1
|
Cohen JN, Gouirand V, Macon CE, Lowe MM, Boothby IC, Moreau JM, Gratz IK, Stoecklinger A, Weaver CT, Sharpe AH, Ricardo-Gonzalez RR, Rosenblum MD. Regulatory T cells in skin mediate immune privilege of the hair follicle stem cell niche. Sci Immunol 2024; 9:eadh0152. [PMID: 38181095 PMCID: PMC11003870 DOI: 10.1126/sciimmunol.adh0152] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/10/2023] [Indexed: 01/07/2024]
Abstract
Immune tolerance is maintained in lymphoid organs (LOs). Despite the presence of complex immune cell networks in non-LOs, it is unknown whether self-tolerance is maintained in these tissues. We developed a technique to restrict genetic recombination to regulatory T cells (Tregs) only in skin. Selective depletion of skin Tregs resulted in T cell-mediated inflammation of hair follicles (HFs). Suppression did not rely on CTLA-4, but instead on high-affinity interleukin-2 (IL-2) receptor expression by skin Tregs, functioning exclusively in a cell-extrinsic manner. In a novel model of HF stem cell (HFSC)-driven autoimmunity, we reveal that skin Tregs immunologically protect the HFSC niche. Finally, we used spatial transcriptomics to identify aberrant IL-2 signaling at stromal-HF interfaces in a rare form of human alopecia characterized by HFSC destruction and alopecia areata. Collectively, these results reveal the fundamental biology of Tregs in skin uncoupled from the systemic pool and elucidate a mechanism of self-tolerance.
Collapse
Affiliation(s)
- Jarish N. Cohen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Victoire Gouirand
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Courtney E. Macon
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret M. Lowe
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Ian C. Boothby
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | - Joshua M. Moreau
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Iris K. Gratz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Angelika Stoecklinger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical, University of Salzburg, Salzburg, Austria
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Michael D. Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Miranda S, Vermeesen R, Radstake WE, Parisi A, Ivanova A, Baatout S, Tabury K, Baselet B. Lost in Space? Unmasking the T Cell Reaction to Simulated Space Stressors. Int J Mol Sci 2023; 24:16943. [PMID: 38069265 PMCID: PMC10707245 DOI: 10.3390/ijms242316943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The space environment will expose astronauts to stressors like ionizing radiation, altered gravity fields and elevated cortisol levels, which pose a health risk. Understanding how the interplay between these stressors changes T cells' response is important to better characterize space-related immune dysfunction. We have exposed stimulated Jurkat cells to simulated space stressors (1 Gy, carbon ions/1 Gy photons, 1 µM hydrocortisone (HC), Mars, moon, and microgravity) in a single or combined manner. Pro-inflammatory cytokine IL-2 was measured in the supernatant of Jurkat cells and at the mRNA level. Results show that alone, HC, Mars gravity and microgravity significantly decrease IL-2 presence in the supernatant. 1 Gy carbon ion irradiation showed a smaller impact on IL-2 levels than photon irradiation. Combining exposure to different simulated space stressors seems to have less immunosuppressive effects. Gene expression was less impacted at the time-point collected. These findings showcase a complex T cell response to different conditions and suggest the importance of elevated cortisol levels in the context of space flight, also highlighting the need to use simulated partial gravity technologies to better understand the immune system's response to the space environment.
Collapse
Affiliation(s)
- Silvana Miranda
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
| | - Wilhelmina E. Radstake
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alessio Parisi
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Anna Ivanova
- Data Science Institute (DSI), I-BioStat University of Hasselt, 3590 Hasselt, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; (S.M.)
| |
Collapse
|
3
|
Harris F, Berdugo YA, Tree T. IL-2-based approaches to Treg enhancement. Clin Exp Immunol 2023; 211:149-163. [PMID: 36399073 PMCID: PMC10019135 DOI: 10.1093/cei/uxac105] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immune homeostasis is heavily dependent on the action of regulatory T cells (Tregs) which act to suppress the activation of many immune cell types including autoreactive conventional T cells. A body of evidence has shown that Tregs are intrinsically defective in many common autoimmune diseases, and gene polymorphisms which increase the susceptibility of autoimmune disease development have implicated the interleukin-2 (IL-2) signaling pathway as a key dysregulated mechanism. IL-2 is essential for Treg function and survival, and Tregs are highly sensitive to low levels of this cytokine in their environment. This review will revisit the rationale behind using low-dose IL-2 as a therapy to treat autoimmune diseases and evaluate the outcomes of trials to date. Furthermore, novel engineered IL-2 therapies with increased Treg specificity have shown promise in pre-clinical studies and human clinical trials for some agents have begun. Future studies will determine whether low-dose IL-2 or engineered IL-2 therapies can change the course of autoimmune and inflammatory diseases in patients.
Collapse
Affiliation(s)
- Ffion Harris
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Yoana Arroyo Berdugo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Timothy Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| |
Collapse
|
4
|
Imbach KJ, Treadway NJ, Prahalad V, Kosters A, Arafat D, Duan M, Gergely T, Ponder LA, Chandrakasan S, Ghosn EEB, Prahalad S, Gibson G. Profiling the peripheral immune response to ex vivo TNF stimulation in untreated juvenile idiopathic arthritis using single cell RNA sequencing. Pediatr Rheumatol Online J 2023; 21:17. [PMID: 36793127 PMCID: PMC9929251 DOI: 10.1186/s12969-023-00787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/08/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Juvenile Idiopathic Arthritis (JIA) is an autoimmune disease with a heterogenous clinical presentation and unpredictable response to available therapies. This personalized transcriptomics study sought proof-of-concept for single-cell RNA sequencing to characterize patient-specific immune profiles. METHODS Whole blood samples from six untreated children, newly diagnosed with JIA, and two healthy controls were cultured for 24 h with or without ex vivo TNF stimulation and subjected to scRNAseq to examine cellular populations and transcript expression in PBMCs. A novel analytical pipeline, scPool, was developed wherein cells are first pooled into pseudocells prior to expression analysis, facilitating variance partitioning of the effects of TNF stimulus, JIA disease status, and individual donor. RESULTS Seventeen robust immune cell-types were identified, the abundance of which was significantly affected by TNF stimulus, which resulted in notable elevation of memory CD8 + T-cells and NK56 cells, but down-regulation of naïve B-cell proportions. Memory CD8 + and CD4 + T-cells were also both reduced in the JIA cases relative to two controls. Significant differential expression responses to TNF stimulus were also characterized, with monocytes showing more transcriptional shifts than T-lymphocyte subsets, while the B-cell response was more limited. We also show that donor variability exceeds the small degree of possible intrinsic differentiation between JIA and control profiles. An incidental finding of interest was association of HLA-DQA2 and HLA-DRB5 expression with JIA status. CONCLUSIONS These results support the development of personalized immune-profiling combined with ex-vivo immune stimulation for evaluation of patient-specific modes of immune cell activity in autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Kathleen J. Imbach
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Nicole J. Treadway
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30223 USA
| | - Vaishali Prahalad
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30223 USA
| | - Astrid Kosters
- grid.189967.80000 0001 0941 6502Lowance Center for Human Immunology, Division of Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30223 USA
| | - Dalia Arafat
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Meixue Duan
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Talia Gergely
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30223 USA
| | - Lori A. Ponder
- grid.428158.20000 0004 0371 6071Center for Immunity and Applied Genomics, Children’s Healthcare of Atlanta, Atlanta, GA 30223 USA
| | - Shanmuganathan Chandrakasan
- grid.428158.20000 0004 0371 6071Center for Immunity and Applied Genomics, Children’s Healthcare of Atlanta, Atlanta, GA 30223 USA ,grid.189967.80000 0001 0941 6502Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30223 USA
| | - Eliver E. B. Ghosn
- grid.189967.80000 0001 0941 6502Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30223 USA ,grid.189967.80000 0001 0941 6502Lowance Center for Human Immunology, Division of Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30223 USA ,grid.428158.20000 0004 0371 6071Center for Immunity and Applied Genomics, Children’s Healthcare of Atlanta, Atlanta, GA 30223 USA
| | - Sampath Prahalad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30223, USA. .,Center for Immunity and Applied Genomics, Children's Healthcare of Atlanta, Atlanta, GA, 30223, USA. .,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30223, USA.
| | - Greg Gibson
- grid.213917.f0000 0001 2097 4943Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA ,grid.428158.20000 0004 0371 6071Center for Immunity and Applied Genomics, Children’s Healthcare of Atlanta, Atlanta, GA 30223 USA
| |
Collapse
|
5
|
Kaptein P, Jacoberger-Foissac C, Dimitriadis P, Voabil P, de Bruijn M, Brokamp S, Reijers I, Versluis J, Nallan G, Triscott H, McDonald E, Tay J, Long GV, Blank CU, Thommen DS, Teng MWL. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci Transl Med 2022; 14:eabj9779. [PMID: 35476594 DOI: 10.1126/scitranslmed.abj9779] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neoadjuvant immunotherapy with anti-cytotoxic T lymphocyte-associated protein 4 (CTLA4) + anti-programmed cell death protein 1 (PD1) monoclonal antibodies has demonstrated remarkable pathological responses and relapse-free survival in ~80% of patients with clinically detectable stage III melanoma. However, about 20% of the treated patients do not respond. In pretreatment biopsies of patients with melanoma, we found that resistance to neoadjuvant CTLA4 + PD1 blockade was associated with a low CD4/interleukin-2 (IL-2) gene signature. Ex vivo, addition of IL-2 to CTLA4 + PD1 blockade induced T cell activation and deep immunological responses in anti-CTLA4 + anti-PD1-resistant human tumor specimens. In the 4T1.2 breast cancer mouse model of neoadjuvant immunotherapy, triple combination of anti-CTLA4 + anti-PD1 + IL-2 cured almost twice as many mice as compared with dual checkpoint inhibitor therapy. This improved efficacy was due to the expansion of tumor-specific CD8+ T cells and improved proinflammatory cytokine polyfunctionality of both CD4+ and CD8+ T effector cells and regulatory T cells. Depletion studies suggested that CD4+ T cells were critical for priming of CD8+ T cell immunity against 4T1.2 and helped in the expansion of tumor-specific CD8+ T cells early after neoadjuvant triple immunotherapy. Our results suggest that the addition of IL-2 can overcome resistance to neoadjuvant anti-CTLA4 + anti-PD1, providing the rationale for testing this combination as a neoadjuvant therapy in patients with early-stage cancer.
Collapse
Affiliation(s)
- Paulien Kaptein
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | | | - Petros Dimitriadis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Paula Voabil
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Marjolein de Bruijn
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Simone Brokamp
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Irene Reijers
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Judith Versluis
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Gahyathiri Nallan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Hannah Triscott
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| | - Elizabeth McDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Joshua Tay
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Georgina V Long
- Melanoma Institute Australia, University of Sydney, Sydney 2006, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia.,Royal North Shore and Mater Hospitals, Sydney 2065, Australia
| | - Christian U Blank
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Daniela S Thommen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam 1066 CX, Netherlands
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Herston, Queensland 4006, Australia
| |
Collapse
|
6
|
Raeber ME, Rosalia RA, Schmid D, Karakus U, Boyman O. Interleukin-2 signals converge in a lymphoid-dendritic cell pathway that promotes anticancer immunity. Sci Transl Med 2021; 12:12/561/eaba5464. [PMID: 32938795 DOI: 10.1126/scitranslmed.aba5464] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/08/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Tumor-infiltrating dendritic cells (DCs) correlate with effective anticancer immunity and improved responsiveness to anti-PD-1 checkpoint immunotherapy. However, the drivers of DC expansion and intratumoral accumulation are ill-defined. We found that interleukin-2 (IL-2) stimulated DC formation through innate and adaptive lymphoid cells in mice and humans, and this increase in DCs improved anticancer immunity. Administration of IL-2 to humans within a clinical trial and of IL-2 receptor (IL-2R)-biased IL-2 to mice resulted in pronounced expansion of type 1 DCs, including migratory and cross-presenting subsets, and type 2 DCs, although neither DC precursors nor mature DCs had functional IL-2Rs. In mechanistic studies, IL-2 signals stimulated innate lymphoid cells, natural killer cells, and T cells to synthesize the cytokines FLT3L, CSF-2, and TNF. These cytokines redundantly caused DC expansion and activation, which resulted in improved antigen processing and correlated with favorable anticancer responses in mice and patients. Thus, IL-2 immunotherapy-mediated stimulation of DCs contributes to anticancer immunity by rendering tumors more immunogenic.
Collapse
Affiliation(s)
- Miro E Raeber
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Rodney A Rosalia
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Dominic Schmid
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Ufuk Karakus
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, CH-8091 Zurich, Switzerland. .,Faculty of Medicine, University of Zurich, CH-8006 Zurich, Switzerland
| |
Collapse
|
7
|
Pol JG, Caudana P, Paillet J, Piaggio E, Kroemer G. Effects of interleukin-2 in immunostimulation and immunosuppression. J Exp Med 2020; 217:jem.20191247. [PMID: 31611250 PMCID: PMC7037245 DOI: 10.1084/jem.20191247] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Distinctions in the nature and spatiotemporal expression of IL-2R subunits on conventional versus regulatory T cells are exploited to manipulate IL-2 immunomodulatory effects. Particularly, low-dose IL-2 and some recombinant derivatives are being evaluated to enhance/inhibit immune responses for therapeutic purposes. Historically, interleukin-2 (IL-2) was first described as an immunostimulatory factor that supports the expansion of activated effector T cells. A layer of sophistication arose when regulatory CD4+ T lymphocytes (Tregs) were shown to require IL-2 for their development, homeostasis, and immunosuppressive functions. Fundamental distinctions in the nature and spatiotemporal expression patterns of IL-2 receptor subunits on naive/memory/effector T cells versus Tregs are now being exploited to manipulate the immunomodulatory effects of IL-2 for therapeutic purposes. Although high-dose IL-2 administration has yielded discrete clinical responses, low-dose IL-2 as well as innovative strategies based on IL-2 derivatives, including “muteins,” immunocomplexes, and immunocytokines, are being explored to therapeutically enhance or inhibit the immune response.
Collapse
Affiliation(s)
- Jonathan G Pol
- Université de Paris, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1138, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pamela Caudana
- Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), U932, Paris, France
| | - Juliette Paillet
- Université de Paris, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1138, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris-Sud/Paris XI, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Eliane Piaggio
- Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), U932, Paris, France.,Centre d'Investigation Clinique Biothérapie CICBT 1428, Institut Curie, Paris, France
| | - Guido Kroemer
- Université de Paris, Paris, France.,Equipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1138, Paris, France.,Sorbonne Université, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance publique - Hôpitaux de Paris (AP-HP), Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
James NE, Oliver MT, Ribeiro JR, Cantillo E, Rowswell-Turner RB, Kim KK, Chichester CO, DiSilvestro PA, Moore RG, Singh RK, Yano N, Zhao TC. Human Epididymis Secretory Protein 4 (HE4) Compromises Cytotoxic Mononuclear Cells via Inducing Dual Specificity Phosphatase 6. Front Pharmacol 2019; 10:216. [PMID: 30941033 PMCID: PMC6433991 DOI: 10.3389/fphar.2019.00216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/20/2019] [Indexed: 01/07/2023] Open
Abstract
While selective overexpression of serum clinical biomarker Human epididymis secretory protein 4 (HE4) is indicative of ovarian cancer tumorigenesis, much is still known about the mechanistic role of the HE4 gene or gene product. Here, we examine the role of the secretory glycoprotein HE4 in ovarian cancer immune evasion. Through modified subtractive hybridization analyses of human peripheral blood mononuclear cells (PBMCs), we have characterized gene targets of HE4 and established a preliminary mechanism of HE4-mediated immune failure in ovarian tumors. Dual specificity phosphatase 6 (DUSP6) emerged as the most upregulated gene in PBMCs upon in vitro exposure to HE4. DUSP6 was found to be upregulated in CD8+ cells and CD56+ cells. HE4 exposure reduced Erk1/2 phosphorylation specifically in these cell populations and the effect was erased by co-incubation with a DUSP6 inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI). In co-culture with PBMCs, HE4-silenced SKOV3 human ovarian cancer cells exhibited enhanced proliferation upon exposure to external HE4, while this effect was partially attenuated by adding BCI to the culture. Additionally, the reversal effects of BCI were erased in the co-culture with CD8+ / CD56+ cell deprived PBMCs. Taken together, these findings show that HE4 enhances tumorigenesis of ovarian cancer by compromising cytotoxic CD8+ and CD56+ cells through upregulation of self-produced DUSP6.
Collapse
Affiliation(s)
- Nicole E James
- Program in Women's Oncology, Department of Obstetrics and Gynecology, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Department of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Matthew T Oliver
- Program in Women's Oncology, Department of Obstetrics and Gynecology, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jennifer R Ribeiro
- Program in Women's Oncology, Department of Obstetrics and Gynecology, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Evelyn Cantillo
- Program in Women's Oncology, Department of Obstetrics and Gynecology, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Rachael B Rowswell-Turner
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Kyu-Kwang Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Paul A DiSilvestro
- Program in Women's Oncology, Department of Obstetrics and Gynecology, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Richard G Moore
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Rakesh K Singh
- Program in Women's Oncology, Department of Obstetrics and Gynecology, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Naohiro Yano
- Program in Women's Oncology, Department of Obstetrics and Gynecology, Women & Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States.,Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, RI, United States
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, RI, United States
| |
Collapse
|
9
|
Wu D, Wen X, Wang Y, Han X, Wang S, Shen M, Fan S, Zhuang J, Zhang Z, Shan Q, Li M, Hu B, Sun C, Lu J, Chen G, Zheng Y. Retracted
: Effect of microRNA‐186 on oxidative stress injury of neuron by targeting interleukin 2 through the janus kinase‐signal transducer and activator of transcription pathway in a rat model of Alzheimer’s disease. J Cell Physiol 2018; 233:9488-9502. [DOI: 10.1002/jcp.26843] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- School of Environment Science and Spatial Informatics China University of Mining and Technology Xuzhou China
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology Around Hongze Lake, School of Life Sciences Huaiyin Normal University Huaian China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| | - Gui‐Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center Nanjing University Nanjing China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center Nanjing University Nanjing China
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science Jiangsu Normal University Xuzhou China
- College of Health Sciences Jiangsu Normal University Xuzhou Jiangsu China
| |
Collapse
|
10
|
Erythropoietin exerts direct immunomodulatory effects on the cytokine production by activated human T-lymphocytes. Int Immunopharmacol 2016; 36:277-281. [DOI: 10.1016/j.intimp.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/29/2023]
|
11
|
Orvieto R, Dratviman-Storobinsky O, Lantsberg D, Haas J, Mashiach R, Cohen Y. Interleukin-2 and SOCS-1 proteins involvement in the pathophysiology of severe ovarian hyperstimulation syndrome--a preliminary proof of concept. J Ovarian Res 2014; 7:106. [PMID: 25424734 PMCID: PMC4255649 DOI: 10.1186/s13048-014-0106-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022] Open
Abstract
Background Ovarian hyperstimulation syndrome (OHSS), is characterized by marked ovarian enlargement and acute third space fluid sequestration that almost always develops after hCG administration or in early pregnancy. OHSS is similar to vascular leak syndrome (VLS), which may be attributable to the massive increase in systemic inflammatory cytokines. In the present pilot exploratory case series, we sought to evaluate interleukin (IL)-2 and suppressor of cytokine signaling (SOCS)-1 expressions in the peripheral blood mononuclear cells (PBMCs) of patients suffering from severe ovarian hypertimulation syndrome (OHSS), and to examine whether their expressions differ when compared to PBMCs originated from normal early pregnant women (without OHSS). Methods Interleukin-2 and SOCS-1 mRNA expressions were examined in PBMCs of 5 women who were hospitalized due to severe OHSS (OHSS group) and 5 women with early IVF pregnancies and without OHSS (control group). Results Interleukin-2 mRNA levels in PBMCs were significantly higher in the OHSS as compared to the control groups. Moreover, while SOCS-1 mRNA levels were non-significantly lower, the ratio between IL-2 and SOCS-1 mRNA levels was significantly higher in the OHSS, as compared to the control group. Conclusions The inflammatory response to hCG, leading to dysregulation of Il-2 expression and SOCS activation, might be the culprit of OHSS. Additional large prospective studies are required to elucidate the effect of hCG on patients’ inherited inflammatory cascades, which may help discriminating those at risk to develop severe OHSS from those who are not.
Collapse
Affiliation(s)
- Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Olga Dratviman-Storobinsky
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Daniel Lantsberg
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Jigal Haas
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Roy Mashiach
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yoram Cohen
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center (Tel Hashomer), Ramat Gan, Israel. .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Arneja A, Johnson H, Gabrovsek L, Lauffenburger DA, White FM. Qualitatively different T cell phenotypic responses to IL-2 versus IL-15 are unified by identical dependences on receptor signal strength and duration. THE JOURNAL OF IMMUNOLOGY 2013; 192:123-35. [PMID: 24298013 DOI: 10.4049/jimmunol.1302291] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-2 and IL-15 are common γ-chain family cytokines involved in regulation of T cell differentiation and homeostasis. Despite signaling through the same receptors, IL-2 and IL-15 have non-redundant roles in T cell biology, both physiologically and at the cellular level. The mechanisms by which IL-2 and IL-15 trigger distinct phenotypes in T cells remain elusive. To elucidate these mechanisms, we performed a quantitative comparison of the phosphotyrosine signaling network and resulting phenotypes triggered by IL-2 and IL-15. This study revealed that the signaling networks activated by IL-2 or IL-15 are highly similar and that T cell proliferation and metabolism are controlled in a quantitatively distinct manner through IL-2/15R signal strength independent of the cytokine identity. Distinct phenotypes associated with IL-2 or IL-15 stimulation therefore arise through differential regulation of IL-2/15R signal strength and duration because of differences in cytokine-receptor binding affinity, receptor expression levels, physiological cytokine levels, and cytokine-receptor intracellular trafficking kinetics. These results provide important insights into the function of other shared cytokine and growth factor receptors, quantitative regulation of cell proliferation and metabolism through signal transduction, and improved design of cytokine based clinical immunomodulatory therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Abhinav Arneja
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | | |
Collapse
|
13
|
Seo H, Lee IS, Park JE, Park SG, Lee DH, Park BC, Cho S. Role of protein tyrosine phosphatase non-receptor type 7 in the regulation of TNF-α production in RAW 264.7 macrophages. PLoS One 2013; 8:e78776. [PMID: 24265715 PMCID: PMC3827119 DOI: 10.1371/journal.pone.0078776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
Protein tyrosine phosphatases play key roles in a diverse range of cellular processes such as differentiation, cell proliferation, apoptosis, immunological signaling, and cytoskeletal function. Protein tyrosine phosphatase non-receptor type 7 (PTPN7), a member of the phosphatase family, specifically inactivates mitogen-activated protein kinases (MAPKs). Here, we report that PTPN7 acts as a regulator of pro-inflammatory TNF-α production in RAW 264.7 cells that are stimulated with lipopolysaccharide (LPS) that acts as an endotoxin and elicits strong immune responses in animals. Stimulation of RAW 264.7 cells with LPS leads to a transient decrease in the levels of PTPN7 mRNA and protein. The overexpression of PTPN7 inhibits LPS-stimulated production of TNF-α. In addition, small interfering RNA (siRNA) analysis showed that knock-down of PTPN7 in RAW 264.7 cells increased TNF-α production. PTPN7 has a negative regulatory function to extracellular signal regulated kinase 1/2 (ERK1/2) and p38 that increase LPS-induced TNF-α production in macrophages. Thus, our data presents PTPN7 as a negative regulator of TNF-α expression and the inflammatory response in macrophages.
Collapse
Affiliation(s)
- Huiyun Seo
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - In-Seon Lee
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Jae Eun Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Do Hee Lee
- Department of Biotechnology, College of Natural Sciences, Seoul Women’s University, Seoul, Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
14
|
Ranji N, Sadeghizadeh M, Shokrgozar MA, Bakhshandeh B, Karimipour M, Amanzadeh A, Azadmanesh K. MiR-17-92 cluster: an apoptosis inducer or proliferation enhancer. Mol Cell Biochem 2013; 380:229-38. [PMID: 23681423 DOI: 10.1007/s11010-013-1678-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 05/02/2013] [Indexed: 12/31/2022]
Abstract
Study of the non-coding RNA roles in the regulation of adaptive immune responses through T cells could be the basis of novel therapeutic applications. MicroRNAs (miRNAs) are a class of short non-coding RNAs that control the cell's functions and destination. To investigate the role of miRNAs in T cell activation, herein the expressions of miR-17-92 cluster and its paralogs were studied in naïve CD4(+)T cells that were activated by anti-CD2, -CD3, -CD28 microbeads and induced with or without IL-2. Proliferation and apoptosis rate of the cultured cells were determined by BrdU incorporation assay (ELISA) and propidium iodide staining, respectively. In continuation the expressions of eight miRNAs of the mentioned clusters were analyzed quantitatively. In addition their potential targets were predicted using multiple algorithms; as a confirmation, the transcription of PIK3R3 (a putative target of modulated miRNAs) was evaluated. Stimulation index (SI) of activated cells was decreased on day 6; whereas, the IL-2 induced cells showed increase in SI in the assay time. Evaluation of eight members of the aforementioned cluster showed upregulation of miR-92a-2* (~15 times) in IL-2 un-induced (activated) cells relative to the IL-2 induced cells. In silico investigations revealed that the suggested miRNAs targeted genes that were involved in cell proliferation, survival, and apoptosis. Transcriptional analysis of PIK3R3 illustrated decrease in activated cells relative to IL-2 induced cells. According to our findings, it seems that multiple members of miR-17-92 families in activated CD4(+)T cells inhibited negative regulators of IL-2 such as DUSP, PTPN, and SOCS families after IL-2 induction. According to our findings, it seems that multiple genes of cell proliferation-related families such as MAPK, E2F, AKT, STAT, and JAK as well as PIK3R3 are inhibited by miR-17-92 cluster in activated cells. As FASL is a putative target of over-expressed miRNAs in activated cell, antigen-induced cell death (AICD) might be occurred in FASL-independent manner. Altogether this study suggested that clonal expansion through IL-2 signaling pathway does not depend on the members of miR-17-92 family; while, it appears that AICD in activated CD4(+)T cells without IL-2 induction is affected by these miRNA clusters.
Collapse
Affiliation(s)
- Najmeh Ranji
- Department of Biology, Science and Research Branch, Islamic Azad University, P.O. Box: 1477893855, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
15
|
Hakim O, Sung MH, Nakayamada S, Voss TC, Baek S, Hager GL. Spatial congregation of STAT binding directs selective nuclear architecture during T-cell functional differentiation. Genome Res 2012; 23:462-72. [PMID: 23212947 PMCID: PMC3589535 DOI: 10.1101/gr.147652.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Higher-order genome organization shows tissue-specific patterns. However, functional relevance and the mechanisms shaping the genome architecture are poorly understood. Here we report a profound shift from promiscuous to highly selective genome organization that accompanies the effector lineage choice of differentiating T cells. As multipotent naive cells receive antigenic signals and commit to a T helper (Th) pathway, the genome-wide contacts of a lineage-specific cytokine locus are preferentially enriched for functionally relevant genes. Despite the establishment of divergent interactomes and global reprogramming of transcription in Th1 versus Th2, the overall expression status of the contact genes is surprisingly similar between the two lineages. Importantly, during differentiation, the genomic contacts are retained and strengthened precisely at DNA binding sites of the specific lineage-determining STAT transcription factor. In cells from the specific STAT knock-out mouse, the signature cytokine locus is unable to shed the promiscuous contacts established in the naive T cells, indicating the importance of genomic STAT binding. Altogether, the global aggregation of STAT binding loci from genic and nongenic regions highlights a new role for differentiation-promoting transcription factors in direct specification of higher-order nuclear architecture through interacting with regulatory regions. Such subnuclear environments have significant implications for efficient functioning of the mature effector lymphocytes.
Collapse
Affiliation(s)
- Ofir Hakim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Klamer G, Shen S, Song E, Rice AM, Knight R, Lindeman R, O'Brien TA, Dolnikov A. GSK3 inhibition prevents lethal GVHD in mice. Exp Hematol 2012; 41:39-55.e10. [PMID: 22999867 DOI: 10.1016/j.exphem.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/29/2022]
Abstract
Graft-versus-host disease (GVHD) is a major contributor to transplant-related mortality and morbidity after allogeneic stem cell transplantation. Despite advancements in tissue-typing techniques, conditioning regimens, and therapeutic intervention, the incidence rate of GVHD remains high. GVHD is caused by alloreactive donor T cells that infiltrate and destroy host tissues (e.g., skin, liver, and gut). Therefore, GVHD is prevented and treated with therapeutics that suppress proinflammatory cytokines and T-cell function (e.g., cyclosporine, glucocorticoids). Here we report that the small molecule inhibitor of glycogen synthase kinase 3, 6-bromoindirubin 3'-oxime (BIO), prevents lethal GVHD in a humanized xenograft model in mice. BIO treatment did not affect donor T-cell engraftment, but suppressed their activation and attenuated bone marrow and liver destruction mediated by activated donor T cells. Glycogen synthase kinase 3 inhibition modulated the Th1/Th2 cytokine profile in vitro and suppressed activation of signal transducers and activators of transcription 1 and 3 signaling pathways both in vitro and in vivo. Importantly, human T cells derived from BIO-treated mice were able to mediate anti-tumor effects in vitro, and BIO did not affect stem cell engraftment and multilineage reconstitution in a mouse model of transplantation. These data demonstrate that inhibition of glycogen synthase kinase 3 can potentially abrogate GVHD without compromising the efficacy of transplantation.
Collapse
Affiliation(s)
- Guy Klamer
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Le Gallou S, Caron G, Delaloy C, Rossille D, Tarte K, Fest T. IL-2 requirement for human plasma cell generation: coupling differentiation and proliferation by enhancing MAPK-ERK signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:161-73. [PMID: 22634617 DOI: 10.4049/jimmunol.1200301] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mature B cell differentiation involves a well-established transcription factor cascade. However, the temporal dynamics of cell signaling pathways regulating transcription factor network and coordinating cell proliferation and differentiation remain poorly defined. To gain insight into the molecular processes and extrinsic cues required for B cell differentiation, we set up a controlled primary culture system to differentiate human naive B cells into plasma cells (PCs). We identified T cell-produced IL-2 to be critically involved in ERK1/2-triggered PC differentiation. IL-2 drove activated B cell differentiation toward PC independently of its proliferation and survival functions. Indeed, IL-2 potentiated ERK activation and subsequent BACH2 and IRF8 downregulation, sustaining BLIMP1 expression, the master regulator for PC differentiation. Inhibition of the MAPK-ERK pathway, unlike STAT5 signaling, impaired IL-2-induced PC differentiation and rescued the expression profile of BACH2 and IRF8. These results identify IL-2 as a crucial early input in mature B cell fate commitment.
Collapse
Affiliation(s)
- Simon Le Gallou
- INSERM, Unité Mixte de Recherche 917, Rennes F-35043, France
| | | | | | | | | | | |
Collapse
|
18
|
Altmann S, Murani E, Metges CC, Schwerin M, Wimmers K, Ponsuksili S. Effect of gestational protein deficiency and excess on hepatic expression of genes related to cell cycle and proliferation in offspring from late gestation to finishing phase in pig. Mol Biol Rep 2012; 39:7095-104. [DOI: 10.1007/s11033-012-1541-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/24/2012] [Indexed: 12/20/2022]
|
19
|
Zhang K, Wang H, Bathke AC, Harrar SW, Piepho HP, Deng Y. Gene set analysis for longitudinal gene expression data. BMC Bioinformatics 2011; 12:273. [PMID: 21722407 PMCID: PMC3142525 DOI: 10.1186/1471-2105-12-273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 07/03/2011] [Indexed: 11/13/2022] Open
Abstract
Background Gene set analysis (GSA) has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information) with accession number GSE6085.
Collapse
Affiliation(s)
- Ke Zhang
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA.
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Grasset MF, Gobert-Gosse S, Mouchiroud G, Bourette RP. Macrophage differentiation of myeloid progenitor cells in response to M-CSF is regulated by the dual-specificity phosphatase DUSP5. J Leukoc Biol 2009; 87:127-35. [DOI: 10.1189/jlb.0309151] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
22
|
Chechlinska M, Siwicki JK, Gos M, Oczko-Wojciechowska M, Jarzab M, Pfeifer A, Jarzab B, Steffen J. Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal. BMC Genomics 2009; 10:261. [PMID: 19505301 PMCID: PMC2706892 DOI: 10.1186/1471-2164-10-261] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/08/2009] [Indexed: 12/01/2022] Open
Abstract
Background The molecular mechanisms of cell cycle exit are poorly understood. Studies on lymphocytes at cell cycle exit after growth factor deprivation have predominantly focused on the initiation of apoptosis. We aimed to study gene expression profile of primary and immortalised IL-2-dependent human T cells forced to exit the cell cycle by growth factor withdrawal, before apoptosis could be evidenced. Results By the Affymetrix microarrays HG-U133 2.0 Plus, 53 genes were distinguished as differentially expressed before and soon after IL-2 deprivation. Among those, PIM1, BCL2, IL-8, HBEGF, DUSP6, OSM, CISH, SOCS2, SOCS3, LIF and IL13 were down-regulated and RPS24, SQSTM1, TMEM1, LRRC8D, ECOP, YY1AP1, C1orf63, ASAH1, SLC25A46 and MIA3 were up-regulated. Genes linked to transcription, cell cycle, cell growth, proliferation and differentiation, cell adhesion, and immune functions were found to be overrepresented within the set of the differentially expressed genes. Conclusion Cell cycle exit of the growth factor-deprived T lymphocytes is characterised by a signature of differentially expressed genes. A coordinate repression of a set of genes known to be induced during T cell activation is observed. However, growth arrest following exit from the cell cycle is actively controlled by several up-regulated genes that enforce the non-dividing state. The identification of genes involved in cell cycle exit and quiescence provides new hints for further studies on the molecular mechanisms regulating the non-dividing state of a cell, the mechanisms closely related to cancer development and to many biological processes.
Collapse
Affiliation(s)
- Magdalena Chechlinska
- Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Jeeves M, McClelland DM, Barr AJ, Overduin M. Sequence-specific 1H, 13C and 15N backbone resonance assignments of the 34 kDa catalytic domain of human PTPN7. BIOMOLECULAR NMR ASSIGNMENTS 2008; 2:101-103. [PMID: 19636879 DOI: 10.1007/s12104-008-9095-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 05/06/2008] [Indexed: 05/28/2023]
Abstract
PTPN7 is a protein tyrosine phosphatase responsible for inactivation of MAPK in leukocytes. Here we report the backbone resonance assignments of the 34 kDa phosphatase domain of human PTPN7, which is amplified in myeloid malignancies and deleted in lymphoproliferative disorders.
Collapse
Affiliation(s)
- Mark Jeeves
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | |
Collapse
|
24
|
Kamimura D, Bevan MJ. Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. THE JOURNAL OF IMMUNOLOGY 2008; 181:5433-41. [PMID: 18832700 DOI: 10.4049/jimmunol.181.8.5433] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The transcription factor X-box-binding protein-1 (XBP-1) plays an essential role in activating the unfolded protein response in the endoplasmic reticulum (ER). Transcribed XBP-1 mRNA is converted to its active form by unconventional cytoplasmic splicing mediated by inositol-requiring enzyme-1 (IRE-1) upon ER stress. We report activation of the IRE-1/XBP-1 pathway in effector CD8(+) T cells during the response to acute infection. Transcription of unspliced XBP-1 mRNA is up-regulated by IL-2 signals, while its splicing is induced after TCR ligation. Splicing of XBP-1 mRNA was evident during the expansion of Ag-specific CD8(+) T cells in response to viral or bacterial infection. An XBP-1 splicing reporter revealed that splicing activity was enriched in terminal effector cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1). Overexpression of the spliced form of XBP-1 in CD8(+) T cells enhanced KLRG1 expression during infection, whereas XBP-1(-/-) CD8(+) T cells or cells expressing a dominant-negative form of XBP-1 showed a decreased proportion of KLRG1(high) effector cells. These results suggest that, in the response to pathogen, activation of ER stress sensors and XBP-1 splicing contribute to the differentiation of end-stage effector CD8(+) T cells.
Collapse
Affiliation(s)
- Daisuke Kamimura
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
25
|
Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol 2008; 9:1288-96. [PMID: 18820682 PMCID: PMC2762127 DOI: 10.1038/ni.1656] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 08/21/2008] [Indexed: 12/20/2022]
Abstract
T-helper type 2 (TH2) cells are essential for humoral immunity and host defense. Interleukin (IL)-4 drives TH2 differentiation and IL-2 augments Il4 chromatin accessibility. Here we demonstrated that IL-2, by inducing STAT5 binding to the Il4ra locus, is essential for inducing and maintaining IL-4Rα expression. Although IL-4 induces IL-4Rα expression, T-cell receptor-induced IL-4Rα expression was normal in Il4-/- but profoundly diminished in Il2-/- cells. Remarkably, forced IL-4Rα expression rescued TH2 differentiation in Il2-/- cells. Moreover, genome-wide mapping by ChIP-Seq reveals broad interaction of STAT5A and STAT5B with genes associated with TH2 differentiation. These results reveal a previously unappreciated function for IL-2 in ‘priming’ T cells for TH2 differentiation and in maintaining expression of Il4ra and other genes in TH2-committed cells.
Collapse
|
26
|
The IL-2/CD25 pathway determines susceptibility to T1D in humans and NOD mice. J Clin Immunol 2008; 28:685-96. [PMID: 18780166 DOI: 10.1007/s10875-008-9237-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/01/2008] [Indexed: 12/20/2022]
Abstract
Although the interleukin-2 (IL-2)/IL-2R signaling pathway has been the focus of numerous studies, certain aspects of its molecular regulation are not well characterized, especially in non-T cells, and a more complete understanding of the pathway is necessary to discern the functional basis of the genetic association between the IL-2-IL-21 and IL-2RA/CD25 gene regions and T1D in humans. Genetic variation in these regions may promote T1D susceptibility by influencing transcription and/or splicing and, hence, IL-2 and IL-2RA/CD25 expression at the protein level in different immune cell subsets; thus, there is a need to establish links between the genetic variation and immune cell phenotypes and functions in humans, which can be further investigated and validated in mouse models. The detection and characterization of genetically determined immunophenotypes should aid in elucidating disease mechanisms and may enable future monitoring of disease initiation and progression in prediabetic subjects and of responses to therapeutic intervention.
Collapse
|
27
|
Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, Shih R, Parks JS, Edwards PA, Jamieson BD, Tontonoz P. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 2008; 134:97-111. [PMID: 18614014 PMCID: PMC2626438 DOI: 10.1016/j.cell.2008.04.052] [Citation(s) in RCA: 538] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/26/2008] [Accepted: 04/21/2008] [Indexed: 12/13/2022]
Abstract
Cholesterol is essential for membrane synthesis; however, the mechanisms that link cellular lipid metabolism to proliferation are incompletely understood. We demonstrate here that cellular cholesterol levels in dividing T cells are maintained in part through reciprocal regulation of the LXR and SREBP transcriptional programs. T cell activation triggers induction of the oxysterol-metabolizing enzyme SULT2B1, consequent suppression of the LXR pathway for cholesterol transport, and promotion of the SREBP pathway for cholesterol synthesis. Ligation of LXR during T cell activation inhibits mitogen-driven expansion, whereas loss of LXRbeta confers a proliferative advantage. Inactivation of the sterol transporter ABCG1 uncouples LXR signaling from proliferation, directly linking sterol homeostasis to the antiproliferative action of LXR. Mice lacking LXRbeta exhibit lymphoid hyperplasia and enhanced responses to antigenic challenge, indicating that proper regulation of LXR-dependent sterol metabolism is important for immune responses. These results implicate LXR signaling in a metabolic checkpoint that modulates cell proliferation and immunity.
Collapse
Affiliation(s)
- Steven J Bensinger
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90049, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kovanen PE, Bernard J, Al-Shami A, Liu C, Bollenbacher-Reilley J, Young L, Pise-Masison C, Spolski R, Leonard WJ. T-cell development and function are modulated by dual specificity phosphatase DUSP5. J Biol Chem 2008; 283:17362-9. [PMID: 18430737 DOI: 10.1074/jbc.m709887200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interleukin-2 (IL-2) is a pleiotropic cytokine that regulates lymphocyte proliferation and peripheral tolerance. IL-2 activates mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase, and signal transducer and activator of transcription (STAT) pathways and modulates expression of target genes. Systematic analysis of IL-2 target genes has revealed regulation of potential feedback inhibitors of IL-2 signaling, including several suppressor of cytokine signaling (SOCS) family members as well as MAPK pathway-regulating dual specificity phosphatases (DUSPs). Here we have evaluated the in vivo actions of DUSP5, an extracellular signal-regulated kinase 1/2 (ERK1/2)-specific phosphatase, by generating transgenic mice overexpressing DUSP5 within the lymphoid compartment. We show that transgenic DUSP5 expression results in a block in thymocyte development at the double positive stage. We also demonstrate that DUSP5-expressing mature T cells exhibit decreased IL-2-dependent proliferation and defective IL-2-mediated induction of genes. Finally, DUSP5 transgenic mice develop autoimmune symptoms, suggesting a role for the MAPK pathway in the regulation of tolerance. Thus, proper regulation of DUSP5 activity is critical for normal immune system development, IL-2 actions, and tolerance.
Collapse
Affiliation(s)
- Panu E Kovanen
- Laboratory of Molecular Immunology, NHLBI, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tanis KQ, Duman RS, Newton SS. CREB binding and activity in brain: regional specificity and induction by electroconvulsive seizure. Biol Psychiatry 2008; 63:710-20. [PMID: 17936724 PMCID: PMC3691692 DOI: 10.1016/j.biopsych.2007.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/28/2007] [Accepted: 08/01/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND The transcription factor cyclic adenosine monophosphate response element binding protein (CREB) orchestrates diverse neurobiological processes including cell differentiation, survival, and plasticity. Alterations in CREB-mediated transcription have been implicated in numerous central nervous system (CNS) disorders including depression, anxiety, addiction, and cognitive decline. However, it remains unclear how CREB contributes to normal and aberrant CNS function, as the identity of CREB-regulated genes in brain and the regional and temporal dynamics of CREB function remain largely undetermined. METHODS We combined microarray and chromatin immunoprecipitation technology to analyze CREB-DNA interactions in brain. We compared the occupancy and activity of CREB at gene promoters in rat frontal cortex, hippocampus, and striatum before and after a rodent model of electroconvulsive therapy. RESULTS Our analysis identified >860 CREB binding sites in rat brain. We identified multiple genomic loci enriched with CREB binding sites and find that CREB-occupied transcripts interact extensively to promote cell proliferation, plasticity, and resiliency. We discovered regional differences in CREB occupancy and activity that explain, in part, the diverse biological and behavioral outputs of CREB activity in frontal cortex, hippocampus, and striatum. Electroconvulsive seizure rapidly increased CREB occupancy and/or phosphorylation at select promoters, demonstrating that both events contribute to the temporal regulation of the CREB transcriptome. CONCLUSIONS Our data provide a mechanistic basis for CREB's ability to integrate regional and temporal cues to orchestrate state-specific patterns of transcription in the brain, indicate that CREB is an important mediator of the biological responses to electroconvulsive seizure, and provide global mechanistic insights into CREB's role in psychiatric and cognitive function.
Collapse
Affiliation(s)
- Keith Quincy Tanis
- Division of Molecular Psychiatry, Abraham Ribibcoff Research Facilities, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
30
|
Sommer CA, Pavarino-Bertelli EC, Goloni-Bertollo EM, Henrique-Silva F. Identification of dysregulated genes in lymphocytes from children with Down syndrome. Genome 2008; 51:19-29. [PMID: 18356936 DOI: 10.1139/g07-100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The molecular mechanisms by which trisomy of human chromosome 21 disrupts normal development are not well understood. Global transcriptome studies attempting to analyze the consequences of trisomy in Down syndrome (DS) tissues have reported conflicting results, which have led to the suggestion that the analysis of specific tissues or cell types may be more productive. In the present study, we set out to analyze global changes of gene expression in lymphocytes from children with trisomy 21 by means of the serial analysis of gene expression (SAGE) methodology. Two SAGE libraries were constructed using pooled RNA of normal and Down syndrome children. Comparison between DS and normal profiles revealed that most of the transcripts were expressed at similar levels and functional classes of abundant genes were equally represented. Among the 242 significantly differentially expressed SAGE tags, several transcripts downregulated in DS code for proteins involved in T-cell and B-cell receptor signaling (e.g., PI3Kdelta, RGS2, LY6E, FOS, TAGAP, CD46). The SAGE data and interindividual variability were validated by real-time quantitative PCR. Our results indicate that trisomy 21 induces a modest dysregulation of disomic genes that may be related to the immunological perturbations seen in DS.
Collapse
Affiliation(s)
- Cesar A Sommer
- Department of Genetics and Evolution, Federal University of Sao Carlos, Rodovia Washington Luis km 235, 13565-905, Sao Carlos, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
31
|
Zhang Z, Martino A, Faulon JL. Identification of expression patterns of IL-2-responsive genes in the murine T cell line CTLL-2. J Interferon Cytokine Res 2008; 27:991-5. [PMID: 18184039 DOI: 10.1089/jir.2006.0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interleukin-2 (IL-2) influences T cell proliferation and differentiation through regulation of a number of genes. Many such genes are known, yet their expression profiles have remained elusive. Using Affymetrix mouse genome arrays and the mouse T cell line CTLL-2, we studied the transcriptional response to IL-2 stimulation. A total of 2813 genes (represented by 3838 probes) showed > or =2-fold changes in expression level at one or more time points (10 were analyzed) during the first 24 h poststimulation. Cluster analyses indicated that these 2813 genes showed nine different expression patterns. Of these genes, approximately 1400 were not previously known to be regulated by interleukin-2 (IL-2). In the control, 666 genes with > or =2-fold changes at the mRNA level were identified in cells without IL-2 stimulation; 222 of them were among the 2813 IL-2-responsive genes. Possibly, the expression of these genes was altered because of changes in cell density or cell growth rate. The newly identified IL-2-responsive genes play roles in a variety of biologic processes, including signal transduction, apoptosis, cell cycle regulation, and transcription. Our data will be useful for studying biochemical events in IL-2 signaling.
Collapse
Affiliation(s)
- Zhaoduo Zhang
- Biosystems Research Department, Sandia National Laboratories, Livermore, CA 94551, USA.
| | | | | |
Collapse
|
32
|
Gingras S, Pelletier S, Boyd K, Ihle JN. Characterization of a family of novel cysteine- serine-rich nuclear proteins (CSRNP). PLoS One 2007; 2:e808. [PMID: 17726538 PMCID: PMC1950078 DOI: 10.1371/journal.pone.0000808] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022] Open
Abstract
Gene array analysis has been widely used to identify genes induced during T cell activation. Our studies identified an immediate early gene that is strongly induced in response to IL-2 in mouse T cells which we named cysteine- serine-rich nuclear protein-1 (CSRNP-1). The human ortholog was previously identified as an AXIN1 induced gene (AXUD1). The protein does not contain sequence defined domains or motifs annotated in public databases, however the gene is a member of a family of three mammalian genes that share conserved regions, including cysteine- and serine-rich regions and a basic domain, they encode nuclear proteins, possess transcriptional activation domain and bind the sequence AGAGTG. Consequently we propose the nomenclature of CSRNP-1, -2 and -3 for the family. To elucidate the physiological functions of CSRNP-1, -2 and -3, we generated mice deficient for each of these genes by homologous recombination in embryonic stem cells. Although the CSRNP proteins have the hallmark of transcription factors and CSRNP-1 expression is highly induced by IL-2, deletion of the individual genes had no obvious consequences on normal mouse development, hematopoiesis or T cell functions. However, combined deficiencies cause partial neonatal lethality suggesting that the genes have redundant functions.
Collapse
Affiliation(s)
- Sébastien Gingras
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stéphane Pelletier
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Kelli Boyd
- Animal Resource Center, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - James N. Ihle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics 2007; 8:230. [PMID: 17623099 PMCID: PMC1959522 DOI: 10.1186/1471-2164-8-230] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 07/10/2007] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Human natural killer (NK) cells are the key contributors of innate immune response and the effector functions of these cells are enhanced by cytokines such as interleukine 2 (IL2). We utilized genome-wide transcriptional profiling to identify gene expression signatures and pathways in resting and IL2 activated NK cell isolated from peripheral blood of healthy donors. RESULTS Gene expression profiling of resting NK cells showed high expression of a number of cytotoxic factors, cytokines, chemokines and inhibitory and activating surface NK receptors. Resting NK cells expressed many genes associated with cellular quiescence and also appeared to have an active TGFbeta (TGFB1) signaling pathway. IL2 stimulation induced rapid downregulation of quiescence associated genes and upregulation of genes associated with cell cycle progression and proliferation. Numerous genes that may enhance immune function and responsiveness including activating receptors (DNAM1, KLRC1 and KLRC3), death receptor ligand (TNFSF6 (FASL) and TRAIL), chemokine receptors (CX3CR1, CCR5 and CCR7), interleukin receptors (IL2RG, IL18RAB and IL27RA) and members of secretory pathways (DEGS1, FKBP11, SSR3, SEC61G and SLC3A2) were upregulated. The expression profile suggested PI3K/AKT activation and NF-kappaB activation through multiple pathways (TLR/IL1R, TNF receptor induced and TCR-like possibly involving BCL10). Activation of NFAT signaling was supported by increased expression of many pathway members and downstream target genes. The transcription factor GATA3 was expressed in resting cells while T-BET was upregulated on activation concurrent with the change in cytokine expression profile. The importance of NK cells in innate immune response was also reflected by late increased expression of inflammatory chemotactic factors and receptors and molecules involved in adhesion and lymphocyte trafficking or migration. CONCLUSION This analysis allowed us to identify genes implicated in cellular quiescence and the cytokines and cytotoxic factors ready for immediate immune response. It also allowed us to observe the sequential immunostimulatory effects of IL2 on NK cells improving our understanding of the biology and molecular mediators behind NK cell activation.
Collapse
|
34
|
Gong D, Malek TR. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. THE JOURNAL OF IMMUNOLOGY 2007; 178:242-52. [PMID: 17182561 DOI: 10.4049/jimmunol.178.1.242] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
After Ag activation of naive T cells in vitro, extensive growth and differentiation into effector cells depend upon IL-2. DNA microarray analysis was used to identify IL-2-dependent molecules regulating this process. In this study, we show that the transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp-1) is expressed by a cytokine-dependent pathway in activated T lymphocytes. IL-2 production by activated CD4(+) and CD8(+) T cells inversely correlated with Blimp-1 levels as higher IL-2 production was associated with lower Blimp-1 expression. Furthermore, ectopic expression of Blimp-1 by activated T cells inhibited IL-2 production but enhanced granzyme B and CD25 expression. Collectively, these findings indicate that there is a negative feedback regulatory loop in activated T cells such that IL-2 inhibits its own production through induction of Blimp-1 while promoting an effector cell phenotype.
Collapse
Affiliation(s)
- Dapeng Gong
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | | |
Collapse
|
35
|
Lang R, Hammer M, Mages J. DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. THE JOURNAL OF IMMUNOLOGY 2007; 177:7497-504. [PMID: 17114416 DOI: 10.4049/jimmunol.177.11.7497] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MAPK family members p38, JNK, and ERK are all activated downstream of innate immunity's TLR to induce the production of cytokines and inflammatory mediators. However, the relative intensity and duration of the activation of different MAPK appears to determine the type of immune response. The mammalian genome encodes a large number of dual specificity phosphatases (DUSP), many of which act as MAPK phosphatases. In this study, we review the emergence of several DUSP as genes that are differentially expressed and regulated in immune cells. Recently, a series of investigations in mice deficient in DUSP1, DUSP2, or DUSP10 revealed specificity in the regulation of the different MAPK proteins, and defined essential roles in models of local and systemic inflammation. The DUSP family is proposed as a set of molecular control devices specifying and modulating MAPK signaling, which may be targeted to unleash or attenuate innate and adaptive immune effector functions.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, Immunology and Hygiene, Trogerstrasse 30, Munich 81675, Germany.
| | | | | |
Collapse
|
36
|
Sukiennicki TL, Fowell DJ. Distinct molecular program imposed on CD4+ T cell targets by CD4+CD25+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2007; 177:6952-61. [PMID: 17082610 DOI: 10.4049/jimmunol.177.10.6952] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are key modulators of immunity, but their mechanism of action is unclear. To elucidate the molecular consequences of Treg encounter, we analyzed changes in gene expression in CD4+ T cell targets activated in the presence or absence of CD4+CD25+ Tregs. Tregs did not alter the early activation program of CD4+ T cells, but had reversed many of the activation-induced changes by 36 h. It is not known whether Tregs simply induce a set of transcriptional changes common to other nonproliferative states or whether instead Tregs mediate a distinct biological activity. Therefore, we compared the gene profile of T cells following Treg encounter with that of T cells made anergic, TGF-beta-treated, or IL-2-deprived; all possible modes of Treg action. Strikingly, all genes down-regulated in suppressed cells were indeed common to these nonproliferative states. In contrast, Treg encounter led to elevated expression of a unique set of genes in the target T cells. Although different from the nonproliferative states tested, the Treg-imposed gene program is exemplified by expression of many genes associated with growth arrest or inhibition of proliferation. We suggest that Tregs function by the induction of a distinct set of negative regulatory factors that initiate or maintain target T cells in a nonproliferative state.
Collapse
Affiliation(s)
- Teresa L Sukiennicki
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
37
|
Varker KA, Kondadasula SV, Go MR, Lesinski GB, Ghosh-Berkebile R, Lehman A, Monk JP, Olencki T, Kendra K, Carson WE. Multiparametric Flow Cytometric Analysis of Signal Transducer and Activator of Transcription 5 Phosphorylation in Immune Cell Subsets In vitro and following Interleukin-2 Immunotherapy. Clin Cancer Res 2006; 12:5850-8. [PMID: 17020993 DOI: 10.1158/1078-0432.ccr-06-1159] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Treatment with interleukin (IL)-2 (Proleukin) yields a 10% to 20% response rate in patients with metastatic melanoma or metastatic renal cell carcinoma. IL-2 is known to activate distinct signals within lymphocytes, including the Janus-activated kinase-signal transducer and activator of transcription (STAT) pathway. We examined the phosphorylation of STAT5 (P-STAT5) in IL-2-stimulated immune cells of normal subjects and in patients receiving IL-2 therapy using a novel flow cytometric assay to characterize the pattern and level of activation within immune subsets. EXPERIMENTAL DESIGN Normal peripheral blood mononuclear cells (PBMC) were treated in vitro with IL-2 and analyzed for P-STAT5 using an intracellular flow cytometric assay. PBMC were simultaneously evaluated for the induction of STAT5-regulated genes at the transcript level. PBMC were also obtained from patients immediately before and 1 hour after treatment with high-dose IL-2 and analyzed for the presence of P-STAT5 within immune cell subsets by dual-variable intracellular flow cytometry. RESULTS In vitro IL-2 treatment produced a rapid and dose-dependent increase in P-STAT5 within normal PBMC that correlated with the induction of transcript for the IL-2-responsive genes CIS, Pim-1, and SOCS1 (correlation coefficients 0.8628, 0.6667, and 0.7828, respectively). Dose-dependent induction of P-STAT5 was detected in PBMC for up to 18 hours following in vitro pulse stimulation with IL-2. P-STAT5 was detected within a subset of normal donor CD4(+) T cells (52.2 +/- 15.0%), CD8(+) T cells (57.6 +/- 25.8%), and CD56(+) natural killer (NK) cells (54.2 +/- 27.2%), but not CD14(+) monocytes or CD21(+) B cells, following in vitro IL-2 treatment. The generation of P-STAT5 within immune cell subsets after the therapeutic administration of IL-2 varied significantly between individuals. NK cells were noticeably absent in the posttreatment sample, a finding that was consistent for all patients examined. Surprisingly, activated STAT5 persisted within CD4(+) and CD8(+) T lymphocytes, as well as CD56(+) NK cells, for up to 3 weeks post-IL-2 treatment in three patients who exhibited a clinical response to therapy and in a fourth who exhibited a significant inflammatory response after 11 doses of therapy (first cycle). CONCLUSIONS The flow cytometric assay described herein is a highly efficient and reliable method by which to assess the cellular response to IL-2 within PBMC and specific immune effector subsets, both in vitro and in the clinical setting. Assessment of P-STAT5 in patient PBMC in response to therapeutic IL-2 administration reveals disparate responses between immune cell subsets as well as interpatient variation. Persistent activation of STAT5 within NK and T cells was an unexpected observation and requires further investigation.
Collapse
Affiliation(s)
- Kimberly A Varker
- Department of Surgery, Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jin P, Wang E, Provenzano M, Deola S, Selleri S, Ren J, Voiculescu S, Stroncek D, Panelli MC, Marincola FM. Molecular signatures induced by interleukin-2 on peripheral blood mononuclear cells and T cell subsets. J Transl Med 2006; 4:26. [PMID: 16805915 PMCID: PMC1557669 DOI: 10.1186/1479-5876-4-26] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 06/28/2006] [Indexed: 12/03/2022] Open
Abstract
Experimentally, interleukin-2 (IL-2) exerts complex immunological functions promoting the proliferation, survival and activation of T cells on one hand and inducing immune regulatory mechanisms on the other. This complexity results from a cross talk among immune cells which sways the effects of IL-2 according to the experimental or clinical condition tested. Recombinant IL-2 (rIL-2) stimulation of peripheral blood mononuclear cells (PBMC) from 47 donors of different genetic background induced generalized T cell activation and anti-apoptotic effects. Most effects were dependent upon interactions among immune cells. Specialized functions of CD4 and CD8 T cells were less dependent upon and often dampened by the presence of other PBMC populations. In particular, cytotoxic T cell effector function was variably affected with a component strictly dependent upon the direct stimulation of CD8 T cells in the absence of other PBMC. This observation may provide a roadmap for the interpretation of the discrepant biological activities of rIL-2 observed in distinct pathological conditions or treatment modalities.
Collapse
Affiliation(s)
- Ping Jin
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ena Wang
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Maurizio Provenzano
- Immune Oncology Section, Department of Surgery, University Hospital ZLF, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Sara Deola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Silvia Selleri
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Jiaqiang Ren
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Sonia Voiculescu
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - David Stroncek
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Monica C Panelli
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Francesco M Marincola
- Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
39
|
Abstract
Human genetics offers new possibilities for understanding physiological regulatory mechanisms and disorders of the immune system. Genetic abnormalities of lymphocyte cell death programs have provided insights into mechanisms of receptor biology and principles of immune homeostasis and tolerance. Thus far, there are two major diseases of programmed cell death associated with inherited human mutations: the autoimmune lymphoproliferative syndrome and the caspase-eight deficiency state. We describe the details of their molecular pathogenesis and discuss how these diseases illustrate important concepts in immune regulation and genetics.
Collapse
Affiliation(s)
- Nicolas Bidère
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
40
|
Verdeil G, Puthier D, Nguyen C, Schmitt-Verhulst AM, Auphan-Anezin N. STAT5-mediated signals sustain a TCR-initiated gene expression program toward differentiation of CD8 T cell effectors. THE JOURNAL OF IMMUNOLOGY 2006; 176:4834-42. [PMID: 16585578 DOI: 10.4049/jimmunol.176.8.4834] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Poorly functional effector CD8 T cells are generated in some pathological situations, including responses to weakly antigenic tumors. To identify the molecular bases for such defective differentiation, we monitored gene expression in naive monoclonal CD8 T cells during responses to TCR ligands of different affinity. We further evaluated whether responses to weak Ags may be improved by addition of cytokines. Transient gene expression was observed for a cluster of genes in response to the weak TCR agonist. Strikingly, gene expression was stabilized by low dose IL-2. This IL-2-sustained gene cluster encoded notably transcripts for CD25, cytolytic effector molecules (granzyme B) and TNF-R family costimulatory molecules (glucocorticoid-induced TNF-R (GITR), OX40, and 4-1BB). IL-2-enhanced surface expression or function was also demonstrated in vivo for these genes. A constitutive active form of STAT5 mimicked the IL-2 effect by sustaining transcripts for the same gene cluster. Consistent with this, under conditions of low avidity TCR engagement and IL-2 treatment, endogenous STAT5 binding to 4-1BB and granzyme B promoters was demonstrated by chromatin immunoprecipitation. This study highlights those genes for which IL-2, via STAT5 activation, acts as a stabilizer of gene regulation initiated by TCR signals, contributing to the development of a complete CD8 T cell effector program.
Collapse
Affiliation(s)
- Grégory Verdeil
- Centre d'Immunologie de Marseille-Luminy, Centre National de la Recherche Scientifique-Institut National de la Santé et de la Recherche Médicale-Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|