1
|
Yin KL, Chu KJ, Li M, Duan YX, Yu YX, Kang MQ, Fu D, Liao R. Immune Regulatory Networks and Therapy of γδ T Cells in Liver Cancer: Recent Trends and Advancements. J Clin Transl Hepatol 2024; 12:287-297. [PMID: 38426194 PMCID: PMC10899867 DOI: 10.14218/jcth.2023.00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
The roles of γδ T cells in liver cancer, especially in the potential function of immunotherapy due to their direct cytotoxic effects on tumor cells and secretion of important cytokines and chemokines, have aroused research interest. This review briefly describes the basic characteristics of γδ T cells, focusing on their diverse effects on liver cancer. In particular, different subtypes of γδ T cells have diverse or even opposite effects on liver cancer. We provide a detailed description of the immune regulatory network of γδ T cells in liver cancer from two aspects: immune components and nonimmune components. The interactions between various components in this immune regulatory network are dynamic and pluralistic, ultimately determining the biological effects of γδ T cells in liver cancer. We also integrate the current knowledge of γδ T-cell immunotherapy for liver cancer treatment, emphasizing the potential of these cells in liver cancer immunotherapy.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai-Jian Chu
- Biliary Surgical Department I, the Eastern Hepatobiliary Surgical Hospital, Naval Medical University, Shanghai, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan-Xi Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei-Qing Kang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Archer M, Bernhardt SM, Hodson LJ, Woolford L, Van der Hoek M, Dasari P, Evdokiou A, Ingman WV. CCL2-Mediated Stromal Interactions Drive Macrophage Polarization to Increase Breast Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087385. [PMID: 37108548 PMCID: PMC10138606 DOI: 10.3390/ijms24087385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
CCL2 is an inflammatory cytokine that regulates macrophage activity and is implicated in increased mammographic density and early breast tumorigenesis. The role of CCL2 in mediating stromal interactions that contribute to breast tumorigenesis has yet to be fully elucidated. THP-1-derived macrophages and mammary fibroblasts were co-cultured for 72 h. Fibroblasts and macrophages were analysed for phenotype, expression of inflammatory and ECM-regulatory genes and collagen production. Mice overexpressing CCL2 in the mammary glands were analysed for global gene expression by RNAseq at 12 weeks of age. These mice were cross-bred with PyMT mammary tumour mice to examine the role of CCL2 in tumorigenesis. The co-culture of macrophages with fibroblasts resulted in macrophage polarization towards an M2 phenotype, and upregulated expression of CCL2 and other genes associated with inflammation and ECM remodelling. CCL2 increased the production of insoluble collagen by fibroblasts. A global gene expression analysis of CCL2 overexpressing mice revealed that CCL2 upregulates cancer-associated gene pathways and downregulates fatty acid metabolism gene pathways. In the PyMT mammary tumour model, CCL2 overexpressing mice exhibited increased macrophage infiltration and early tumorigenesis. Interactions between macrophages and fibroblasts regulated by CCL2 can promote an environment that may increase breast cancer risk, leading to enhanced early tumorigenesis.
Collapse
Affiliation(s)
- Maddison Archer
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Sarah M Bernhardt
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Leigh J Hodson
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, Faculty of Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Mark Van der Hoek
- South Australian Genomics Centre, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Pallave Dasari
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Andreas Evdokiou
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Wendy V Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| |
Collapse
|
3
|
Sharma A, Noon JB, Kontodimas K, Garo LP, Platten J, Quinton LJ, Urban JF, Reinhardt C, Bosmann M. IL-27 Enhances γδ T Cell–Mediated Innate Resistance to Primary Hookworm Infection in the Lungs. THE JOURNAL OF IMMUNOLOGY 2022; 208:2008-2018. [PMID: 35354611 PMCID: PMC9012701 DOI: 10.4049/jimmunol.2000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
Abstract
IL-27 is a heterodimeric IL-12 family cytokine formed by noncovalent association of the promiscuous EBI3 subunit and selective p28 subunit. IL-27 is produced by mononuclear phagocytes and unfolds pleiotropic immune-modulatory functions through ligation to IL-27 receptor α (IL-27RA). Although IL-27 is known to contribute to immunity and to limit inflammation after various infections, its relevance for host defense against multicellular parasites is still poorly defined. Here, we investigated the role of IL-27 during infection with the soil-transmitted hookworm, Nippostrongylus brasiliensis, in its early host intrapulmonary life cycle. IL-27(p28) was detectable in bronchoalveolar lavage fluid of C57BL/6J wild-type mice on day 1 after s.c. inoculation. IL-27RA expression was most abundant on lung-invading γδ T cells. Il27ra-/- mice showed increased lung parasite burden together with aggravated pulmonary hemorrhage and higher alveolar total protein leakage as a surrogate for epithelial-vascular barrier disruption. Conversely, injections of recombinant mouse (rm)IL-27 into wild-type mice reduced lung injury and parasite burden. In multiplex screens, higher airway accumulations of IL-6, TNF-α, and MCP-3 (CCL7) were observed in Il27ra-/- mice, whereas rmIL-27 treatment showed a reciprocal effect. Importantly, γδ T cell numbers in airways were enhanced by endogenous or administered IL-27. Further analysis revealed a direct antihelminthic function of IL-27 on γδ T cells as adoptive intratracheal transfer of rmIL-27-treated γδ T cells during primary N. brasiliensis lung infection conferred protection in mice. In summary, this report demonstrates protective functions of IL-27 to control the early lung larval stage of hookworm infection.
Collapse
Affiliation(s)
- Arjun Sharma
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jason B Noon
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Konstantinos Kontodimas
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Lucien P Garo
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Johannes Platten
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lee J Quinton
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Joseph F Urban
- Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, U.S. Department of Agriculture, Beltsville, MD; and
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts;
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Skopelja-Gardner S, An J, Tai J, Tanaka L, Sun X, Hermanson P, Baum R, Kawasumi M, Green R, Gale M, Kalus A, Werth VP, Elkon KB. The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci Rep 2020; 10:7908. [PMID: 32404939 PMCID: PMC7220927 DOI: 10.1038/s41598-020-64865-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
Most systemic lupus erythematosus (SLE) patients are photosensitive and ultraviolet B light (UVB) exposure worsens cutaneous disease and precipitates systemic flares of disease. The pathogenic link between skin disease and systemic exacerbations in SLE remains elusive. In an acute model of UVB-triggered inflammation, we observed that a single UV exposure triggered a striking IFN-I signature not only in the skin, but also in the blood and kidneys. The early IFN-I signature was significantly higher in female compared to male mice. The early IFN-I response in the skin was almost entirely, and in the blood partly, dependent on the presence of cGAS, as was skin inflammatory cell infiltration. Inhibition of cGAMP hydrolysis augmented the UVB-triggered IFN-I response. UVB skin exposure leads to cGAS-activation and both local and systemic IFN-I signature and could contribute to acute flares of disease in susceptible subjects such as patients with SLE.
Collapse
Affiliation(s)
| | - Jie An
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Joyce Tai
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Lena Tanaka
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Xizhang Sun
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Rebecca Baum
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Masaoki Kawasumi
- Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Richard Green
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Andrea Kalus
- Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Victoria P Werth
- Dermatology Section, Philadelphia Veterans Affairs Medical Center, Philadelphia, USA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Kim SM, Park M, Yee SM, Ji KY, Lee EH, Nguyen TV, Nguyen THL, Jang J, Kim EM, Choi HR, Yun CH, Kang HS. Axl is a key regulator of intestinal γδ T-cell homeostasis. FASEB J 2019; 33:13386-13397. [DOI: 10.1096/fj.201901356r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Min Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Su-Min Yee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Kon-Young Ji
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Eun-Hee Lee
- Deagu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Thi-Van Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Thi Hong-Loan Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Jin Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Eun-Mi Kim
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, South Korea
| | - Ha-Rim Choi
- Department of Nursing, Nambu University, Gwangju, South Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Qu W, Zhao WH, Wen X, Yan HY, Liu HX, Hou LF, Ping J. Prenatal nicotine exposure induces thymic hypoplasia in mice offspring from neonatal to adulthood. Toxicol Lett 2018; 304:30-38. [PMID: 30605750 DOI: 10.1016/j.toxlet.2018.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/29/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022]
Abstract
Clinical study showed that smoking during pregnancy deceased the thymus size in newborns. However, the long-term effect remains unclear. This study was aimed to observe the effects of prenatal nicotine exposure (PNE) on the development of thymus and the T-lymphocyte subpopulation in mice offspring from the neonatal to adulthood. Both the thymus weight and cytometry data indicated that PNE caused persistent thymic hypoplasia in male offspring from neonatal to adult period and transient changes in female offspring from neonatal to prepuberal period. Flow cytometry analysis disclosed a permanent decreased proportion and number of mature CD4 single-positive (SP) T cells in thymus of both sex. In addition, the PNE male offspring showed a more serious thymus atrophy in the ovalbumin (OVA)-sensitized model. Moreover, increased autophagic vacuole and elevated mRNA expression of Beclin 1 were noted in PNE fetal thymus. In conclusion, PNE offspring showed thymus atrophy and CD 4 SP T cell reduction at different life stages. Mechanically, PNE induced excessive autophagy in fetal thymocytes might be involved in these changes. All the results provided evidence for elucidating the PNE-induced programmed immune diseases.
Collapse
Affiliation(s)
- Wen Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China.
| | - Wen-Hao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li-Fang Hou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
7
|
Frati F, Scurati S, Puccinelli P, Morviducci C, Di Cara G, Boccardo R, Piergentili E, Milioni M, Bernardini R, Sambugaro R, Castellano F, Varricchio A, Manfredi G, Cordero L, Russello M, Guercio E, Mauro M, Incorvaia C. Inflammation in Respiratory Allergy Treated by Sublingual Immunotherapy. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x0900700301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The most common allergic diseases, such as rhinitis, asthma and atopic dermatitis, are sustained by allergic inflammation, the treatment of which requires anti-inflammatory activity. Among the available treatments, allergen immunotherapy (IT) has a documented impact on allergic inflammation which persists after its discontinuation and modifies the natural course of allergy. The anti-inflammatory effects of IT, and particularly of sublingual IT (SLIT), are based on the ability to modify the phenotype of T cells which, in allergic subjects, are characterized by a prevalence of the Th2 type, with production of IL-4, IL-5, IL-13, IL-17, and IL-32 cytokines. IT-induced changes result in a Th1-type response (immune deviation) related to an increased IFN-gamma and IL-2 production or in a Th2 reduced activity, through a mechanism of anergy or tolerance. It is now known that T cell tolerance is characterized by the generation of allergen-specific Treg cells, which produce cytokines such as IL-10 and TGF-beta with immunosuppressant and/or immunoregulatory activity. Recent studies suggest that the anti-inflammatory mechanism of SLIT is similar to classical, subcutaneous IT, with a prominent role in SLIT for mucosal dendritic cells. The tolerance pattern induced by Treg accounts for the suppressed or reduced activity of inflammatory cells and for the isotypic switch of antibody synthesis from IgE to IgG, and especially to IgG4. Data obtained from biopsies clearly indicate that the pathophysiology of the oral mucosa plays a pivotal role in inducing tolerance to the sublingually administered allergen.
Collapse
Affiliation(s)
- F. Frati
- Pediatrics, University Department of Medical and Surgical Specialty and Public Health, Perugia
- Medical and Scientific Department, Stallergenes, Milan
| | - S. Scurati
- Medical and Scientific Department, Stallergenes, Milan
| | - P. Puccinelli
- Medical and Scientific Department, Stallergenes, Milan
| | | | - G. Di Cara
- Pediatrics, University Department of Medical and Surgical Specialty and Public Health, Perugia
| | - R. Boccardo
- Pediatrics, University Department of Medical and Surgical Specialty and Public Health, Perugia
| | - E. Piergentili
- Pediatrics, University Department of Medical and Surgical Specialty and Public Health, Perugia
| | - M. Milioni
- Pediatrics, University Department of Medical and Surgical Specialty and Public Health, Perugia
| | | | | | | | | | - G. Manfredi
- Clinical Immunology, Miulli Hospital, Acquaviva delle Fonti
| | - L. Cordero
- Pneumology Unit, University Hospital, Sassari
| | | | - E. Guercio
- General Hospital, Castrovillari, Cosenza
| | - M. Mauro
- Allergy Unit, Sant'Anna Hospital, Como
| | - C. Incorvaia
- Allergy/Pulmonary rehabilitation Unit, ICP Hospital, Milan, Italy
| |
Collapse
|
8
|
Audemard-Verger A, Rivière M, Durand A, Peranzoni E, Guichard V, Hamon P, Bonilla N, Guilbert T, Boissonnas A, Auffray C, Eberl G, Lucas B, Martin B. Macrophages Induce Long-Term Trapping of γδ T Cells with Innate-like Properties within Secondary Lymphoid Organs in the Steady State. THE JOURNAL OF IMMUNOLOGY 2017; 199:1998-2007. [PMID: 28779024 DOI: 10.4049/jimmunol.1700430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 01/06/2023]
Abstract
So far, peripheral T cells have mostly been described to circulate between blood, secondary lymphoid organs (SLOs), and lymph in the steady state. This nomadic existence would allow them to accomplish their surveying task for both foreign Ags and survival signals. Although it is now well established that γδ T cells can be rapidly recruited to inflammatory sites or in certain tumor microenvironments, the trafficking properties of peripheral γδ T cells have been poorly studied in the steady state. In the present study, we highlight the existence of resident γδ T cells in the SLOs of specific pathogen-free mice. Indeed, using several experimental approaches such as the injection of integrin-neutralizing Abs that inhibit the entry of circulating lymphocytes into lymph nodes and long-term parabiosis experiments, we have found that, contrary to Ly-6C-/+CD44lo and Ly-6C+CD44hi γδ T cells, a significant proportion of Ly-6C-CD44hi γδ T cells are trapped for long periods of time within lymph nodes and the spleen in the steady state. Specific in vivo cell depletion strategies have allowed us to demonstrate that macrophages are the main actors involved in this long-term retention of Ly-6C-CD44hi γδ T cells in SLOs.
Collapse
Affiliation(s)
| | - Matthieu Rivière
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Aurélie Durand
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Elisa Peranzoni
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Vincent Guichard
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France.,Paris Diderot Université, 75013 Paris, France
| | - Pauline Hamon
- Université Paris 6, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, Université Pierre et Marie Curie, 75013 Paris, France
| | - Nelly Bonilla
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Thomas Guilbert
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Alexandre Boissonnas
- Université Paris 6, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, Université Pierre et Marie Curie, 75013 Paris, France
| | - Cédric Auffray
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Gérard Eberl
- Unité Microenvironment and Immunity, Institut Pasteur, 75724 Paris, France; and.,INSERM U1224, 75724 Paris, France
| | - Bruno Lucas
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France
| | - Bruno Martin
- Institut Cochin, CNRS UMR8104, INSERM U1016, Paris Descartes Université, 75014 Paris, France;
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW In the process of bone fracture healing, inflammation is thought to be an essential process that precedes bone formation and remodeling. We review recent studies on bone fracture healing from an osteoimmunological point of view. RECENT FINDINGS Based on previous observations that many types of immune cells infiltrate into the bone injury site and release a variety of molecules, recent studies have addressed the roles of specific immune cell subsets. Macrophages and interleukin (IL)-17-producing γδ T cells enhance bone healing, whereas CD8+ T cells impair bone repair. Additionally, IL-10-producing B cells may contribute to bone healing by suppressing excessive and/or prolonged inflammation. Although the involvement of other cells and molecules has been suggested, the precise underlying mechanisms remain elusive. Accumulating evidence has begun to reveal the deeper picture of bone fracture healing. Further studies are required for the development of novel therapeutic strategies for bone fracture.
Collapse
Affiliation(s)
- Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
10
|
Kersten K, Coffelt SB, Hoogstraat M, Verstegen NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C, Doshi P, Lips EH, Wessels LFA, de Visser KE. Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of IL1β in tumor-associated macrophages. Oncoimmunology 2017; 6:e1334744. [PMID: 28919995 PMCID: PMC5593698 DOI: 10.1080/2162402x.2017.1334744] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 05/06/2017] [Accepted: 05/22/2017] [Indexed: 12/04/2022] Open
Abstract
Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1β in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell – IL17 – neutrophil axis.
Collapse
Affiliation(s)
- Kelly Kersten
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Seth B Coffelt
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marlous Hoogstraat
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Niels J M Verstegen
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kim Vrijland
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Metamia Ciampricotti
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chris W Doornebal
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Anesthesiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Cheei-Sing Hau
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Max D Wellenstein
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Camilla Salvagno
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Parul Doshi
- Janssen Research and Development, Spring House, PA, USA
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of EEMCS, Delft University of Technology, Delft, the Netherlands
| | - Karin E de Visser
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Cheng S, Chen H, Wang A, Bunjhoo H, Cao Y, Xie J, Xu Y, Xiong W. Blockade of IL-23 ameliorates allergic lung inflammation via decreasing the infiltration of Tc17 cells. Arch Med Sci 2016; 12:1362-1369. [PMID: 27904530 PMCID: PMC5108401 DOI: 10.5114/aoms.2016.62923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/14/2015] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Tc17 cells are interleukin (IL)-17-producing CD8+ T cells and have been found to participate in the development of allergic asthma. Interleukin-23 is a cytokine that may be involved in modulating the IL-17 response via Th17 cells. This study aimed to investigate whether IL-23 also has immunomodulatory effects on Tc17 cells. MATERIAL AND METHODS An allergic asthmatic mouse model was induced by sensitizing and challenging with ovalbumin (OVA). Anti-IL-23 antibody was administered intratracheally before challenge to the OVA-induced asthmatic mouse model. Airway hyperresponsiveness, lung inflammation, Tc17 cell percentages and IL-17 level in the lung tissue homogenate were measured. RESULTS Anti-IL-23 treatment reduced airway hyperresponsiveness (Rn 2.471 ±0.5077 vs. 4.051 ±0.2334, p < 0.05), inflammatory cell infiltration in bronchoalveolar lavage fluid (eosinophils 140.0 ±9.869 vs. 222.4 ±31.55, p < 0.05, neutrophils 75.93 ±6.745 vs. 127.4 ±19.73, p < 0.05), airway inflammation and mucus secretion. Treatment with anti-IL-23 antibody also markedly reduced IL-17 level (398.1 ±28.74 vs. 590.6 ±36.13, p < 0.01) and percentage of Th17 and Tc17 cells in lung tissue homogenate (4.200 ±0.1581 vs. 9.314 ±1.027, p < 0.01 and 2.852 ±0.2566 vs. 5.588 ±0.3631, p < 0.01, Th17 and Tc17 cells respectively). CONCLUSIONS Our data suggest that the IL-23/Tc17 cell axis may be involved in the pathogenesis of asthma as the complement of IL-23/Th17 cells.
Collapse
Affiliation(s)
- Sheng Cheng
- Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huilong Chen
- Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aili Wang
- Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hansvin Bunjhoo
- Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Cao
- Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjian Xu
- Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weining Xiong
- Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Cascabulho CM, Beghini DG, Meuser-Batista M, Penido C, Henriques-Pons A. Chemotaxis and Immunoregulatory Function of Cardiac γδ T Cells in Dystrophin-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:3531-3544. [DOI: 10.4049/jimmunol.1600335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
|
13
|
Wang P, Wang J, Su YQ, Mao Y, Zhang JS, Wu CW, Ke QZ, Han KH, Zheng WQ, Xu ND. Transcriptome analysis of the Larimichthys crocea liver in response to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2016; 48:1-11. [PMID: 26578248 DOI: 10.1016/j.fsi.2015.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/02/2015] [Accepted: 11/05/2015] [Indexed: 05/28/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is an economically important marine fish cultured in China and East Asian countries and is facing a serious threat from Cryptocaryon irritans, which is a protozoan ectoparasite that infects most reared marine fish species. To understand the molecular immune mechanisms underlying the response to C. irritans, we first performed a comparative gene transcription analysis using livers from C. irritans-immunized L. croceas and from a control group through RNA-Seq technology. After the removal of low-quality sequences and assembly, 51360 contigs were obtained, with an average length of 1066.93 bp. Further, a blast analysis indicates that 30747 contigs can be annotated based on homology with matches in the NT, NR, gene, and string databases. A gene ontology analysis was used to classify 21598 genes according to three major functional categories: molecular function, cellular component, and biological process. Moreover, 14470 genes were found in 303 KEGG pathways. We used RSEM and EdgeR to determine that 3841 genes were significantly differentially expressed (FDR < 0.001), including 2129 up-regulated genes and 1712 down-regulated genes. A significant enrichment analysis of these differentially expressed genes and isogenes revealed major immune-related pathways, including the toll-like receptor, complement and coagulation cascades, and chemokine signaling pathways. In addition, 28748 potential simple sequence repeats (SSRs) were detected from 12776 transcripts, and 62992 candidate single nucleotide polymorphisms (SNPs) were identified in the L. croceas liver transcriptome. This study characterized a gene expression pattern for normal and C. irritans-immunized L. croceas for the first time and not only sheds new light on the molecular mechanisms underlying the host-C. irritans interaction but also facilitates future studies on L. croceas gene expression and functional genomics.
Collapse
Affiliation(s)
- Panpan Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yong-Quan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yong Mao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China.
| | | | - Chang-Wen Wu
- Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiao-Zhen Ke
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| | - Kun-Huang Han
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| | | | - Nen-di Xu
- Ningde Fufa Fisheries Co., LTD, Ningde, 352002, China
| |
Collapse
|
14
|
Hyperactivation and in situ recruitment of inflammatory Vδ2 T cells contributes to disease pathogenesis in systemic lupus erythematosus. Sci Rep 2015; 5:14432. [PMID: 26395317 PMCID: PMC4585774 DOI: 10.1038/srep14432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/28/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we measured the proportion of peripheral Vδ2 T cells as well as the status and chemokine receptor expression profiles in SLE patients and healthy control (HC). In addition, Vδ2 T cell infiltration in the kidneys of patients with lupus nephritis was examined. The results showed that the percentage of peripheral Vδ2 T cells in new-onset SLE was decreased, and negatively correlated with the SLE Disease Activity Index score and the severity of proteinuria. These cells had a decreased apoptosis but an increased proliferation, and they showed increased accumulation in SLE kidneys. Moreover, IL-21 production and CD40L, CCR4, CCR7, CCR8, CXCR1 and CX3CR1 expression in Vδ2 T cells from SLE patients was significantly higher than from HC (p < 0.05), and these factors were downregulated in association with the repopulation of peripheral Vδ2 T cells in patients who were in remission (p < 0.05). In addition, anti-TCR Vδ2 antibodies activation significantly upregulated these chemokine receptors on Vδ2 T cells from HC, and this effect was blocked by inhibitors of PLC-γ1, MAPK/Erk, and PI3K signaling pathways. Our findings demonstrate that the distribution and function status of Vδ2 T cells from SLE patients are abnormal, and these aberrations may contribute to disease pathogenesis.
Collapse
|
15
|
Costa MFDS, de Negreiros CBT, Bornstein VU, Valente RH, Mengel J, Henriques MDG, Benjamim CF, Penido C. Murine IL-17+ Vγ4 T lymphocytes accumulate in the lungs and play a protective role during severe sepsis. BMC Immunol 2015; 16:36. [PMID: 26037291 PMCID: PMC4451961 DOI: 10.1186/s12865-015-0098-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/19/2015] [Indexed: 12/14/2022] Open
Abstract
Background Lung inflammation is a major consequence of the systemic inflammatory response caused by severe sepsis. Increased migration of γδ T lymphocytes into the lungs has been previously demonstrated during experimental sepsis; however, the involvement of the γδ T cell subtype Vγ4 has not been previously described. Methods Severe sepsis was induced by cecal ligation and puncture (CLP; 9 punctures, 21G needle) in male C57BL/6 mice. γδ and Vγ4 T lymphocyte depletion was performed by 3A10 and UC3-10A6 mAb i.p. administration, respectively. Lung infiltrating T lymphocytes, IL-17 production and mortality rate were evaluated. Results Severe sepsis induced by CLP in C57BL/6 mice led to an intense lung inflammatory response, marked by the accumulation of γδ T lymphocytes (comprising the Vγ4 subtype). γδ T lymphocytes present in the lungs of CLP mice were likely to be originated from peripheral lymphoid organs and migrated towards CCL2, CCL3 and CCL5, which were highly produced in response to CLP-induced sepsis. Increased expression of CD25 by Vγ4 T lymphocytes was observed in spleen earlier than that by αβ T cells, suggesting the early activation of Vγ4 T cells. The Vγ4 T lymphocyte subset predominated among the IL-17+ cell populations present in the lungs of CLP mice (unlike Vγ1 and αβ T lymphocytes) and was strongly biased toward IL-17 rather than toward IFN-γ production. Accordingly, the in vivo administration of anti-Vγ4 mAb abrogated CLP-induced IL-17 production in mouse lungs. Furthermore, anti-Vγ4 mAb treatment accelerated mortality rate in severe septic mice, demonstrating that Vγ4 T lymphocyte play a beneficial role in host defense. Conclusions Overall, our findings provide evidence that early-activated Vγ4 T lymphocytes are the main responsible cells for IL-17 production in inflamed lungs during the course of sepsis and delay mortality of septic mice. Electronic supplementary material The online version of this article (doi:10.1186/s12865-015-0098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Fernanda de Souza Costa
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil. .,Centro de Desenvolvimento Tecnológico em Saúde, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Catarina Bastos Trigo de Negreiros
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil.
| | - Victor Ugarte Bornstein
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil. .,Mount Sinai School of Medicine, New York City, USA.
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - José Mengel
- Laboratório de Imunologia, Faculdade de Medicina de Petrópolis, Petrópolis, Rio de Janeiro, Brazil. .,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Maria das Graças Henriques
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil. .,Centro de Desenvolvimento Tecnológico em Saúde, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Claudia Farias Benjamim
- Laboratório de Inflamação, Estresse Oxidativo e Câncer, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carmen Penido
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil. .,Centro de Desenvolvimento Tecnológico em Saúde, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Wang A, Wang Z, Cao Y, Cheng S, Chen H, Bunjhoo H, Xie J, Wang C, Xu Y, Xiong W. CCL2/CCR2-dependent recruitment of Th17 cells but not Tc17 cells to the lung in a murine asthma model. Int Arch Allergy Immunol 2015; 166:52-62. [PMID: 25765592 DOI: 10.1159/000371764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interleukin (IL)-17 has been implicated in the pathogenesis of asthma and the progression of airway inflammation. Here, we used a model of allergic asthma and found that the frequencies of IL-17-secreting T helper (Th)17 and CD8 (Tc)17 cells were both significantly increased, as was the expression of the CC chemokine receptor (CCR2) on the surface of these cells. CC chemokine ligand 2 (CCL2) has been shown to mediate the activation and recruitment of inflammatory cells in asthma, which are also skewed after ovalbumin (OVA) challenge. However, the role of CCL2 on Th17 cells and Tc17 cells in asthma has not been illuminated. METHODS Mice that were sensitized and challenged with OVA received anti-CCL2 antibody (Ab; 5 μg/day intratracheally) or CCR2 antagonist (RS504393, 2 mg/kg/day intraperitoneally) prior to the challenge. Some mice received an isotype control Ab or vehicle alone. We then assessed the effects of allergic asthma and anti-CCL2 Ab or CCR2 antagonist treatment on the levels of IL-17 and CCL2, the Th17 and Tc17 cell frequencies and lung tissue inflammation. RESULTS We demonstrated that CCL2 and IL-17 levels and the frequency of Th17 and Tc17 cells in lung tissues and bronchoalveolar lavage fluid increased in the asthma group compared with the normal control mice. Blocking the CCL2/CCR2 axis greatly reduced the Th17 but not the Tc17 cell frequency, and revealed a suppressive effect on airway inflammation. CONCLUSION These findings indicate a role for the CCL2/CCR2 axis in mediating Th17 but not Tc17 cell migration during acute allergic airway inflammation.
Collapse
Affiliation(s)
- Aili Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital and Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Patil RS, Bhat SA, Dar AA, Chiplunkar SV. The Jekyll and Hyde story of IL17-Producing γδT Cells. Front Immunol 2015; 6:37. [PMID: 25699053 PMCID: PMC4316782 DOI: 10.3389/fimmu.2015.00037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
In comparison to conventional αβT cells, γδT cells are considered as specialized T cells based on their contributions in regulating immune response. γδT cells sense early environmental signals and initiate local immune-surveillance. The development of functional subtypes of γδT cells takes place in the thymus but they also exhibit plasticity in response to the activating signals and cytokines encountered in the extrathymic region. Thymic development of Tγδ1 requires strong TCR, CD27, and Skint-1 signals. However, differentiation of IL17-producing γδT cells (Tγδ17) is independent of Skint-1 or CD27 but requires notch signaling along with IL6 and TGFβ cytokines in the presence of weak TCR signal. In response to cytokines like IL23, IL6, and IL1β, Tγδ17 outshine Th17 cells for early activation and IL17 secretion. Despite expressing similar repertoire of lineage transcriptional factors, cytokines, and chemokine receptors, Tγδ17 cells differ from Th17 in spatial and temporal fashion. There are compelling reasons to consider significant role of Tγδ17 cells in regulating inflammation and thereby disease outcome. Tγδ17 cells regulate mobilization of innate immune cells and induce keratinocytes to secrete anti-microbial peptides thus exhibiting protective functions in anti-microbial immunity. In contrast, dysregulated Tγδ17 cells inhibit Treg cells, exacerbate autoimmunity, and are also known to support carcinogenesis by enhancing angiogenesis. The mechanism associated with this dual behavior of Tγδ17 is not clear. To exploit, Tγδ17 cells for beneficial use requires comprehensive analysis of their biology. Here, we summarize the current understanding on the characteristics, development, and functions of Tγδ17 cells in various pathological scenarios.
Collapse
Affiliation(s)
- Rushikesh S Patil
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar , India
| | - Sajad A Bhat
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar , India
| | - Asif A Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar , India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Kharghar , India
| |
Collapse
|
18
|
Tomankova T, Kriegova E, Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am J Physiol Lung Cell Mol Physiol 2015; 308:L603-18. [PMID: 25637606 DOI: 10.1152/ajplung.00203.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokine receptors and their chemokine ligands, key mediators of inflammatory and immune cell trafficking, are involved in the regulation of both physiological and pathological processes in the lung. The discovery that chemokine receptors/chemokines, typically expressed by inflammatory and immune cells, are also expressed in structural lung tissue cells suggests their role in mediating the restoration of lung tissue structure and functions. Thus, chemokine receptors/chemokines contribute not only to inflammatory and immune responses in the lung but also play a critical role in the regulation of lung tissue repair, regeneration, and remodeling. This review aims to summarize current state-of-the-art on chemokine receptors and their ligands in lung diseases such as chronic obstructive pulmonary disease, asthma/allergy, pulmonary fibrosis, acute lung injury, and lung infection. Furthermore, the therapeutic opportunities of chemokine receptors in aforementioned lung diseases are discussed. The review also aims to delineate the potential contribution of chemokine receptors to the processes leading to repair/regeneration of the lung tissue.
Collapse
Affiliation(s)
- Tereza Tomankova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic; Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and Faculty of Medicine, Departments of Physiology, Surgery, and Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Xie L, Sun F, Wang J, Mao X, Xie L, Yang SH, Su DM, Simpkins JW, Greenberg DA, Jin K. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:6009-19. [PMID: 24829408 PMCID: PMC4128178 DOI: 10.4049/jimmunol.1303492] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling by the mammalian target of rapamycin (mTOR) plays an important role in the modulation of both innate and adaptive immune responses. However, the role and underlying mechanism of mTOR signaling in poststroke neuroinflammation are largely unexplored. In this study, we injected rapamycin, a mTOR inhibitor, by the intracerebroventricular route 6 h after focal ischemic stroke in rats. We found that rapamycin significantly reduced lesion volume and improved behavioral deficits. Notably, infiltration of γδ T cells and granulocytes, which are detrimental to the ischemic brain, was profoundly reduced after rapamycin treatment, as was the production of proinflammatory cytokines and chemokines by macrophages and microglia. Rapamycin treatment prevented brain macrophage polarization toward the M1 type. In addition, we also found that rapamycin significantly enhanced anti-inflammation activity of regulatory T cells (Tregs), which decreased production of proinflammatory cytokines and chemokines by macrophages and microglia. Depletion of Tregs partially elevated macrophage/microglia-induced neuroinflammation after stroke. Our data suggest that rapamycin can attenuate secondary injury and motor deficits after focal ischemia by enhancing the anti-inflammation activity of Tregs to restrain poststroke neuroinflammation.
Collapse
Affiliation(s)
- Luokun Xie
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Fen Sun
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Jixian Wang
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - XiaoOu Mao
- Buck Institute for Research on Aging, Novato, CA 94945; and
| | - Lin Xie
- Buck Institute for Research on Aging, Novato, CA 94945; and
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Dong-Ming Su
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - James W Simpkins
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107; Department of Physiology and Pharmacology, Center for Neuroscience, Health Science Center, West Virginia University, Morgantown, WV 26506
| | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX 76107;
| |
Collapse
|
20
|
Severa M, Islam SA, Waggoner SN, Jiang Z, Kim ND, Ryan G, Kurt-Jones E, Charo I, Caffrey DR, Boyartchuk VL, Luster AD, Fitzgerald KA. The transcriptional repressor BLIMP1 curbs host defenses by suppressing expression of the chemokine CCL8. THE JOURNAL OF IMMUNOLOGY 2014; 192:2291-304. [PMID: 24477914 DOI: 10.4049/jimmunol.1301799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcriptional repressor B lymphocyte-induced maturation protein 1 (BLIMP1) is a master regulator of B and T cell differentiation. To examine the role of BLIMP1 in innate immunity, we used a conditional knockout (CKO) of Blimp1 in myeloid cells and found that Blimp1 CKO mice were protected from lethal infection induced by Listeria monocytogenes. Transcriptome analysis of Blimp1 CKO macrophages identified the murine chemokine (C-C motif) ligand 8, CCL8, as a direct target of Blimp1-mediated transcriptional repression in these cells. BLIMP1-deficient macrophages expressed elevated levels of Ccl8, and consequently Blimp1 CKO mice had higher levels of circulating CCL8, resulting in increased neutrophils in the peripheral blood, promoting a more aggressive antibacterial response. Mice lacking the Ccl8 gene were more susceptible to L. monocytogenes infection than were wild-type mice. Although CCL8 failed to recruit neutrophils directly, it was chemotactic for γ/δ T cells, and CCL8-responsive γ/δ T cells were enriched for IL-17F. Finally, CCL8-mediated enhanced clearance of L. monocytogenes was dependent on γ/δ T cells. Collectively, these data reveal an important role for BLIMP1 in modulating host defenses by suppressing expression of the chemokine CCL8.
Collapse
Affiliation(s)
- Martina Severa
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Paul S, Singh AK, Shilpi, Lal G. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol 2013; 33:537-58. [PMID: 24354324 DOI: 10.3109/08830185.2013.863306] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gamma-delta T cells (γδ T cells) are an unique group of lymphocytes and play an important role in bridging the gap between innate and adaptive immune systems under homeostatic condition as well as during infection and inflammation. They are predominantly localized into the mucosal and epithelial sites, but also exist in other peripheral tissues and secondary lymphoid organs. γδ T cells can produce cytokines and chemokines to regulate the migration of other immune cells, can bring about lysis of infected or stressed cells by secreting granzymes, provide help to B cells and induce IgE production, can present antigen to conventional T cells, activate antigen presenting cells (APC) maturation, and are also known to produce growth factors that regulate the stromal cell function. γδ T cells spontaneously produce IFN-γ and IL-17 cytokines compared to delayed differentiation of Th1 and Th17 cells. In this review, we discussed the current knowledge about the mechanism of γδ T cell function including its mode of antigen recognition, and differentiation into various subsets of γδ T cells. We also explored how γδ T cells interact with different types of innate and adaptive immune cells, and how these interactions shape the immune response highlighting the plasticity and role of these cells-protective or pathogenic under inflammatory and tolerogenic conditions.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
22
|
Ullah M, Eucker J, Sittinger M, Ringe J. Mesenchymal stem cells and their chondrogenic differentiated and dedifferentiated progeny express chemokine receptor CCR9 and chemotactically migrate toward CCL25 or serum. Stem Cell Res Ther 2013; 4:99. [PMID: 23958031 PMCID: PMC3854782 DOI: 10.1186/scrt310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/10/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Guided migration of chondrogenically differentiated cells has not been well studied, even though it may be critical for growth, repair, and regenerative processes. The chemokine CCL25 is believed to play a critical role in the directional migration of leukocytes and stem cells. To investigate the motility effect of serum- or CCL25-mediated chemotaxis on chondrogenically differentiated cells, mesenchymal stem cells (MSCs) were induced to chondrogenic lineage cells. METHODS MSC-derived chondrogenically differentiated cells were characterized for morphology, histology, immunohistochemistry, quantitative polymerase chain reaction (qPCR), surface profile, and serum- or CCL25-mediated cell migration. Additionally, the chemokine receptor, CCR9, was examined in different states of MSCs. RESULTS The chondrogenic differentiated state of MSCs was positive for collagen type II and Alcian blue staining, and showed significantly upregulated expression of COL2A1and SOX9, and downregulated expression of CD44, CD73, CD90, CD105 and CD166, in contrast to the undifferentiated and dedifferentiated states of MSCs. For the chondrogenic differentiated, undifferentiated, and dedifferentiated states of MSCs, the serum-mediated chemotaxis was in a percentage ratio of 33%:84%:85%, and CCL25-mediated chemotaxis was in percentage ratio of 12%:14%:13%, respectively. On the protein level, CCR9, receptor of CCL25, was expressed in the form of extracellular and intracellular domains. On the gene level, qPCR confirmed the expression of CCR9 in different states of MSCs. CONCLUSIONS CCL25 is an effective cue to guide migration in a directional way. In CCL25-mediated chemotaxis, the cell-migration rate was almost the same for different states of MSCs. In serum-mediated chemotaxis, the cell-migration rate of chondrogenically differentiated cells was significantly lower than that in undifferentiated or dedifferentiated cells. Current knowledge of the surface CD profile and cell migration could be beneficial for regenerative cellular therapies.
Collapse
Affiliation(s)
- Mujib Ullah
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Eucker
- Department of Hematology and Oncology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory & Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
23
|
Lança T, Costa MF, Gonçalves-Sousa N, Rei M, Grosso AR, Penido C, Silva-Santos B. Protective Role of the Inflammatory CCR2/CCL2 Chemokine Pathway through Recruitment of Type 1 Cytotoxic γδ T Lymphocytes to Tumor Beds. THE JOURNAL OF IMMUNOLOGY 2013; 190:6673-80. [DOI: 10.4049/jimmunol.1300434] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Mann ER, McCarthy NE, Peake STC, Milestone AN, Al-Hassi HO, Bernardo D, Tee CT, Landy J, Pitcher MC, Cochrane SA, Hart AL, Stagg AJ, Knight SC. Skin- and gut-homing molecules on human circulating γδ T cells and their dysregulation in inflammatory bowel disease. Clin Exp Immunol 2013; 170:122-30. [PMID: 23039882 DOI: 10.1111/j.1365-2249.2012.04649.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Changes in phenotype and function of γδ T cells have been reported in inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). Dysregulation of lymphocyte migration plays a key role in IBD pathogenesis; however, data on migratory properties of γδ T cells are scarce. Human circulating γδ T cells from healthy controls (n = 27), patients with active CD (n = 15), active UC (n = 14) or cutaneous manifestations of IBD (n = 2) were characterized by flow cytometry. Circulating γδ T cells in healthy controls were CD3(hi) and expressed CD45RO. They expressed gut-homing molecule β7 but not gut-homing molecule corresponding chemokine receptors (CCR)9, or skin-homing molecules cutaneous lymphocyte-associated antigen (CLA) and CCR4, despite conventional T cells containing populations expressing these molecules. CCR9 expression was increased on γδ T cells in CD and UC, while skin-homing CLA was expressed aberrantly on γδ T cells in patients with cutaneous manifestations of IBD. Lower levels of CD3 expression were found on γδ T cells in CD but not in UC, and a lower proportion of γδ T cells expressed CD45RO in CD and UC. Enhanced expression of gut-homing molecules on circulating γδ T cells in IBD and skin-homing molecules in cutaneous manifestations of IBD may be of clinical relevance.
Collapse
Affiliation(s)
- E R Mann
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St Mark’s Campus, Level 7W, St Mark’s Hospital,Watford Road, Harrow HA1 3UJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Co-introduced functional CCR2 potentiates in vivo anti-lung cancer functionality mediated by T cells double gene-modified to express WT1-specific T-cell receptor. PLoS One 2013; 8:e56820. [PMID: 23441216 PMCID: PMC3575507 DOI: 10.1371/journal.pone.0056820] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer reactivity mediated by CD8+ T cells double gene-modified to express WT1-specific TCR and CCR2 not only via CCL2-tropic tumor trafficking, but also CCL2-enhanced WT1-responsiveness.
Collapse
|
26
|
de Oliveira Henriques MDGM, Penido C. γδ T Lymphocytes Coordinate Eosinophil Influx during Allergic Responses. Front Pharmacol 2012; 3:200. [PMID: 23316161 PMCID: PMC3540995 DOI: 10.3389/fphar.2012.00200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/14/2012] [Indexed: 11/21/2022] Open
Abstract
Tissue eosinophil infiltration, which is a hallmark of allergic and helminthic diseases, is mainly coordinated by T lymphocytes, via the production of eosinophilotactic chemokines. Among T lymphocyte subsets, lymphocytes expressing γδ T cell receptor have been determined as a key factor for eosinophil accumulation via direct and indirect mechanisms. This knowledge is strongly supported by the fact that, in different experimental models of eosinophilic airway inflammation and helminth-induced Th2 lung inflammation, an evident tissue accumulation of γδ T lymphocytes is observed. In addition, the depletion of γδ T lymphocytes is correlated with the impairment of eosinophil accumulation in inflamed tissue. γδ T lymphocytes are non-conventional T lymphocytes, which comprise a minor T lymphocyte subset, mainly distributed in the tissue, and present crucial roles in innate and acquired immune responses. γδ T lymphocytes recognize several danger- and pathogen-associated molecular pattern molecules and stress antigens in a MHC-independent fashion and can provide rapid tissue-specific responses, via the production of a wide range of chemical mediators capable to modulate other cell populations. These mediators include chemoattractant cytokines and chemokines that attract eosinophils into the tissue by either direct recognition (such as IL-5, CCL11/eotaxin), or indirect mechanisms via the modulation of αβ T lymphocytes and macrophages (through the production of interferon-γ, IL-4, and CCL2/Monocyte chemoattractant protein-1, MCP-1, for example). The present review presents an overview of how γδ T lymphocytes coordinate eosinophil accumulation in allergy, by focusing on their role in airway inflammation and by discussing the involvement of cytokines and chemokines in this phenomenon.
Collapse
|
27
|
Ferraris FK, Moret KH, Figueiredo ABC, Penido C, Henriques MDGM. Gedunin, a natural tetranortriterpenoid, modulates T lymphocyte responses and ameliorates allergic inflammation. Int Immunopharmacol 2012; 14:82-93. [DOI: 10.1016/j.intimp.2012.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 01/13/2023]
|
28
|
Costa MFS, Bornstein VU, Candéa AL, Henriques-Pons A, Henriques MG, Penido C. CCL25 induces α₄β₇ integrin-dependent migration of IL-17⁺ γδ T lymphocytes during an allergic reaction. Eur J Immunol 2012; 42:1250-60. [PMID: 22539297 DOI: 10.1002/eji.201142021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we provide evidence that during allergic inflammation, CCL25 induces the selective migration of IL-17(+) γδ T cells mediated by α(4) β(7) integrin. Intrapleural injection of CCL25 into ovalbumin (OVA)-immunized C57BL/6 mice triggered the accumulation of γδ T lymphocytes expressing CCR9 (CCL25 receptor) and α(4) β(7) integrin in the pleura, but failed to attract αβ T lymphocytes. CCL25 attracted CCR6(+) γδ T cells producing IL-17 (but not IFN-γ or IL-4). OVA challenge triggered increased production of CCL25 followed by the accumulation of CCR9(+) , α(4) β(7) (+) , and CCR6(+) /IL-17(+) γδ T cells into the pleural cavities of OVA-immunized mice, which was inhibited by the in vivo neutralization of CCL25. The in vivo blockade of α(4) β(7) integrin also inhibited the migration of IL-17(+) γδ T lymphocytes (but not of αβ T lymphocytes) into mouse pleura after OVA challenge, suggesting that the CCL25/α(4) β(7) integrin pathway is selective for γδ T cells. In addition, α(4) β(7) integrin blockade impaired the in vitro transmigration of γδ T cells across endothelium (which expresses α(4) β(7) ligands VCAM-1 and MadCAM-1), which was induced by CCL25 and by cell-free pleural washes recovered from OVA-challenged mice. Our results reveal that during an allergic reaction, CCL25 drives IL-17(+) γδ T-cell mobilization to inflamed tissue via α(4) β(7) integrin and modulates IL-17 levels.
Collapse
Affiliation(s)
- Maria F S Costa
- Laboratório de Farmacologia Aplicada, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Silva-Santos B. Driving IL-17+γδ T-cell migration in allergic reactions: A new “inflammatory” role for the “homeostatic” chemokine CCL25. Eur J Immunol 2012; 42:1097-101. [DOI: 10.1002/eji.201242545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bruno Silva-Santos
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Lisboa Portugal
- Instituto Gulbenkian de Ciência; Oeiras Portugal
| |
Collapse
|
30
|
Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 2011; 33:780-8. [PMID: 20842059 DOI: 10.1097/cji.0b013e3181ee6675] [Citation(s) in RCA: 410] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For adoptive T-cell therapy to be effective against solid tumors, tumor-specific T cells must be able to migrate to the tumor site. One requirement for efficient migration is that the effector cells express chemokine receptors that match the chemokines produced either by tumor or tumor-associated cells. In this study, we investigated whether the tumor trafficking of activated T cells (ATCs) bearing a chimeric antigen receptor specific for the tumor antigen GD2 (GD2-CAR) could be enhanced by forced coexpression of the chemokine receptor CCR2b, as this receptor directs migration toward CCL2, a chemokine produced by many tumors, including neuroblastoma. Neuroblastoma cell lines (SK-N-SH and SK-N-AS) and primary tumor cells isolated from 6 patients all secreted high levels of CCL2, but GD2-CAR transduced ATCs lacked expression of CCR2 (<5%) and migrated poorly to recombinant CCL2 or tumor supernatants. After retroviral transduction, however, ATCs expressed high levels of CCR2b (>60%) and migrated well in vitro. We expressed firefly luciferase in CCR2b-expressing ATCs and observed improved homing (>10-fold) to CCL2-secreting neuroblastoma compared with CCR2-negative ATCs. As a result, ATCs co-modified with both CCR2b and GD2-CAR had greater antitumor activity in vivo.
Collapse
|
31
|
Ferraris FK, Rodrigues R, da Silva VP, Figueiredo R, Penido C, Henriques MDGM. Modulation of T lymphocyte and eosinophil functions in vitro by natural tetranortriterpenoids isolated from Carapa guianensis Aublet. Int Immunopharmacol 2011; 11:1-11. [DOI: 10.1016/j.intimp.2010.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/05/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022]
|
32
|
Sharma R, Sharma PR, Kim YC, Leitinger N, Lee JK, Fu SM, Ju ST. IL-2-controlled expression of multiple T cell trafficking genes and Th2 cytokines in the regulatory T cell-deficient scurfy mice: implication to multiorgan inflammation and control of skin and lung inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 186:1268-78. [PMID: 21169543 DOI: 10.4049/jimmunol.1002677] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Scurfy (Sf) mice bear a mutation in the Foxp3 transcription factor, lack regulatory T cells (Treg), develop multiorgan inflammation, and die prematurely. The major target organs affected are skin, lungs, and liver. “Sf mice lacking the Il2 gene (Sf.Il2–/–), despite being devoid of Treg, did not develop skin and lung inflammation, but the inflammation in liver remained [corrected]. Genome-wide microarray analysis revealed hundreds of genes that were differentially regulated among Sf, Sf.Il2(-/-), and B6 CD4(+) T cells, but the most significant changes were those encoding receptors for trafficking/chemotaxis/retention and cytokines. Our study suggests that IL-2 controls the skin and lung inflammation in Sf mice in an apparent "organ-specific" manner through two novel mechanisms: by regulating the expression of genes encoding a variety of receptors for T cell trafficking/chemotaxis/retention and by regulating Th2 cell expansion and cytokine production. Thus, IL-2 is potentially a master regulator for multiorgan inflammation and an underlying etiological factor for various diseases associated with skin and lung inflammation.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Costa MFDS, de Souza-Martins R, de Souza MC, Benjamim CF, Piva B, Diaz BL, Peters-Golden M, Henriques MDG, Canetti C, Penido C. Leukotriene B4 mediates gammadelta T lymphocyte migration in response to diverse stimuli. J Leukoc Biol 2009; 87:323-32. [PMID: 19880577 DOI: 10.1189/jlb.0809563] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herein, we investigated the involvement of the 5-LO-derived lipid mediator LTB(4) in gammadelta T cell migration. When injected into the i.pl. space of C57BL/6 mice, LTB(4) triggered gammadelta T lymphocyte mobilization in vivo, a phenomenon also observed in in vitro chemotaxis assays. The i.pl. injection of Escherichia coli endotoxin (LPS) triggered increased levels of LTB(4) in pleural cavities. The in vivo inhibition of LTB(4) biosynthesis by the 5-LO inhibitor zileuton or the FLAP inhibitor MK886 attenuated LPS-induced gammadelta T cell accumulation into pleural cavities. Accordingly, 5-LO KO mice failed to recruit gammadelta T cells into the inflammatory site after i.pl. LPS. Antagonists of the high-affinity LTB(4) receptor BLT1, CP105,696, and LY292476 also attenuated LPS-induced gammadelta T cell accumulation in pleural cavities as well as in vitro chemotaxis toward pleural washes obtained from LPS-simulated mice. LTB(4)/BLT1 also accounted for gammadelta T cell migration induced by i.pl. administration of Mycobacterium bovis BCG or antigen in sensitized mice. BLT1 was expressed on naïve, resident as well as LPS-recruited gammadelta T cells. Isolated gammadelta T cells were found to undergo F-actin cytoskeleton reorganization when incubated with LTB(4) in vitro, confirming that gammadelta T lymphocytes can respond directly to LTB(4). In addition to its direct effect on gammadelta T cells, LTB(4) triggered their accumulation indirectly, via modulation of CCL2 production in mouse pleural cavities. These data show that gammadelta T cell migration into the pleural cavity of mice during diverse inflammatory responses is dependent on LTB(4)/BLT1.
Collapse
Affiliation(s)
- Maria Fernanda de Souza Costa
- Laboratório de Farmacologia Aplicada, Farmanguinhos, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Byeseda SE, Burns AR, Dieffenbaugher S, Rumbaut RE, Smith CW, Li Z. ICAM-1 is necessary for epithelial recruitment of gammadelta T cells and efficient corneal wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:571-9. [PMID: 19608878 DOI: 10.2353/ajpath.2009.090112] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Wound healing and inflammation are both significantly reduced in mice that lack gammadelta T cells. Here, the role of epithelial intercellular adhesion molecule-1 (ICAM-1) in gammadelta T cell migration in corneal wound healing was assessed. Wild-type mice had an approximate fivefold increase in epithelial gammadelta T cells at 24 hours after epithelial abrasion. ICAM-1(-/-) mice had 50.9% (P < 0.01) fewer gammadelta T cells resident in unwounded corneal epithelium, which failed to increase in response to epithelial abrasion. Anti-ICAM-1 blocking antibody in wild-type mice reduced epithelial gammadelta T cells to a number comparable to that of ICAM-1(-/-) mice, and mice deficient in lymphocyte function-associated antigen-1 (CD11a/CD18), a principal leukocyte receptor for ICAM-1, exhibited a 48% reduction (P < 0.01) in peak epithelial gammadelta T cells. Re-epithelialization and epithelial cell division were both significantly reduced ( approximately 50% at 18 hours, P < 0.01) after abrasion in ICAM-1(-/-) mice versus wild-type, and at 96 hours, recovery of epithelial thickness was only 66% (P < 0.01) of wild-type. ICAM-1 expression by corneal epithelium in response to epithelial abrasion appears to be critical for accumulation of gammadelta T cells in the epithelium, and deficiency of ICAM-1 significantly delays wound healing. Since gammadelta T cells are necessary for efficient epithelial wound healing, ICAM-1 may contribute to wound healing by facilitating gammadelta T cell migration into the corneal epithelium.
Collapse
Affiliation(s)
- Sarah E Byeseda
- Section of Leukocyte Biology, Children's Nutrition Research Center, Room 6014, 1100 Bates, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
35
|
Requirement of L-selectin for gammadelta T lymphocyte activation and migration during allergic pleurisy: co-relation with eosinophil accumulation. Int Immunopharmacol 2009; 9:303-12. [PMID: 19135179 DOI: 10.1016/j.intimp.2008.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 11/20/2022]
Abstract
Intra-thoracic antigenic challenge (ovalbumin, 12.5 microg/cavity) led to increased numbers of gammadelta T lymphocytes in pleural cavities, blood and thoracic lymph nodes in sensitized mice within 48 h. Part of these cells expressed CD62L, which increased on gammadelta T cell surfaces obtained from lymph nodes after ovalbumin (OVA) challenge. Selectin blockade by fucoidan pre-treatment (10 mg/kg, i.v.) impaired in vivo increase in CD25(+) and c-fos(+) gammadelta T cell numbers in lymph nodes, indicating a role for selectins on gammadelta T lymphocyte activation and proliferation. In vivo selectin blockade by fucoidan or alpha-CD62L mAb (200 microg/mice, i.p.) also inhibited OVA-induced gammadelta T cell accumulation in pleural cavities. Confirming the direct effect of CD62L on gammadelta T cell transmigration, the migration of i.v. adoptively-transferred CFSE-labeled gammadelta T lymphocytes into pleural cavities of challenged recipient mice was impaired by fucoidan ex vivo treatment. It is noteworthy that eosinophil influx was also impaired in those mice, indicating that reduced eosinophil migration by CD62L in vivo blockade depended on gammadelta T cell migration via CD62L molecules. Accordingly, pleural gammadelta T lymphocytes from fucoidan-treated mice presented reduced OVA-induced IL-5 and CCL11 production. Supporting these data, the depletion of Vgamma4 T lymphocytes, which are pulmonary gammadelta T cells, decreased OVA-induced eosinophil influx into allergic site. Such results demonstrate that CD62L is crucial for the activation of gammadelta T cells in lymph nodes, for their migration into inflamed tissue and for the modulation of eosinophil influx during allergic response.
Collapse
|