1
|
Hoehn KB, Kleinstein SH. B cell phylogenetics in the single cell era. Trends Immunol 2024; 45:62-74. [PMID: 38151443 PMCID: PMC10872299 DOI: 10.1016/j.it.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023]
Abstract
The widespread availability of single-cell RNA sequencing (scRNA-seq) has led to the development of new methods for understanding immune responses. Single-cell transcriptome data can now be paired with B cell receptor (BCR) sequences. However, RNA from BCRs cannot be analyzed like most other genes because BCRs are genetically diverse within individuals. In humans, BCRs are shaped through recombination followed by mutation and selection for antigen binding. As these processes co-occur with cell division, B cells can be studied using phylogenetic trees representing the mutations within a clone. B cell trees can link experimental timepoints, tissues, or cellular subtypes. Here, we review the current state and potential of how B cell phylogenetics can be combined with single-cell data to understand immune responses.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
2
|
García-Valiente R, Merino Tejero E, Stratigopoulou M, Balashova D, Jongejan A, Lashgari D, Pélissier A, Caniels TG, Claireaux MAF, Musters A, van Gils MJ, Rodríguez Martínez M, de Vries N, Meyer-Hermann M, Guikema JEJ, Hoefsloot H, van Kampen AHC. Understanding repertoire sequencing data through a multiscale computational model of the germinal center. NPJ Syst Biol Appl 2023; 9:8. [PMID: 36927990 PMCID: PMC10019394 DOI: 10.1038/s41540-023-00271-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Sequencing of B-cell and T-cell immune receptor repertoires helps us to understand the adaptive immune response, although it only provides information about the clonotypes (lineages) and their frequencies and not about, for example, their affinity or antigen (Ag) specificity. To further characterize the identified clones, usually with special attention to the particularly abundant ones (dominant), additional time-consuming or expensive experiments are generally required. Here, we present an extension of a multiscale model of the germinal center (GC) that we previously developed to gain more insight in B-cell repertoires. We compare the extent that these simulated repertoires deviate from experimental repertoires established from single GCs, blood, or tissue. Our simulations show that there is a limited correlation between clonal abundance and affinity and that there is large affinity variability among same-ancestor (same-clone) subclones. Our simulations suggest that low-abundance clones and subclones, might also be of interest since they may have high affinity for the Ag. We show that the fraction of plasma cells (PCs) with high B-cell receptor (BcR) mRNA content in the GC does not significantly affect the number of dominant clones derived from single GCs by sequencing BcR mRNAs. Results from these simulations guide data interpretation and the design of follow-up experiments.
Collapse
Affiliation(s)
- Rodrigo García-Valiente
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Elena Merino Tejero
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Stratigopoulou
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Daria Balashova
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Danial Lashgari
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Aurélien Pélissier
- IBM Research Zurich, 8803, Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Tom G Caniels
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu A F Claireaux
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Anne Musters
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | | | - Niek de Vries
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Michael Meyer-Hermann
- Department for Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jeroen E J Guikema
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Pathology, Lymphoma and Myeloma Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Huub Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoine H C van Kampen
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Neuman H, Arrouasse J, Benjamini O, Mehr R, Kedmi M. B cell M-CLL clones retain selection against replacement mutations in their immunoglobulin gene framework regions. Front Oncol 2023; 13:1115361. [PMID: 37007112 PMCID: PMC10060519 DOI: 10.3389/fonc.2023.1115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionChronic lymphocytic leukemia (CLL) is the most common adult leukemia, accounting for 30–40% of all adult leukemias. The dynamics of B-lymphocyte CLL clones with mutated immunoglobulin heavy chain variable region (IgHV) genes in their tumor (M-CLL) can be studied using mutational lineage trees.MethodsHere, we used lineage tree-based analyses of somatic hypermutation (SHM) and selection in M-CLL clones, comparing the dominant (presumably malignant) clones of 15 CLL patients to their non-dominant (presumably normal) B cell clones, and to those of healthy control repertoires. This type of analysis, which was never previously published in CLL, yielded the following novel insights. ResultsCLL dominant clones undergo – or retain – more replacement mutations that alter amino acid properties such as charge or hydropathy. Although, as expected, CLL dominant clones undergo weaker selection for replacement mutations in the complementarity determining regions (CDRs) and against replacement mutations in the framework regions (FWRs) than non-dominant clones in the same patients or normal B cell clones in healthy controls, they surprisingly retain some of the latter selection in their FWRs. Finally, using machine learning, we show that even the non-dominant clones in CLL patients differ from healthy control clones in various features, most notably their expression of higher fractions of transition mutations. DiscussionOverall, CLL seems to be characterized by significant loosening – but not a complete loss – of the selection forces operating on B cell clones, and possibly also by changes in SHM mechanisms.
Collapse
Affiliation(s)
- Hadas Neuman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Jessica Arrouasse
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Ohad Benjamini
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- *Correspondence: Ramit Mehr,
| | - Meirav Kedmi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
4
|
Iosselevitch I, Tabibian-Keissar H, Barshack I, Mehr R. Gastric DLBCL clonal evolution as function of patient age. Front Immunol 2022; 13:957170. [PMID: 36105806 PMCID: PMC9464916 DOI: 10.3389/fimmu.2022.957170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 01/10/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of NHL, accounting for about 40% of NHL cases, and is one of the most aggressive lymphomas. DLBCL is widespread in individuals aged more than 50 years old, with a maximum incidence in the seventh decade, but it may also occur in younger patients. DLBCL may occur in any immune system tissue, including those around the gastrointestinal tract, and even in the stomach, though gastric DLBCL has yet to be sufficiently investigated. This study aimed to understand changes in gastric Diffuse Large B cell lymphoma (gastric DLBCL) development with age. Immunoglobulin (Ig) heavy chain variable region genes were amplified from sections of nine preserved biopsies, from patients whose age varied between 25 and 89 years, sequenced and analyzed. We show first that identification of the malignant clone based on the biopsies is much less certain than was previously assumed; and second that, contrary to expectations, the repertoire of gastric B cell clones is more diverse among the elderly DLBCL patients than among the young.
Collapse
Affiliation(s)
- Irina Iosselevitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Iris Barshack
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- Department of Pathology, Sheba Medical Center, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- *Correspondence: Ramit Mehr,
| |
Collapse
|
5
|
Chai M, Guo Y, Yang L, Li J, Liu S, Chen L, Shen Y, Yang Y, Wang Y, Xu L, Yu C. A high-throughput single cell-based antibody discovery approach against the full-length SARS-CoV-2 spike protein suggests a lack of neutralizing antibodies targeting the highly conserved S2 domain. Brief Bioinform 2022; 23:6561436. [PMID: 35362510 DOI: 10.1093/bib/bbac070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 pandemic continues globally with a growing number of infections, but there are currently no effective antibody drugs against the virus. In addition, 90% amino acid sequence identity between the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV S proteins attracts us to examine S2-targeted cross-neutralizing antibodies that are not yet well defined. We therefore immunized RenMab mice with the full-length S protein and constructed a high-throughput antibody discovery method based on single-cell sequencing technology to isolate SARS-CoV-2 S-targeted neutralizing antibodies and cross-neutralizing antibodies against the S2 region of SARS-CoV-2/SARS-CoV S. Diversity of antibody sequences in RenMab mice and consistency in B-cell immune responses between RenMab mice and humans enabled screening of fully human virus-neutralizing antibodies. From all the frequency >1 paired clonotypes obtained from single-cell V(D)J sequencing, 215 antibodies with binding affinities were identified and primarily bound S2. However, only two receptor-binding domain-targeted clonotypes had neutralizing activity against SARS-CoV-2. Moreover, 5' single-cell RNA sequencing indicated that these sorted splenic B cells are mainly plasmablasts, germinal center (GC)-dependent memory B-cells and GC B-cells. Among them, plasmablasts and GC-dependent memory B-cells were considered the most significant possibility of producing virus-specific antibodies. Altogether, using a high-throughput single cell-based antibody discovery approach, our study highlighted the challenges of developing S2-binding neutralizing antibodies against SARS-CoV-2 and provided a novel direction for the enrichment of antigen-specific B-cells.
Collapse
Affiliation(s)
- Mengya Chai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajuan Guo
- Beijing Biocytogen Co., Ltd, Beijing 101111, China
| | - Liu Yang
- Beijing Biocytogen Co., Ltd, Beijing 101111, China
| | - Jianhui Li
- Beijing Biocytogen Co., Ltd, Beijing 101111, China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Lei Chen
- Beijing Biocytogen Co., Ltd, Beijing 101111, China
| | - Yuelei Shen
- Beijing Biocytogen Co., Ltd, Beijing 101111, China
| | - Yi Yang
- Beijing Biocytogen Co., Ltd, Beijing 101111, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing 102629, China
| | - Lida Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Zhang F, Gan R, Zhen Z, Hu X, Li X, Zhou F, Liu Y, Chen C, Xie S, Zhang B, Wu X, Huang Z. Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals. Signal Transduct Target Ther 2020; 5:156. [PMID: 32796814 PMCID: PMC7426596 DOI: 10.1038/s41392-020-00263-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022] Open
Abstract
The global Coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has affected more than eight million people. There is an urgent need to investigate how the adaptive immunity is established in COVID-19 patients. In this study, we profiled adaptive immune cells of PBMCs from recovered COVID-19 patients with varying disease severity using single-cell RNA and TCR/BCR V(D)J sequencing. The sequencing data revealed SARS-CoV-2-specific shuffling of adaptive immune repertories and COVID-19-induced remodeling of peripheral lymphocytes. Characterization of variations in the peripheral T and B cells from the COVID-19 patients revealed a positive correlation of humoral immune response and T-cell immune memory with disease severity. Sequencing and functional data revealed SARS-CoV-2-specific T-cell immune memory in the convalescent COVID-19 patients. Furthermore, we also identified novel antigens that are responsive in the convalescent patients. Altogether, our study reveals adaptive immune repertories underlying pathogenesis and recovery in severe versus mild COVID-19 patients, providing valuable information for potential vaccine and therapeutic development against SARS-CoV-2 infection.
Collapse
MESH Headings
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- B-Lymphocytes/classification
- B-Lymphocytes/immunology
- B-Lymphocytes/virology
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- Case-Control Studies
- China
- Convalescence
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Disease Progression
- Gene Expression
- High-Throughput Nucleotide Sequencing
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunologic Memory
- Pandemics
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Receptors, Antigen, B-Cell/classification
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/classification
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- SARS-CoV-2
- Severity of Illness Index
- Single-Cell Analysis
- T-Lymphocytes/classification
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Rui Gan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Ziqi Zhen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiaoli Hu
- Department of Infectious Diseases, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, 150030, China
| | - Xiang Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Fengxia Zhou
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Ying Liu
- Harbin Blood Center, Harbin, 150056, China
| | - Chuangeng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Shuangyu Xie
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Bailing Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiaoke Wu
- Centre for Reproductive Medicine, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, 150030, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
7
|
Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SH. Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. Proc Natl Acad Sci U S A 2019; 116:22664-22672. [PMID: 31636219 PMCID: PMC6842591 DOI: 10.1073/pnas.1906020116] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In order to produce effective antibodies, B cells undergo rapid somatic hypermutation (SHM) and selection for binding affinity to antigen via a process called affinity maturation. The similarities between this process and evolution by natural selection have led many groups to use phylogenetic methods to characterize the development of immunological memory, vaccination, and other processes that depend on affinity maturation. However, these applications are limited by the fact that most phylogenetic models are designed to be applied to individual lineages comprising genetically diverse sequences, while B cell repertoires often consist of hundreds to thousands of separate low-diversity lineages. Further, several features of affinity maturation violate important assumptions in standard phylogenetic models. Here, we introduce a hierarchical phylogenetic framework that integrates information from all lineages in a repertoire to more precisely estimate model parameters while simultaneously incorporating the unique features of SHM. We demonstrate the power of this repertoire-wide approach by characterizing previously undescribed phenomena in affinity maturation. First, we find evidence consistent with age-related changes in SHM hot-spot targeting. Second, we identify a consistent relationship between increased tree length and signs of increased negative selection, apparent in the repertoires of recently vaccinated subjects and those without any known recent infections or vaccinations. This suggests that B cell lineages shift toward negative selection over time as a general feature of affinity maturation. Our study provides a framework for undertaking repertoire-wide phylogenetic testing of SHM hypotheses and provides a means of characterizing dynamics of mutation and selection during affinity maturation.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
| | - Jason A Vander Heiden
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA 94080
| | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | - Gerton Lunter
- Wellcome Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520;
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| |
Collapse
|
8
|
Vergroesen RD, Slot LM, van Schaik BDC, Koning MT, Rispens T, van Kampen AHC, Toes REM, Scherer HU. N-Glycosylation Site Analysis of Citrullinated Antigen-Specific B-Cell Receptors Indicates Alternative Selection Pathways During Autoreactive B-Cell Development. Front Immunol 2019; 10:2092. [PMID: 31572358 PMCID: PMC6749139 DOI: 10.3389/fimmu.2019.02092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Many autoimmune diseases are hallmarked by autoreactive B and plasma cell responses that are directly or indirectly involved in disease pathogenesis. These B-cell responses show large variability between diseases, both in terms of the secreted autoantibody repertoire and the dynamics and characteristics of the underlying B-cell responses. Hence, different mechanisms have been proposed to explain the emergence of autoreactive B cells in an otherwise self-tolerant immune system. Notably, most mechanistic insights have been obtained from murine studies using models harboring genetic modifications of B and T cells. Given recent technological advances that have rendered autoreactive human B cells accessible for analysis, we here discuss the phenomenon of extensive N-glycosylation of the B-cell receptor (BCR) variable domain of a prototypic human autoreactive B-cell response and its potential role in the generation of autoimmunity. Anti-citrullinated protein antibodies (ACPA) hallmark the most disease-specific autoimmune response in Rheumatoid Arthritis (RA). Remarkably, ACPA-IgG are heavily N-glycosylated in the variable domain due to somatic mutations that generate abundant N-glycosylation consensus sequences. These sites, obtained from full-length BCR sequences of ACPA-expressing B cells from 12 ACPA-positive RA patients, were here analyzed in detail. Sites that required a single nucleotide mutation to be generated were defined as single somatic hypermutation (s-SHM) sites, whereas sites requiring multiple mutations were defined as m-SHM sites. IgG sequences of 12 healthy donors were used as control. Computational modeling of the germinal center reaction (CLONE algorithm) was used with the germline counterparts of ACPA-IgG heavy chain (HC) sequences to simulate the germinal center response. Our analyses revealed an abundance of N-glycosylation sites in ACPA-IgG HC that frequently required multiple mutations and predominated in specific positions. Based on these data, and taking into account recent insights into the dynamics of the ACPA-response during disease development, we here discuss the hypothesis that N-glycosylation sites in ACPA-IgG variable domains could lead to alternative, possibly antibody affinity-independent selection forces. Presumably, this occurs during germinal center responses allowing these B cells to escape from putative tolerance checkpoints, thereby driving autoreactive B cell development in the pathogenesis of RA.
Collapse
Affiliation(s)
| | - Linda M Slot
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Barbera D C van Schaik
- Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Amsterdam, Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Feng J, Shaw DA, Minin VN, Simon N, Matsen FA. Survival analysis of DNA mutation motifs with penalized proportional hazards. Ann Appl Stat 2019; 13:1268-1294. [PMID: 33214798 PMCID: PMC7673484 DOI: 10.1214/18-aoas1233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antibodies, an essential part of our immune system, develop through an intricate process to bind a wide array of pathogens. This process involves randomly mutating DNA sequences encoding these antibodies to find variants with improved binding, though mutations are not distributed uniformly across sequence sites. Immunologists observe this nonuniformity to be consistent with "mutation motifs", which are short DNA subsequences that affect how likely a given site is to experience a mutation. Quantifying the effect of motifs on mutation rates is challenging: a large number of possible motifs makes this statistical problem high dimensional, while the unobserved history of the mutation process leads to a nontrivial missing data problem. We introduce an ℓ 1-penalized proportional hazards model to infer mutation motifs and their effects. In order to estimate model parameters, our method uses a Monte Carlo EM algorithm to marginalize over the unknown ordering of mutations. We show that our method performs better on simulated data compared to current methods and leads to more parsimonious models. The application of proportional hazards to mutation processes is, to our knowledge, novel and formalizes the current methods in a statistical framework that can be easily extended to analyze the effect of other biological features on mutation rates.
Collapse
Affiliation(s)
- Jean Feng
- Department of Biostatistics, University of Washington Seattle, WA, USA
| | - David A. Shaw
- Computational Biology Program, Fred Hutchinson Cancer Research Center Seattle, WA, USA
| | - Vladimir N. Minin
- Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | - Noah Simon
- Department of Biostatistics, University of Washington Seattle, WA, USA
| | - Frederick A. Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center Seattle, WA, USA
| |
Collapse
|
10
|
Kim S, Lee H, Noh J, Lee Y, Han H, Yoo DK, Kim H, Kwon S, Chung J. Efficient Selection of Antibodies Reactive to Homologous Epitopes on Human and Mouse Hepatocyte Growth Factors by Next-Generation Sequencing-Based Analysis of the B Cell Repertoire. Int J Mol Sci 2019; 20:E417. [PMID: 30669409 PMCID: PMC6359367 DOI: 10.3390/ijms20020417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
: YYB-101 is a humanized rabbit anti-human hepatocyte growth factor (HGF)-neutralizing antibody currently in clinical trial. To test the effect of HGF neutralization with antibody on anti-cancer T cell immunity, we generated surrogate antibodies that are reactive to the mouse homologue of the epitope targeted by YYB-101. First, we immunized a chicken with human HGF and monitored changes in the B cell repertoire by next-generation sequencing (NGS). We then extracted the VH gene repertoire from the NGS data, clustered it into components by sequence homology, and classified the components by the change in the number of unique VH sequences and the frequencies of the VH sequences within each component following immunization. Those changes should accompany the preferential proliferation and somatic hypermutation or gene conversion of B cells encoding HGF-reactive antibodies. One component showed significant increases in the number and frequencies of unique VH sequences and harbored genes encoding antibodies that were reactive to human HGF and competitive with YYB-101 for HGF binding. Some of the antibodies also reacted to mouse HGF. The selected VH sequences shared 98.3% identity and 98.9% amino acid similarity. It is therefore likely that the antibodies encoded by them all react to the epitope targeted by YYB-101.
Collapse
Affiliation(s)
- Soohyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 00380, Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 00380, Korea.
| | - Hyunho Lee
- Department of Electrical Engineering and Computer Science, Seoul National University, Seoul 08826, Korea.
| | - Jinsung Noh
- Department of Electrical Engineering and Computer Science, Seoul National University, Seoul 08826, Korea.
| | - Yonghee Lee
- Department of Electrical Engineering and Computer Science, Seoul National University, Seoul 08826, Korea.
| | - Haejun Han
- Celemics, Inc., 131 Gasandigital 1-ro, Geumcheon-gu, Seoul 08506, Korea.
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 00380, Korea.
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 00380, Korea.
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul 00380, Korea.
| | - Hyori Kim
- Convergence medicine research center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Sunghoon Kwon
- Department of Electrical Engineering and Computer Science, Seoul National University, Seoul 08826, Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea.
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Korea.
- Seoul National University Hospital Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
- Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea.
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 00380, Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 00380, Korea.
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 00380, Korea.
| |
Collapse
|
11
|
Schramm CA, Douek DC. Beyond Hot Spots: Biases in Antibody Somatic Hypermutation and Implications for Vaccine Design. Front Immunol 2018; 9:1876. [PMID: 30154794 PMCID: PMC6102386 DOI: 10.3389/fimmu.2018.01876] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/30/2018] [Indexed: 11/15/2022] Open
Abstract
The evolution of antibodies in an individual during an immune response by somatic hypermutation (SHM) is essential for the ability of the immune system to recognize and remove the diverse spectrum of antigens that may be encountered. These mutations are not produced at random; nucleotide motifs that result in increased or decreased rates of mutation were first reported in 1992. Newer models that estimate the propensity for mutation for every possible 5- or 7-nucleotide motif have emphasized the complexity of SHM targeting and suggested possible new hot spot motifs. Even with these fine-grained approaches, however, non-local context matters, and the mutations observed at a specific nucleotide motif varies between species and even by locus, gene segment, and position along the gene segment within a single species. An alternative method has been provided to further abstract away the molecular mechanisms underpinning SHM, prompted by evidence that certain stereotypical amino acid substitutions are favored at each position of a particular V gene. These "substitution profiles," whether obtained from a single B cell lineage or an entire repertoire, offer a simplified approach to predict which substitutions will be well-tolerated and which will be disfavored, without the need to consider path-dependent effects from neighboring positions. However, this comes at the cost of merging the effects of two distinct biological processes, the generation of mutations, and the selection acting on those mutations. Since selection is contingent on the particular antigens an individual has been exposed to, this suggests that SHM may have evolved to prefer mutations that are most likely to be useful against pathogens that have co-evolved with us. Alternatively, the ability to select favorable mutations may be strongly limited by the biases of SHM targeting. In either scenario, the sequence space explored by SHM is significantly limited and this consequently has profound implications for the rational design of vaccine strategies.
Collapse
Affiliation(s)
- Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
12
|
Abstract
Probabilistic modeling is fundamental to the statistical analysis of complex data. In addition to forming a coherent description of the data-generating process, probabilistic models enable parameter inference about given datasets. This procedure is well developed in the Bayesian perspective, in which one infers probability distributions describing to what extent various possible parameters agree with the data. In this paper, we motivate and review probabilistic modeling for adaptive immune receptor repertoire data then describe progress and prospects for future work, from germline haplotyping to adaptive immune system deployment across tissues. The relevant quantities in immune sequence analysis include not only continuous parameters such as gene use frequency but also discrete objects such as B-cell clusters and lineages. Throughout this review, we unravel the many opportunities for probabilistic modeling in adaptive immune receptor analysis, including settings for which the Bayesian approach holds substantial promise (especially if one is optimistic about new computational methods). From our perspective, the greatest prospects for progress in probabilistic modeling for repertoires concern ancestral sequence estimation for B-cell receptor lineages, including uncertainty from germline genotype, rearrangement, and lineage development.
Collapse
Affiliation(s)
- Branden Olson
- Computational Biology Program Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail stop: M1-B514 Seattle, WA 98109-1024 phone: +1 206 667 7318
| | - Frederick A. Matsen
- Computational Biology Program Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Mail stop: M1-B514 Seattle, WA 98109-1024 phone: +1 206 667 7318
| |
Collapse
|
13
|
Abstract
Somatic assembly of T cell receptor and B cell receptor (BCR) genes produces a vast diversity of lymphocyte antigen recognition capacity. The advent of efficient high-throughput sequencing of lymphocyte antigen receptor genes has recently generated unprecedented opportunities for exploration of adaptive immune responses. With these opportunities have come significant challenges in understanding the analysis techniques that most accurately reflect underlying biological phenomena. In this regard, sample preparation and sequence analysis techniques, which have largely been borrowed and adapted from other fields, continue to evolve. Here, we review current methods and challenges of library preparation, sequencing and statistical analysis of lymphocyte receptor repertoire studies. We discuss the general steps in the process of immune repertoire generation including sample preparation, platforms available for sequencing, processing of sequencing data, measurable features of the immune repertoire, and the statistical tools that can be used for analysis and interpretation of the data. Because BCR analysis harbors additional complexities, such as immunoglobulin (Ig) (i.e., antibody) gene somatic hypermutation and class switch recombination, the emphasis of this review is on Ig/BCR sequence analysis.
Collapse
Affiliation(s)
- Neha Chaudhary
- Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Duane R. Wesemann
- Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Abstract
Next-generation sequencing is making it possible to study the antibody repertoire of an organism in unprecedented detail, and, by so doing, to characterize its behavior in the response to infection and in pathological conditions such as autoimmunity and cancer. The polymorphic nature of the repertoire poses unique challenges that rule out the use of many commonly used NGS methods and require tradeoffs to be made when considering experimental design.We outline the main contexts in which antibody repertoire analysis has been used, and summarize the key tools that are available. The humoral immune response to vaccination has been a particular focus of repertoire analyses, and we review the key conclusions and methods used in these studies.
Collapse
Affiliation(s)
- William D Lees
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Adrian J Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
15
|
Kirik U, Persson H, Levander F, Greiff L, Ohlin M. Antibody Heavy Chain Variable Domains of Different Germline Gene Origins Diversify through Different Paths. Front Immunol 2017; 8:1433. [PMID: 29180996 PMCID: PMC5694033 DOI: 10.3389/fimmu.2017.01433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023] Open
Abstract
B cells produce antibodies, key effector molecules in health and disease. They mature their properties, including their affinity for antigen, through hypermutation events; processes that involve, e.g., base substitution, codon insertion and deletion, often in association with an isotype switch. Investigations of antibody evolution define modes whereby particular antibody responses are able to form, and such studies provide insight important for instance for development of efficient vaccines. Antibody evolution is also used in vitro for the design of antibodies with improved properties. To better understand the basic concepts of antibody evolution, we analyzed the mutational paths, both in terms of amino acid substitution and insertions and deletions, taken by antibodies of the IgG isotype. The analysis focused on the evolution of the heavy chain variable domain of sets of antibodies, each with an origin in 1 of 11 different germline genes representing six human heavy chain germline gene subgroups. Investigated genes were isolated from cells of human bone marrow, a major site of antibody production, and characterized by next-generation sequencing and an in-house bioinformatics pipeline. Apart from substitutions within the complementarity determining regions, multiple framework residues including those in protein cores were targets of extensive diversification. Diversity, both in terms of substitutions, and insertions and deletions, in antibodies is focused to different positions in the sequence in a germline gene-unique manner. Altogether, our findings create a framework for understanding patterns of evolution of antibodies from defined germline genes.
Collapse
Affiliation(s)
- Ufuk Kirik
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development Platform, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lennart Greiff
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.,Science for Life Laboratory, Drug Discovery and Development Platform, Human Antibody Therapeutics, Lund University, Lund, Sweden.,U-READ, Lund School of Technology, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Meng W, Zhang B, Schwartz GW, Rosenfeld AM, Ren D, Thome JJ, Carpenter DJ, Matsuoka N, Lerner H, Friedman AL, Granot T, Farber DL, Shlomchik MJ, Hershberg U, Luning Prak ET. An atlas of B-cell clonal distribution in the human body. Nat Biotechnol 2017; 35:879-884. [PMID: 28829438 PMCID: PMC5679700 DOI: 10.1038/nbt.3942] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/13/2017] [Indexed: 12/12/2022]
Abstract
B-cell responses result in clonal expansion, and can occur in a variety of tissues. To define how B-cell clones are distributed in the body, we sequenced 933,427 B-cell clonal lineages and mapped them to eight different anatomic compartments in six human organ donors. We show that large B-cell clones partition into two broad networks-one spans the blood, bone marrow, spleen and lung, while the other is restricted to tissues within the gastrointestinal (GI) tract (jejunum, ileum and colon). Notably, GI tract clones display extensive sharing of sequence variants among different portions of the tract and have higher frequencies of somatic hypermutation, suggesting extensive and serial rounds of clonal expansion and selection. Our findings provide an anatomic atlas of B-cell clonal lineages, their properties and tissue connections. This resource serves as a foundation for studies of tissue-based immunity, including vaccine responses, infections, autoimmunity and cancer.
Collapse
Affiliation(s)
- Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bochao Zhang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Gregory W. Schwartz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aaron M. Rosenfeld
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Daqiu Ren
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joseph J.C. Thome
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Dustin J. Carpenter
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Nobuhide Matsuoka
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | | | | | - Tomer Granot
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Donna L. Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
- Department of Surgery and Department of Microbiology and Immunology, Columbia University School of Medicine, New York, NY
| | | | - Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Department of Microbiology and Immunology, Drexel College of Medicine, Drexel University, Philadelphia, PA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
A Phylogenetic Codon Substitution Model for Antibody Lineages. Genetics 2017; 206:417-427. [PMID: 28315836 PMCID: PMC5419485 DOI: 10.1534/genetics.116.196303] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
Phylogenetic methods have shown promise in understanding the development of broadly neutralizing antibody lineages (bNAbs). However, the mutational process that generates these lineages, somatic hypermutation, is biased by hotspot motifs which violates important assumptions in most phylogenetic substitution models. Here, we develop a modified GY94-type substitution model that partially accounts for this context dependency while preserving independence of sites during calculation. This model shows a substantially better fit to three well-characterized bNAb lineages than the standard GY94 model. We also demonstrate how our model can be used to test hypotheses concerning the roles of different hotspot and coldspot motifs in the evolution of B-cell lineages. Further, we explore the consequences of the idea that the number of hotspot motifs, and perhaps the mutation rate in general, is expected to decay over time in individual bNAb lineages.
Collapse
|
18
|
Reshetova P, van Schaik BDC, Klarenbeek PL, Doorenspleet ME, Esveldt REE, Tak PP, Guikema JEJ, de Vries N, van Kampen AHC. Computational Model Reveals Limited Correlation between Germinal Center B-Cell Subclone Abundancy and Affinity: Implications for Repertoire Sequencing. Front Immunol 2017; 8:221. [PMID: 28321219 PMCID: PMC5337809 DOI: 10.3389/fimmu.2017.00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/16/2017] [Indexed: 12/18/2022] Open
Abstract
Immunoglobulin repertoire sequencing has successfully been applied to identify expanded antigen-activated B-cell clones that play a role in the pathogenesis of immune disorders. One challenge is the selection of the Ag-specific B cells from the measured repertoire for downstream analyses. A general feature of an immune response is the expansion of specific clones resulting in a set of subclones with common ancestry varying in abundance and in the number of acquired somatic mutations. The expanded subclones are expected to have BCR affinities for the Ag higher than the affinities of the naive B cells in the background population. For these reasons, several groups successfully proceeded or suggested selecting highly abundant subclones from the repertoire to obtain the Ag-specific B cells. Given the nature of affinity maturation one would expect that abundant subclones are of high affinity but since repertoire sequencing only provides information about abundancies, this can only be verified with additional experiments, which are very labor intensive. Moreover, this would also require knowledge of the Ag, which is often not available for clinical samples. Consequently, in general we do not know if the selected highly abundant subclone(s) are also the high(est) affinity subclones. Such knowledge would likely improve the selection of relevant subclones for further characterization and Ag screening. Therefore, to gain insight in the relation between subclone abundancy and affinity, we developed a computational model that simulates affinity maturation in a single GC while tracking individual subclones in terms of abundancy and affinity. We show that the model correctly captures the overall GC dynamics, and that the amount of expansion is qualitatively comparable to expansion observed from B cells isolated from human lymph nodes. Analysis of the fraction of high- and low-affinity subclones among the unexpanded and expanded subclones reveals a limited correlation between abundancy and affinity and shows that the low abundant subclones are of highest affinity. Thus, our model suggests that selecting highly abundant subclones from repertoire sequencing experiments would not always lead to the high(est) affinity B cells. Consequently, additional or alternative selection approaches need to be applied.
Collapse
Affiliation(s)
- Polina Reshetova
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands; Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Barbera D C van Schaik
- Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Paul L Klarenbeek
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center , Amsterdam , Netherlands
| | - Marieke E Doorenspleet
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center , Amsterdam , Netherlands
| | - Rebecca E E Esveldt
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center , Amsterdam , Netherlands
| | - Paul-Peter Tak
- Department of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Niek de Vries
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center , Amsterdam , Netherlands
| | - Antoine H C van Kampen
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands; Bioinformatics Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Kerzel S, Rogosch T, Struecker B, Maier RF, Kabesch M, Zemlin M. Unlike in Children with Allergic Asthma, IgE Transcripts from Preschool Children with Atopic Dermatitis Display Signs of Superantigen-Driven Activation. THE JOURNAL OF IMMUNOLOGY 2016; 196:4885-92. [PMID: 27183570 DOI: 10.4049/jimmunol.1402889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
The IgE repertoire in children with asthma reflects an adaptive B cell response, indicative of Ag-driven selection. However, the same might not apply to atopic dermatitis, which is often the first manifestation of atopy. The objective of our present study was to characterize the IgE repertoire of preschool children with atopic dermatitis with regard to signs of superantigen-like activation, clonal relationship, and indications of Ag selection. Total RNA was isolated from PBMCs of five children with atopic dermatitis. IgE transcripts were amplified, cloned, and sequenced using RT-PCR. We obtained 200 functional IgE sequences, which were compared with 1140 sequences from 11 children with asthma. Whereas variable gene segment of the H Ig chain (VH) gene usage in asthma reflected germline distribution, IgE transcripts from children with atopic dermatitis displayed a dominance of the otherwise scarcely expressed VH2 and VH4 family. Whereas IgE transcripts from children with asthma were highly mutated (7.2%), somatic mutation rate in atopic dermatitis was less than half as high (3.4%). Moreover, the proportion of transcripts that were indicative of Ag selection was reduced to 11% in atopic dermatitis (24% in asthma). In summary, IgE repertoires vary significantly between children with different atopic diseases. Compared with children with asthma, IgE transcripts from preschool children with atopic dermatitis are significantly less mutated, clonally less focused, and less indicative of Ag selection. We consider our data reconcilable with the hypothesis that a superantigen-like activation contributes to the maturation and selection of the IgE repertoire in atopic dermatitis.
Collapse
Affiliation(s)
- Sebastian Kerzel
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, St. Hedwig Campus, D-93049 Regensburg, Germany; and Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Benjamin Struecker
- Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Rolf F Maier
- Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg, St. Hedwig Campus, D-93049 Regensburg, Germany; and
| | - Michael Zemlin
- Department of Pediatrics, Philipps-University Marburg, D-35043 Marburg, Germany
| |
Collapse
|
20
|
Hershberg U, Luning Prak ET. The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0239. [PMID: 26194753 PMCID: PMC4528416 DOI: 10.1098/rstb.2014.0239] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clones are the fundamental building blocks of immune repertoires. The number of different clones relates to the diversity of the repertoire, whereas their size and sequence diversity are linked to selective pressures. Selective pressures act both between clones and within different sequence variants of a clone. Understanding how clonal selection shapes the immune repertoire is one of the most basic questions in all of immunology. But how are individual clones defined? Here we discuss different approaches for defining clones, starting with how antibodies are diversified during different stages of B cell development. Next, we discuss how clones are defined using different experimental methods. We focus on high-throughput sequencing datasets, and the computational challenges and opportunities that these data have for mining the antibody repertoire landscape. We discuss methods that visualize sequence variants within the same clone and allow us to consider collections of shared mutations to determine which sequences share a common ancestry. Finally, we comment on features of frequently encountered expanded B cell clones that may be of particular interest in the setting of autoimmunity and other chronic conditions.
Collapse
Affiliation(s)
- Uri Hershberg
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Bossone 7-711, 3141 Chestnut Street, Philadelphia, PA 19104, USA Department of Immunology and Microbiology, College of Medicine, Drexel University, Bossone 7-711, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 405B Stellar Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
McCoy CO, Bedford T, Minin VN, Bradley P, Robins H, Matsen FA. Quantifying evolutionary constraints on B-cell affinity maturation. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0244. [PMID: 26194758 PMCID: PMC4528421 DOI: 10.1098/rstb.2014.0244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The antibody repertoire of each individual is continuously updated by the evolutionary process of B-cell receptor (BCR) mutation and selection. It has recently become possible to gain detailed information concerning this process through high-throughput sequencing. Here, we develop modern statistical molecular evolution methods for the analysis of B-cell sequence data, and then apply them to a very deep short-read dataset of BCRs. We find that the substitution process is conserved across individuals but varies significantly across gene segments. We investigate selection on BCRs using a novel method that side-steps the difficulties encountered by previous work in differentiating between selection and motif-driven mutation; this is done through stochastic mapping and empirical Bayes estimators that compare the evolution of in-frame and out-of-frame rearrangements. We use this new method to derive a per-residue map of selection, which provides a more nuanced view of the constraints on framework and variable regions.
Collapse
Affiliation(s)
- Connor O McCoy
- Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Vladimir N Minin
- Departments of Statistics and Biology, University of Washington, Seattle, WA, USA
| | - Philip Bradley
- Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harlan Robins
- Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Frederick A Matsen
- Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
22
|
Yaari G, Benichou JIC, Vander Heiden JA, Kleinstein SH, Louzoun Y. The mutation patterns in B-cell immunoglobulin receptors reflect the influence of selection acting at multiple time-scales. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0242. [PMID: 26194756 DOI: 10.1098/rstb.2014.0242] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During the several-week course of an immune response, B cells undergo a process of clonal expansion, somatic hypermutation of the immunoglobulin (Ig) genes and affinity-dependent selection. Over a lifetime, each B cell may participate in multiple rounds of affinity maturation as part of different immune responses. These two time-scales for selection are apparent in the structure of B-cell lineage trees, which often contain a 'trunk' consisting of mutations that are shared across all members of a clone, and several branches that form a 'canopy' consisting of mutations that are shared by a subset of clone members. The influence of affinity maturation on the B-cell population can be inferred by analysing the pattern of somatic mutations in the Ig. While global analysis of mutation patterns has shown evidence of strong selection pressures shaping the B-cell population, the effect of different time-scales of selection and diversification has not yet been studied. Analysis of B cells from blood samples of three healthy individuals identifies a range of clone sizes with lineage trees that can contain long trunks and canopies indicating the significant diversity introduced by the affinity maturation process. We here show that observed mutation patterns in the framework regions (FWRs) are determined by an almost purely purifying selection on both short and long time-scales. By contrast, complementarity determining regions (CDRs) are affected by a combination of purifying and antigen-driven positive selection on the short term, which leads to a net positive selection in the long term. In both the FWRs and CDRs, long-term selection is strongly dependent on the heavy chain variable gene family.
Collapse
Affiliation(s)
- Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA Departments of Pathology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
23
|
Hoehn KB, Fowler A, Lunter G, Pybus OG. The Diversity and Molecular Evolution of B-Cell Receptors during Infection. Mol Biol Evol 2016; 33:1147-57. [PMID: 26802217 PMCID: PMC4839220 DOI: 10.1093/molbev/msw015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Anna Fowler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gerton Lunter
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Use of the VH6-1 gene segment to code for anti-interleukin-18 autoantibodies in multiple sclerosis. Immunogenetics 2016; 68:237-46. [PMID: 26743536 DOI: 10.1007/s00251-015-0895-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/23/2015] [Indexed: 12/12/2022]
Abstract
We investigated whether levels and repertoires of anti-interleukin-18 (IL-18) autoantibodies (auto-Abs) differ in multiple sclerosis (MS) patients and healthy donors (HDs). IL-18 concentration in MS patients' sera was higher than in HD, but the level of anti-IL-18 auto-Abs was lower in MS patients. Correlation patterns of IL-18/anti-IL-18 auto-Abs system differed in HD and MS patients, so we have compared segment composition of the anti-IL-18 single-chain variable fragments (scFvs) selected from MS and naïve phage display libraries. Considerable differences between anti-IL-18 auto-Abs of these libraries were found. MS panel contained auto-Abs displaying both signs of "fetal" and somatically hypermutated repertoires. Naïve panel mainly contained the naïve antibodies. These variations from the norm are possible results of abnormal regulation of the repertoire perhaps determined by remodeling of the molecular mechanisms involved in the V(D)J recombination and/or abnormal selection by antigen in MS pathogenesis.
Collapse
|
25
|
Scherer F, van der Burgt M, Kiełbasa SM, Bertinetti-Lapatki C, Dühren von Minden M, Mikesch K, Zirlik K, de Wreede L, Veelken H, Navarrete MA. Selection patterns of B-cell receptors and the natural history of follicular lymphoma. Br J Haematol 2015; 175:972-975. [PMID: 26687432 DOI: 10.1111/bjh.13901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Florian Scherer
- Department of Haematology and Oncology, University Medical Centre Freiburg, Freiburg, Germany
| | - Marlon van der Burgt
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Szymon M Kiełbasa
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Marcus Dühren von Minden
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Kristina Mikesch
- Department of Haematology and Oncology, University Medical Centre Freiburg, Freiburg, Germany
| | - Katja Zirlik
- Department of Haematology and Oncology, University Medical Centre Freiburg, Freiburg, Germany
| | - Liesbeth de Wreede
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hendrik Veelken
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcelo A Navarrete
- Department of Haematology, Leiden University Medical Centre, Leiden, The Netherlands.,School of Medicine, University of Magallanes, Punta Arenas, Chile
| |
Collapse
|
26
|
Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med 2015; 7:121. [PMID: 26589402 PMCID: PMC4654805 DOI: 10.1186/s13073-015-0243-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-throughput sequencing of B-cell immunoglobulin repertoires is increasingly being applied to gain insights into the adaptive immune response in healthy individuals and in those with a wide range of diseases. Recent applications include the study of autoimmunity, infection, allergy, cancer and aging. As sequencing technologies continue to improve, these repertoire sequencing experiments are producing ever larger datasets, with tens- to hundreds-of-millions of sequences. These data require specialized bioinformatics pipelines to be analyzed effectively. Numerous methods and tools have been developed to handle different steps of the analysis, and integrated software suites have recently been made available. However, the field has yet to converge on a standard pipeline for data processing and analysis. Common file formats for data sharing are also lacking. Here we provide a set of practical guidelines for B-cell receptor repertoire sequencing analysis, starting from raw sequencing reads and proceeding through pre-processing, determination of population structure, and analysis of repertoire properties. These include methods for unique molecular identifiers and sequencing error correction, V(D)J assignment and detection of novel alleles, clonal assignment, lineage tree construction, somatic hypermutation modeling, selection analysis, and analysis of stereotyped or convergent responses. The guidelines presented here highlight the major steps involved in the analysis of B-cell repertoire sequencing data, along with recommendations on how to avoid common pitfalls.
Collapse
Affiliation(s)
- Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA. .,Departments of Pathology and Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Liberman G, Benichou JIC, Maman Y, Glanville J, Alter I, Louzoun Y. Estimate of within population incremental selection through branch imbalance in lineage trees. Nucleic Acids Res 2015; 44:e46. [PMID: 26586802 PMCID: PMC4797263 DOI: 10.1093/nar/gkv1198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/18/2015] [Indexed: 01/09/2023] Open
Abstract
Incremental selection within a population, defined as limited fitness changes following mutation, is an important aspect of many evolutionary processes. Strongly advantageous or deleterious mutations are detected using the synonymous to non-synonymous mutations ratio. However, there are currently no precise methods to estimate incremental selection. We here provide for the first time such a detailed method and show its precision in multiple cases of micro-evolution. The proposed method is a novel mixed lineage tree/sequence based method to detect within population selection as defined by the effect of mutations on the average number of offspring. Specifically, we propose to measure the log of the ratio between the number of leaves in lineage trees branches following synonymous and non-synonymous mutations. The method requires a high enough number of sequences, and a large enough number of independent mutations. It assumes that all mutations are independent events. It does not require of a baseline model and is practically not affected by sampling biases. We show the method's wide applicability by testing it on multiple cases of micro-evolution. We show that it can detect genes and inter-genic regions using the selection rate and detect selection pressures in viral proteins and in the immune response to pathogens.
Collapse
Affiliation(s)
- Gilad Liberman
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel
| | | | - Yaakov Maman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, USA Howard Hughes Medical Institute, New Haven, CT 06519, USA
| | - Jacob Glanville
- Program in Computational and Systems Immunology, Stanford University, Stanford, CA 94305, USA Department of Pathology, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA Program in Immunology, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA Distributed Bio, San Francisco, CA 94080, USA
| | - Idan Alter
- Department of Mathematics, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Yoram Louzoun
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan 5290002, Israel Department of Mathematics, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
28
|
Berkowska MA, Schickel JN, Grosserichter-Wagener C, de Ridder D, Ng YS, van Dongen JJM, Meffre E, van Zelm MC. Circulating Human CD27-IgA+ Memory B Cells Recognize Bacteria with Polyreactive Igs. THE JOURNAL OF IMMUNOLOGY 2015; 195:1417-26. [PMID: 26150533 DOI: 10.4049/jimmunol.1402708] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
The vast majority of IgA production occurs in mucosal tissue following T cell-dependent and T cell-independent Ag responses. To study the nature of each of these responses, we analyzed the gene-expression and Ig-reactivity profiles of T cell-dependent CD27(+)IgA(+) and T cell-independent CD27(-)IgA(+) circulating memory B cells. Gene-expression profiles of IgA(+) subsets were highly similar to each other and to IgG(+) memory B cell subsets, with typical upregulation of activation markers and downregulation of inhibitory receptors. However, we identified the mucosa-associated CCR9 and RUNX2 genes to be specifically upregulated in CD27(-)IgA(+) B cells. We also found that CD27(-)IgA(+) B cells expressed Abs with distinct Ig repertoire and reactivity compared with those from CD27(+)IgA(+) B cells. Indeed, Abs from CD27(-)IgA(+) B cells were weakly mutated, often used Igλ chain, and were enriched in polyreactive clones recognizing various bacterial species. Hence, T cell-independent IgA responses are likely involved in the maintenance of gut homeostasis through the production of polyreactive mutated IgA Abs with cross-reactive anti-commensal reactivity.
Collapse
Affiliation(s)
- Magdalena A Berkowska
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | | | - Dick de Ridder
- The Delft Bioinformatics Lab, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, 2628 CD Delft, the Netherlands
| | - Yen Shing Ng
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511; and
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, 3015 CN Rotterdam, the Netherlands;
| |
Collapse
|
29
|
Eksteen M, Tiller H, Averina M, Heide G, Kjaer M, Ghevaert C, Michaelsen TE, Ihle Ø, Husebekk A, Skogen B, Stuge TB. Characterization of a human platelet antigen-1a-specific monoclonal antibody derived from a B cell from a woman alloimmunized in pregnancy. THE JOURNAL OF IMMUNOLOGY 2015; 194:5751-60. [PMID: 25972474 DOI: 10.4049/jimmunol.1401599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022]
Abstract
Human platelet Ag (HPA)-1a, located on integrin β3, is the main target for alloantibodies responsible for fetal and neonatal alloimmune thrombocytopenia (FNAIT) in the white population. There are ongoing efforts to develop an Ab prophylaxis and therapy to prevent or treat FNAIT. In this study, an mAb specific for HPA-1a, named 26.4, was derived from an immortalized B cell from an alloimmunized woman who had an infant affected by FNAIT. It is the only HPA-1a-specific human mAb with naturally paired H and L chains. Specific binding of mAb 26.4, both native and recombinant forms, to platelets and to purified integrins αIIbβ3 (from platelets) and αVβ3 (from trophoblasts) from HPA-1a(+) donors was demonstrated by flow cytometry and surface plasmon resonance technology, respectively. No binding to HPA-1a(-) platelets or integrins was detected. Moreover, the Ab binds with higher affinity to integrin αVβ3 compared with a second HPA-1a-specific human mAb, B2G1. Further in vitro experimentation demonstrated that mAb 26.4 can opsonize HPA-1a(+) platelets for enhanced phagocytosis by monocytes, inhibit binding of maternal polyclonal anti-HPA-1a Abs, and weakly inhibit aggregation of HPA-1a-heterozygous platelets, the latter with no predicted clinical relevance. Thus, mAb 26.4 is highly specific for HPA-1a and could potentially be explored for use as a prophylactic or therapeutic reagent for FNAIT intervention and as a phenotyping reagent to identify women at risk for immunization.
Collapse
Affiliation(s)
- Mariana Eksteen
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Heidi Tiller
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Obstetrics and Gynecology, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Maria Averina
- Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Gøril Heide
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mette Kjaer
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, N-9038 Tromsø, Norway; Prophylix Pharma AS, Forskningsparken, N-9294 Tromsø, Norway
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, United Kingdom; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0PT, United Kingdom
| | - Terje E Michaelsen
- The Norwegian Institute of Public Health, N-0403 Oslo, Norway; and School of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Øistein Ihle
- The Norwegian Institute of Public Health, N-0403 Oslo, Norway; and
| | - Anne Husebekk
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, N-9038 Tromsø, Norway
| | - Bjørn Skogen
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Laboratory Medicine, Diagnostic Clinic, University Hospital of North Norway, N-9038 Tromsø, Norway; Prophylix Pharma AS, Forskningsparken, N-9294 Tromsø, Norway
| | - Tor B Stuge
- Immunology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway;
| |
Collapse
|
30
|
Genomic and epigenomic co-evolution in follicular lymphomas. Leukemia 2014; 29:456-63. [DOI: 10.1038/leu.2014.209] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/08/2014] [Accepted: 06/25/2014] [Indexed: 01/07/2023]
|
31
|
Kawamoto S, Maruya M, Kato L, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M, Fagarasan S. Foxp3+ T Cells Regulate Immunoglobulin A Selection and Facilitate Diversification of Bacterial Species Responsible for Immune Homeostasis. Immunity 2014; 41:152-65. [DOI: 10.1016/j.immuni.2014.05.016] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
|
32
|
Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ. Proc Natl Acad Sci U S A 2014; 111:9585-90. [PMID: 24979783 DOI: 10.1073/pnas.1402485111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Memory B cells and long-lived bone marrow-resident plasma cells maintain humoral immunity. Little is known about the intrinsic mechanisms that are essential for forming memory B cells or endowing them with the ability to rapidly differentiate upon reexposure while maintaining the population over time. Histone modifications have been shown to regulate lymphocyte development, but their role in regulating differentiation and maintenance of B-cell subsets during an immune response is unclear. Using stage-specific deletion of monocytic leukemia zinc finger protein (MOZ), a histone acetyltransferase, we demonstrate that mutation of this chromatin modifier alters fate decisions in both primary and secondary responses. In the absence of MOZ, germinal center B cells were significantly impaired in their ability to generate dark zone centroblasts, with a concomitant decrease in both cell-cycle progression and BCL-6 expression. In contrast, there was increased differentiation to IgM and low-affinity IgG1(+) memory B cells. The lack of MOZ affected the functional outcome of humoral immune responses, with an increase in secondary germinal centers and a corresponding decrease in secondary high-affinity antibody-secreting cell formation. Therefore, these data provide strong evidence that manipulating epigenetic modifiers can regulate fate decisions during humoral responses, and thus could be targeted for therapeutic intervention.
Collapse
|
33
|
Michaeli M, Tabibian-Keissar H, Schiby G, Shahaf G, Pickman Y, Hazanov L, Rosenblatt K, Dunn-Walters DK, Barshack I, Mehr R. Immunoglobulin gene repertoire diversification and selection in the stomach - from gastritis to gastric lymphomas. Front Immunol 2014; 5:264. [PMID: 24917868 PMCID: PMC4042156 DOI: 10.3389/fimmu.2014.00264] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/20/2014] [Indexed: 01/06/2023] Open
Abstract
Chronic gastritis is characterized by gastric mucosal inflammation due to autoimmune responses or infection, frequently with Helicobacter pylori. Gastritis with H. pylori background can cause gastric mucosa-associated lymphoid tissue lymphoma (MALT-L), which sometimes further transforms into diffuse large B-cell lymphoma (DLBCL). However, gastric DLBCL can also be initiated de novo. The mechanisms underlying transformation into DLBCL are not completely understood. We analyzed immunoglobulin repertoires and clonal trees to investigate whether and how immunoglobulin gene repertoires, clonal diversification, and selection in gastritis, gastric MALT-L, and DLBCL differ from each other and from normal responses. The two gastritis types (positive or negative for H. pylori) had similarly diverse repertoires. MALT-L dominant clones (defined as the largest clones in each sample) presented higher diversification and longer mutational histories compared with all other conditions. DLBCL dominant clones displayed lower clonal diversification, suggesting the transforming events are triggered by similar responses in different patients. These results are surprising, as we expected to find similarities between the dominant clones of gastritis and MALT-L and between those of MALT-L and DLBCL.
Collapse
Affiliation(s)
- Miri Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Hilla Tabibian-Keissar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Ginette Schiby
- Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Gitit Shahaf
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Yishai Pickman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Lena Hazanov
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | - Deborah K. Dunn-Walters
- Division of Immunology, Infection, and Inflammatory Diseases, King’s College London School of Medicine, London, UK
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
34
|
Kepler TB, Munshaw S, Wiehe K, Zhang R, Yu JS, Woods CW, Denny TN, Tomaras GD, Alam SM, Moody MA, Kelsoe G, Liao HX, Haynes BF. Reconstructing a B-Cell Clonal Lineage. II. Mutation, Selection, and Affinity Maturation. Front Immunol 2014; 5:170. [PMID: 24795717 PMCID: PMC4001017 DOI: 10.3389/fimmu.2014.00170] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/30/2014] [Indexed: 11/13/2022] Open
Abstract
Affinity maturation of the antibody response is a fundamental process in adaptive immunity during which B-cells activated by infection or vaccination undergo rapid proliferation accompanied by the acquisition of point mutations in their rearranged immunoglobulin (Ig) genes and selection for increased affinity for the eliciting antigen. The rate of somatic hypermutation at any position within an Ig gene is known to depend strongly on the local DNA sequence, and Ig genes have region-specific codon biases that influence the local mutation rate within the gene resulting in increased differential mutability in the regions that encode the antigen-binding domains. We have isolated a set of clonally related natural Ig heavy chain-light chain pairs from an experimentally infected influenza patient, inferred the unmutated ancestral rearrangements and the maturation intermediates, and synthesized all the antibodies using recombinant methods. The lineage exhibits a remarkably uniform rate of improvement of the effective affinity to influenza hemagglutinin (HA) over evolutionary time, increasing 1000-fold overall from the unmutated ancestor to the best of the observed antibodies. Furthermore, analysis of selection reveals that selection and mutation bias were concordant even at the level of maturation to a single antigen. Substantial improvement in affinity to HA occurred along mutationally preferred paths in sequence space and was thus strongly facilitated by the underlying local codon biases.
Collapse
Affiliation(s)
- Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine , Boston, MA , USA ; Department of Mathematics and Statistics, Boston University , Boston, MA , USA
| | - Supriya Munshaw
- Center for Viral Hepatitis Research, Johns Hopkins University , Baltimore, MD , USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA
| | - Ruijun Zhang
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA
| | - Jae-Sung Yu
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - Christopher W Woods
- Department of Medicine, Duke University Medical Center , Durham, NC , USA ; Department of Pathology, Duke University Medical Center , Durham, NC , USA ; Hubert-Yeargan Center for Global Health, Duke University Medical Center , Durham, NC , USA ; Department of Pediatrics, Duke University Medical Center , Durham, NC , USA
| | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA ; Department of Immunology, Duke University Medical Center , Durham, NC , USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - M Anthony Moody
- Center for Viral Hepatitis Research, Johns Hopkins University , Baltimore, MD , USA ; Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Immunology, Duke University Medical Center , Durham, NC , USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center , Durham, NC , USA ; Department of Medicine, Duke University Medical Center , Durham, NC , USA
| |
Collapse
|
35
|
Conter LJ, Song E, Shlomchik MJ, Tomayko MM. CD73 expression is dynamically regulated in the germinal center and bone marrow plasma cells are diminished in its absence. PLoS One 2014; 9:e92009. [PMID: 24664100 PMCID: PMC3963874 DOI: 10.1371/journal.pone.0092009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/19/2014] [Indexed: 12/20/2022] Open
Abstract
CD73 catalyzes the conversion of extracellular nucleosides to adenosine, modulating inflammatory and T cell responses. Elevated expression of CD73 marks subpopulations of murine memory B cells (MBC), but its role in memory development or function is unknown. Here, we demonstrate that CD73 is progressively upregulated on germinal center (GC) B cells following immunization, is expressed at even higher levels among T follicular helper cells, but is absent among plasma cells (PC) and plasmablasts (PB). We analyzed the T-dependent B cell response in CD73 knockout mice (CD73KO). During the early response, CD73KO and wild type (WT) mice formed GCs, MBCs and splenic PBs and PCs similarly, and MBCs functioned similarly in the early secondary response. Late in the primary response, however, bone marrow (BM) PCs were markedly decreased in CD73KO animals. Tracking this phenotype, we found that CD73 expression was required on BM-derived cells for optimal BM PC responses. However, deletion of CD73 from either B or T lymphocytes alone did not recapitulate the phenotype. This suggests that CD73 expression is sufficient on either cell type, consistent with its function as an ectoenzyme. Together, these findings suggest that CD73-dependent adenosine signaling is prominent in the mature GC and required for establishment of the long-lived PC compartment, thus identifying a novel role for CD73 in humoral immunity.
Collapse
Affiliation(s)
- Laura J. Conter
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Eunice Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mark J. Shlomchik
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mary M. Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
36
|
Hershberg U, Meng W, Zhang B, Haff N, St Clair EW, Cohen PL, McNair PD, Li L, Levesque MC, Luning Prak ET. Persistence and selection of an expanded B-cell clone in the setting of rituximab therapy for Sjögren's syndrome. Arthritis Res Ther 2014; 16:R51. [PMID: 24517398 PMCID: PMC3978607 DOI: 10.1186/ar4481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/13/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Subjects with primary Sjögren’s syndrome (SjS) have an increased risk of developing B-cell lymphoma and may harbor monoclonal B-cell expansions in the peripheral blood. Expanded B-cell clones could be pathogenic, and their persistence could exacerbate disease or predispose toward the development of lymphoma. Therapy with anti-CD20 (rituximab) has the potential to eliminate expanded B-cell clones and thereby potentially ameliorate disease. This study was undertaken to identify and track expanded B-cell clones in the blood of subjects with primary SjS who were treated with rituximab. Methods To determine whether circulating B-cell clones in subjects with primary SjS emerge or remain after B cell-depleting therapy with rituximab, we studied the antibody heavy-chain repertoire. We performed single-memory B-cell and plasmablast sorting and antibody heavy-chain sequencing in six rituximab-treated SjS subjects over the course of a 1-year follow-up period. Results Expanded B-cell clones were identified in four out of the six rituximab-treated SjS subjects, based upon the independent amplification of sequences with identical or highly similar VH, DH, and JH gene segments. We identified one SjS subject with a large expanded B-cell clone that was present prior to therapy and persisted after therapy. Somatic mutations in the clone were numerous but did not increase in frequency over the course of the 1-year follow-up, suggesting that the clone had been present for a long period of time. Intriguingly, a majority of the somatic mutations in the clone were silent, suggesting that the clone was under chronic negative selection. Conclusions For some subjects with primary SjS, these data show that (a) expanded B-cell clones are readily identified in the peripheral blood, (b) some clones are not eliminated by rituximab, and (c) persistent clones may be under chronic negative selection or may not be antigen-driven. The analysis of sequence variation among members of an expanded clone may provide a novel means of measuring the chronicity and selection of expanded B-cell populations in humans.
Collapse
|
37
|
McIntyre D, Zuckerman NS, Field M, Mehr R, Stott DI. The V(H) repertoire and clonal diversification of B cells in inflammatory myopathies. Eur J Immunol 2014; 44:585-96. [PMID: 24343314 DOI: 10.1002/eji.201343315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/24/2013] [Accepted: 12/11/2013] [Indexed: 01/12/2023]
Abstract
The contribution of antigen-driven B-cell adaptive immune responses within the inflamed muscle of inflammatory myopathies (IMs) is largely unknown. In this study, we investigated the immunoglobulin V(H) gene repertoire, somatic hypermutation, clonal diversification, and selection of infiltrating B cells in muscle biopsies from IM patients (dermatomyositis and polymyositis), to determine whether B cells and/or plasma cells contribute to the associated pathologies of these diseases. The data reveal that Ig V(H) gene repertoires of muscle-infiltrating B cells deviate from the normal V(H) gene repertoire in individual patients, and differ between different types of IMs. Analysis of somatic mutations revealed clonal diversification of muscle-infiltrating B cells and evidence for a chronic B-cell response within the inflamed muscle. We conclude that muscle-infiltrating B cells undergo selection, somatic hypermutation and clonal diversification in situ during antigen-driven immune responses in patients with IMs, providing insight into the contribution of B cells to the pathological mechanisms of these disorders.
Collapse
Affiliation(s)
- Donna McIntyre
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
38
|
Uduman M, Shlomchik MJ, Vigneault F, Church GM, Kleinstein SH. Integrating B cell lineage information into statistical tests for detecting selection in Ig sequences. THE JOURNAL OF IMMUNOLOGY 2013; 192:867-74. [PMID: 24376267 DOI: 10.4049/jimmunol.1301551] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detecting selection in B cell Ig sequences is critical to understanding affinity maturation and can provide insights into Ag-driven selection in normal and pathologic immune responses. The most common sequence-based methods for detecting selection analyze the ratio of replacement and silent mutations using a binomial statistical analysis. However, these approaches have been criticized for low sensitivity. An alternative method is based on the analysis of lineage trees constructed from sets of clonally related Ig sequences. Several tree shape measures have been proposed as indicators of selection that can be statistically compared across cohorts. However, we show that tree shape analysis is confounded by underlying experimental factors that are difficult to control for in practice, including the sequencing depth and number of generations in each clone. Thus, although lineage tree shapes may reflect selection, their analysis alone is an unreliable measure of in vivo selection. To usefully capture the information provided by lineage trees, we propose a new method that applies the binomial statistical framework to mutations identified based on lineage tree structure. This hybrid method is able to detect selection with increased sensitivity in both simulated and experimental data sets. We anticipate that this approach will be especially useful in the analysis of large-scale Ig sequencing data sets generated by high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Mohamed Uduman
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
| | | | | | | | | |
Collapse
|
39
|
Goenka R, Matthews AH, Zhang B, O'Neill PJ, Scholz JL, Migone TS, Leonard WJ, Stohl W, Hershberg U, Cancro MP. Local BLyS production by T follicular cells mediates retention of high affinity B cells during affinity maturation. ACTA ACUST UNITED AC 2013; 211:45-56. [PMID: 24367004 PMCID: PMC3892970 DOI: 10.1084/jem.20130505] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BLyS expression by GC follicular T cells is required for the efficient selection of high-affinity GC B cells. We have assessed the role of B lymphocyte stimulator (BLyS) and its receptors in the germinal center (GC) reaction and affinity maturation. Despite ample BLyS retention on B cells in follicular (FO) regions, the GC microenvironment lacks substantial BLyS. This reflects IL-21–mediated down-regulation of the BLyS receptor TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor) on GC B cells, thus limiting their capacity for BLyS binding and retention. Within the GC, FO helper T cells (TFH cells) provide a local source of BLyS. Whereas T cell–derived BLyS is dispensable for normal GC cellularity and somatic hypermutation, it is required for the efficient selection of high affinity GC B cell clones. These findings suggest that during affinity maturation, high affinity clones rely on TFH-derived BLyS for their persistence.
Collapse
Affiliation(s)
- Radhika Goenka
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schwartz GW, Hershberg U. Germline Amino Acid Diversity in B Cell Receptors is a Good Predictor of Somatic Selection Pressures. Front Immunol 2013; 4:357. [PMID: 24265630 PMCID: PMC3820969 DOI: 10.3389/fimmu.2013.00357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/21/2013] [Indexed: 11/13/2022] Open
Abstract
The diversity of the immune repertoire is important for the adaptive immune system’s ability to detect pathogens. Much of this diversity is generated in two steps, first through the recombination of germline gene segments and second through hypermutation during an immune response. While both steps are to some extent based on the germline level repertoire of genes, the final structure and selection of specific receptors is at the somatic level. How germline diversity and selection relate to somatic diversity and selection has not been clear. To investigate how germline diversity relates to somatic diversity and selection, we considered the published repertoire of Ig heavy chain V genes taken from the blood of 12 individuals, post-vaccination against influenza, sequenced by 454 high-throughput sequencing. We here show that when we consider individual amino acid positions in the heavy chain V gene sequence, there exists a strong correlation between the diversity of the germline repertoire at a position and the number of B cell clones that change amino acids at that position. At the same time, we find that the diversity of amino acids used in the mutated positions is greater than in the germline, albeit still correlated to germline diversity. From these findings, we propose that while germline diversity and germline amino acid usage at a given position do not fully specify the amino acid mutant needed to promote survival of specific clones, germline diversity at a given position is a good indicator for the potential to survive after somatic mutation at that position. We would therefore suggest that germline diversity at each specific position is the better a priori model for the effects of somatic mutation and selection, than simply the division into complementarity determining and framework regions.
Collapse
Affiliation(s)
- Gregory W Schwartz
- Systems Immunology Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University , Philadelphia, PA , USA
| | | |
Collapse
|
41
|
Liberman G, Benichou J, Tsaban L, Glanville J, Louzoun Y. Multi Step Selection in Ig H Chains is Initially Focused on CDR3 and Then on Other CDR Regions. Front Immunol 2013; 4:274. [PMID: 24062742 PMCID: PMC3775539 DOI: 10.3389/fimmu.2013.00274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/28/2013] [Indexed: 11/13/2022] Open
Abstract
AFFINITY MATURATION OCCURS THROUGH TWO SELECTION PROCESSES the choice of appropriate clones (clonal selection), and the internal evolution within clones, induced by somatic hyper-mutations, where high affinity mutants are selected for. When a final population of immunoglobulin sequences is observed, the genetic composition of this population is affected by a combination of these two processes. Different immune induced diseases can result from the failure of regulation of clonal selection or of the regulation of the within clone affinity maturation. In order to understand each of these processes separately, we propose a mixed lineage tree/sequence based method to detect within clone selection as defined by the effect of mutations on the average number of offspring. Specifically, we measure the imbalance in the number of leaves in lineage trees branches following synonymous and non-synonymous (NS) mutations. If a mutation is positively selected, we expect the number of leaves in the sub-tree below this mutation to be larger than in the parallel sub-tree without the mutation. The ratio between the number of leaves in such branches following NS mutations can be used to measure selection within a clone. We apply this method to the sampled Ig repertoire from multiple healthy volunteers and show that within clone selection is positive in the CDR2 region and either positive or negative in the CDR3 and FWR3 regions. Selection occurs already at the IgM isotype level mainly in the DH gene region, with a strong negative selection in the join region. This is followed in the later memory stages in the CDR2 region. We have not studied here the FWR1 and CDR1 regions. An important advantage of this method is that it is very weakly affected by the baseline mutation model or by sampling biases, as are most synonymous to NS mutations ratio based methods.
Collapse
Affiliation(s)
- Gilad Liberman
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan , Israel
| | | | | | | | | |
Collapse
|
42
|
Michaeli M, Barak M, Hazanov L, Noga H, Mehr R. Automated analysis of immunoglobulin genes from high-throughput sequencing: life without a template. J Clin Bioinforma 2013; 3:15. [PMID: 23977981 PMCID: PMC3846367 DOI: 10.1186/2043-9113-3-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Background Immunoglobulin (that is, antibody) and T cell receptor genes are created through somatic gene rearrangement from gene segment libraries. Immunoglobulin genes are further diversified by somatic hypermutation and selection during the immune response. Studying the repertoires of these genes yields valuable insights into immune system function in infections, aging, autoimmune diseases and cancers. The introduction of high throughput sequencing has generated unprecedented amounts of repertoire and mutation data from immunoglobulin genes. However, common analysis programs are not appropriate for pre-processing and analyzing these data due to the lack of a template or reference for the whole gene. Results We present here the automated analysis pipeline we created for this purpose, which integrates various software packages of our own development and others’, and demonstrate its performance. Conclusions Our analysis pipeline presented here is highly modular, and makes it possible to analyze the data resulting from high-throughput sequencing of immunoglobulin genes, in spite of the lack of a template gene. An executable version of the Automation program (and its source code) is freely available for downloading from our website: http://immsilico2.lnx.biu.ac.il/Software.html.
Collapse
Affiliation(s)
- Miri Michaeli
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | |
Collapse
|
43
|
Fang L, Lowther DE, Meizlish ML, Anderson RCE, Bruce JN, Devine L, Huttner AJ, Kleinstein SH, Lee JY, Stern JNH, Yaari G, Lovato L, Cronk KM, O'Connor KC. The immune cell infiltrate populating meningiomas is composed of mature, antigen-experienced T and B cells. Neuro Oncol 2013; 15:1479-90. [PMID: 23978377 DOI: 10.1093/neuonc/not110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Meningiomas often harbor an immune cell infiltrate that can include substantial numbers of T and B cells. However, their phenotype and characteristics remain undefined. To gain a deeper understanding of the T and B cell repertoire in this tumor, we characterized the immune infiltrate of 28 resected meningiomas representing all grades. METHODS Immunohistochemistry was used to grossly characterize and enumerate infiltrating lymphocytes. A molecular analysis of the immunoglobulin variable region of tumor-infiltrating B cells was used to characterize their antigen experience. Flow cytometry of fresh tissue homogenate and paired peripheral blood lymphocytes was used to identify T cell phenotypes and characterize the T cell repertoire. RESULTS A conspicuous B and T cell infiltrate, primarily clustered in perivascular spaces, was present in the microenvironment of most tumors examined. Characterization of 294 tumor-infiltrating B cells revealed clear evidence of antigen experience, in that the cardinal features of an antigen-driven B cell response were present. Meningiomas harbored populations of antigen-experienced CD4+ and CD8+ memory/effector T cells, regulatory T cells, and T cells expressing the immune checkpoint molecules PD-1 and Tim-3, indicative of exhaustion. All of these phenotypes were considerably enriched relative to their frequency in the circulation. The T cell repertoire in the tumor microenvironment included populations that were not reflected in paired peripheral blood. CONCLUSION The tumor microenvironment of meningiomas often includes postgerminal center B cell populations. These tumors invariably include a selected, antigen-experienced, effector T cell population enriched by those that express markers of an exhausted phenotype.
Collapse
Affiliation(s)
- Liangjuan Fang
- Corresponding Author: Dr. Kevin C. O'Connor, PhD, Yale School of Medicine, 300 George Street, Room 353J, New Haven, CT, USA 06511..
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Levin M, Ohlin M. Inconclusive evidence for or against positive antigen selection in the shaping of human immunoglobulin E repertoires: a call for new approaches. Int Arch Allergy Immunol 2013; 161:122-6. [PMID: 23343692 DOI: 10.1159/000345421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The mechanisms driving the development of immunoglobulin E (IgE) antibody repertoires are a matter of debate. Alternatives to the classical view on antibody development, involving somatic mutation and antigen-driven selection of high-affinity variants in germinal centers, have been proposed. METHODS We have re-analyzed the pattern of mutations in previously isolated and characterized human clonally unrelated IgE-encoding transcripts using the validated focused binomial methodology to find evidence in such genes of antigen-specific selection. RESULTS As expected there is a selection against replacement mutations in IgE framework regions. In contrast, in all examined cases but one (assessing IgE repertoires of parasite-infected individuals) there was no evidence in favor of either positive or negative selection in complementarity determining regions. Importantly, however, the validated method also failed to detect selection for replacement mutations in two, non-IgE, hypermutated antibody populations targeting tetanus toxoid and vaccinia virus, respectively. CONCLUSIONS Current methodology is unable to define with certainty, using commonly assessed IgE repertoire sizes, whether antigen selection is or is not a major driving force in the establishment of human IgE. New approaches are needed to address this matter.
Collapse
Affiliation(s)
- Mattias Levin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | |
Collapse
|
45
|
Abstract
Follicular lymphoma is a monoclonal B-cell malignancy with each patient's tumor expressing a unique cell surface immunoglobulin (Ig), or B-cell receptor (BCR), that can potentially recognize antigens and/or transduce signals into the tumor cell. Here we evaluated the reactivity of tumor derived Igs for human tissue antigens. Self-reactivity was observed in 26% of tumor Igs (25 of 98). For one follicular lymphoma patient, the recognized self-antigen was identified as myoferlin. This patient's tumor cells bound recombinant myoferlin in proportion to their level of BCR expression, and the binding to myoferlin was preserved despite ongoing somatic hypermutation of Ig variable regions. Furthermore, BCR-mediated signaling was induced after culture of tumor cells with myoferlin. These results suggest that antigen stimulation may provide survival signals to tumor cells and that there is a selective pressure to preserve antigen recognition as the tumor evolves.
Collapse
|
46
|
Abstract
Epstein-Barr virus infection has been epidemiologically associated with the development of multiple autoimmune diseases, particularly systemic lupus erythematosus and multiple sclerosis. Currently, there is no known mechanism that can account for these associations. The germinal-center (GC) model of EBV infection and persistence proposes that EBV gains access to the memory B cell compartment via GC reactions by driving infected cells to differentiate using the virus-encoded LMP1 and LMP2a proteins, which act as functional homologues of CD40 and the B cell receptor, respectively. The ability of LMP2a, when expressed in mice, to allow escape of autoreactive B cells suggests that it could perform a similar role in infected GC B cells, permitting the survival of potentially pathogenic autoreactive B cells. To test this hypothesis, we cloned and expressed antibodies from EBV(+) and EBV(-) memory B cells present during acute infection and profiled their self- and polyreactivity. We find that EBV does persist within self- and polyreactive B cells but find no evidence that it favors the survival of pathogenic autoreactive B cells. On the contrary, EBV(+) memory B cells express lower levels of self-reactive and especially polyreactive antibodies than their uninfected counterparts do. Our work suggests that EBV has only a modest effect on the GC process, which allows it to access and persist within a subtly unique niche of the memory compartment characterized by relatively low levels of self- and polyreactivity. We suggest that this might reflect an active process where EBV and its human host have coevolved so as to minimize the virus's potential to contribute to autoimmune disease.
Collapse
|
47
|
Di Zenzo G, Di Lullo G, Corti D, Calabresi V, Sinistro A, Vanzetta F, Didona B, Cianchini G, Hertl M, Eming R, Amagai M, Ohyama B, Hashimoto T, Sloostra J, Sallusto F, Zambruno G, Lanzavecchia A. Pemphigus autoantibodies generated through somatic mutations target the desmoglein-3 cis-interface. J Clin Invest 2012; 122:3781-90. [PMID: 22996451 DOI: 10.1172/jci64413] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/12/2012] [Indexed: 11/17/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disease of skin and mucous membranes caused by autoantibodies to the desmoglein (DSG) family proteins DSG3 and DSG1, leading to loss of keratinocyte cell adhesion. To learn more about pathogenic PV autoantibodies, we isolated 15 IgG antibodies specific for DSG3 from 2 PV patients. Three antibodies disrupted keratinocyte monolayers in vitro, and 2 were pathogenic in a passive transfer model in neonatal mice. The epitopes recognized by the pathogenic antibodies were mapped to the DSG3 extracellular 1 (EC1) and EC2 subdomains, regions involved in cis-adhesive interactions. Using a site-specific serological assay, we found that the cis-adhesive interface on EC1 recognized by the pathogenic antibody PVA224 is the primary target of the autoantibodies present in the serum of PV patients. The autoantibodies isolated used different heavy- and light-chain variable region genes and carried high levels of somatic mutations in complementary-determining regions, consistent with antigenic selection. Remarkably, binding to DSG3 was lost when somatic mutations were reverted to the germline sequence. These findings identify the cis-adhesive interface of DSG3 as the immunodominant region targeted by pathogenic antibodies in PV and indicate that autoreactivity relies on somatic mutations generated in the response to an antigen unrelated to DSG3.
Collapse
Affiliation(s)
- Giovanni Di Zenzo
- Molecular and cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Allergen specificity of IgG4-expressing B cells in patients with grass pollen allergy undergoing immunotherapy. J Allergy Clin Immunol 2012; 130:663-670.e3. [DOI: 10.1016/j.jaci.2012.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/26/2012] [Accepted: 04/03/2012] [Indexed: 11/20/2022]
|
49
|
Rogosch T, Kerzel S, Hoi KH, Zhang Z, Maier RF, Ippolito GC, Zemlin M. Immunoglobulin analysis tool: a novel tool for the analysis of human and mouse heavy and light chain transcripts. Front Immunol 2012; 3:176. [PMID: 22754554 PMCID: PMC3384897 DOI: 10.3389/fimmu.2012.00176] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/10/2012] [Indexed: 11/15/2022] Open
Abstract
Sequence analysis of immunoglobulin (Ig) heavy and light chain transcripts can refine categorization of B cell subpopulations and can shed light on the selective forces that act during immune responses or immune dysregulation, such as autoimmunity, allergy, and B cell malignancy. High-throughput sequencing yields Ig transcript collections of unprecedented size. The authoritative web-based IMGT/HighV-QUEST program is capable of analyzing large collections of transcripts and provides annotated output files to describe many key properties of Ig transcripts. However, additional processing of these flat files is required to create figures, or to facilitate analysis of additional features and comparisons between sequence sets. We present an easy-to-use Microsoft® Excel® based software, named Immunoglobulin Analysis Tool (IgAT), for the summary, interrogation, and further processing of IMGT/HighV-QUEST output files. IgAT generates descriptive statistics and high-quality figures for collections of murine or human Ig heavy or light chain transcripts ranging from 1 to 150,000 sequences. In addition to traditionally studied properties of Ig transcripts – such as the usage of germline gene segments, or the length and composition of the CDR-3 region – IgAT also uses published algorithms to calculate the probability of antigen selection based on somatic mutational patterns, the average hydrophobicity of the antigen-binding sites, and predictable structural properties of the CDR-H3 loop according to Shirai’s H3-rules. These refined analyses provide in-depth information about the selective forces acting upon Ig repertoires and allow the statistical and graphical comparison of two or more sequence sets. IgAT is easy to use on any computer running Excel® 2003 or higher. Thus, IgAT is a useful tool to gain insights into the selective forces and functional properties of small to extremely large collections of Ig transcripts, thereby assisting a researcher to mine a data set to its fullest.
Collapse
Affiliation(s)
- Tobias Rogosch
- Department of Pediatrics, Philipps-University Marburg Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Yaari G, Uduman M, Kleinstein SH. Quantifying selection in high-throughput Immunoglobulin sequencing data sets. Nucleic Acids Res 2012; 40:e134. [PMID: 22641856 PMCID: PMC3458526 DOI: 10.1093/nar/gks457] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-throughput immunoglobulin sequencing promises new insights into the somatic hypermutation and antigen-driven selection processes that underlie B-cell affinity maturation and adaptive immunity. The ability to estimate positive and negative selection from these sequence data has broad applications not only for understanding the immune response to pathogens, but is also critical to determining the role of somatic hypermutation in autoimmunity and B-cell cancers. Here, we develop a statistical framework for Bayesian estimation of Antigen-driven SELectIoN (BASELINe) based on the analysis of somatic mutation patterns. Our approach represents a fundamental advance over previous methods by shifting the problem from one of simply detecting selection to one of quantifying selection. Along with providing a more intuitive means to assess and visualize selection, our approach allows, for the first time, comparative analysis between groups of sequences derived from different germline V(D)J segments. Application of this approach to next-generation sequencing data demonstrates different selection pressures for memory cells of different isotypes. This framework can easily be adapted to analyze other types of DNA mutation patterns resulting from a mutator that displays hot/cold-spots, substitution preference or other intrinsic biases.
Collapse
Affiliation(s)
- Gur Yaari
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|