1
|
Takizawa F, Hashimoto K, Miyazawa R, Ohta Y, Veríssimo A, Flajnik MF, Parra D, Tokunaga K, Suetake H, Sunyer JO, Dijkstra JM. CD4 and LAG-3 from sharks to humans: related molecules with motifs for opposing functions. Front Immunol 2023; 14:1267743. [PMID: 38187381 PMCID: PMC10768021 DOI: 10.3389/fimmu.2023.1267743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
CD4 and LAG-3 are related molecules that are receptors for MHC class II molecules. Their major functional differences are situated in their cytoplasmic tails, in which CD4 has an activation motif and LAG-3 an inhibitory motif. Here, we identify shark LAG-3 and show that a previously identified shark CD4-like gene has a genomic location, expression pattern, and motifs similar to CD4 in other vertebrates. In nurse shark (Ginglymostoma cirratum) and cloudy catshark (Scyliorhinus torazame), the highest CD4 expression was consistently found in the thymus whereas such was not the case for LAG-3. Throughout jawed vertebrates, the CD4 cytoplasmic tail possesses a Cx(C/H) motif for binding kinase LCK, and the LAG-3 cytoplasmic tail possesses (F/Y)xxL(D/E) including the previously determined FxxL inhibitory motif resembling an immunoreceptor tyrosine-based inhibition motif (ITIM). On the other hand, the acidic end of the mammalian LAG-3 cytoplasmic tail, which is believed to have an inhibitory function as well, was acquired later in evolution. The present study also identified CD4-1, CD4-2, and LAG-3 in the primitive ray-finned fishes bichirs, sturgeons, and gars, and experimentally determined these sequences for sterlet sturgeon (Acipenser ruthenus). Therefore, with CD4-1 and CD4-2 already known in teleosts (modern ray-finned fish), these two CD4 lineages have now been found within all major clades of ray-finned fish. Although different from each other, the cytoplasmic tails of ray-finned fish CD4-1 and chondrichthyan CD4 not only contain the Cx(C/H) motif but also an additional highly conserved motif which we expect to confer a function. Thus, although restricted to some species and gene copies, in evolution both CD4 and LAG-3 molecules appear to have acquired functional motifs besides their canonical Cx(C/H) and ITIM-like motifs, respectively. The presence of CD4 and LAG-3 molecules with seemingly opposing functions from the level of sharks, the oldest living vertebrates with a human-like adaptive immune system, underlines their importance for the jawed vertebrate immune system. It also emphasizes the general need of the immune system to always find a balance, leading to trade-offs, between activating and inhibiting processes.
Collapse
Affiliation(s)
- Fumio Takizawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - Keiichiro Hashimoto
- Emeritus Professor, Center for Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Ryuichiro Miyazawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States
| | - Ana Veríssimo
- CIBIO‐InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Martin F. Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, United States
| | | | | | - Hiroaki Suetake
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, Japan
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
2
|
Flajnik MF, Stanfield R, Pokidysheva EN, Boudko SP, Wilson I, Ohta Y. An Ancient MHC-Linked Gene Encodes a Nonrearranging Shark Antibody, UrIg, Convergent with IgG. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1042-1051. [PMID: 37540118 PMCID: PMC10530332 DOI: 10.4049/jimmunol.2300361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Gnathostome adaptive immunity is defined by the Ag receptors, Igs and TCRs, and the MHC. Cartilaginous fish are the oldest vertebrates with these adaptive hallmarks. We and others have unearthed nonrearranging Ag receptor-like genes in several vertebrates, some of which are encoded in the MHC or in MHC paralogous regions. One of these genes, named UrIg, was detected in the class III region of the shark MHC that encodes a protein with typical V and C domains such as those found in conventional Igs and TCRs. As no transmembrane region was detected in gene models or cDNAs, the protein does not appear to act as a receptor. Unlike some other shark Ig genes, the UrIg V region shows no evidence of RAG-mediated rearrangement, and thus it is likely related to other V genes that predated the invasion of the RAG transposon. The UrIg gene is present in all elasmobranchs and evolves conservatively, unlike Igs and TCRs. Also, unlike Ig/TCR, the gene is not expressed in secondary lymphoid tissues, but mainly in the liver. Recombinant forms of the molecule form disulfide-linked homodimers, which is the form also detected in many shark tissues by Western blotting. mAbs specific for UrIg identify the protein in the extracellular matrix of several shark tissues by immunohistochemistry. We propose that UrIg is related to the V gene invaded by the RAG transposon, consistent with the speculation of emergence of Ig/TCR within the MHC or proto-MHC.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD
| | - Robyn Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Elena N Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Sergei P Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | - Ian Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD
| |
Collapse
|
3
|
Zapata AG. Lympho-Hematopoietic Microenvironments and Fish Immune System. BIOLOGY 2022; 11:747. [PMID: 35625475 PMCID: PMC9138301 DOI: 10.3390/biology11050747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
In the last 50 years information on the fish immune system has increased importantly, particularly that on species of marked commercial interest (i.e., salmonids, cods, catfish, sea breams), that occupy a key position in the vertebrate phylogenetical tree (i.e., Agnatha, Chondrichtyes, lungfish) or represent consolidated experimental models, such as zebrafish or medaka. However, most obtained information was based on genetic sequence analysis with little or no information on the cellular basis of the immune responses. Although jawed fish contain a thymus and lympho-hematopoietic organs equivalents to mammalian bone marrow, few studies have accounted for the presumptive relationships between the organization of these cell microenvironments and the known immune capabilities of the fish immune system. In the current review, we analyze this topic providing information on: (1) The origins of T and B lymphopoiesis in Agnatha and jawed fish; (2) the remarkable organization of the thymus of teleost fish; (3) the occurrence of numerous, apparently unrelated organs housing lympho-hematopoietic progenitors and, presumably, B lymphopoiesis; (4) the existence of fish immunological memory in the absence of germinal centers.
Collapse
Affiliation(s)
- Agustín G. Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; ; Tel.: +34-913-944-979
- Health Research Institute, Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
4
|
Kogame T, Kabashima K, Egawa G. Putative Immunological Functions of Inducible Skin-Associated Lymphoid Tissue in the Context of Mucosa-Associated Lymphoid Tissue. Front Immunol 2021; 12:733484. [PMID: 34512668 PMCID: PMC8426509 DOI: 10.3389/fimmu.2021.733484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Acquired immunity is orchestrated in various lymphoid organs, including bone marrow, thymus, spleen, and lymph nodes in humans. However, mucosa-associated lymphoid tissue (MALT) is evolutionally known to be emerged in the oldest vertebrates as an immunological tissue for acquired immunity, much earlier than the advent of lymph nodes which appeared in endotherms. Furthermore, the lymphocytes which developed in MALT are known to circulate within the limited anatomical areas. Thus, MALT is comprehended as not the structure but the immune network dedicated to local immunity. As for the skin, skin-associated lymphoid tissue (SALT) was previously postulated; however, its existence has not been proven. Our group recently showed that aggregations of dendritic cells, M2 macrophages, and high endothelial venules (HEVs) are essential components to activate effector T cells in the murine contact hypersensitivity model and termed it as inducible SALT (iSALT) since it was a transient entity that serves for acquired immunity of the skin. Furthermore, in various human skin diseases, we reported that the ectopic formation of lymphoid follicles that immunohistochemically analogous to MALT and regarded them as human counterparts of iSALT. These data raised the possibility that SALT can exist as an inducible form, namely iSALT, which shares the biological significance of MALT. In this article, we revisit the evolution of immunological organs and the related components among vertebrates to discuss the conserved functions of MALT. Furthermore, we also discuss the putative characteristics and functions of iSALT in the context of the MALT concept.
Collapse
Affiliation(s)
- Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
5
|
Matz H, Munir D, Logue J, Dooley H. The immunoglobulins of cartilaginous fishes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103873. [PMID: 32979434 PMCID: PMC7708420 DOI: 10.1016/j.dci.2020.103873] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 05/12/2023]
Abstract
Cartilaginous fishes, comprising the chimeras, sharks, skates, and rays, split from the common ancestor with other jawed vertebrates approx. 450 million years ago. Being the oldest extant taxonomic group to possess an immunoglobulin (Ig)-based adaptive immune system, examination of this group has taught us much about the evolution of adaptive immunity, as well as the conserved and taxon-specific characteristics of Igs. Significant progress has been made analyzing sequences from numerous genomic and transcriptomic data sets. These findings have been supported by additional functional studies characterizing the Igs and humoral response of sharks and their relatives. This review will summarize what we have learned about the genomic organization, protein structure, and in vivo function of these Ig isotypes in cartilaginous fishes and highlight the areas where our knowledge is still lacking.
Collapse
Affiliation(s)
- Hanover Matz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Danish Munir
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - James Logue
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
6
|
Mitchell CD, Criscitiello MF. Comparative study of cartilaginous fish divulges insights into the early evolution of primary, secondary and mucosal lymphoid tissue architecture. FISH & SHELLFISH IMMUNOLOGY 2020; 107:435-443. [PMID: 33161090 DOI: 10.1016/j.fsi.2020.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 05/05/2023]
Abstract
Cartilaginous fish are located at a pivotal point in phylogeny where the adaptive immune system begins to resemble that of other, more-derived jawed vertebrates, including mammals. For this reason, sharks and other cartilaginous fish are ideal models for studying the natural history of immunity. Insights from such studies may include distinguishing the (evolutionarily conserved) fundamental aspects of adaptive immunity from the (more recent) accessory. Some lymphoid tissues of sharks, including the thymus and spleen, resemble those of mammals in both appearance and function. The cartilaginous skeleton of sharks has no bone marrow, which is also absent in bony fish despite calcified bone, but cartilaginous fish have other Leydig's and epigonal organs that function to provide hematopoiesis analogous to mammalian bone marrow. Conserved across all vertebrate phylogeny in some form is gut-associated lymphoid tissues, or GALT, which is seen from agnathans to mammals. Though it takes many forms, from typhlosole in lamprey to Peyer's patches in mammals, the GALT serves as a site of antigen concentration and exposure to lymphocytes in the digestive tract. Though more complex lymphoid organs are not present in agnathans, they have several primitive tissues, such as the thymoid and supraneural body, that appear to serve their variable lymphocyte receptor-based adaptive immune system. There are several similarities between the adaptive immune structures in cartilaginous and bony fish, such as the thymus and spleen, but there are mechanisms employed in bony fish that in some instances bridge their adaptive immune systems to that of tetrapods. This review summarizes what we know of lymphoid tissues in cartilaginous fishes and uses these data to compare primary and secondary tissues in jawless, cartilaginous, and bony fishes to contextualize the early natural history of vertebrate mucosal immune tissues.
Collapse
Affiliation(s)
- Christian D Mitchell
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, 77807, USA.
| |
Collapse
|
7
|
Swann JB, Nusser A, Morimoto R, Nagakubo D, Boehm T. Retracing the evolutionary emergence of thymopoiesis. SCIENCE ADVANCES 2020; 6:6/48/eabd9585. [PMID: 33246964 PMCID: PMC7695478 DOI: 10.1126/sciadv.abd9585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/08/2020] [Indexed: 05/09/2023]
Abstract
The onset of lymphocyte development in the vertebrate primordial thymus, about 500 million years ago, represents one of the foundational events of the emerging adaptive immune system. Here, we retrace the evolutionary trajectory of thymopoiesis, from early vertebrates to mammals, guided by members of the Foxn1/4 transcription factor gene family, which direct the differentiation of the thymic microenvironment. Molecular engineering in transgenic mice recapitulated a gene duplication event, exon replacements, and altered expression patterns. These changes predictably modified the lymphopoietic characteristics of the thymus, identifying molecular features contributing to conversion of a primordial bipotent lymphoid organ to a tissue specializing in T cell development. The phylogenetic reconstruction associates increasing efficiency of T cell generation with diminishing B cell-generating capacity of the thymus during jawed vertebrate evolution.
Collapse
Affiliation(s)
- Jeremy B Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Anja Nusser
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Ryo Morimoto
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Daisuke Nagakubo
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
8
|
Eve O, Matz H, Dooley H. Proof of long-term immunological memory in cartilaginous fishes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103674. [PMID: 32165114 PMCID: PMC7164379 DOI: 10.1016/j.dci.2020.103674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 05/06/2023]
Abstract
Immunological memory provides long-term protection against pathogen re-infection and is the foundation for successful vaccination. We have previously shown an antigen-specific recall response in nurse sharks almost one year after primary exposure. Herein, we extend the time between prime and successful recall to >8 years, the longest period for which immunological memory has been shown in any non-mammalian vertebrate. We confirm that antigen binding is mediated by monomeric IgM and IgNAR, but not pentameric IgM, in both the primary and recall phases. Our inability to find target-binding clones in recombinant VNAR expression libraries suggests that, at least in this instance, antigen-specific memory cells comprise a small fraction of the IgNAR-positive B cells in epigonal and spleen. Further, that the few memory cells present can generate a robust antigen-specific IgNAR titer following re-stimulation. Our results continue to challenge the long-held, but erroneous, belief that the shark adaptive immune system is 'primitive' when compared to that of mammals.
Collapse
Affiliation(s)
- Oliver Eve
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Hanover Matz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
9
|
Abstract
In this review, Rothenburg discusses the gene regulatory network and chromatin-based kinetic constraints that determine activities of transcription factors in the primary establishment of T-cell identity. T-cell development in mammals is a model for lineage choice and differentiation from multipotent stem cells. Although T-cell fate choice is promoted by signaling in the thymus through one dominant pathway, the Notch pathway, it entails a complex set of gene regulatory network and chromatin state changes even before the cells begin to express their signature feature, the clonal-specific T-cell receptors (TCRs) for antigen. This review distinguishes three developmental modules for T-cell development, which correspond to cell type specification, TCR expression and selection, and the assignment of cells to different effector types. The first is based on transcriptional regulatory network events, the second is dominated by somatic gene rearrangement and mutation and cell selection, and the third corresponds to establishing a poised state of latent regulator priming through an unknown mechanism. Interestingly, in different lineages, the third module can be deployed at variable times relative to the completion of the first two modules. This review focuses on the gene regulatory network and chromatin-based kinetic constraints that determine activities of transcription factors TCF1, GATA3, PU.1, Bcl11b, Runx1, and E proteins in the primary establishment of T-cell identity.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
10
|
Hersh TA, Dimond AL, Ruth BA, Lupica NV, Bruce JC, Kelley JM, King BL, Lutton BV. A role for the CXCR4-CXCL12 axis in the little skate, Leucoraja erinacea. Am J Physiol Regul Integr Comp Physiol 2018; 315:R218-R229. [PMID: 29641231 PMCID: PMC6139610 DOI: 10.1152/ajpregu.00322.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The interaction between C-X-C chemokine receptor type 4 (CXCR4) and its cognate ligand C-X-C motif chemokine ligand 12 (CXCL12) plays a critical role in regulating hematopoietic stem cell activation and subsequent cellular mobilization. Extensive studies of these genes have been conducted in mammals, but much less is known about the expression and function of CXCR4 and CXCL12 in non-mammalian vertebrates. In the present study, we identify simultaneous expression of CXCR4 and CXCL12 orthologs in the epigonal organ (the primary hematopoietic tissue) of the little skate, Leucoraja erinacea. Genetic and phylogenetic analyses were functionally supported by significant mobilization of leukocytes following administration of Plerixafor, a CXCR4 antagonist and clinically important drug. Our results provide evidence that, as in humans, Plerixafor disrupts CXCR4/CXCL12 binding in the little skate, facilitating release of leukocytes into the bloodstream. Our study illustrates the value of the little skate as a model organism, particularly in studies of hematopoiesis and potentially for preclinical research on hematological and vascular disorders.
Collapse
Affiliation(s)
- Taylor A Hersh
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
| | - Alexandria L Dimond
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
- School of Arts and Sciences, Endicott College , Beverly, Massachusetts
| | - Brittany A Ruth
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
- School of Arts and Sciences, Endicott College , Beverly, Massachusetts
| | - Noah V Lupica
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
| | - Jacob C Bruce
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
| | - John M Kelley
- School of Arts and Sciences, Endicott College , Beverly, Massachusetts
- Beth Israel Deaconess Medical Center, Program in Placebo Studies, Harvard Medical School , Boston, Massachusetts
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, Maine
| | - Bram V Lutton
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
- School of Arts and Sciences, Endicott College , Beverly, Massachusetts
| |
Collapse
|
11
|
Ott JA, Castro CD, Deiss TC, Ohta Y, Flajnik MF, Criscitiello MF. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus. eLife 2018; 7:28477. [PMID: 29664399 PMCID: PMC5931798 DOI: 10.7554/elife.28477] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States
| | - Caitlin D Castro
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, United States
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, United States.,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Texas, United States
| |
Collapse
|
12
|
Iacoangeli A, Lui A, Haines A, Ohta Y, Flajnik M, Hsu E. Evidence for Ig Light Chain Isotype Exclusion in Shark B Lymphocytes Suggests Ordered Mechanisms. THE JOURNAL OF IMMUNOLOGY 2017; 199:1875-1885. [PMID: 28760881 DOI: 10.4049/jimmunol.1700762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/27/2017] [Indexed: 01/06/2023]
Abstract
Unlike most vertebrates, the shark IgL gene organization precludes secondary rearrangements that delete self-reactive VJ rearranged genes. Nurse sharks express four L chain isotypes, κ, λ, σ, and σ-2, encoded by 35 functional minigenes or clusters. The sequence of gene activation/expression and receptor editing of these isotypes have not been studied. We therefore investigated the extent of isotypic exclusion in separated B cell subpopulations. Surface Ig (sIg)κ-expressing cells, isolated with mAb LK14 that recognizes Cκ, carry predominantly nonproductive rearrangements of other L chain isotypes. Conversely, after depletion with LK14, sIgM+ cells contained largely nonproductive κ and enrichment for in-frame VJ of the others. Because some isotypic inclusion was observed at the mRNA level, expression in the BCR was examined. Functional λ mRNA was obtained, as expected, from the LK14-depleted population, but was also in sIgκ+ splenocytes. Whereas λ somatic mutants from the depleted sample displayed evidence of positive selection, the λ genes in sIgκ+ cells accumulated bystander mutations indicating a failure to express their products at the cell surface in association with the BCR H chain. In conclusion, a shark B cell expresses one L chain isotype at the surface and other isotypes as nonproductive VJ, sterile transcripts, or in-frame VJ whose products may not associate with the H chain. Based on the mRNA content found in the B cell subpopulations, an order of L chain gene activation is suggested as: σ-2 followed by κ, then σ and λ.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Tisch Multiple Sclerosis Research Center of New York, New York, NY 10019
| | - Anita Lui
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Ashley Haines
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| |
Collapse
|
13
|
Hsu E. Assembly and Expression of Shark Ig Genes. THE JOURNAL OF IMMUNOLOGY 2017; 196:3517-23. [PMID: 27183649 DOI: 10.4049/jimmunol.1600164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
Abstract
Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression.
Collapse
Affiliation(s)
- Ellen Hsu
- Department of Physiology and Pharmacology, The State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203
| |
Collapse
|
14
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
15
|
Weir H, Chen PL, Deiss TC, Jacobs N, Nabity MB, Young M, Criscitiello MF. DNP-KLH Yields Changes in Leukocyte Populations and Immunoglobulin Isotype Use with Different Immunization Routes in Zebrafish. Front Immunol 2015; 6:606. [PMID: 26648935 PMCID: PMC4664633 DOI: 10.3389/fimmu.2015.00606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/13/2015] [Indexed: 01/22/2023] Open
Abstract
Distinct methods are required for inducing mucosal versus systemic immunity in mammals for vaccine protection at the tissues most commonly breached by pathogens. Understanding of mucosal immunization in teleost fish is needed to combat aquaculture disease, understand emerging ecological threats, and know how vertebrate adaptive immunity evolved. Here, we quantitatively measured expression levels of IgM as well as the teleost mucosal immunoglobulin, IgZ/IgT, in zebrafish given an antigen systemically via intraperitoneal (i.p.) injection or mucosally via bath immersion. Both immunoglobulin isotypes and the B cell activating factor gene transcription was induced in fish injected with antigen as compared to saline injected or antigen immersed fish, though these failed to reach statistical significance. Here we provide additional reference hematology for this model species. Differential blood counts revealed a greater lymphocyte percentage in both i.p. and immersed fish, with increase in large lymphocyte counts and decrease in neutrophils. These humoral adaptive gene transcription and cytological data should provide a foundation for more studies connecting immunology in this dominant developmental and genetic fish model to other species where mucosal immunization is of greater commercial importance.
Collapse
Affiliation(s)
- Heather Weir
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Science, A&M Consolidated High School , College Station, TX , USA
| | - Patricia L Chen
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Natalie Jacobs
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Mary B Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| | - Matt Young
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Science, A&M Consolidated High School , College Station, TX , USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA
| |
Collapse
|
16
|
Iacoangeli A, Lui A, Naik U, Ohta Y, Flajnik M, Hsu E. Biased Immunoglobulin Light Chain Gene Usage in the Shark. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:3992-4000. [PMID: 26342033 PMCID: PMC4592821 DOI: 10.4049/jimmunol.1501426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022]
Abstract
This study of a large family of κ L chain clusters in nurse shark completes the characterization of its classical Ig gene content (two H chain isotypes, μ and ω, and four L chain isotypes, κ, λ, σ, and σ-2). The shark κ clusters are minigenes consisting of a simple VL-JL-CL array, where V to J recombination occurs over an ~500-bp interval, and functional clusters are widely separated by at least 100 kb. Six out of ~39 κ clusters are prerearranged in the germline (germline joined). Unlike the complex gene organization and multistep assembly process of Ig in mammals, each shark Ig rearrangement, somatic or in the germline, appears to be an independent event localized to the minigene. This study examined the expression of functional, nonproductive, and sterile transcripts of the κ clusters compared with the other three L chain isotypes. κ cluster usage was investigated in young sharks, and a skewed pattern of split gene expression was observed, one similar in functional and nonproductive rearrangements. These results show that the individual activation of the spatially distant κ clusters is nonrandom. Although both split and germline-joined κ genes are expressed, the latter are prominent in young animals and wane with age. We speculate that, in the shark, the differential activation of the multiple isotypes can be advantageously used in receptor editing.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Anita Lui
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Ushma Naik
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Martin Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| | - Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203; and
| |
Collapse
|
17
|
VNARs: An Ancient and Unique Repertoire of Molecules That Deliver Small, Soluble, Stable and High Affinity Binders of Proteins. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
18
|
Abstract
Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens.
Collapse
Affiliation(s)
- David Parra
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
19
|
Abstract
As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
20
|
Comparative Phylogeny of the Mucosa-Associated Lymphoid Tissue. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
21
|
Pettinello R, Dooley H. The immunoglobulins of cold-blooded vertebrates. Biomolecules 2014; 4:1045-69. [PMID: 25427250 PMCID: PMC4279169 DOI: 10.3390/biom4041045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022] Open
Abstract
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
22
|
Li R, Wang T, Bird S, Zou J, Dooley H, Secombes CJ. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1404-15. [PMID: 23454429 PMCID: PMC4034164 DOI: 10.1016/j.fsi.2013.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 05/16/2023]
Abstract
CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Steve Bird
- Department of Biological Sciences, School of Science and Engineering, University of Waikato, New Zealand
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Helen Dooley
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Corresponding author. Tel.: +44 1224 278272; fax: +44 (0)1224 272396.
| |
Collapse
|
23
|
Rivas-Aravena A, Martin MCS, Galaz J, Imarai M, Miranda D, Spencer E, Sandino A. Evaluation of the immune response against immature viral particles of infectious pancreatic necrosis virus (IPNV): A new model to develop an attenuated vaccine. Vaccine 2012; 30:5110-7. [DOI: 10.1016/j.vaccine.2012.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/09/2012] [Accepted: 05/25/2012] [Indexed: 01/13/2023]
|
24
|
Nithikulworawong N, Yakupitiyage A, Rakshit S, Srisapoome P. Molecular characterization and increased expression of the Nile tilapia, Oreochromis niloticus (L.), T-cell receptor beta chain in response to Streptococcus agalactiae infection. JOURNAL OF FISH DISEASES 2012; 35:343-358. [PMID: 22417380 DOI: 10.1111/j.1365-2761.2012.01353.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The complete cDNA sequence of the Nile tilapia T-cell receptor (TCR) β chain was cloned using 5' RACE. The full-length, 1263-bp cDNA contained a 942-bp open reading frame (ORF) encoding a 314-amino-acid protein. Sequence analyses revealed that the Nile tilapia TCR β chain contains four conserved cysteine residues involved in the formation of disulphide bridges and a conserved amino acid motif believed to be important for assembly and signalling of the TCR αβ/CD3 complex, both of which are normally found in the TCR β chain of other vertebrates. As detected using semi-quantitative and quantitative RT-PCR, the highest expression level of TCR β was detected in the thymus. Interestingly, Streptococcus agalactiae significantly induced the up-regulation of the TCR β chain, and the strongest up-regulation was detected in the brain and peripheral blood leucocytes (PBLs). In in vitro experiments, concanavalin A and Aeromonas hydrophila were found to significantly increase the expression of the TCR β chain in PBLs after 48 h (P < 0.01) and 72 h (P < 0.05), respectively. Furthermore, real-time PCR analysis showed that intraperitoneal injection (IP) of 10(7) cfu mL(-1) of S. agalactiae could induce TCR β expression that was greater than the expression observed following administration of 10(9) cfu mL(-1). The presence of the TCR β chain in fish detected in this study suggests the presence of T-cell populations that have been found in higher vertebrates, which may play a crucial functional role in the response to fish pathogens.
Collapse
Affiliation(s)
- N Nithikulworawong
- Aquaculture and Aquatic Resources Management Field of Study, School of Environment, Resource and Development, Asian Institute of Technology, Pathumthani, Thailand
| | | | | | | |
Collapse
|
25
|
Smith LE, Crouch K, Cao W, Müller MR, Wu L, Steven J, Lee M, Liang M, Flajnik MF, Shih HH, Barelle CJ, Paulsen J, Gill DS, Dooley H. Characterization of the immunoglobulin repertoire of the spiny dogfish (Squalus acanthias). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:665-679. [PMID: 22040740 DOI: 10.1016/j.dci.2011.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/10/2011] [Accepted: 10/14/2011] [Indexed: 05/31/2023]
Abstract
The cartilaginous fish (chimeras, sharks, skates and rays) are the oldest group relative to mammals in which an adaptive immune system founded upon immunoglobulins has been found. In this manuscript we characterize the immunoglobulins of the spiny dogfish (Squalus acanthias) at both the molecular and expressed protein levels. Despite the presence of hundreds of IgM clusters in this species the serum levels of this isotype are comparatively low. However, analysis of cDNA sequences and serum protein suggests microheterogeneity in the IgM heavy chains and supports the proposal that different clusters are preferentially used in the two forms (monomer or pentamer) of this isotype. We also found that the IgNAR isotype in this species exists in a previously unknown multimeric format in serum. Finally, we identified a new form of the IgW isotype (the shark IgD orthologue), in which the leader is spliced directly to the first constant domain, resulting in a molecule lacking an antigen-binding domain.
Collapse
Affiliation(s)
- Lauren E Smith
- Global Biotherapeutics Technologies, Pfizer Inc., Foresterhill, Aberdeen AB25 2ZS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dudgeon CL, Blower DC, Broderick D, Giles JL, Holmes BJ, Kashiwagi T, Krück NC, Morgan JAT, Tillett BJ, Ovenden JR. A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. JOURNAL OF FISH BIOLOGY 2012; 80:1789-1843. [PMID: 22497408 DOI: 10.1111/j.1095-8649.2012.03265.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective.
Collapse
Affiliation(s)
- C L Dudgeon
- The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li R, Dooley H, Wang T, Secombes CJ, Bird S. Characterisation and expression analysis of B-cell activating factor (BAFF) in spiny dogfish (Squalus acanthias): cartilaginous fish BAFF has a unique extra exon that may impact receptor binding. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:707-717. [PMID: 22155638 DOI: 10.1016/j.dci.2011.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
B-cell activating factor (BAFF), also known as tumour necrosis factor (TNF) ligand superfamily member 13B, is an important immune regulator with critical roles in B-cell survival, proliferation, differentiation and immunoglobulin secretion. A BAFF gene has been cloned from spiny dogfish (Squalus acanthias) and its expression studied. The dogfish BAFF encodes for an anchored type-II transmembrane protein of 288 aa with a putative furin protease cleavage site and TNF family signature as seen in BAFFs from other species. The identity of dogfish BAFF has also been confirmed by conserved cysteine residues, and phylogenetic tree analysis. The dogfish BAFF gene has an extra exon not seen in teleost fish, birds and mammals that encodes for 29 aa and may impact on receptor binding. The dogfish BAFF is highly expressed in immune tissues, such as spleen, and is up-regulated by PWM in peripheral blood leucocytes, suggesting a potentially important role in the immune system.
Collapse
Affiliation(s)
- Ronggai Li
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | | | | | | | | |
Collapse
|
28
|
Immunoglobulin from Antarctic fish species of Rajidae family. Mar Genomics 2012; 5:35-41. [DOI: 10.1016/j.margen.2011.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/17/2022]
|
29
|
Hansen JD, Farrugia TJ, Woodson J, Laing KJ. Description of an elasmobranch TCR coreceptor: CD8α from Rhinobatos productus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:452-460. [PMID: 21110999 DOI: 10.1016/j.dci.2010.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/18/2010] [Accepted: 11/18/2010] [Indexed: 05/30/2023]
Abstract
Cell-mediated immunity plays an essential role for the control and eradication of intracellular pathogens. To learn more about the evolutionary origins of the first signal (Signal 1) for T-cell activation, we cloned CD8α from an elasmobranch, Rhinobatos productus. Similar to full-length CD8α cDNAs from other vertebrates, Rhpr-CD8α (1800bp) encodes a 219 amino acid open reading frame composed of a signal peptide, an extracellular IgSF V domain and a stalk/hinge region followed by a well-conserved transmembrane domain and cytoplasmic tail. Overall, the mature Rhpr-CD8α protein (201 aa) displays ∼ 30% amino acid identity with mammalian CD8α including absolute conservation of cysteine residues involved in the IgSf V domain fold and dimerization of CD8αα and CD8αβ. One prominent feature is the absence of the LCK association motif (CXC) that is needed for achieving signal 1 in tetrapods. Both elasmobranch and teleost CD8α protein sequences possess a similar but distinctly different motif (CXH) in the cytoplasmic tail. The overall genomic structure of CD8α has been conserved during the course of vertebrate evolution both for the number of exons and phase of splicing. Finally, quantitative RTPCR demonstrated that elasmobranch CD8α is expressed in lymphoid-rich tissues similar to CD8 in other vertebrates. The results from this study indicate the existence of CD8 prior to the emergence of the gnathostomes (>450 MYA) while providing evidence that the canonical LCK association motif in mammals is likely a derived characteristic of tetrapod CD8α, suggesting potential differences for T-cell education and activation in the various gnathostomes.
Collapse
Affiliation(s)
- John D Hansen
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Adaptive immunity is mediated through numerous genetic and cellular processes that generate favourable somatic variants of antigen-binding receptors under evolutionary selection pressure by pathogens and other factors. Advances in our understanding of immunity in mammals and other model organisms are revealing the underlying basis and complexity of this remarkable system. Although the evolution of adaptive immunity has been thought to occur by the acquisition of novel molecular capabilities, an increasing amount of information from new model systems suggest that co-option and redirection of pre-existing systems are the main source of innovation. We combine evidence from a wide range of organisms to obtain an integrated view of the origins and patterns of divergence in adaptive immunity.
Collapse
Affiliation(s)
- Gary W Litman
- Department of Molecular Genetics, All Children's Hospital, St. Petersburg, Florida 33701, USA.
| | | | | |
Collapse
|
31
|
Criscitiello MF, Ohta Y, Saltis M, McKinney EC, Flajnik MF. Evolutionarily conserved TCR binding sites, identification of T cells in primary lymphoid tissues, and surprising trans-rearrangements in nurse shark. THE JOURNAL OF IMMUNOLOGY 2010; 184:6950-60. [PMID: 20488795 DOI: 10.4049/jimmunol.0902774] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cartilaginous fish are the oldest animals that generate RAG-based Ag receptor diversity. We have analyzed the genes and expressed transcripts of the four TCR chains for the first time in a cartilaginous fish, the nurse shark (Ginglymostoma cirratum). Northern blotting found TCR mRNA expression predominantly in lymphoid and mucosal tissues. Southern blotting suggested translocon-type loci encoding all four chains. Based on diversity of V and J segments, the expressed combinatorial diversity for gamma is similar to that of human, alpha and beta may be slightly lower, and delta diversity is the highest of any organism studied to date. Nurse shark TCRdelta have long CDR3 loops compared with the other three chains, creating binding site topologies comparable to those of mammalian TCR in basic paratope structure; additionally, nurse shark TCRdelta CDR3 are more similar to IgH CDR3 in length and heterogeneity than to other TCR chains. Most interestingly, several cDNAs were isolated that contained IgM or IgW V segments rearranged to other gene segments of TCRdelta and alpha. Finally, in situ hybridization experiments demonstrate a conservation of both alpha/beta and gamma/delta T cell localization in the thymus across 450 million years of vertebrate evolution, with gamma/delta TCR expression especially high in the subcapsular region. Collectively, these data make the first cellular identification of TCR-expressing lymphocytes in a cartilaginous fish.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
32
|
Cannon JP, Dishaw LJ, Haire RN, Litman RT, Ostrov DA, Litman GW. Recognition of additional roles for immunoglobulin domains in immune function. Semin Immunol 2009; 22:17-24. [PMID: 20004115 DOI: 10.1016/j.smim.2009.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/16/2009] [Indexed: 01/08/2023]
Abstract
Characterization of immune receptors found in phylogenetically disparate species at the genetic, structural and functional levels has provided unique insight into the evolutionary acquisition of immune function. The roles of variable- and intermediate-type immunoglobulin (Ig) domains in direct recognition of ligands and other functions are far wider than previously anticipated. Common mechanisms of multigene family diversification and expansion as well as unique adaptations that relate to function continue to provide unique insight into the numerous patterns, processes and complex interactions that regulate the host response to infectious challenge.
Collapse
Affiliation(s)
- John P Cannon
- University of South Florida, Department of Pediatrics, USF/ACH Children's Research Institute, 140 Seventh Avenue South, St. Petersburg, FL 33701, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Tallmadge RL, McLaughlin K, Secor E, Ruano D, Matychak MB, Flaminio MJBF. Expression of essential B cell genes and immunoglobulin isotypes suggests active development and gene recombination during equine gestation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:1027-1038. [PMID: 19442687 DOI: 10.1016/j.dci.2009.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 04/30/2009] [Accepted: 05/03/2009] [Indexed: 05/27/2023]
Abstract
Many features of the equine immune system develop during fetal life, yet the naïve or immature immune state of the neonate renders the foal uniquely susceptible to particular pathogens. RT-PCR and immunohistochemical experiments investigated the progressive expression of developmental B cell markers and immunoglobulins in lymphoid tissues from equine fetus, pre-suckle neonate, foal, and adult horses. Serum IgM, IgG isotype, and IgA concentrations were also quantified in pre-suckle foals and adult horses. The expression of essential B cell genes suggests active development and gene recombination during equine gestation, including immunoglobulin isotype switching. The corresponding production of IgM and IgG proteins is detectable in a limited scale at birth. Although the equine neonate humoral response seems competent, B cell activation factors derived from antigen presenting cells and T cells may control critical developmental regulation and immunoglobulin production during the initial months of life.
Collapse
Affiliation(s)
- Rebecca L Tallmadge
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
34
|
Cannon JP. Plasticity of the immunoglobulin domain in the evolution of immunity. Integr Comp Biol 2009; 49:187-96. [PMID: 21669857 DOI: 10.1093/icb/icp018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immune receptors are omnipresent in multicellular organisms and comprise a vast array of molecular structures that serve to detect and eliminate pathogenic threats. The immunoglobulin (Ig) domain, a central structural feature of the antigen binding receptors that mediate adaptive immunity in jawed vertebrates, appears to play a particularly widespread role in metazoan immunity. Recent reports also have implicated Ig domains in the immune responses of protostomes such as flies and snails. Our research has focused on understanding the utilization of the Ig domain in the immunity of chordates and has identified numerous multigene families of Ig domain-containing receptors that appear to serve roles distinct from the adaptive antigen-binding receptors. Three families have received particular focus: novel immune-type receptors (NITRs) of bony fish, modular domain immune-type receptors (MDIRs) of cartilaginous fish and variable region-containing chitin-binding proteins (VCBPs) of amphioxus. NITRs and MDIRs are encoded in large multigene families of highly diversified forms and exhibit a striking dichotomy of an apparently ubiquitous presence but extensive diversification of sequence both within and among the particular taxonomic groups in which they are found. Crystal structures of VCBPs and NITRs demonstrate significant similarity to those of antigen-binding receptors but at the same time exhibit key differences that imply acquisition of separate and distinct ligand-binding functions. The tremendous plasticity of the Ig domain makes it a strong focus for studies of evolutionary events that have shaped modern integrated immune systems. Current data are consistent with a model of extremely rapid emergence and divergence of immune receptors, perhaps specific to individual species, as organisms contend with environments in which pathogens are continually selected for variation of their own molecular signatures.
Collapse
Affiliation(s)
- John P Cannon
- Children's Research Institute, University of South Florida/All Children's Hospital, 140 Seventh Avenue South, St Petersburg, FL 33701, USA
| |
Collapse
|
35
|
Barelle C, Gill DS, Charlton K. Shark novel antigen receptors--the next generation of biologic therapeutics? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 655:49-62. [PMID: 20047035 DOI: 10.1007/978-1-4419-1132-2_6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent decades we have witnessed a revolution in health care as new classes of therapeutics based on natural biological molecules have become available to medical practitioners. These promised to target some of the most serious conditions that had previously evaded traditional small molecule drugs, such as cancers and to alleviate many of the concerns of patients and doctors alike regarding adverse side effects and impaired quality of life that are often associated with chemo-therapeutics. Many early 'biologics' were based on antibodies, Nature's answer to invading pathogens and malignancies, derived from rodents and in many ways failed to live up to expectations. Most of these issues were subsequently negated by technological advances that saw the introduction of human or "humanized' antibodies and have resulted in a number of commercial 'block-busters'. Today, most of the large pharmaceutical companies have product pipelines that include an increasing proportion of biologic as opposed to small molecule compounds. The limitations of antibodies or other large protein drugs are now being realized however and ever more inventive solutions are being sought to develop equally efficacious but smaller, more soluble, more stable and less costly alternatives to broaden the range of drug-able targets and therapeutic options. The aim of this chapter is to introduce the reader to one such novel approach that seeks to exploit a unique antibody-like protein evolved by ancestral sharks over 450 M years ago and that may lead to a host of new therapeutic opportunities and help us to tackle some of the pressing clinical demands of the 21 st century.
Collapse
Affiliation(s)
- Caroline Barelle
- Wyeth Research, Cornhill Road, Foresterhill, Aberdeen, AB25 2ZS, Scotland, UK
| | | | | |
Collapse
|
36
|
Parra ZE, Baker ML, Lopez AM, Trujillo J, Volpe JM, Miller RD. TCR mu recombination and transcription relative to the conventional TCR during postnatal development in opossums. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:154-63. [PMID: 19109146 PMCID: PMC2921273 DOI: 10.4049/jimmunol.182.1.154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Marsupials are a distinct lineage of mammals notable for giving birth to highly altricial (relatively less developed) young. The recent discovery of a unique TCR chain in marsupials, TCRmu, raises questions about its possible role in early development. Here we compare the timing of V(D)J recombination and appearance of TCRmu transcripts relative to the conventional TCRalpha, beta, gamma, and delta mRNA during postnatal development in the opossum. There are two TCRmu transcript isoforms, TCRmu1.0 and TCRmu2.0. TCRmu1.0, which uses prejoined V(D)J segments, is detectable as early as day 1, when the thymus is primarily undifferentiated epithelium. The other isoform, TCRmu2.0, which requires V(D)J recombination and contains an unusual double V configuration, is not detectable until day 13 when the thymus is histologically mature. Surprisingly, we were able to detect TCRalpha, beta, and delta mRNA transcribed from loci that had completed V(D)J recombination as early as day 1 as well. At this early age there is apparent evidence for preference in the V segments used in the TCRalpha and beta genes. In the case of Valpha this preference appears to be associated with position in the TCRalpha/delta locus. In Vbeta, however, preference may be due to the use of microhomology in the V, D, and J segments. Mature TCRgamma transcripts were not detected until day 8, suggesting that, in contrast to eutherian mammals, in the opossum alphabeta T cell development precedes gammadelta T cell development. The results support that there may be differences in T cell subset development between marsupials and placental mammals.
Collapse
MESH Headings
- Animals
- Animals, Newborn/genetics
- Animals, Newborn/immunology
- Base Sequence
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Male
- Molecular Sequence Data
- Monodelphis/genetics
- Monodelphis/immunology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombination, Genetic
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Zuly E. Parra
- Center for Evolutionary & Theoretical Immunology and Department of Biology, The University of New Mexico, Albuquerque, NM, 87131 USA
| | - Michelle L. Baker
- Center for Evolutionary & Theoretical Immunology and Department of Biology, The University of New Mexico, Albuquerque, NM, 87131 USA
| | - April M Lopez
- Center for Evolutionary & Theoretical Immunology and Department of Biology, The University of New Mexico, Albuquerque, NM, 87131 USA
| | - Jonathan Trujillo
- Center for Evolutionary & Theoretical Immunology and Department of Biology, The University of New Mexico, Albuquerque, NM, 87131 USA
| | - Joseph M Volpe
- Center for Computational Immunology, Duke University Medical Center, Durham, NC 27705
| | - Robert D. Miller
- Center for Evolutionary & Theoretical Immunology and Department of Biology, The University of New Mexico, Albuquerque, NM, 87131 USA
| |
Collapse
|
37
|
Taghon T, Rothenberg EV. Molecular mechanisms that control mouse and human TCR-alphabeta and TCR-gammadelta T cell development. Semin Immunopathol 2008; 30:383-98. [PMID: 18925397 DOI: 10.1007/s00281-008-0134-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 09/30/2008] [Indexed: 12/22/2022]
Abstract
Following specification of hematopoietic precursor cells into the T cell lineage, several developmental options remain available to the immature thymocytes. The paradigm is that the outcome of the T cell receptor rearrangements and the corresponding T cell receptor signaling events will be predominant to determine the first of these choices: the alphabeta versus gammadelta T cell pathways. Here, we review the thymus-derived environmental signals, the transcriptional mediators, and other molecular mechanisms that are also involved in this decision in both the mouse and human. We discuss the differences in cellular events between the alphabeta and gammadelta developmental pathways and try to correlate these with a corresponding complexity of the molecular mechanisms that support them.
Collapse
Affiliation(s)
- Tom Taghon
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University Hospital, Ghent University, De Pintelaan 185, 4 Blok A, 9000, Ghent, Belgium.
| | | |
Collapse
|
38
|
Lutton BV, Callard IP. Morphological relationships and leukocyte influence on steroid production in the epigonal organ-ovary complex of the skate, Leucoraja erinacea. J Morphol 2008; 269:620-9. [PMID: 18302243 DOI: 10.1002/jmor.10614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In elasmobranchs, a unique association exists between an immune tissue, the epigonal organ (EO), and the gonads. In this study, the histological and vascular relationships of the EO and ovarian follicles of the little skate, Leucoraja erinacea, were assessed. Perfusions of Evans blue dye and Batson's monomer showed a shared vascular pathway from the gonadal artery into the epigonal-ovary complex, with blood first entering the EO and then perfusing the ovarian follicles. Histological studies demonstrated direct cellular contact between epigonal leukocytes and the follicle wall (FW), as well as the presence of leukocytes between the steroidogenic theca and granulosa cells. In vitro analyses demonstrated that epigonal cells co-cultured with FW cells cause a dose-dependent inhibition of estrogen (E2) and testosterone (T) production. In contrast, conditioned media from epigonal leukocytes, stimulated or unstimulated with lipopolysaccharide (10 microg/ml), increase the production of E2 and T from FW cells of the ovaries. These studies provide a basis for further investigations of leukocyte secreted factors and cell contact modulation of follicular steroid production.
Collapse
Affiliation(s)
- B V Lutton
- Transplantation Biology Research Center, Massachusetts General Hospital, MGH East, Building 149-9019 13th Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
39
|
Lee V, Huang JL, Lui MF, Malecek K, Ohta Y, Mooers A, Hsu E. The evolution of multiple isotypic IgM heavy chain genes in the shark. THE JOURNAL OF IMMUNOLOGY 2008; 180:7461-70. [PMID: 18490746 DOI: 10.4049/jimmunol.180.11.7461] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.
Collapse
Affiliation(s)
- Victor Lee
- Department of Physiology and Pharmacology, State University of New York Health Science Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Lutton BV, Callard IP. Influence of reproductive activity, sex steroids, and seasonality on epigonal organ cellular proliferation in the skate (Leucoraja erinacea). Gen Comp Endocrinol 2008; 155:116-25. [PMID: 17499739 DOI: 10.1016/j.ygcen.2007.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
In elasmobranchs, the epigonal organ, a unique leukopoietic immune tissue, is associated with the gonads. As the ovaries increase in size during reproductive activity, the overall mass of the epigonal organ does not change. However, immunohistochemistry (proliferating cell nuclear antigen Ab) demonstrated more proliferative activity and extravasation of epigonal leukocytes from blood vessels in reproductively active (RA) skates (Leucoraja erinacea) than in non-reproductively active (NRA) skates. In addition, [(3)H]thymidine incorporation was greater in epigonal leukocytes from RA skates than in leukocytes from NRA skates. Plasma from RA skates, but not from NRA skates, increased proliferation of epigonal leukocytes in vitro, an effect that was not seen using steroid-free plasma. In contrast to the stimulatory effect of plasma on leukocyte proliferation, addition of steroids (estrogen, progesterone, testosterone, and dexamethasone) in vitro decreased [(3)H]thymidine incorporation. While the inhibitory response to steroids was seasonally variable, (3)[H]thymidine incorporation was always highest in RA animals, in which plasma steroid levels were also consistently highest. These studies suggest functional interactions between reproductive and immune tissues in the skate, and that cellular turnover in epigonal tissue may be influenced by gonadal activity.
Collapse
Affiliation(s)
- B V Lutton
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
41
|
Criscitiello MF, Flajnik MF. Four primordial immunoglobulin light chain isotypes, including lambda and kappa, identified in the most primitive living jawed vertebrates. Eur J Immunol 2007; 37:2683-94. [PMID: 17899545 PMCID: PMC7094790 DOI: 10.1002/eji.200737263] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of a fourth immunoglobulin (Ig) light (L) chain isotype in sharks has revealed the origins and natural history of all vertebrate L chains. Phylogenetic comparisons have established orthology between this new shark L chain and the unique Xenopus L chain isotype sigma. More importantly, inclusion of this new L chain family in phylogenetic analyses showed that all vertebrate L chains can be categorized into four ancestral clans originating prior to the emergence of cartilaginous fish: one restricted to elasmobranchs (sigma-cart/type I), one found in all cold-blooded vertebrates (sigma/teleost type 2/elasmobranch type IV), one in all groups except bony fish (lambda/elasmobranch type II), and one in all groups except birds (kappa/elasmobranch type III/teleost type 1 and 3). All four of these primordial L chain isotypes (sigma, sigma-cart, lambda and kappa) have maintained separate V region identities since their emergence at least 450 million years ago, suggestive of an ancient physiological distinction of the L chains. We suggest that, based upon unique, discrete sizes of complementarity determining regions 1 and 2 and other features of the V region sequences, the different L chain isotypes arose to provide different functional conformations in the Ig binding site when they pair with heavy chains.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
42
|
Yang M, Zhou H. Grass carp transforming growth factor-beta 1 (TGF-beta 1): molecular cloning, tissue distribution and immunobiological activity in teleost peripheral blood lymphocytes. Mol Immunol 2007; 45:1792-8. [PMID: 17980429 DOI: 10.1016/j.molimm.2007.09.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 09/23/2007] [Accepted: 09/27/2007] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-beta 1 (TGF-beta 1) is a potent regulatory cytokine with pleiotropic effects on the immune system. To examine the role of TGF-beta 1 in fish immunity, the full-length cDNA of grass carp TGF-beta 1 was isolated from grass carp spleen. The open reading frame of grass carp TGF-beta1, 1134 bp in length, encodes a 377 amino acid protein. Tissue distribution study by RT-PCR showed TGF-beta 1 mRNA was predominantly expressed in the thymus, head kidney and spleen in grass carp tissues. Moreover, the time-course effect of TGF-beta 1 on peripheral blood lymphocyte proliferation in response to mitogens was evaluated in grass carp. Interestingly, TGF-beta1 induced PBL proliferation while it significantly blocked phytohemagglutinin- or lipopolysaccharide-stimulated PBL proliferation, and TGF-beta 1 mimicked the stimulatory effects of lipopolysaccharide on grass carp MHC I mRNA expression. These results, for the first time, strongly suggest that TGF-beta 1 plays a functional role in lymphocyte proliferation in fish.
Collapse
Affiliation(s)
- Mu Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | |
Collapse
|
43
|
Lutton BV, Callard IP. Effects of reproductive activity and sex hormones on apoptosis in the epigonal organ of the skate (Leucoraja erinacea). Gen Comp Endocrinol 2007; 154:75-84. [PMID: 17714713 DOI: 10.1016/j.ygcen.2007.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/31/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
In elasmobranchs, a unique association exists between an immune tissue, the epigonal organ, and the gonads. The intimate morphological relationship between these tissues suggests functional interactions. In this study, we used apoptosis to assess differences between epigonal tissues of reproductively active (RA) and non-reproductively active (NRA) skates (Leucoraja erinacea). Plasma steroid levels were significantly higher in RA than in NRA animals, and TUNEL analysis showed that epigonal tissue of RA skates had greater DNA fragmentation than NRA skates. Addition of steroids to epigonal leukocytes in vitro demonstrated that progesterone, testosterone, and dexamethasone, but not estrogen, induced apoptosis of epigonal leukocytes as evidenced by DNA laddering and caspase-3 antibody labeling. This study supports recent evidence that cellular homeostasis of epigonal lymphomyeloid tissue may be influenced by gonadal activity and reproductive steroids in a representative of the most basal gnathastome group.
Collapse
Affiliation(s)
- B V Lutton
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
44
|
Beetz S, Diekhoff D, Steiner LA. Characterization of terminal deoxynucleotidyl transferase and polymerase mu in zebrafish. Immunogenetics 2007; 59:735-44. [PMID: 17701034 DOI: 10.1007/s00251-007-0241-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 06/27/2007] [Indexed: 11/30/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) contributes to the junctional diversity of immunoglobulin and T-cell receptors by incorporating nucleotides in a template-independent manner. A closely related enzyme, polymerase mu (polmu), a template-directed polymerase, plays a role in general end-joining double-strand break repair. We cloned zebrafish TdT and polmu and found them to be 43% identical in amino acid sequence. Comparisons with sequences of other species revealed conserved residues typical for TdT in the zebrafish sequence that support the template independence of this enzyme. Some but not all of these features were identified in zebrafish polmu. In adult fish, TdT expression was most prominent in thymus, pro- and mesonephros, the primary lymphoid organs in teleost fish and in spleen, intestine, and the tissue around the intestine. Polmu expression was detected not only in pro- and mesonephros, the major sites for B-lymphocyte development, but also in ovary and testis and in all tissue preparations to a low extent. TdT expression starts at 4 dpf and increases thereafter. Polmu is expressed at all times to a similar extent. In situ studies showed a strong expression of TdT and polmicro in the thymic cortex of 8-week-old fish. The characterization of zebrafish TdT and polmu provide new insights in fish lymphopoiesis and addresses the importance and evolution of TdT and polmu themselves.
Collapse
Affiliation(s)
- Susann Beetz
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | |
Collapse
|
45
|
Wyffels JT, Luer CA, Walsh CJ, Bodine AB. In vivo exposure of clearnose skates, Raja eglanteria, to ionising X-radiation: acute effects on the peripheral blood, spleen, and epigonal and Leydig organs. FISH & SHELLFISH IMMUNOLOGY 2007; 23:401-18. [PMID: 17344065 DOI: 10.1016/j.fsi.2006.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Revised: 12/02/2006] [Accepted: 12/04/2006] [Indexed: 05/14/2023]
Abstract
The effects of ionising radiation on the peripheral blood, spleen, and epigonal and Leydig organs of cartilaginous fishes were investigated using juvenile clearnose skates, Raja eglanteria. Skates (N = 80) were sacrificed 12 days after exposure to 0-75 Gy of X-radiation, and morphometrics (body mass, disc width, total length), mass of spleens and epigonal organs, and peripheral blood leucocyte (PBL) counts were compared to controls using ANOVA. Spleen and epigonal organ mass and PBL counts declined logarithmically as a function of radiation dose. To assess recovery from X-radiation, skates (N = 40) were exposed to 0, 9 or 18 Gy and sacrificed when moribund or on days 10, 20, 30 and 40 post-irradiation. Partial recovery of Leydig organ and splenic red pulp was evident after 40 days in skates exposed to 9 Gy, but no indication of recovery was apparent at higher doses. Median lethal dose by 30 days (LD50/30) was calculated to be 9-18 Gy, similar to that determined for other fishes.
Collapse
Affiliation(s)
- Jennifer T Wyffels
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| | | | | | | |
Collapse
|
46
|
Romano N, Rossi F, Abelli L, Caccia E, Piergentili R, Mastrolia L, Randelli E, Buonocore F. Majority of TcRβ+ T-lymphocytes located in thymus and midgut of the bony fish, Dicentrarchus labrax (L.). Cell Tissue Res 2007; 329:479-89. [PMID: 17549519 DOI: 10.1007/s00441-007-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 04/23/2007] [Indexed: 12/17/2022]
Abstract
Real-time polymerase chain reaction (PCR) and in situ hybridization analyses were performed to investigate the occurrence and distribution of T-lymphocytes expressing TcRbeta in intestine and lymphoid tissues of the bony fish, Dicentrarchus labrax (sea bass). Immunohistochemistry with the monoclonal antibody DLT15 (pan-T-cell marker) was carried out to compare the cytology, distribution and number of T-cells and TcRbeta+ cells in the various sampled lymphoid organs. The highest TcRbeta expression was revealed by real-time PCR in the thymus, with high levels also being found in the gut. In the thymus, DLT15+ and TcRbeta+ cell populations were concentrated in the cortex and TcRbeta+ cells were notably reactive at the cortical-medullary border, suggesting a specialized role of this region in thymocyte selection. The density of DLT15+ T-cells increased from the anterior to posterior intestine, whereas TcRbeta+ lymphocytes were more numerous in the middle intestine compared with other segments. The existence, in fish thymus, of a medulla and a cortex comparable with those of mammals is revealed by this study. The concentration of TcRbeta+ cells in the sea bass midgut also strongly suggests a special role of this intestinal segment in antigen-specific cellular immunity. The large population of TcRbeta(-)/DLT15+ T-cells in the posterior gut can probably be ascribed to the TcRgammadelta phenotype fraction.
Collapse
Affiliation(s)
- Nicla Romano
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The mechanism of recombination-activating gene (RAG)-mediated rearrangement exists in all jawed vertebrates, but the organization and structure of immunoglobulin (Ig) genes, as they differ in fish and among fish species, reveal their capability for rapid evolution. In systems where there can exist 100 Ig loci, exon restructuring and sequence changes of the constant regions led to divergence of effector functions. Recombination among these loci created hybrid genes, the strangest of which encode variable (V) regions that function as part of secreted molecules and, as the result of an ancient translocation, are also grafted onto the T-cell receptor. Genomic changes in V-gene structure, created by RAG recombinase acting on germline recombination signal sequences, led variously to the generation of fixed receptor specificities, pseudogene templates for gene conversion, and ultimately to Ig sequences that evolved away from Ig function. The presence of so many Ig loci in fishes raises interesting questions not only as to how their regulation is achieved but also how successive whole-locus duplications are accommodated by a system whose function in other vertebrates is based on clonal antigen receptor expression.
Collapse
Affiliation(s)
- Ellen Hsu
- Department of Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY 11203, USA.
| | | | | | | |
Collapse
|
48
|
Walsh CJ, Luer CA, Bodine AB, Smith CA, Cox HL, Noyes DR, Maura G. Elasmobranch immune cells as a source of novel tumor cell inhibitors: Implications for public health. Integr Comp Biol 2006; 46:1072-1081. [PMID: 19343108 DOI: 10.1093/icb/icl041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SYNOPSIS: Reports that elasmobranchs (sharks, skates, and rays) may have a low incidence of disease have stimulated interest in understanding the role of their immune system in this apparent resistance. Although research in this area may potentially translate into applications for human health, a basic understanding of the elasmobranch immune system components and how they function is essential. As in higher vertebrates, elasmobranch fishes possess thymus and spleen, but in the absence of bone marrow and lymph nodes, these fish have evolved unique lymphomyeloid tissues, namely epigonal and Leydig organs. As conditions for short-term culture of elasmobranch immune cells have become better understood, the opportunity to examine functional activity of cytokine-like factors derived from conditioned culture medium has resulted in the identification of growth inhibitory activity against a variety of tumor cell lines. Specifically, the medium enriched by short term culture of bonnethead shark (Sphyrna tiburo) epigonal cells (epigonal conditioned medium, ECM) has been shown to inhibit the growth of mammalian tumor cell lines, including fibrosarcoma (WEHI-164), melanoma (A375.S2), B-cell lymphoma (Daudi), T-cell leukemia (Jurkat), pancreatic cancer (PANC-1), ovarian cancer (NIH:OVCAR-3), and three breast carcinoma cell lines (MCF7, HCC38, Hs578T). Of the cell lines tested, WEHI-164, A375.S2, Daudi, and Jurkat cells were among the most sensitive to growth inhibitory activity of ECM whereas PANC-1 and NIH:OVCAR-3 cells were among the least sensitive. In addition, ECM demonstrated preferential growth inhibition of malignant cells in assays against two different malignant/non-malignant cell line pairs (HCC38/HCC38 BL and Hs 578T/Hs 578Bst). Separation of protein components of ECM using SDS-PAGE resulted in a very reproducible pattern of three major bands corresponding to molecular sizes of approximately 40-42 kD, 24 kD, and 17 kD. Activity is lost after heating at 75 degrees C for 30 min, and can be diminished by treatment with proteinase K and protease. Activity is not affected by treating with trypsin, DNase I or RNase A.
Collapse
Affiliation(s)
- Catherine J Walsh
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhong H, Li Z, Lin S, Chang Y. Initiation of V(D)J recombination in zebrafish (Danio rerio) ovaries. Mol Immunol 2006; 44:1784-92. [PMID: 16996591 PMCID: PMC1785110 DOI: 10.1016/j.molimm.2006.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 08/02/2006] [Indexed: 11/23/2022]
Abstract
The assembly of mammalian antigen receptor genes is a lymphoid-specific process. However, rearranged immunoglobulin genes can also be recovered from non-lymphoid tissues of cartilaginous fish. This event, known as germline rearrangement, has been speculated to arise from recombination-activating gene (RAG)-mediated recombination in germ cells. In this report, we demonstrate that zebrafish (Danio rerio) oocytes expressing high levels of RAG-RNA can readily initiate recombination cleavage at immunoglobulin gene loci, providing direct evidence for an ongoing process of attempted germline rearrangement in zebrafish ovaries. This attempted rearrangement is largely unproductive, yielding no accumulation of germline-joined immunoglobulin genes in zebrafish, which is consistent with their general absence in this species. Our data, therefore, substantiate the speculation that RAG might have been derived from a transposase, invading germ cells of ancient species, and later become a dedicated recombinase only expressed in developing lymphocytes.
Collapse
Affiliation(s)
- Hanbing Zhong
- Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
50
|
Dooley H, Flajnik MF. Antibody repertoire development in cartilaginous fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:43-56. [PMID: 16146649 DOI: 10.1016/j.dci.2005.06.022] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There are 3 H chain and 3 L chain isotypes in the cartilaginous fish, all encoded by genes in the so-called cluster (VDDJ, VJ) organization. The H chain isotypes IgM and IgNAR, are readily detected at the protein level in most species. The third is readily identified at the protein level in skates (IgR) but only via immunoprecipitation or at the transcript level in sharks (IgW). High levels of diversity in CDR3 and up to 200 germline genes have been detected for IgM depending upon the species examined. IgNAR displays very high levels of CDR3 diversity but almost none in the germline. At least IgNAR and L chain genes have been shown to hypermutate to very high levels, apparently in response to antigen. The mutation footprints are similar to those in mammals except that the shark genes uniquely mutate nucleotide residues in tandem. A conspicuous feature of cartilaginous fish Ig genes is the presence of germline-joined genes, which are a result of RAG activity in germ cells. Such genes are expressed early in ontogeny and then extinguished or expressed at lower levels. 19S IgM and IgW expression precede that of 7S IgM and IgNAR during ontogeny. The 'switch' from 19S to 7S IgM, the regulation of expression of the Ig clusters, and the microenvironments for mutation/selection of cartilaginous fish B cells are all areas of ongoing research.
Collapse
Affiliation(s)
- H Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | | |
Collapse
|