1
|
Racine JJ, Bachman JF, Zhang JG, Misherghi A, Khadour R, Kaisar S, Bedard O, Jenkins C, Abbott A, Forte E, Rainer P, Rosenthal N, Sattler S, Serreze DV. Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1287-1306. [PMID: 38426910 PMCID: PMC10984778 DOI: 10.4049/jimmunol.2300841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Myocarditis has emerged as an immune-related adverse event of immune checkpoint inhibitor (ICI) cancer therapy associated with significant mortality. To ensure patients continue to safely benefit from life-saving cancer therapy, an understanding of fundamental immunological phenomena underlying ICI myocarditis is essential. We recently developed the NOD-cMHCI/II-/-.DQ8 mouse model that spontaneously develops myocarditis with lower mortality than observed in previous HLA-DQ8 NOD mouse strains. Our strain was rendered murine MHC class I and II deficient using CRISPR/Cas9 technology, making it a genetically clean platform for dissecting CD4+ T cell-mediated myocarditis in the absence of classically selected CD8+ T cells. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, anti-PD-1 administration accelerates skeletal muscle myositis. Using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses, we performed a thorough characterization of cardiac and skeletal muscle T cells, identifying shared and unique characteristics of both populations. Taken together, this report details a mouse model with features of a rare, but highly lethal clinical presentation of overlapping myocarditis and myositis following ICI therapy. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Adel Misherghi
- The Jackson Laboratory, Bar Harbor, Maine, USA
- College of the Atlantic, Bar Harbor, Maine, USA
| | - Raheem Khadour
- The Jackson Laboratory, Bar Harbor, Maine, USA
- College of the Atlantic, Bar Harbor, Maine, USA
| | | | | | | | | | | | - Peter Rainer
- Medical University of Graz, Graz, 8053 Austria
- BioTechMed Graz, Graz, Austria
- BKH St. Johann in Tirol, 6380 St. Johann in Tirol, Austria
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine, USA
- Imperial College London, London SW7 2AZ, UK
| | - Susanne Sattler
- Imperial College London, London SW7 2AZ, UK
- Medical University of Graz, Graz, 8053 Austria
| | | |
Collapse
|
2
|
Atanasova M, Dimitrov I, Fernandez A, Moreno J, Koning F, Doytchinova I. Assessment of Novel Proteins Triggering Celiac Disease via Docking-Based Approach. Molecules 2023; 29:138. [PMID: 38202724 PMCID: PMC10780262 DOI: 10.3390/molecules29010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Human leukocyte antigens (HLAs) are pivotal in antigen processing, presenting to CD4+ T cells, and are linked to autoimmune disease susceptibility. In celiac disease, HLA-DQ2.5 and HLA-DQ8.1 bind gluten peptides on APCs, some recognized by CD4+ T cells, prompting inflammation and tissue damage. While extensively studied experimentally, these alleles lack comprehensive in silico analysis. To explore peptide-HLA preferences, we used molecular docking on peptide libraries, deriving quantitative matrices (QMs) for evaluating amino acids at nine-residue peptide binding cores. Our findings tie specific residue preferences to peptide backbone conformations. Validating QMs on known binders and non-binders showed strong predictive power (89-94% accuracy). These QMs excel in screening protein libraries, even whole proteomes, notably reducing time and costs for celiac disease risk assessment in novel proteins. This computational approach aligns with European Food Safety Authority guidance, promising efficient screening for potential celiac disease triggers.
Collapse
Affiliation(s)
- Mariyana Atanasova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (I.D.)
| | - Ivan Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (I.D.)
| | | | - Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid (CSIC-UAM), Campus of Interntional Excellence—CEI (UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain;
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
| | - Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.D.); (I.D.)
| |
Collapse
|
3
|
Milletich PL, Ahrens AP, Russell JT, Petrone JR, Berryman MA, Agardh D, Ludvigsson JF, Triplett EW, Ludvigsson J. Gut microbiome markers in subgroups of HLA class II genotyped infants signal future celiac disease in the general population: ABIS study. Front Cell Infect Microbiol 2022; 12:920735. [PMID: 35959362 PMCID: PMC9357981 DOI: 10.3389/fcimb.2022.920735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although gut microbiome dysbiosis has been illustrated in celiac disease (CD), there are disagreements about what constitutes these microbial signatures and the timeline by which they precede diagnosis is largely unknown. The study of high-genetic-risk patients or those already with CD limits our knowledge of dysbiosis that may occur early in life in a generalized population. To explore early gut microbial imbalances correlated with future celiac disease (fCD), we analyzed the stool of 1478 infants aged one year, 26 of whom later acquired CD, with a mean age of diagnosis of 10.96 ± 5.6 years. With a novel iterative control-matching algorithm using the prospective general population cohort, All Babies In Southeast Sweden, we found nine core microbes with prevalence differences and seven differentially abundant bacteria between fCD infants and controls. The differences were validated using 100 separate, iterative permutations of matched controls, which suggests the bacterial signatures are significant in fCD even when accounting for the inherent variability in a general population. This work is the first to our knowledge to demonstrate that gut microbial differences in prevalence and abundance exist in infants aged one year up to 19 years before a diagnosis of CD in a general population.
Collapse
Affiliation(s)
- Patricia L. Milletich
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Angelica P. Ahrens
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jordan T. Russell
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph R. Petrone
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Meghan A. Berryman
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: Eric W. Triplett,
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
The HLA-G Immune Checkpoint Plays a Pivotal Role in the Regulation of Immune Response in Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413348. [PMID: 34948145 PMCID: PMC8706866 DOI: 10.3390/ijms222413348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
The human G-leukocyte antigen (HLA-G) molecule is a non-classical major histocompatibility complex (MHC) class I molecule. The pertinence of HLA-G has been investigated in numerous studies which have sought to elucidate the relevance of HLA-G in pathologic conditions, such as autoimmune diseases, cancers, and hematologic malignancies. One of the main goals of the current research on HLA-G is to use this molecule in clinical practice, either in diagnostics or as a therapeutic target. Since HLA-G antigens are currently considered as immunomodulatory molecules that are involved in reducing inflammatory and immune responses, in this review, we decided to focus on this group of antigens as potential determinants of progression in autoimmune diseases. This article highlights what we consider as recent pivotal findings on the immunomodulatory function of HLA-G, not only to establish the role of HLA-G in the human body, but also to explain how these proteins mediate the immune response.
Collapse
|
5
|
Zhao LP, Papadopoulos GK, Kwok WW, Moustakas AK, Bondinas GP, Carlsson A, Elding Larsson H, Ludvigsson J, Marcus C, Samuelsson U, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Next-Generation HLA Sequence Analysis Uncovers Seven HLA-DQ Amino Acid Residues and Six Motifs Resistant to Childhood Type 1 Diabetes. Diabetes 2020; 69:2523-2535. [PMID: 32868339 PMCID: PMC7576571 DOI: 10.2337/db20-0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
HLA-DQA1 and -DQB1 genes have significant and potentially causal associations with autoimmune type 1 diabetes (T1D). To follow up on the earlier analysis on high-risk HLA-DQ2.5 and DQ8.1, the current analysis uncovers seven residues (αa1, α157, α196, β9, β30, β57, and β70) that are resistant to T1D among subjects with DQ4-, 5-, 6-, and 7-resistant DQ haplotypes. These 7 residues form 13 common motifs: 6 motifs are significantly resistant, 6 motifs have modest or no associations (P values >0.05), and 1 motif has 7 copies observed among control subjects only. The motifs "DAAFYDG," "DAAYHDG," and "DAAYYDR" have significant resistance to T1D (odds ratios [ORs] 0.03, 0.25, and 0.18; P = 6.11 × 10-24, 3.54 × 10-15, and 1.03 × 10-21, respectively). Remarkably, a change of a single residue from the motif "DAAYHDG" to "DAAYHSG" (D to S at β57) alters the resistance potential, from resistant motif (OR 0.15; P = 3.54 × 10-15) to a neutral motif (P = 0.183), the change of which was significant (Fisher P value = 0.0065). The extended set of linked residues associated with T1D resistance and unique to each cluster of HLA-DQ haplotypes represents facets of all known features and functions of these molecules: antigenic peptide binding, peptide-MHC class II complex stability, β167-169 RGD loop, T-cell receptor binding, formation of homodimer of α-β heterodimers, and cholesterol binding in the cell membrane rafts. Identification of these residues is a novel understanding of resistant DQ associations with T1D. Our analyses endow potential molecular approaches to identify immunological mechanisms that control disease susceptibility or resistance to provide novel targets for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environment, Ionian University, Argostoli, Cephalonia, Greece
| | - George P Bondinas
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | | | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
6
|
Lee YJ, Ting WH, Yang YW, Lin CJ, Hsieh YT, Huang CY, Lo FS, Chu CC, Lin CL, Lin WS, Lai TS. HLA-DQ genotype and biochemical characterization of anti-transglutaminase 2 antibodies in patients with type 1 diabetes mellitus in Taiwan. FASEB J 2020; 34:8459-8474. [PMID: 32362042 DOI: 10.1096/fj.202000269r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Human Leukocyte Antigen (HLA)-DQ2 and HLA-DQ8 are genetic risk factors for Type 1 Diabetes Mellitus (T1DM) and Celiac disease (CD) in Caucasians, but their association with Taiwanese Han population is unknown. We screened 532 Taiwanese T1DM patients for CD biomarkers including anti-tissue transglutaminase (TGM2), anti-gliadin and anti-neoepitope antibodies (Abs), sequencing DQB1 genotypes, and characterized the TGM2 Abs. We report that 3.76% of Taiwanese patients had TGM2-Abs and all had no CD's symptoms. In contrast to Caucasian's CD patients, DQ2/DQ8 only constituted ~4/5 of TGM2-Abs positive patients, while the other ~1/5 patients belonged to different HLA genotypes. Either anti-gliadin or anti-neoepitope Abs coexisted with ~3/4 of TGM2-Abs positive patients that were likely due to gluten-ingestion, while the cause of TGM2-Abs production for other ~1/4 of patients was unknown. Purified anti-TGM2 IgA (TGA) and anti-TGM2 IgG (TGG) could bind on endothelial cells surface, recognized native better than denatured forms of TGM2, and TGA inhibited TGM2's transamidation activity by up to 80% but TGG had no effects. Epitope mapping of all TGM2-Abs positive sera demonstrated that TGM2-Abs had heterogeneity in specificities. This is the first study on the differences between Taiwanese Han group and Caucasian in HLA genotypes and properties of TGM2-Abs.
Collapse
Affiliation(s)
- Yann-Jinn Lee
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan, ROC.,Department of Medicine, MaKkay Medical College, New Taipei City, Taiwan, ROC.,Department of Pediatric Endocrinology, MacKay Children's Hospital, Taipei, Taiwan, ROC.,Department of Medical Research, MacKay Memorial Hospital Tamsui District, New Taipei City, Taiwan, ROC.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Wei-Hsin Ting
- Department of Medicine, MaKkay Medical College, New Taipei City, Taiwan, ROC.,Department of Pediatric Endocrinology, MacKay Children's Hospital, Taipei, Taiwan, ROC.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC
| | - Yi-Wen Yang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan, ROC
| | - Cheng-Jui Lin
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC.,Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC
| | - Yu-Ting Hsieh
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan, ROC.,Department of Clinical Laboratory, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Chi-Yu Huang
- Department of Medicine, MaKkay Medical College, New Taipei City, Taiwan, ROC.,Department of Pediatric Endocrinology, MacKay Children's Hospital, Taipei, Taiwan, ROC.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC
| | - Fu-Sung Lo
- College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.,Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Chen-Chung Chu
- Department of Medical Research, MacKay Memorial Hospital Tamsui District, New Taipei City, Taiwan, ROC
| | - Chiung-Ling Lin
- Department of Medical Research, MacKay Memorial Hospital Tamsui District, New Taipei City, Taiwan, ROC
| | - Wen-Shan Lin
- Department of Medical Research, MacKay Memorial Hospital Tamsui District, New Taipei City, Taiwan, ROC
| | - Thung-S Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan, ROC
| |
Collapse
|
7
|
Dimitrov I, Doytchinova I. Peptide Binding Prediction to Five Most Frequent HLA-DQ Proteins - a Proteochemometric Approach. Mol Inform 2015; 34:467-76. [PMID: 27490390 DOI: 10.1002/minf.201400150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
Major histocompatibility complex (MHC) proteins class II, are glycoproteins binding within the cell to short peptides with foreign origin, called epitopes, and present them at the cell surface for inspection by T-cells. Apart from presenting foreign antigens, they are able to present also common self-antigens and trigger autoimmune diseases as coeliac disease and diabetes mellitus type 1. The MHC proteins are extremely polymorphic. The polymorphism is located mainly in the peptide binding site. In the present study, we apply a proteochemometric approach to derive a model for prediction of peptide binding to human MHC class II proteins from locus HLA-DQ. Proteochemometrics was applied on 2624 peptides binding to five most frequent HLA-DQ proteins. The sequences of peptides and proteins were described by three z-descriptors relating to hydrophobicity, steric effects and polarity of amino acids. Cross-terms accounting for the protein-peptide interactions also were included. The derived model was validated by external test set of 660 peptides and showed rpred (2) =0.808, AUC=0.965, 92.5 % accuracy at threshold of pIC50 =5.3 and average sensitivity of 83 % among the top 10 % best predicted nonamers. The model is implemented in the server for MHC binding prediction EpiTOP and is freely available at http://www.ddg-pharmfac.net/epitop.
Collapse
Affiliation(s)
- Ivan Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav str, 1000 Sofia, Bulgaria tel: +359 2 9236506
| | - Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav str, 1000 Sofia, Bulgaria tel: +359 2 9236506.
| |
Collapse
|
8
|
van Heemst J, Jansen DTSL, Polydorides S, Moustakas AK, Bax M, Feitsma AL, Bontrop-Elferink DG, Baarse M, van der Woude D, Wolbink GJ, Rispens T, Koning F, de Vries RRP, Papadopoulos GK, Archontis G, Huizinga TW, Toes RE. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat Commun 2015; 6:6681. [PMID: 25942574 DOI: 10.1038/ncomms7681] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/18/2015] [Indexed: 01/09/2023] Open
Abstract
The HLA locus is the strongest risk factor for anti-citrullinated protein antibody (ACPA)(+) rheumatoid arthritis (RA). Despite considerable efforts in the last 35 years, this association is poorly understood. Here we identify (citrullinated) vinculin, present in the joints of ACPA(+) RA patients, as an autoantigen targeted by ACPA and CD4(+) T cells. These T cells recognize an epitope with the core sequence DERAA, which is also found in many microbes and in protective HLA-DRB1*13 molecules, presented by predisposing HLA-DQ molecules. Moreover, these T cells crossreact with vinculin-derived and microbial-derived DERAA epitopes. Intriguingly, DERAA-directed T cells are not detected in HLA-DRB1*13(+) donors, indicating that the DERAA epitope from HLA-DRB1*13 mediates (thymic) tolerance in these donors and explaining the protective effects associated with HLA-DRB1*13. Together our data indicate the involvement of pathogen-induced DERAA-directed T cells in the HLA-RA association and provide a molecular basis for the contribution of protective/predisposing HLA alleles.
Collapse
Affiliation(s)
- Jurgen van Heemst
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diahann T S L Jansen
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Antonis K Moustakas
- Faculty of Agricultural Technology, Technological Educational Institute of Ioanian Islands, Argostoli, Cephallonia 28100, Greece
| | - Marieke Bax
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Anouk L Feitsma
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diënne G Bontrop-Elferink
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Martine Baarse
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Gert-Jan Wolbink
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, 1066 CX Amsterdam, The Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, 1066 CX Amsterdam, The Netherlands
| | - Frits Koning
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - René R P de Vries
- Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - George K Papadopoulos
- Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology, Epirus Institute of Technology, Arta 47100, Greece
| | | | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - René E Toes
- Department of Rheumatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
9
|
Mazzeo MF, Bonavita R, Maurano F, Bergamo P, Siciliano RA, Rossi M. Biochemical modifications of gliadins induced by microbial transglutaminase on wheat flour. Biochim Biophys Acta Gen Subj 2013; 1830:5166-74. [PMID: 23891939 DOI: 10.1016/j.bbagen.2013.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/24/2013] [Accepted: 07/18/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Celiac disease (CD) is an immune-mediated disorder caused by the ingestion of wheat gluten. A lifelong, gluten-free diet is required to normalize the intestinal mucosa. We previously found that transamidation by microbial transglutaminase (mTGase) suppressed the gliadin-specific immune response in intestinal T-cell lines from CD patients and in models of gluten sensitivity. METHODS SDS-PAGE, Western blot, ELISA, tissue transglutaminase (tTGase) assay and nano-HPLC-ESI-MS/MS experiments were used to analyze prolamins isolated from treated wheat flour. RESULTS Gliadin and glutenin yields decreased to 7.6±0.5% and 7.5±0.3%, respectively, after a two-step transamidation reaction that produced a water-soluble protein fraction (spf). SDS-PAGE, Western blot and ELISA analyses confirmed the loss of immune cross-reactivity with anti-native gliadin antibodies in residual transamidated gliadins (K-gliadins) and spf as well as the occurrence of neo-epitopes. Nano-HPLC-ESI-MS/MS experiments identified some native and transamidated forms of celiacogenic peptides including p31-49 and confirmed that mTGase had similar stereo-specificity of tTGase. Those peptides resulted to be 100% and 57% modified in spf and K-gliadins, respectively. In particular, following transamidation p31-49 lost its ability to increase tTGase activity in Caco-2 cells. Finally, bread manufactured with transamidated flour had only minor changes in baking characteristics. CONCLUSIONS The two-step transamidation reaction modified the analyzed gliadin peptides, which are known to trigger CD, without influencing main technological properties. GENERAL SIGNIFICANCE Our data shed further light on a detoxification strategy alternative to the gluten free diet and may have important implications for the management of CD patients.
Collapse
|
10
|
Chow IT, James EA, Gates TJ, Tan V, Moustakas AK, Papadopoulos GK, Kwok WW. Differential binding of pyruvate dehydrogenase complex-E2 epitopes by DRB1*08:01 and DRB1*11:01 Is predicted by their structural motifs and correlates with disease risk. THE JOURNAL OF IMMUNOLOGY 2013; 190:4516-24. [PMID: 23543758 DOI: 10.4049/jimmunol.1202445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DRB1*08:01 (DR0801) and DRB1*11:01 (DR1101) are highly homologous alleles that have opposing effects on susceptibility to primary biliary cirrhosis (PBC). DR0801 confers risk and shares a key feature with other HLA class II alleles that predispose to autoimmunity: a nonaspartic acid at beta57. DR1101 is associated with protection from PBC, and its sequence includes an aspartic acid at beta57. To elucidate a mechanism for the opposing effects of these HLA alleles on PBC susceptibility, we compared the features of epitopes presented by DR0801 and DR1101. First, we identified DR0801- and DR1101-restricted epitopes within multiple viral Ags, observing both shared and distinct epitopes. Because DR0801 is not well characterized, we deduced its motif by measuring binding affinities for a library of peptides, confirming its key features through structural modeling. DR0801 was distinct from DR1101 in its ability to accommodate charged residues within all but one of its binding pockets. In particular, DR0801 strongly preferred acidic residues in pocket 9. These findings were used to identify potentially antigenic sequences within PDC-E2 (an important hepatic autoantigen) that contain a DR0801 motif. Four peptides bound to DR0801 with reasonable affinity, but only one of these bound to DR1101. Three peptides, PDC-E2145-159, PDC-E2(249-263), and PDC-E2(629-643), elicited high-affinity T cell responses in DR0801 subjects, implicating these as likely autoreactive specificities. Therefore, the unique molecular features of DR0801 may lead to the selection of a distinct T cell repertoire that contributes to breakdown of self-tolerance in primary biliary cirrhosis, whereas those of DR1101 promote tolerance.
Collapse
Affiliation(s)
- I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Delli AJ, Vaziri-Sani F, Lindblad B, Elding-Larsson H, Carlsson A, Forsander G, Ivarsson SA, Ludvigsson J, Kockum I, Marcus C, Samuelsson U, Örtqvist E, Groop L, Bondinas GP, Papadopoulos GK, Lernmark Å. Zinc transporter 8 autoantibodies and their association with SLC30A8 and HLA-DQ genes differ between immigrant and Swedish patients with newly diagnosed type 1 diabetes in the Better Diabetes Diagnosis study. Diabetes 2012; 61:2556-64. [PMID: 22787139 PMCID: PMC3447907 DOI: 10.2337/db11-1659] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We examined whether zinc transporter 8 autoantibodies (ZnT8A; arginine ZnT8-RA, tryptophan ZnT8-WA, and glutamine ZnT8-QA variants) differed between immigrant and Swedish patients due to different polymorphisms of SLC30A8, HLA-DQ, or both. Newly diagnosed autoimmune (≥1 islet autoantibody) type 1 diabetic patients (n = 2,964, <18 years, 55% male) were ascertained in the Better Diabetes Diagnosis study. Two subgroups were identified: Swedes (n = 2,160, 73%) and immigrants (non-Swedes; n = 212, 7%). Non-Swedes had less frequent ZnT8-WA (38%) than Swedes (50%), consistent with a lower frequency in the non-Swedes (37%) of SLC30A8 CT+TT (RW+WW) genotypes than in the Swedes (54%). ZnT8-RA (57 and 58%, respectively) did not differ despite a higher frequency of CC (RR) genotypes in non-Swedes (63%) than Swedes (46%). We tested whether this inconsistency was due to HLA-DQ as 2/X (2/2; 2/y; y is anything but 2 or 8), which was a major genotype in non-Swedes (40%) compared with Swedes (14%). In the non-Swedes only, 2/X (2/2; 2/y) was negatively associated with ZnT8-WA and ZnT8-QA but not ZnT8-RA. Molecular simulation showed nonbinding of the relevant ZnT8-R peptide to DQ2, explaining in part a possible lack of tolerance to ZnT8-R. At diagnosis in non-Swedes, the presence of ZnT8-RA rather than ZnT8-WA was likely due to effects of HLA-DQ2 and the SLC30A8 CC (RR) genotypes.
Collapse
Affiliation(s)
- Ahmed J Delli
- Department of Clinical Sciences, Diabetes and Celiac Diseases, Lund University, Malmö, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- H. Wieser
- German Research Center for Food Chemistry, Freising, Germany
| | - K. Konitzer
- German Research Center for Food Chemistry, Freising, Germany
| | - P. Koehler
- German Research Center for Food Chemistry, Freising, Germany
| |
Collapse
|
13
|
Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F. Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 2012; 64:455-60. [PMID: 22322673 PMCID: PMC3349865 DOI: 10.1007/s00251-012-0599-z] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/13/2012] [Indexed: 12/16/2022]
Abstract
Celiac disease is caused by an abnormal intestinal T-cell response to gluten proteins of wheat, barley and rye. Over the last few years, a number of gluten T-cell epitopes restricted by celiac disease associated HLA-DQ molecules have been characterized. In this work, we give an overview of these epitopes and suggest a comprehensive, new nomenclature.
Collapse
Affiliation(s)
- Ludvig M Sollid
- Centre for Immune Regulation and Department of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
14
|
Evidence that HLA-DQ9 confers risk to celiac disease by presence of DQ9-restricted gluten-specific T cells. Hum Immunol 2012; 73:376-81. [DOI: 10.1016/j.humimm.2012.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/06/2012] [Accepted: 01/24/2012] [Indexed: 11/21/2022]
|
15
|
van Lummel M, van Veelen PA, Zaldumbide A, de Ru A, Janssen GMC, Moustakas AK, Papadopoulos GK, Drijfhout JW, Roep BO, Koning F. Type 1 diabetes-associated HLA-DQ8 transdimer accommodates a unique peptide repertoire. J Biol Chem 2011; 287:9514-24. [PMID: 22184118 DOI: 10.1074/jbc.m111.313940] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-DQ2 and HLA-DQ8 are strongly predisposing haplotypes for type 1 diabetes (T1D). Yet HLA-DQ2/8 heterozygous individuals have a synergistically increased risk compared with HLA-DQ2 or HLA-DQ8 homozygote subjects that may result from the presence of a transdimer formed between the α-chain of HLA-DQ2 (DQA1*05:01) and the β-chain of HLA-DQ8 (DQB1*03:02). We generated cells exclusively expressing this transdimer (HLA-DQ8trans), characterized its peptide binding repertoire, and defined a unique transdimer-specific peptide binding motif that was found to be distinct from those of HLA-DQ2 and HLA-DQ8. This motif predicts an array of peptides of islet autoantigens as candidate T cell epitopes, many of which selectively bind to the HLA transdimer, whereas others bind to both HLA-DQ8 and transdimer with similar affinity. Our findings provide a molecular basis for the association between HLA-DQ transdimers and T1D and set the stage for rational testing of potential diabetogenic peptide epitopes.
Collapse
Affiliation(s)
- Menno van Lummel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kooy-Winkelaar Y, van Lummel M, Moustakas AK, Schweizer J, Mearin ML, Mulder CJ, Roep BO, Drijfhout JW, Papadopoulos GK, van Bergen J, Koning F. Gluten-specific T cells cross-react between HLA-DQ8 and the HLA-DQ2α/DQ8β transdimer. THE JOURNAL OF IMMUNOLOGY 2011; 187:5123-9. [PMID: 22013116 DOI: 10.4049/jimmunol.1101179] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because susceptibility to celiac disease is associated strongly with HLA-DQ2 (DQA1*05/DQB1*02) and weakly with HLA-DQ8 (DQA1*03/DQB1*03), a subset of patients carries both HLA-DQ2 and HLA-DQ8. As a result, these patients may express two types of mixed HLA-DQ2/8 transdimers (encoded by DQA1*05/DQB1*03 and DQA1*03/DQB1*02) in addition to HLA-DQ2 and HLA-DQ8. Using T cells from a celiac disease patient expressing HLA-DQ8trans (encoded by DQA*0501/DQB*0302), but neither HLA-DQ2 nor HLA-DQ8, we demonstrate that this transdimer is expressed on the cell surface and can present multiple gluten peptides to T cell clones isolated from the duodenum of this patient. Furthermore, T cell clones derived from this patient and HLA-DQ2/8 heterozygous celiac disease patients respond to gluten peptides presented by HLA-DQ8trans, as well as HLA-DQ8, in a similar fashion. Finally, one gluten peptide is recognized better when presented by HLA-DQ8trans, which correlates with preferential binding of this peptide to HLA-DQ8trans. These results implicate HLA-DQ8trans in celiac disease pathogenesis and demonstrate extensive T cell cross-reactivity between HLA-DQ8 and HLA-DQ8trans. Because type 1 diabetes is strongly associated with the presence of HLA-DQ8trans, our findings may bear relevance to this disease as well.
Collapse
Affiliation(s)
- Yvonne Kooy-Winkelaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bergamo P, Maurano F, Mazzarella G, Iaquinto G, Vocca I, Rivelli AR, De Falco E, Gianfrani C, Rossi M. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Mol Nutr Food Res 2011; 55:1266-70. [DOI: 10.1002/mnfr.201100132] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/20/2011] [Accepted: 05/05/2011] [Indexed: 11/08/2022]
|
18
|
Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. Divergent motifs but overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the worldwide human population. THE JOURNAL OF IMMUNOLOGY 2010; 185:4189-98. [PMID: 20810981 DOI: 10.4049/jimmunol.1001006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Knowledge of the binding repertoires and specificities of HLA-DQ molecules is somewhat limited and contradictory, partly because of the scarcity of reports addressing some of the most common molecules and possibly because of the diversity of the techniques used. In this paper, we report the development of high-throughput binding assays for the six most common DQ molecules in the general worldwide population. Using comprehensive panels of single substitution analogs of specific ligands, we derived detailed binding motifs for DQA1*0501/DQB1*0301, DQA1*0401/DQB1*0402, and DQA1*0101/DQB1*0501 and more detailed motifs for DQA1*0501/DQB1*0201, DQA1*0301/DQB1*0302, and DQA1*0102/DQB1*0602, previously characterized on the basis of sets of eluted ligands and/or limited sets of substituted peptides. In contrast to what has previously been observed for DR and DP molecules, DQ motifs were generally less clearly defined in terms of chemical specificity and, strikingly, had little overlap with each other. However, testing a panel of peptides spanning a set of Phleum pratense Ags, and panels of known DQ epitopes, revealed a surprisingly significant and substantial overlap in the repertoire of peptides bound by these DQ molecules. Although the mechanism underlying these apparently contradictory findings is not clear, it likely reflects the peculiar mode of interaction between DQ (and not DR or DP) molecules and their peptide ligands. Because the DQ molecules studied are found in >85% of the general human population, these findings have important implications for epitope identification studies and monitoring of DQ-restricted immune responses.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Jabri B, Sollid LM. Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 2009; 9:858-70. [PMID: 19935805 DOI: 10.1038/nri2670] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Coeliac disease is an inflammatory disorder with autoimmune features that is characterized by destruction of the intestinal epithelium and remodelling of the intestinal mucosa following the ingestion of dietary gluten. A common feature of coeliac disease and many organ-specific autoimmune diseases is a central role for T cells in causing tissue destruction. In this Review, we discuss the emerging hypothesis that, in coeliac disease, intestinal tissue inflammation--induced either by infectious agents or by gluten--is crucial for activating T cells and eliciting their tissue-destructive effector functions.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
20
|
Mohanapriya A, Lulu S, Kayathri R, Kangueane P. Class II HLA-peptide binding prediction using structural principles. Hum Immunol 2009; 70:159-69. [PMID: 19187794 DOI: 10.1016/j.humimm.2008.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
The precise prediction of class II human leukocyte antigen (HLA) peptide binding finds application in epitope design for the development of vaccines and diagnostics of diseases associated with CD4+ T-cellular immunity. HLA II binding peptides have an extended conformation at the binding groove unlike class I. This increases peptide binding combinations of varying length at the groove, having an eventual effect in the host immune response to infectious agents. Here we describe the development of a prediction model using information gleaned from HLA II-peptide (HLA II-p) structural data. We created a manually curated dataset of 15 HLA II-p structural complexes from Protein databank (PDB). The dataset was used to develop virtual binding pockets for accommodating HLA-II-specific short peptides. The binding of peptides to the virtual pockets is estimated using the Q matrix (a quantitative matrix based on amino acid residue properties). Internal cross-validation of the model using the 15 HLA II-p structural complexes produced an accuracy of 53% with a sensitivity of 53%. The model was further evaluated using a dataset of 3676 class II-specific peptides consisting of 1188 binders and 2488 nonbinders derived from MHCBN (a database of HLA binders and nonbinders). The model produced an accuracy of 53% with 70.8% specificity and 27.6% sensitivity. The positive predictive value (PPV) was 62% and the negative predictive value (NPV) 58%. A 62% PPV suggests that the model fairly predicts a good number of binders among predicted binders and thus that the success rate among predicted binder for further verification is good. The described model is simple and rapid, with large HLA allele coverage representing the sampled global population, despite weak prediction accuracy. The ability of the model to predict a wide array of defined class II alleles is found to be applicable for proteome-wide scanning of parasitic genomes.
Collapse
Affiliation(s)
- Arumugam Mohanapriya
- School of Biotechnology, Chemical and Biomedical Engineering, Vellore Institute of Technology University, Tamil Nadu, India
| | | | | | | |
Collapse
|
21
|
Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, Ciszewski C, Curran SA, Murray JA, David CS, Sollid LM, Koning F, Teyton L, Jabri B. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature 2008; 456:534-8. [PMID: 19037317 PMCID: PMC3784325 DOI: 10.1038/nature07524] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/06/2008] [Indexed: 12/20/2022]
Abstract
Major histocompatibility complex (MHC) class II alleles HLA-DQ8 and the mouse homologue I-A(g7) lacking a canonical aspartic acid residue at position beta57 are associated with coeliac disease and type I diabetes. However, the role of this single polymorphism in disease initiation and progression remains poorly understood. The lack of Asp 57 creates a positively charged P9 pocket, which confers a preference for negatively charged peptides. Gluten lacks such peptides, but tissue transglutaminase (TG2) introduces negatively charged residues at defined positions into gluten T-cell epitopes by deamidating specific glutamine residues on the basis of their spacing to proline residues. The commonly accepted model, proposing that HLA-DQ8 simply favours binding of negatively charged peptides, does not take into account the fact that TG2 requires inflammation for activation and that T-cell responses against native gluten peptides are found, particularly in children. Here we show that beta57 polymorphism promotes the recruitment of T-cell receptors bearing a negative signature charge in the complementary determining region 3beta (CDR3beta) during the response against native gluten peptides presented by HLA-DQ8 in coeliac disease. These T cells showed a crossreactive and heteroclitic (stronger) response to deamidated gluten peptides. Furthermore, gluten peptide deamidation extended the T-cell-receptor repertoire by relieving the requirement for a charged residue in CDR3beta. Thus, the lack of a negative charge at position beta57 in MHC class II was met by negatively charged residues in the T-cell receptor or in the peptide, the combination of which might explain the role of HLA-DQ8 in amplifying the T-cell response against dietary gluten.
Collapse
Affiliation(s)
- Zaruhi Hovhannisyan
- Department of Medicine, Pathology, Pediatrics and Committee of Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stepniak D, Wiesner M, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK, van Veelen PA, Koning F. Large-Scale Characterization of Natural Ligands Explains the Unique Gluten-Binding Properties of HLA-DQ2. THE JOURNAL OF IMMUNOLOGY 2008; 180:3268-78. [DOI: 10.4049/jimmunol.180.5.3268] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Affiliation(s)
- Herbert Wieser
- Deutsche Forschungsanstalt für Lebensmittelchemie and Hans-Dieter-Belitz-Institut für Mehl- und Eiweißforschung, Lichtenbergstr. 4, D-85748 Garching, Germany
- Corresponding author. Phone: +49 89 289 13260. Fax: +49 89 289 14183. E-mail:
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie and Hans-Dieter-Belitz-Institut für Mehl- und Eiweißforschung, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
24
|
Henderson KN, Tye-Din JA, Reid HH, Chen Z, Borg NA, Beissbarth T, Tatham A, Mannering SI, Purcell AW, Dudek NL, van Heel DA, McCluskey J, Rossjohn J, Anderson RP. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 2007; 27:23-34. [PMID: 17629515 DOI: 10.1016/j.immuni.2007.05.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 04/17/2007] [Accepted: 05/08/2007] [Indexed: 02/06/2023]
Abstract
The risk of celiac disease is strongly associated with human leukocyte antigen (HLA) DQ2 and to a lesser extent with HLA DQ8. Although the pathogenesis of HLA-DQ2-mediated celiac disease is established, the underlying basis for HLA-DQ8-mediated celiac disease remains unclear. We showed that T helper 1 (Th1) responses in HLA-DQ8-associated celiac pathology were indeed HLA DQ8 restricted and that multiple, mostly deamidated peptides derived from protease-sensitive sites of gliadin were recognized. This pattern of reactivity contrasted with the more absolute deamidation dependence and relative protease resistance of the dominant gliadin peptide in DQ2-mediated disease. We provided a structural basis for the selection of HLA-DQ8-restricted, deamidated gliadin peptides. The data established that the molecular mechanisms underlying HLA-DQ8-mediated celiac disease differed markedly from the HLA-DQ2-mediated form of the disease. Accordingly, nondietary therapeutic interventions in celiac disease might need to be tailored to the genotype of the individual.
Collapse
Affiliation(s)
- Kate N Henderson
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bondinas GP, Moustakas AK, Papadopoulos GK. The spectrum of HLA-DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure with function. Immunogenetics 2007; 59:539-53. [PMID: 17497145 DOI: 10.1007/s00251-007-0224-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 04/03/2007] [Indexed: 10/23/2022]
Abstract
The list of alleles in the HLA-DRB, HLA-DQA, and HLA-DQB gene loci has grown enormously since the last listing in this journal 8 years ago. Crystal structure determination of several human and mouse HLA class II alleles, representative of two gene loci in each species, enables a direct comparison of ortholog and paralog loci. A new numbering system is suggested, extending earlier suggestions by [Fremont et al. in Immunity 8:305-317, (1998)], which will bring in line all the structural features of various gene loci, regardless of animal species. This system allows for structural equivalence of residues from different gene loci. The listing also highlights all amino acid residues participating in the various functions of these molecules, from antigenic peptide binding to homodimer formation, CD4 binding, membrane anchoring, and cytoplasmic signal transduction, indicative of the variety of functions of these molecules. It is remarkable that despite the enormous number of unique alleles listed thus far (DQA = 22, DQB = 54, DRA = 2, and DRB = 409), there is invariance at many specific positions in man, but slightly less so in mouse or rat, despite their much lower number of alleles at each gene locus in the latter two species. Certain key polymorphisms (from substitutions to an eight-residue insertion in the cytoplasmic tail of certain DQB alleles) that have thus far gone unnoticed are highly suggestive of differences or diversities in function and thus call for further investigation into the properties of these specific alleles. This listing is amenable to supplementation by future additions of new alleles and the highlighting of new functions to be discovered, providing thus a unifying platform of reference in all animal species for the MHC class II allelic counterparts, aiding research in the field and furthering our understanding of the functions of these molecules.
Collapse
Affiliation(s)
- George P Bondinas
- Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology, Epirus Institute of Technology, GR47100 Arta, Greece
| | | | | |
Collapse
|
26
|
Jabri B, Sollid LM. Mechanisms of disease: immunopathogenesis of celiac disease. ACTA ACUST UNITED AC 2006; 3:516-25. [PMID: 16951668 DOI: 10.1038/ncpgasthep0582] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 07/03/2006] [Indexed: 12/18/2022]
Abstract
Celiac disease is a genetic inflammatory disorder with autoimmune components that is induced by the ingestion of dietary gluten. Refractory sprue and enteropathy-associated T-cell lymphoma are rare but distinctive complications of the disease. Although the importance of the adaptive immune response to gluten has been well established, observations now also point towards a central role for the gluten-induced innate stress response in the pathogenesis of celiac disease and its malignant complications.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Pathology, Medicine and Pediatrics, University of Chicago, IL 60637, USA.
| | | |
Collapse
|
27
|
Muro Y, Ogawa Y, Sugiura K, Tomita Y. HLA-associated production of anti-DFS70/LEDGF autoantibodies and systemic autoimmune disease. J Autoimmun 2006; 26:252-7. [PMID: 16713178 DOI: 10.1016/j.jaut.2006.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/19/2006] [Accepted: 03/28/2006] [Indexed: 10/24/2022]
Abstract
Autoantibodies against DFS70/LEDGF, which is also known as an important partner of HIV-1 integrase, are found in 10% of healthy Japanese people, but in only approximately 2% of patients with systemic autoimmune disease (SAD). We wished to characterize the association of HLA class II alleles with the presence of autoantibodies against this molecule. MHC class II genes (DR, DQ, and DP alleles) were analyzed by the polymerase chain reaction-sequence specific primer method in 24 individuals with anti-DFS70 antibodies. The frequencies of HLA-DRB1*0410, -DQB1*0402, and -DPB1*0301 were increased in anti-DFS70 Ab-positive patients, while HLA-DQB1*0302 was decreased compared to Japanese controls. All anti-DFS70 Ab-positive individuals expressed at least one HLA-DQB1 allele with an aspartic acid at residue 57. The immunogenetic background of Japanese individuals with anti-DFS70 antibodies differs from that of patients with SAD. HLA class II genes influence the production of anti-DFS70 antibodies among individuals with various clinical manifestations.
Collapse
Affiliation(s)
- Yoshinao Muro
- Division of Connective Tissue Disease & Autoimmunity, Department of Dermatology, Nagoya University Graduate School of Medicine, Showa-ku, Japan.
| | | | | | | |
Collapse
|
28
|
Tong JC, Zhang GL, Tan TW, August JT, Brusic V, Ranganathan S. Prediction of HLA-DQ3.2beta ligands: evidence of multiple registers in class II binding peptides. ACTA ACUST UNITED AC 2006; 22:1232-8. [PMID: 16510499 DOI: 10.1093/bioinformatics/btl071] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION While processing of MHC class II antigens for presentation to helper T-cells is essential for normal immune response, it is also implicated in the pathogenesis of autoimmune disorders and hypersensitivity reactions. Sequence-based computational techniques for predicting HLA-DQ binding peptides have encountered limited success, with few prediction techniques developed using three-dimensional models. METHODS We describe a structure-based prediction model for modeling peptide-DQ3.2beta complexes. We have developed a rapid and accurate protocol for docking candidate peptides into the DQ3.2beta receptor and a scoring function to discriminate binders from the background. The scoring function was rigorously trained, tested and validated using experimentally verified DQ3.2beta binding and non-binding peptides obtained from biochemical and functional studies. RESULTS Our model predicts DQ3.2beta binding peptides with high accuracy [area under the receiver operating characteristic (ROC) curve A(ROC) > 0.90], compared with experimental data. We investigated the binding patterns of DQ3.2beta peptides and illustrate that several registers exist within a candidate binding peptide. Further analysis reveals that peptides with multiple registers occur predominantly for high-affinity binders.
Collapse
Affiliation(s)
- Joo Chuan Tong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore 8 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | | | |
Collapse
|
29
|
Senger S, Maurano F, Mazzeo MF, Gaita M, Fierro O, David CS, Troncone R, Auricchio S, Siciliano RA, Rossi M. Identification of Immunodominant Epitopes of α-Gliadin in HLA-DQ8 Transgenic Mice following Oral Immunization. THE JOURNAL OF IMMUNOLOGY 2005; 175:8087-95. [PMID: 16339546 DOI: 10.4049/jimmunol.175.12.8087] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Celiac disease, triggered by wheat gliadin and related prolamins from barley and rye, is characterized by a strong association with HLA-DQ2 and HLA-DQ8 genes. Gliadin is a mixture of many proteins that makes difficult the identification of major immunodominant epitopes. To address this issue, we expressed in Escherichia coli a recombinant alpha-gliadin (r-alpha-gliadin) showing the most conserved sequence among the fraction of alpha-gliadins. HLA-DQ8 mice, on a gluten-free diet, were intragastrically immunized with a chymotryptic digest of r-alpha-gliadin along with cholera toxin as adjuvant. Spleen and mesenteric lymph node T cell responses were analyzed for in vitro proliferative assay using a panel of synthetic peptides encompassing the entire sequence of r-alpha-gliadin. Two immunodominant epitopes corresponding to peptide p13 (aa 120-139) and p23 (aa 220-239) were identified. The response was restricted to DQ and mediated by CD4+ T cells. In vitro tissue transglutaminase deamidation of both peptides did not increase the response; furthermore, tissue transglutaminase catalyzed extensive deamidation in vitro along the entire r-alpha-gliadin molecule, but failed to elicit new immunogenic determinants. Surprisingly, the analysis of the cytokine profile showed that both deamidated and native peptides induced preferentially IFN-gamma secretion, despite the use of cholera toxin, a mucosal adjuvant that normally induces a Th2 response to bystander Ags. Taken together, these data suggest that, in this model of gluten hypersensitivity, deamidation is not a prerequisite for the initiation of gluten responses.
Collapse
Affiliation(s)
- Stefania Senger
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Costantini S, Rossi M, Colonna G, Facchiano AM. Modelling of HLA-DQ2 and its interaction with gluten peptides to explain molecular recognition in celiac disease. J Mol Graph Model 2005; 23:419-31. [PMID: 15781184 DOI: 10.1016/j.jmgm.2004.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 11/08/2004] [Accepted: 12/16/2004] [Indexed: 02/08/2023]
Abstract
Celiac disease (CD) is sustained by abnormal intestinal mucosal T-cell response to gluten and it is strongly associated with HLA class II molecules encoded by DQA1*0501/DQB1*02 (DQ2) or DQA1*03/DQB1*0302 (DQ8). The in vitro stimulatory activity of gliadin increases after treatment with tissue transglutaminase (tTG) which catalyses the deamidation of specific residues of glutamine to glutamate that can serve as anchors for binding to DQ2 as well as to DQ8 molecules. We modelled the three-dimensional structure of the DQ2 dimer protein, the most frequent in celiac patients, by using a homology modelling strategy, and deposited the model in the Protein Data Bank (PDB). Then, we simulated the interactions of DQ2 with different gluten peptides and the deamidation of specific peptide glutamines in the known p4, p6, p7 and p9 anchor positions, as well as in p1 and p5 positions, and other substitutions for which experimental effects on binding are available by previous experimental studies. By evaluating the energy of interaction and the H-bond interactions, we were able to distinguish what substitutions improve the interaction peptide-DQ2, in agreement with previously published experimental data. By analysing the peptide-DQ2 complex at the atom level, we observed that these glutamate side chains can interact with specific positively charged amino acids of DQ2, absent in other HLA alleles not related to celiac disease. The simulation was also extended to other peptides, related to celiac disease but for which no experimental data exists about the effects of glutamine deamidation. Our results give an interpretation at the molecular level of previously reported binding experimental data and open a new window to gain further insights about peptide recognition in celiac disease.
Collapse
Affiliation(s)
- Susan Costantini
- Institute of Food Science, CNR, via Roma 52 A/C, 83100 Avellino, Italy
| | | | | | | |
Collapse
|
31
|
Arentz-Hansen H, Fleckenstein B, Molberg Ø, Scott H, Koning F, Jung G, Roepstorff P, Lundin KEA, Sollid LM. The molecular basis for oat intolerance in patients with celiac disease. PLoS Med 2004; 1:e1. [PMID: 15526039 PMCID: PMC523824 DOI: 10.1371/journal.pmed.0010001] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 06/14/2004] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Celiac disease is a small intestinal inflammatory disorder characterized by malabsorption, nutrient deficiency, and a range of clinical manifestations. It is caused by an inappropriate immune response to dietary gluten and is treated with a gluten-free diet. Recent feeding studies have indicated oats to be safe for celiac disease patients, and oats are now often included in the celiac disease diet. This study aimed to investigate whether oat intolerance exists in celiac disease and to characterize the cells and processes underlying this intolerance. METHODS AND FINDINGS We selected for study nine adults with celiac disease who had a history of oats exposure. Four of the patients had clinical symptoms on an oats-containing diet, and three of these four patients had intestinal inflammation typical of celiac disease at the time of oats exposure. We established oats-avenin-specific and -reactive intestinal T-cell lines from these three patients, as well as from two other patients who appeared to tolerate oats. The avenin-reactive T-cell lines recognized avenin peptides in the context of HLA-DQ2. These peptides have sequences rich in proline and glutamine residues closely resembling wheat gluten epitopes. Deamidation (glutamine-->glutamic acid conversion) by tissue transglutaminase was involved in the avenin epitope formation. CONCLUSIONS We conclude that some celiac disease patients have avenin-reactive mucosal T-cells that can cause mucosal inflammation. Oat intolerance may be a reason for villous atrophy and inflammation in patients with celiac disease who are eating oats but otherwise are adhering to a strict gluten-free diet. Clinical follow-up of celiac disease patients eating oats is advisable.
Collapse
Affiliation(s)
- Helene Arentz-Hansen
- 1Institute of Immunology, Rikshospitalet University Hospital, University of OsloOsloNorway
| | - Burkhard Fleckenstein
- 1Institute of Immunology, Rikshospitalet University Hospital, University of OsloOsloNorway
- 2Department of Biochemistry and Molecular Biology, University of Southern DenmarkOdenseDenmark
| | - Øyvind Molberg
- 1Institute of Immunology, Rikshospitalet University Hospital, University of OsloOsloNorway
| | - Helge Scott
- 3Institute of Pathology, Rikshospitalet University Hospital, University of OsloOsloNorway
| | - Frits Koning
- 4Department of Immunohematology and Blood Transfusion, Leiden University Medical CentreLeidenNetherlands
| | - Günther Jung
- 5Institute of Organic Chemistry, University of TübingenTübingenGermany
| | - Peter Roepstorff
- 2Department of Biochemistry and Molecular Biology, University of Southern DenmarkOdenseDenmark
| | - Knut E. A Lundin
- 1Institute of Immunology, Rikshospitalet University Hospital, University of OsloOsloNorway
- 6Department of Medicine, Rikshospitalet University HospitalOsloNorway
| | - Ludvig M Sollid
- 1Institute of Immunology, Rikshospitalet University Hospital, University of OsloOsloNorway
| |
Collapse
|
32
|
Martucci S, Fraser JS, Biagi F, Corazza GR, Ciclitira PJ, Ellis HJ. Characterizing one of the DQ2 candidate epitopes in coeliac disease: A-gliadin 51-70 toxicity assessed using an organ culture system. Eur J Gastroenterol Hepatol 2003; 15:1293-8. [PMID: 14624152 DOI: 10.1097/00042737-200312000-00007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE To investigate, using an organ culture system, in-vitro toxicity of region 51-70 of A-gliadin (SQQPYLQLQPFPQPQLPYSQ), a peptide overlapping some of the sequences recently characterized as DQ2-restricted T-cell epitopes in coeliac disease. METHODS Jejunal biopsies obtained from each of ten coeliac patients (eight treated, two untreated) and two non-coeliac patients were cultured in vitro for 18 h in the presence of A-gliadin amino acids 51-70 (200 microg/ml), organ culture medium only, peptic-tryptic digest of gliadin (1 mg/ml) or ovalbumin (1 mg/ml), the last two acting as positive and negative controls, respectively. Morphometric analysis involved measuring the cell height of 30 enterocytes, selected at random from the middle third of different villi for each section. Mean enterocyte cell heights (ECH) were compared with values for specimens cultured in medium alone. Levels of tissue transglutaminase antibody in biopsy supernatants were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS In eight of ten coeliac patients, A-gliadin 51-70 was significantly toxic, causing a 30% decrease in ECH when compared with medium alone. In two of ten subjects, the peptide did not show any toxic effect. In all ten cases, we found that both positive and negative controls worked as expected. The peptide was non-toxic in the non-coeliac individuals. Tissue transglutaminase antibody titre in the supernatant was not found to be related to mucosal damage. CONCLUSIONS We showed that the peptide corresponding to amino acids 51-70 of A-gliadin is characterized by in-vitro toxicity to the jejunal coeliac mucosa, correlating with recent findings of an immunological role of similar peptides. The lack of response in two of ten subjects suggests that this epitope may not be relevant in all cases of coeliac disease.
Collapse
Affiliation(s)
- Susi Martucci
- Gastroenterology Department, Rayne Institute (KCL), St Thomas' Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
33
|
Black KE, Murray JA, David CS. HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5595-600. [PMID: 12421937 DOI: 10.4049/jimmunol.169.10.5595] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have investigated the genetic basis of the immune response to dietary gluten in HCD4/DQ8 and HCD4/DQ6 double transgenic mice. Mice were immunized with gluten i.p. or individual peptides s.c. and spleen or draining lymph node T cells were challenged in vitro. Strong proliferative responses to gluten were seen in the HCD4/DQ8 mice, whereas the HCD4/DQ6 mice responded to gluten poorly. A series of overlapping peptides spanning gliadin were synthesized. The HCD4/DQ8 mice reacted to many of the individual peptides of gliadin, while the HCD4/DQ6 mice were relatively unresponsive. T cells isolated from HCD4/DQ8 mice also responded well to modified (deamidated) versions of the gliadin peptides, whereas HCD4DQ6 mice did not. The T cell response to gluten was CD4 dependent and DQ restricted and led to the production of cytokines IL-6, TGF-beta, and IL-10. Finally, intestinal lymphocytes isolated from gluten-fed HCD4/DQ8 mice displayed an activated phenotype. These data suggest that this HLA class II transgenic murine model of gluten sensitivity may provide insight into the initiation of the MHC class II-restricted gluten sensitivity in celiac disease.
Collapse
Affiliation(s)
- Kay E Black
- Department of Immunology, Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, 220 1st Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
34
|
Sidney J, del Guercio MF, Southwood S, Sette A. The HLA molecules DQA1*0501/B1*0201 and DQA1*0301/B1*0302 share an extensive overlap in peptide binding specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5098-108. [PMID: 12391226 DOI: 10.4049/jimmunol.169.9.5098] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Assays to measure the binding capacity of peptides for HLA-DQA1*0501/B*0201 (DQ2.3) and DQA1*0301/B*0302 (DQ3.2) were developed using solubilized MHC molecules purified from EBV-transformed cell lines. These quantitative assays, based on the principle of the inhibition of binding of a high-affinity radiolabeled ligand, were validated by examining the binding capacity of known DQ-restricted epitopes or ligands. The availability of these assays allowed an investigation of patterns of cross-reactivity between different DQ molecules and with various common DR molecules. DQ2.3 and DQ3.2 were found to have significantly overlapping peptide binding repertoires. Specifically, of 13 peptides that bound either DQ2.3 or DQ3.2, nine (69.2%) bound both. The molecular basis of this high degree of cross-reactivity was further investigated with panels of single substitution analogs of the thyroid peroxidase 632-645Y epitope. It was found that DQ2.3 and DQ3.2 bind the same ligands by using similar anchor residues but different registers. These data suggest that in analogy to what was previously described for HLA-DR molecules, HLA-DQ supertypes characterized by largely overlapping binding repertoires can be defined. In light of the known linkage of both HLA-DQ2.3 and -DQ3.2 with insulin-dependent diabetes mellitus and celiac disease, these results might have important implications for understanding HLA class II autoimmune disease associations.
Collapse
|
35
|
Moustakas AK, Papadopoulos GK. Molecular properties of HLA-DQ alleles conferring susceptibility to or protection from insulin-dependent diabetes mellitus: keys to the fate of islet beta-cells. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 115:37-47. [PMID: 12116175 DOI: 10.1002/ajmg.10342] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The major histocompatibility complex Class II alleles, HLA-DQ, and the related HLA-DR, are the chief genetic elements of human type 1 diabetes. These genes code for polymorphic heterodimeric proteins, whose chief function is to trap peptide antigens in the endosome and present them on the surface of antigen-presenting cells (dendritic cells, B lymphocytes, monocytes/macrophages) to CD4(+) T helper cells. A systematic investigation of the molecular properties of HLA-DQ alleles linked to susceptibility or resistance to type 1 diabetes has shown that these properties segregate along lines of susceptibility or resistance. A correlation of these features with the function of each particular segment of the HLA-DQ molecule yields interesting insights into the possible pathways leading to type 1 diabetes. There remain, however, areas to be clarified, including mechanisms by which dominant protection is conferred by certain alleles, the interplay between HLA-DQ and the related locus HLA-DR, that also shows autoantigen-specific reactivity, and the cross-Class help delivered to CD8(+) T cells, the final effectors in pancreatic beta-cell destruction. Clarification of these issues may lead to ways to prevent diabetes in predisposed individuals already exhibiting the genetic and immunological characteristics, and perhaps a cure in those with the disease, by means of transplantation, and measures for prevention of disease recurrence.
Collapse
|
36
|
Masewicz SA, Papadopoulos GK, Swanson E, Moriarity L, Moustakas AK, Nepom GT. Modulation of T cell response to hGAD65 peptide epitopes. TISSUE ANTIGENS 2002; 59:101-12. [PMID: 12028536 DOI: 10.1034/j.1399-0039.2002.590205.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human CD4 T cell responses to an epitope of hGAD65 (GAD = glutamic acid decarboxylase), residues 555-567, are modulated by interaction with an altered peptide ligand containing modifications at TCR contact residues. Using different HLA-DR4 molecules with polymorphisms at sites corresponding to peptide binding pockets p1 and p9, we tested the effect of additional modifications in the altered peptide ligand (APL) designed to increase the avidity of the MHC-peptide interaction and therefore the efficiency of TCR signaling. Modification of the peptide or the MHC molecule which enhanced the p1 interaction also enhanced the antagonist activity of the modified APL. In contrast, modifications at p9 led to a reversal in APL function, resulting in agonist activity. Molecular homology modeling of these MHC-peptide interactions suggests a structural basis for this functional dichotomy in which topographically remote variations lead to unique interaction effects.
Collapse
Affiliation(s)
- S A Masewicz
- Benaroya Research Institute, Virginia Mason Research Center, 1201 Ninth Avenue, Seattle, Washington 98101, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wucherpfennig KW. Insights into autoimmunity gained from structural analysis of MHC-peptide complexes. Curr Opin Immunol 2001; 13:650-6. [PMID: 11677085 DOI: 10.1016/s0952-7915(01)00274-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structural and functional properties of HLA-DQ and -DR molecules that confer susceptibility to several common autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis and multiple sclerosis, have been defined. The relevant polymorphisms directly affect interaction with peptides, which provides strong support for the hypothesis that these diseases are peptide-antigen driven. Several studies indicate that structural modifications of peptides can affect MHC class II binding and/or TCR recognition and should be considered in the analysis of T cell responses in autoimmune diseases.
Collapse
Affiliation(s)
- K W Wucherpfennig
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Room D1410, 44 Binney Street, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Papadopoulos GK, Wijmenga C, Koning F. Interplay between genetics and the environment in the development of celiac disease: perspectives for a healthy life. J Clin Invest 2001; 108:1261-6. [PMID: 11696566 PMCID: PMC209453 DOI: 10.1172/jci14344] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- G K Papadopoulos
- The Laboratory of Biochemistry and Biophysics, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | | | | |
Collapse
|
39
|
Kumar V, Rajadhyaksha M, Wortsman J. Celiac disease-associated autoimmune endocrinopathies. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:678-85. [PMID: 11427410 PMCID: PMC96126 DOI: 10.1128/cdli.8.4.678-685.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Celiac disease (CD) is an autoimmune disorder induced by gluten intake in genetically susceptible individuals. It is characterized by the presence of serum antibodies to endomysium, reticulin, gliadin, and tissue transglutaminase. The incidence of CD in various autoimmune disorders is increased 10- to 30-fold in comparison to the general population, although in many cases CD is clinically asymptomatic or silent. The identification of such cases with CD is important since it may help in the control of type I diabetes or endocrine functions in general, as well as in the prevention of long-term complications of CD, such as lymphoma. It is believed that CD may predispose an individual to other autoimmune disorders such as type I diabetes, autoimmune thyroid, and other endocrine diseases and that gluten may be a possible trigger. The onset of type I diabetes at an early age in patients with CD, compared to non-CD, and the prevention or delay in onset of diabetes by gluten-free diet in genetically predisposed individuals substantiates this antigen trigger hypothesis. Early identification of CD patients in highly susceptible population may result in the treatment of subclinical CD and improved control of associated disorders.
Collapse
Affiliation(s)
- V Kumar
- IMMCO Diagnostics, Inc., Buffalo, New York 14228, USA.
| | | | | |
Collapse
|
40
|
Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol 2001; 2:501-7. [PMID: 11376336 DOI: 10.1038/88694] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The class II major histocompatibility complex (MHC) glycoproteins HLA-DQ8 and HLA-DQ2 in humans and I-A(g7) in nonobese diabetic (NOD) mice are the major risk factors for increased susceptibility to type 1 diabetes. Using X-ray crystallography, we have determined the three-dimensional structure of DQ8 complexed with an immunodominant peptide from insulin. The similarity of the DQ8, DQ2 and I-A(g7) peptide-binding pockets suggests that diabetes is caused by the same antigen-presentation event(s) in humans and NOD mice. Correlating type 1 diabetes epidemiology and MHC sequences with the DQ8 structure suggests that other structural features of the P9 pocket in addition to position 57 contribute to susceptibility to type 1 diabetes.
Collapse
Affiliation(s)
- K H Lee
- Laboratory of Molecular Medicine, The Department of Medicine, The Children's Hospital, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Snijders A, Elferink DG, Geluk A, van Der Zanden AL, Vos K, Schreuder GM, Breedveld FC, de Vries RR, Zanelli EH. An HLA-DRB1-derived peptide associated with protection against rheumatoid arthritis is naturally processed by human APCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4987-93. [PMID: 11290778 DOI: 10.4049/jimmunol.166.8.4987] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Predisposition to rheumatoid arthritis (RA) is thought to be associated with HLA-DR1, -DR4, and -DR10. However, many epidemiological observations are better explained by a model in which the DQ alleles that are linked to these DR alleles, i.e., DQ5, DQ7, and DQ8, predispose to RA, while certain DR alleles have a dominant protective effect. All protective DRB1 alleles, e.g., *0402, *1301, and *1302, encode a unique motif, (70)DERAA(74). The protection may be explained by the presentation of DRB1-derived peptides by DQ to immunoregulatory T cells, because it was demonstrated in various autoimmune disease models that T cell responses to certain self-Ags can be involved in disease suppression. The aim of this study was to analyze whether peptides carrying the DERAA motif are naturally processed by human APC and presented in the context of the RA-predisposing DQ. Using a synthetic peptide carrying the DRB1*0402-derived sequence (65)KDILEDERAAVDTYC(79), we generated DERAA peptide-specific DQ-restricted T cell clones (TCC) from a DQ8 homozygous individual carrying DERAA-negative DR4 alleles. By analyzing the proliferation of these TCC, we demonstrated natural processing and presentation of the DERAA sequence by the APC of all the individuals (n = 12) carrying a DERAA-positive DRB1 allele and either DQ8 or the DQ8-related DQ7. Using a panel of truncated synthetic peptides, we identified the sequence (67)(I)LEDERAAVD(TY)(78) as the minimal determinant for binding to DQ8 and for recognition by the TCC. These findings support a model in which self-MHC-derived peptide can modulate predisposition to autoimmune disease in humans.
Collapse
Affiliation(s)
- A Snijders
- Immunohematology and Blood Transfusion and Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|