 blockade led to an increase in the median frequencies of p27 (KIP1) -positive cells, although this increase was marked only in CLL patients. Our study showed that CTLA-4 affects the expression of the key regulators of G1 phase progression in CLL cells as well as in normal B lymphocytes and may contribute to a better understanding of the role of CTLA-4 in the regulation of G1 phase progression.
Collapse
|
28
|
Martorelli D, Muraro E, Mastorci K, Dal Col J, Faè DA, Furlan C, Giagulli C, Caccuri F, Rusnati M, Fiorentini S, Carbone A, Caruso A, Dolcetti R. A natural HIV p17 protein variant up-regulates the LMP-1 EBV oncoprotein and promotes the growth of EBV-infected B-lymphocytes: implications for EBV-driven lymphomagenesis in the HIV setting. Int J Cancer 2015; 137:1374-85. [PMID: 25704763 DOI: 10.1002/ijc.29494] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/12/2015] [Indexed: 01/11/2023]
Abstract
Human immunodeficiency virus p17 matrix protein is released by infected cells and may accumulate within lymphoid tissues where it may deregulate the biological activities of different cell populations by binding to CXCR1 and CXCR2 cellular receptors. S75X, a natural p17 variant, was recently shown to enhance the malignant properties of lymphoma cells. We investigated a reference p17 protein and the S75X variant for their ability to bind to Epstein-Barr virus (EBV)-infected primary and fully transformed B-lymphocytes and trigger downstream effects of potential pathogenic relevance. We demonstrate that EBV infection of primary B-lymphocytes or the ectopic expression of the latent membrane protein-1 viral oncoprotein in EBV-negative B-cells up-regulates CXCR2, but not CXCR1. Multispectral imaging flow cytometry showed that EBV-infected primary B-cells more efficiently bind and internalize p17 proteins as compared with activated B-lymphocytes. The S75X variant bound more efficiently to EBV-infected primary and fully transformed B-lymphocytes compared with reference p17, because of a higher affinity to CXCR2, and enhanced the proliferation of these cells, an effect associated with cyclin D2 and D3 up-regulation and increased interleukin-6 production. Notably, the S75X variant markedly up-regulated latent membrane protein-1 expression at both mRNA and protein levels and enhanced the activation of Akt, ERK1/2 and STAT3 signaling, thereby contributing to EBV(+) B-cell growth promotion. These results indicate that EBV infection sensitizes B-lymphocytes to CXCR2-mediated effects of p17 proteins and provide evidence supporting a possible contribution of natural p17 variants to EBV-driven lymphomagenesis in the human immunodeficiency virus setting.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Elena Muraro
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Katy Mastorci
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Jessica Dal Col
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Damiana Antonia Faè
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Chiara Furlan
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy.,Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Cinzia Giagulli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Francesca Caccuri
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Simona Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Antonino Carbone
- Pathology Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, CRO Aviano, IRCCS, National Cancer Institute, Aviano, Pordenone, Italy
| |
Collapse
|
29
|
Xu Z, Morel L. Contribution of B-1a cells to systemic lupus erythematosus in the NZM2410 mouse model. Ann N Y Acad Sci 2015; 1362:215-23. [PMID: 25728381 DOI: 10.1111/nyas.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of complex etiology in which B cells play a central role. An expanded number of B-1a cells have been consistently associated with murine lupus, and more recently with human SLE. We have identified Cdkn2c, a gene that controls cell cycle progression, as a key regulator of B-1a cell numbers and have associated Cdkn2c deficiency with autoimmune pathology, including the production of autoantibodies and the skewing of CD4(+) T cells toward inflammatory effector functions. We review the genetic studies that have led to these findings, as well as the possible mechanisms by which B-1a cell expansion and Cdkn2c deficiency are related to SLE pathogenesis.
Collapse
Affiliation(s)
- Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
30
|
Xu X, Ng SM, Hassouna E, Warrington A, Oh SH, Rodriguez M. Human-derived natural antibodies: biomarkers and potential therapeutics. FUTURE NEUROLOGY 2015; 10:25-39. [PMID: 25678860 DOI: 10.2217/fnl.14.62] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immune system generates antibodies and antigen-specific T-cells as basic elements of the immune networks that differentiate self from non-self in a finely tuned manner. The antigen-specific nature of immune responses ensures that normal immune activation contains non-self when tolerating self. Here we review the B-1 subset of lymphocytes which produce self-reactive antibodies. By analyzing the IgM class of natural antibodies that recognize antigens from the nervous system, we emphasize that natural antibodies are biomarkers of how the immune system monitors the host. The immune response activated against self can be detrimental when triggered in an autoimmune genetic background. In contrast, tuning immune activity with natural antibodies is a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sher May Ng
- School of Clinical Medicine, University Of Cambridge, Hills Rd, Cambridge CB2 0SP, UK
| | - Eamonn Hassouna
- Department of General Medicine, Charles University Hradec Kralove Faculty, Prague, Czech Republic
| | - Arthur Warrington
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Sang-Hyun Oh
- Laboratory of Nanostructures & Biosensing, Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA ; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA ; Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
31
|
Schmitt F, Schäll D, Bucher K, Schindler TI, Hector A, Biedermann T, Zemlin M, Hartl D, Beer-Hammer S. SLy2 controls the antibody response to pneumococcal vaccine through an IL-5Rα-dependent mechanism in B-1 cells. Eur J Immunol 2014; 45:60-70. [DOI: 10.1002/eji.201444882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/12/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Fee Schmitt
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen; Tübingen Germany
| | - Daniel Schäll
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen; Tübingen Germany
| | - Kirsten Bucher
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen; Tübingen Germany
| | | | - Andreas Hector
- Department of Pediatrics I, Pediatric Infectiology and Immunology, University of Tübingen; Tübingen Germany
| | - Tilo Biedermann
- Department of Dermatology; University of Tübingen; Tübingen Germany
| | - Michael Zemlin
- Department of Pediatrics; Philipps University Marburg; Marburg Germany
| | - Dominik Hartl
- Department of Pediatrics I, Pediatric Infectiology and Immunology, University of Tübingen; Tübingen Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology; Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen; Tübingen Germany
| |
Collapse
|
32
|
Hamel KM, Mandal M, Karki S, Clark MR. Balancing Proliferation with Igκ Recombination during B-lymphopoiesis. Front Immunol 2014; 5:139. [PMID: 24765092 PMCID: PMC3980108 DOI: 10.3389/fimmu.2014.00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022] Open
Abstract
The essential events of B-cell development are the stochastic and sequential rearrangement of immunoglobulin heavy (Igμ) and then light chain (Igκ followed by Igλ) loci. The counterpoint to recombination is proliferation, which both maintains populations of pro-B cells undergoing Igμ recombination and expands the pool of pre-B cells expressing the Igμ protein available for subsequent Igκ recombination. Proliferation and recombination must be segregated into distinct and mutually exclusive developmental stages. Failure to do so risks aberrant gene translocation and leukemic transformation. Recent studies have demonstrated that proliferation and recombination are each affected by different and antagonistic receptors. The IL-7 receptor drives proliferation while the pre-B-cell antigen receptor, which contains Igμ and surrogate light chain, enhances Igκ accessibility and recombination. Remarkably, the principal downstream proliferative effectors of the IL-7R, STAT5 and cyclin D3, directly repress Igκ accessibility through very divergent yet complementary mechanisms. Conversely, the pre-B-cell receptor represses cyclin D3 leading to cell cycle exit and enhanced Igκ accessibility. These studies reveal how cell fate decisions can be directed and reinforced at each developmental transition by single receptors. Furthermore, they identify novel mechanisms of Igκ repression that have implications for gene regulation in general.
Collapse
Affiliation(s)
- Keith M Hamel
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago , Chicago, IL , USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago , Chicago, IL , USA
| | - Sophiya Karki
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago , Chicago, IL , USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology, Gwen Knapp Center for Lupus and Immunology Research, The University of Chicago , Chicago, IL , USA
| |
Collapse
|
33
|
Zhang Q, Sakamoto K, Wagner KU. D-type Cyclins are important downstream effectors of cytokine signaling that regulate the proliferation of normal and neoplastic mammary epithelial cells. Mol Cell Endocrinol 2014; 382:583-592. [PMID: 23562856 PMCID: PMC3740091 DOI: 10.1016/j.mce.2013.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/19/2013] [Indexed: 02/07/2023]
Abstract
In response to the ligand-mediated activation of cytokine receptors, cells decide whether to proliferate or to undergo differentiation. D-type Cyclins (Cyclin D1, D2, or D3) and their associated Cyclin-dependent kinases (CDK4, CDK6) connect signals from cytokines to the cell cycle machinery, and they propel cells through the G1 restriction point and into the S phase, after which growth factor stimulation is no longer essential to complete cell division. D-type Cyclins are upregulated in many human malignancies including breast cancer to promote an uncontrolled proliferation of cancer cells. After summarizing important aspects of the cytokine-mediated transcriptional regulation and the posttranslational modification of D-type Cyclins, this review will highlight the physiological significance of these cell cycle regulators during normal mammary gland development as well as the initiation and promotion of breast cancer. Although the vast majority of published reports focus almost exclusively on the role of Cyclin D1 in breast cancer, we summarize here previous and recent findings that demonstrate an important contribution of the remaining two members of this Cyclin family, in particular Cyclin D3, for the growth of ErbB2-associated breast cancer cells in humans and in mouse models. New data from genetically engineered models as well as the pharmacological inhibition of CDK4/6 suggest that targeting the combined functions of D-type Cyclins could be a suitable strategy for the treatment of ErbB2-positive and potentially other types of breast cancer.
Collapse
Affiliation(s)
- Qian Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Kazuhito Sakamoto
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA.
| |
Collapse
|
34
|
Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol 2013; 14:69-80. [PMID: 24378843 DOI: 10.1038/nri3570] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of B cells is dependent on the sequential DNA rearrangement of immunoglobulin loci that encode subunits of the B cell receptor. The pathway navigates a crucial checkpoint that ensures expression of a signalling-competent immunoglobulin heavy chain before commitment to rearrangement and expression of an immunoglobulin light chain. The checkpoint segregates proliferation of pre-B cells from immunoglobulin light chain recombination and their differentiation into B cells. Recent advances have revealed the molecular circuitry that controls two rival signalling systems, namely the interleukin-7 (IL-7) receptor and the pre-B cell receptor, to ensure that proliferation and immunoglobulin recombination are mutually exclusive, thereby maintaining genomic integrity during B cell development.
Collapse
|
35
|
Sawai C, Freund J, Oh P, Ndiaye-Lobry D, Bretz JC, Strikoudis A, Genesca L, Trimarchi T, Kelliher MA, Clark M, Soulier J, Chen-Kiang S, Aifantis I. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell 2012; 22:452-65. [PMID: 23079656 PMCID: PMC3493168 DOI: 10.1016/j.ccr.2012.09.016] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/18/2012] [Accepted: 09/13/2012] [Indexed: 12/11/2022]
Abstract
D-type cyclins form complexes with cyclin-dependent kinases (CDK4/6) and promote cell cycle progression. Although cyclin D functions appear largely tissue specific, we demonstrate that cyclin D3 has unique functions in lymphocyte development and cannot be replaced by cyclin D2, which is also expressed during blood differentiation. We show that only combined deletion of p27(Kip1) and retinoblastoma tumor suppressor (Rb) is sufficient to rescue the development of Ccnd3(-/-) thymocytes. Furthermore, we show that a small molecule targeting the kinase function of cyclin D3:CDK4/6 inhibits both cell cycle entry in human T cell acute lymphoblastic leukemia (T-ALL) and disease progression in animal models of T-ALL. These studies identify unique functions for cyclin D3:CDK4/6 complexes and suggest potential therapeutic protocols for this devastating blood tumor.
Collapse
Affiliation(s)
- Catherine Sawai
- Department of Pathology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| | - Jacquelyn Freund
- Department of Pathology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| | - Philmo Oh
- Department of Pathology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| | - Delphine Ndiaye-Lobry
- Department of Pathology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| | - Jamieson C. Bretz
- Department of Pathology and Graduate Program in Immunology and Microbial Pathogenesis, Weill Medical College of Cornell University, New York NY 10065
| | - Alexandros Strikoudis
- Department of Pathology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| | - Lali Genesca
- INSERM U944 and University Paris Diderot, Saint-Louis Hospital, Paris, France
| | - Thomas Trimarchi
- Department of Pathology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| | - Michelle A. Kelliher
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Marcus Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus Research, University of Chicago, Chicago, Illinois, USA
| | - Jean Soulier
- INSERM U944 and University Paris Diderot, Saint-Louis Hospital, Paris, France
| | - Selina Chen-Kiang
- Department of Pathology and Graduate Program in Immunology and Microbial Pathogenesis, Weill Medical College of Cornell University, New York NY 10065
| | - Iannis Aifantis
- Department of Pathology and Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
- To Whom Correspondence Should Be Addressed: Dr. Iannis Aifantis, Howard Hughes Medical Institute and, Department of Pathology, New York University School of Medicine, 550 First Avenue, MSB 538, New York, NY 10016, , Phone: 212 263 5365
| |
Collapse
|
36
|
Das G, Clark AM, Levine EM. Cyclin D1 inactivation extends proliferation and alters histogenesis in the postnatal mouse retina. Dev Dyn 2012; 241:941-52. [PMID: 22434780 DOI: 10.1002/dvdy.23782] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The cell-cycle regulator Cyclin D1 is expressed in embryonic retinal progenitor cells (RPCs) and regulates their cell-cycle rate and neurogenic output. We report here that Cyclin D1 also has important functions in postnatal retinal histogenesis. RESULTS The initial production of Müller glia and bipolar cells was enhanced in Cyclin D1 knockout (Ccnd1(-/-) ) retinas. Despite a steeper than normal rate of depletion of the RPC population at embryonic ages, postnatal Ccnd1(-/-) retinas exhibited an extended window of proliferation, neurogenesis, and gliogenesis. Cyclin D3, normally confined to Müller glia, was prematurely expressed in Ccnd1(-/-) RPCs. However, Cyclin D3 did not compensate for Cyclin D1 in regulating cell-cycle kinetics or neurogenic output. CONCLUSIONS The data presented in this study along with our previous finding that Cyclin D2 was unable to completely compensate for the absence of Cyclin D1 indicate that Cyclin D1 regulates retinal histogenesis in ways not shared by the other D-cyclins.
Collapse
Affiliation(s)
- Gaurav Das
- Departments of Ophthalmology and Visual Sciences, and Neurobiology and Anatomy, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
37
|
Ji F, Chen R, Liu B, Zhang X, Han J, Wang H, Shen G, Tao J. BAFF induces spleen CD4+ T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression. Biochem Biophys Res Commun 2012; 425:854-8. [DOI: 10.1016/j.bbrc.2012.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 01/01/2023]
|
38
|
Potula HHSK, Xu Z, Zeumer L, Sang A, Croker BP, Morel L. Cyclin-dependent kinase inhibitor Cdkn2c deficiency promotes B1a cell expansion and autoimmunity in a mouse model of lupus. THE JOURNAL OF IMMUNOLOGY 2012; 189:2931-40. [PMID: 22896639 DOI: 10.4049/jimmunol.1200556] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lupus-prone NZM2410 mice present an expanded B1a cell population that we have mapped to the Sle2c1 lupus susceptibility locus. The expression of Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18(Ink4c) and located within Sle2c1, is significantly lower in B6.Sle2c1 B cells than in B6 B cells. To test the hypothesis that the B1a cell expansion in B6.Sle2c1 mice was due to a defective p18 expression, we analyzed the B1a cell phenotypes of p18-deficient C57BL/6 mice. We found a dose-dependent negative correlation between the number of B1a cells and p18 expression in B cells, with p18-deficient mice showing an early expansion of the peritoneal B1a cell pool. p18 deficiency enhanced the homeostatic expansion of B1a cells but not of splenic conventional B cells, and the elevated number of B6.Sle2c1 B1a cells was normalized by cyclin D2 deficiency. These data demonstrated that p18 is a key regulator of the size of the B1a cell pool. B6.p18(-/-) mice produced significant amounts of anti-DNA IgM and IgG, indicating that p18 deficiency contributes to humoral autoimmunity. Finally, we have shown that Sle2c1 increases lpr-associated lymphadenopathy and T cell-mediated pathology. B6.p18(-/-).lpr mice showed a greater lymphadenopathy than B6.Sle2c1.lpr mice, but their renal pathology was intermediate between that of B6.lpr and B6.Sle2c1.lpr mice. This indicated that p18-deficiency synergizes, at least partially, with lpr-mediated pathology. These results show that Cdkn2c contributes to lupus susceptibility by regulating the size of the B1a cell compartment and hence their contribution to autoimmunity.
Collapse
Affiliation(s)
- Hari-Hara S K Potula
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
39
|
Matsumoto A, Nakayama KI. Role of key regulators of the cell cycle in maintenance of hematopoietic stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2335-44. [PMID: 22820018 DOI: 10.1016/j.bbagen.2012.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/26/2012] [Accepted: 07/10/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) are characterized by pluripotentiality and self-renewal ability. To maintain a supply of mature blood cells and to avoid HSC exhaustion during the life span of an organism, most HSCs remain quiescent, with only a limited number entering the cell cycle. SCOPE OF REVIEW The molecular mechanisms by which quiescence is maintained in HSCs are addressed, with recent genetic studies having provided important insight into the relation between the cell cycle activity and stemness of HSCs. MAJOR CONCLUSIONS The cell cycle is tightly regulated in HSCs by complex factors. Key regulators of the cell cycle in other cell types-including cyclins, cyclin-dependent kinases (CDKs), the retinoblastoma protein family, the transcription factor E2F, and CDK inhibitors-also contribute to such regulation in HSCs. Most, but not all, of these regulators are necessary for maintenance of HSCs, with abnormal activation or suppression of the cell cycle resulting in HSC exhaustion. The cell cycle in HSCs is also regulated by external factors such as cytokines produced by niche cells as well as by the ubiquitin-proteasome pathway. GENERAL SIGNIFICANCE Studies of the cell cycle in HSCs may shed light on the pathogenesis of hematopoietic disorders, serve as a basis for the development of new therapeutic strategies for such disorders, prove useful for the expansion of HSCs in vitro as a possible replacement for blood transfusion, and provide insight into stem cell biology in general. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | |
Collapse
|
40
|
Ansorg A, Witte OW, Urbach A. Age-dependent kinetics of dentate gyrus neurogenesis in the absence of cyclin D2. BMC Neurosci 2012; 13:46. [PMID: 22564330 PMCID: PMC3403990 DOI: 10.1186/1471-2202-13-46] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 05/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background Adult neurogenesis continuously adds new neurons to the dentate gyrus and the olfactory bulb. It involves the proliferation and subsequent differentiation of neuronal progenitors, and is thus closely linked to the cell cycle machinery. Cell cycle progression is governed by the successive expression, activation and degradation of regulatory proteins. Among them, D-type cyclins control the exit from the G1 phase of the cell cycle. Cyclin D2 (cD2) has been shown to be required for the generation of new neurons in the neurogenic niches of the adult brain. It is differentially expressed during hippocampal development, and adult cD2 knock out (cD2KO) mice virtually lack neurogenesis in the dentate gyrus and olfactory bulb. In the present study we examined the dynamics of postnatal and adult neurogenesis in the dentate gyrus (DG) of cD2KO mice. Animals were injected with bromodeoxyuridine at seven time points during the first 10 months of life and brains were immunohistochemically analyzed for their potential to generate new neurons. Results Compared to their WT litters, cD2KO mice had considerably reduced numbers of newly born granule cells during the postnatal period, with neurogenesis becoming virtually absent around postnatal day 28. This was paralleled by a reduction in granule cell numbers, in the volume of the granule cell layer as well as in apoptotic cell death. CD2KO mice did not show any of the age-related changes in neurogenesis and granule cell numbers that were seen in WT litters. Conclusions The present study suggests that hippocampal neurogenesis becomes increasingly dependent on cD2 during early postnatal development. In cD2KO mice, hippocampal neurogenesis ceases at a time point at which the tertiary germinative matrix stops proliferating, indicating that cD2 becomes an essential requirement for ongoing neurogenesis with the transition from developmental to adult neurogenesis. Our data further support the notion that adult neurogenesis continuously adds new neurons to the hippocampal network, hence increasing cell density of the DG.
Collapse
Affiliation(s)
- Anne Ansorg
- Hans Berger Department of Neurology, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | |
Collapse
|
41
|
The impact of CDK inhibition in human malignancies associated with pronounced defects in apoptosis: advantages of multi-targeting small molecules. Future Med Chem 2012; 4:395-424. [DOI: 10.4155/fmc.12.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant cells in chronic lymphocytic leukemia (CLL) and related diseases are heterogeneous and consist primarily of long-lived resting cells in the periphery and a minor subset of dividing cells in proliferating centers. Both cell populations have different molecular signatures that play a major role in determining their sensitivity to therapy. Contemporary approaches to treating CLL are heavily reliant on cytotoxic chemotherapeutics. However, none of the current treatment regimens can be considered curative. Pharmacological CDK inhibitors have extended the repertoire of potential drugs for CLL. Multi-targeted CDK inhibitors affect CDKs involved in regulating both cell cycle progression and transcription. Their interference with transcriptional elongation represses anti-apoptotic proteins and, thus, promotes the induction of apoptosis. Importantly, there is evidence that treatment with CDK inhibitors can overcome resistance to therapy. The pharmacological CDK inhibitors have great potential for use in combination with other therapeutics and represent promising tools for the development of new curative treatments for CLL.
Collapse
|
42
|
Igawa T, Sato Y, Takata K, Fushimi S, Tamura M, Nakamura N, Maeda Y, Orita Y, Tanimoto M, Yoshino T. Cyclin D2 is overexpressed in proliferation centers of chronic lymphocytic leukemia/small lymphocytic lymphoma. Cancer Sci 2011; 102:2103-7. [PMID: 21790895 PMCID: PMC11158365 DOI: 10.1111/j.1349-7006.2011.02046.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The D cyclins are important cell cycle regulatory proteins involved in the pathogenesis of some lymphomas. Cyclin D1 overexpression is a hallmark of mantle cell lymphoma, whereas cyclins D2 and D3 have not been shown to be closely associated with any particular subtype of lymphoma. In the present study, we found that cyclin D2 was specifically overexpressed in the proliferation centers (PC) of all cases of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) examined (19/19). To examine the molecular mechanisms underlying this overexpression, we immunohistochemically examined the expression of nuclear factor (NF)-κB, p15, p16, p18, and p27 in the PC of six patients. Five cases showed upregulation of NF-κB expression, which is known to directly induce cyclin D2 by binding to the promoter region of CCND2. All six PC examined demonstrated downregulation of p27 expression. In contrast, upregulation of p15 expression was detected in five of six PC examined. This discrepancy suggests that unknown cell cycle regulatory mechanisms involving NF-κB-related pathways are also involved, because NF-κB upregulates cyclin D2 not only directly, but also indirectly through c-Myc, which is believed to downregulate both p27 and p15. In conclusion, cyclin D2 is overexpressed in the PC of CLL/SLL and this overexpression is due, in part, to the upregulation of NF-κB-related pathways.
Collapse
Affiliation(s)
- Takuro Igawa
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gopinathan L, Ratnacaram CK, Kaldis P. Established and novel Cdk/cyclin complexes regulating the cell cycle and development. Results Probl Cell Differ 2011; 53:365-89. [PMID: 21630153 DOI: 10.1007/978-3-642-19065-0_16] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The identification of new members in the Cdk and cyclin families, functions for many of which are still emerging, has added new facets to the cell cycle regulatory network. With roles extending beyond the classical regulation of cell cycle progression, these new players are involved in diverse processes such as transcription, neuronal function, and ion transport. Members closely related to Cdks and cyclins such as the Speedy/RINGO proteins offer fresh insights and hope for filling in the missing gaps in our understanding of cell division. This chapter will present a broad outlook on the cell cycle and its key regulators with special emphasis on the less-studied members and their emerging roles.
Collapse
Affiliation(s)
- Lakshmi Gopinathan
- Cell Division and Cancer Laboratory (PRK), Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos #03-09, Singapore
| | | | | |
Collapse
|
44
|
Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL. Folia Histochem Cytobiol 2011; 48:534-41. [PMID: 21478095 DOI: 10.2478/v10042-010-0048-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.
Collapse
|
45
|
Xu Z, Potula HHSK, Vallurupalli A, Perry D, Baker H, Croker BP, Dozmorov I, Morel L. Cyclin-dependent kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1. THE JOURNAL OF IMMUNOLOGY 2011; 186:6673-82. [PMID: 21543644 DOI: 10.4049/jimmunol.1002544] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sle2c1 is an NZM2410- and NZB-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18(INK4c) (p18), as the top candidate gene for inducing the Slec2c1-associated expansion of B1a cells. A novel single nucleotide polymorphism in the NZB allele of the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and peritoneal cavity B1a cells from Sle2c1-carrying mice, which leads to a defective G1 cell cycle arrest in splenic B cells and increased proliferation of peritoneal cavity B1a cells. As the cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c plays a critical role in B1a cell self-renewal and that its impaired expression leads to an accumulation of these cells with high autoreactive potential.
Collapse
Affiliation(s)
- Zhiwei Xu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
CDK-mediated regulation of cell functions via c-Jun phosphorylation and AP-1 activation. PLoS One 2011; 6:e19468. [PMID: 21559334 PMCID: PMC3084876 DOI: 10.1371/journal.pone.0019468] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/30/2011] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) and their targets have been primarily associated with regulation of cell-cycle progression. Here we identify c-Jun, a transcription factor involved in the regulation of a broad spectrum of cellular functions, as a newly recognized CDK substrate. Using immune cells from mouse and human, and several complementary in vitro and in vivo approaches including dominant negative protein expression, pharmacologic inhibitors, kinase assays and CDK4 deficient cells, we demonstrate the ability of CDK4 to phosphorylate c-Jun. Additionally, the activity of AP-1, a ubiquitous transcription factor containing phosphorylated c-Jun as a subunit, was inhibited by abrogating CDK4. Surprisingly, the regulation of c-Jun phosphorylation by CDK4 occurred in non-dividing cells, indicating that this pathway is utilized for cell functions that are independent of proliferation. Our studies identify a new substrate for CDK4 and suggest a mechanism by which CDKs can regulate multiple cellular activation functions, not all of which are directly associated with cell cycle progression. These findings point to additional roles of CDKs in cell signaling and reveal potential implications for therapeutic manipulations of this kinase pathway.
Collapse
|
47
|
Jaholkowski P, Mierzejewski P, Zatorski P, Scinska A, Sienkiewicz-Jarosz H, Kaczmarek L, Samochowiec J, Filipkowski RK, Bienkowski P. Increased ethanol intake and preference in cyclin D2 knockout mice. GENES BRAIN AND BEHAVIOR 2011; 10:551-6. [PMID: 21429093 DOI: 10.1111/j.1601-183x.2011.00692.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitory effects of passive ethanol exposure on brain neurogenesis have been extensively documented in animal models. In contrast, a role of brain neurogenesis in ethanol self-administration has not been addressed, as yet. The aim of this study was to assess intake of, and preference for, ethanol solutions [2-16% (v/v)] in a mouse model of adult neurogenesis deficiency based on permanent knockout (KO) of cyclin D2 (Ccnd2). Wild type (WT) and Ccnd2 KO mice did not differ in 2% and 4% ethanol intake. The KO group consumed significantly more ethanol in g/kg when offered with 8% or 16% ethanol as compared with the WT controls. The WT and KO mice did not differ in 2% ethanol preference, but the KO group showed a significantly higher preference for 4-16% ethanol. Animal and human studies have suggested that the low level of response to the sedative/hypnotic effects of alcohol is genetically associated with enhanced alcohol consumption. However, in this study, there were no between-genotype differences in ethanol-induced loss of righting reflex. Previous reports have also suggested that high ethanol intake is genetically associated with the avidity for sweets and better acceptance of bitter solutions. However, the KO and WT mice consumed similar amounts of saccharin solutions and the KOs consumed less quinine (i.e. bitter) solutions as compared with the WTs. In conclusion, these results may indicate that Ccnd2 and, possibly, brain neurogenesis are involved in central regulation of ethanol intake in mice.
Collapse
Affiliation(s)
- P Jaholkowski
- Laboratory of Molecular Neurobiology, Nencki Institute, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Cato MH, Chintalapati SK, Yau IW, Omori SA, Rickert RC. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol Cell Biol 2011; 31:127-37. [PMID: 20956554 PMCID: PMC3019862 DOI: 10.1128/mcb.00650-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/27/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023] Open
Abstract
The generation of robust T-cell-dependent humoral immune responses requires the formation and expansion of germinal center structures within the follicular regions of the secondary lymphoid tissues. B-cell proliferation in the germinal center drives ongoing antigen-dependent selection and the generation of high-affinity class-switched plasma and memory B cells. However, the mechanisms regulating B-cell proliferation within this microenvironment are largely unknown. Here, we report that cyclin D3 is uniquely required for germinal center progression. Ccnd3(-/-) mice exhibit a B-cell-intrinsic defect in germinal center maturation and fail to generate an affinity-matured IgG response. We determined that the defect resulted from failed proliferative expansion of GL7(+) IgD(-) PNA(+) B cells. Mechanistically, sustained expression of cyclin D3 was found to be regulated at the level of protein stability and controlled by glycogen synthase kinase 3 in a cyclic AMP-protein kinase A-dependent manner. The specific defect in proliferative expansion of GL7(+) IgD(-) PNA(+) B cells in Ccnd3(-/-) mice defines an underappreciated step in germinal center progression and solidifies a role for cyclin D3 in the immune response, and as a potential therapeutic target for germinal center-derived B-cell malignancies.
Collapse
Affiliation(s)
- Matthew H. Cato
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Suresh K. Chintalapati
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Irene W. Yau
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Sidne A. Omori
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Robert C. Rickert
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
49
|
Suzuki K, Maruya M, Kawamoto S, Fagarasan S. Roles of B-1 and B-2 cells in innate and acquired IgA-mediated immunity. Immunol Rev 2010; 237:180-90. [PMID: 20727036 DOI: 10.1111/j.1600-065x.2010.00941.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The gut harbors an extremely dense and complex community of microorganisms that are in constant dialog with our immune cells. The gut bacteria provide strong selective pressure to the host to evolve innate and adaptive immune responses required for the maintenance of local and systemic homeostasis. One of the most conspicuous responses of the gut immune system following microbial colonization is the production of immunoglobulin A (IgA). In this review, we discuss the roles of B-1 and B-2 cells in IgA-mediated immunity and present an updated view for the sites and mechanisms of IgA synthesis in the gut. We summarize the role of secretory IgAs for regulation of microbial communities and provide clues as to how the gut microbiota contributes to the development of the gut-associated lymphoid tissues.
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Laboratory for Mucosal Immunity, RIKEN Research Center for Allergy and Immunology, Tsurumi, Yokohama, Japan
| | | | | | | |
Collapse
|
50
|
Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2010; 11:34-46. [PMID: 21151033 DOI: 10.1038/nri2901] [Citation(s) in RCA: 657] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During their development, B and T cells with self-reactive antigen receptors are generally deleted from the repertoire to avoid autoimmune diseases. Paradoxically, innate-like B-1 cells in mice are positively selected for self-reactivity and form a pool of long-lived, self-renewing B cells that produce most of the circulating natural IgM antibodies. This Review provides an overview of the developmental processes that shape the B-1 cell pool in mice, outlines the functions of B-1 cells in both the steady state and during host defence, and discusses possible functional B-1 cell homologues that exist in humans.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Comparative Medicine, University of California, Davis, California 95616, USA.
| |
Collapse
|