1
|
Mehandru S, Colombel JF, Juarez J, Bugni J, Lindsay JO. Understanding the molecular mechanisms of anti-trafficking therapies and their clinical relevance in inflammatory bowel disease. Mucosal Immunol 2023; 16:859-870. [PMID: 37574127 PMCID: PMC11141405 DOI: 10.1016/j.mucimm.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
In patients with inflammatory bowel disease (IBD), a combination of dysbiosis, increased intestinal permeability, and insufficient regulatory responses facilitate the development of chronic inflammation, which is driven by a complex interplay between the mucosal immune system and the environment and sustained by immune priming and ongoing cellular recruitment to the gut. The localization of immune cells is mediated by their expression of chemokine receptors and integrins, which bind to chemokines and adhesion molecules, respectively. In this article, we review the mechanisms of action of anti-trafficking therapies for IBD and consider clinical observations in the context of the different mechanisms of action. Furthermore, we discuss the evolution of molecular resistance to anti-cytokines, in which the composition of immune cells in the gut changes in response to treatment, and the potential implications of this for treatment sequencing. Lastly, we discuss the relevance of mechanism of action to combination therapy for IBD.
Collapse
Affiliation(s)
- Saurabh Mehandru
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jean-Frederic Colombel
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julius Juarez
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James Bugni
- Takeda Pharmaceuticals U.S.A., Inc., Lexington, MA, USA
| | - James O Lindsay
- Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK; Department of Gastroenterology, Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Jiang Z, Wu C. Reciprocal Interactions Between Regulatory T Cells and Intestinal Epithelial Cells. Front Immunol 2022; 13:951339. [PMID: 35860233 PMCID: PMC9289291 DOI: 10.3389/fimmu.2022.951339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
It has been well established that Foxp3+ regulatory T cells (Treg cells) play a crucial role for immune repression and tolerance, protecting the body from autoimmunity and inflammation. Previous studies indicate that intestinal Treg cells are one specialized population of Treg cells, distinct from those in other organ compartments, both functionally and phenotypically. Specific external and internal signals, particularly the presence of microbiota, shape these Treg cells to better cooperate with the gut ecosystem, controlling intestinal physiology. The integrity of intestinal epithelial barrier represents a key feature of gut immune tolerance, which can be regulated by multiple factors. Emerging evidence suggests that bidirectional interactions between gut epithelium and resident T cells significantly contribute to intestinal barrier function. Understanding how Treg cells regulate intestinal barrier integrity provides insights into immune tolerance-mediated mucosal homeostasis, which can further illuminate potential therapeutic strategies for treating inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Sun-Yat Sen University, School of Medicine, Guangzhou, China
- *Correspondence: Zhiqiang Jiang, ; Chuan Wu,
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Health (NIH), Bethesda, MD, United States
- *Correspondence: Zhiqiang Jiang, ; Chuan Wu,
| |
Collapse
|
3
|
TGF-β production by eosinophils drives the expansion of peripherally induced neuropilin - RORγt + regulatory T-cells during bacterial and allergen challenge. Mucosal Immunol 2022; 15:504-514. [PMID: 35169233 PMCID: PMC9038533 DOI: 10.1038/s41385-022-00484-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
|
4
|
Stephens WZ, Kubinak JL, Ghazaryan A, Bauer KM, Bell R, Buhrke K, Chiaro TR, Weis AM, Tang WW, Monts JK, Soto R, Ekiz HA, O'Connell RM, Round JL. Epithelial-myeloid exchange of MHC class II constrains immunity and microbiota composition. Cell Rep 2021; 37:109916. [PMID: 34731608 PMCID: PMC9012449 DOI: 10.1016/j.celrep.2021.109916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IECΔMHC class II) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection. This was associated with increased interindividual microbiota variation and altered proportions of two taxa in the ileum where MHC class II on IECs is highest. Intestinal mononuclear phagocytes (MNPs) have similar MHC class II transcription but less surface MHC class II and are capable of acquiring MHC class II from IECs. Thus, epithelial-myeloid interactions mediate development of adaptive responses to microbial antigens within the gastrointestinal tract.
Collapse
Affiliation(s)
- W Zac Stephens
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Jason L Kubinak
- University of South Carolina School of Medicine, Department of Pathology, Microbiology and Immunology, Columbia, SC 29209, USA
| | - Arevik Ghazaryan
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Kaylyn M Bauer
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Rickesha Bell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Kate Buhrke
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Tyson R Chiaro
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Allison M Weis
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - William W Tang
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - Josh K Monts
- University of Utah School of Medicine, Flow Cytometry Core, Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Ray Soto
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - H Atakan Ekiz
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA; Izmir Institute of Technology, Molecular Biology and Genetics Department, Gulbahce, Izmir 35430, Turkey
| | - Ryan M O'Connell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA.
| | - June L Round
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Yero A, Shi T, Farnos O, Routy JP, Tremblay C, Durand M, Tsoukas C, Costiniuk CT, Jenabian MA. Dynamics and epigenetic signature of regulatory T-cells following antiretroviral therapy initiation in acute HIV infection. EBioMedicine 2021; 71:103570. [PMID: 34500304 PMCID: PMC8429924 DOI: 10.1016/j.ebiom.2021.103570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND HIV infection promotes the expansion of immunosuppressive regulatory T-cells (Tregs), contributing to immune dysfunction, tissue fibrosis and disease progression. Early antiretroviral treatment (ART) upon HIV infection improves CD4 count and decreases immune activation. However, Treg dynamics and their epigenetic regulation following early ART initiation remain understudied. METHODS Treg subsets were characterized by flow cytometry in 103 individuals, including untreated HIV-infected participants in acute and chronic phases, ART-treated in early infection, elite controllers (ECs), immunological controllers (ICs), and HIV-uninfected controls. The methylation status of six regulatory regions of the foxp3 gene was assessed using MiSeq technology. FINDINGS Total Treg frequency increased overtime during HIV infection, which was normalized in early ART recipients. Tregs in untreated individuals expressed higher levels of activation and immunosuppressive markers (CD39, and LAP(TGF-β1)), which remained unchanged following early ART. Expression of gut migration markers (CCR9, Integrin-β7) by Tregs was elevated during untreated HIV infection, while they declined with the duration of ART but not upon early ART initiation. Notably, gut-homing Tregs expressing LAP(TGF-β1) and CD39 remained higher despite early treatment. Additionally, the increase in LAP(TGF-β1)+ Tregs overtime were consistent with higher demethylation of conserved non-coding sequence (CNS)-1 in the foxp3 gene. Remarkably, LAP(TGF-β1)-expressing Tregs in ECs were significantly higher than in uninfected subjects, while the markers of Treg activation and gut migration were not different. INTERPRETATION Early ART initiation was unable to control the levels of immunosuppressive Treg subsets and their gut migration potential, which could ultimately contribute to gut tissue fibrosis and HIV disease progression. FUNDING This study was funded by the Canadian Institutes of Health Research (CIHR, grant MOP 142294) and in part by the AIDS and Infectious Diseases Network of the Réseau SIDA et maladies infectieuses du Fonds de recherche du Québec-Santé (FRQ-S).
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Omar Farnos
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Jean-Pierre Routy
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, Glen Site, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- CHUM Research Centre, Montreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | | | - Christos Tsoukas
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Division of Clinical Immunology and Allergy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Cecilia T Costiniuk
- Research Institute of McGill University Health Centre, Montreal, QC, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC, Canada; Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Wiechers C, Zou M, Galvez E, Beckstette M, Ebel M, Strowig T, Huehn J, Pezoldt J. The microbiota is dispensable for the early stages of peripheral regulatory T cell induction within mesenteric lymph nodes. Cell Mol Immunol 2021; 18:1211-1221. [PMID: 33762684 PMCID: PMC8093251 DOI: 10.1038/s41423-021-00647-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal Foxp3+ regulatory T cell (Treg) subsets are crucial players in tolerance to microbiota-derived and food-borne antigens, and compelling evidence suggests that the intestinal microbiota modulates their generation, functional specialization, and maintenance. Selected bacterial species and microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), have been reported to promote Treg homeostasis in the intestinal lamina propria. Furthermore, gut-draining mesenteric lymph nodes (mLNs) are particularly efficient sites for the generation of peripherally induced Tregs (pTregs). Despite this knowledge, the direct role of the microbiota and their metabolites in the early stages of pTreg induction within mLNs is not fully elucidated. Here, using an adoptive transfer-based pTreg induction system, we demonstrate that neither transfer of a dysbiotic microbiota nor dietary SCFA supplementation modulated the pTreg induction capacity of mLNs. Even mice housed under germ-free (GF) conditions displayed equivalent pTreg induction within mLNs. Further molecular characterization of these de novo induced pTregs from mLNs by dissection of their transcriptomes and accessible chromatin regions revealed that the microbiota indeed has a limited impact and does not contribute to the initialization of the Treg-specific epigenetic landscape. Overall, our data suggest that the microbiota is dispensable for the early stages of pTreg induction within mLNs.
Collapse
Affiliation(s)
- Carolin Wiechers
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric Galvez
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Maria Ebel
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| | - Joern Pezoldt
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Finamore A, Roselli M, Donini L, Brasili DE, Rami R, Carnevali P, Mistura L, Pinto A, Giusti A, Mengheri E. Supplementation with Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13 mixture improves immunity in elderly humans (over 75 years) and aged mice. Nutrition 2019; 63-64:184-192. [PMID: 31029046 DOI: 10.1016/j.nut.2019.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Aging induces several physiologic and immune changes. The usefulness of probiotics in ameliorating age-related disorders remains largely unexplored. The aim of this study was to evaluate the effectiveness of a Bifidobacterium longum Bar33 and Lactobacillus helveticus Bar13 mixture in improving the physiologic status and immunity of older adults (over 75 years). Furthermore, the possible role of such mixture in ameliorating gut immunity in aged mice was investigated. METHODS A randomized, double-blind, placebo-controlled trial was conducted with 98 adults (84.6 ± 7.8 y), supplemented for 30 d with a biscuit containing a probiotic mixture of B. longum Bar33 and L. helveticus Bar13 (1:1), or no probiotics, as placebo. Blood was collected for analysis of biochemical parameters, lymphocyte subpopulations, natural killer activity, and cytokine release. Aged Balb/c mice received the same probiotic mixture or placebo daily for 28 d, then blood and intestinal lymphocyte subpopulations were analyzed. RESULTS The probiotic mixture ameliorated immune response in older adults by increasing naive, activated memory, regulatory T cells, B cells, and natural killer activity and decreasing memory T cells compared with placebo (P < 0.05). The biochemical parameters did not change after probiotic supplementation. In the gut of old mice, the two probiotics modulated cells crucial for gut immune homeostasis by increasing regulatory T (Treg and Tr1) and decreasing γδ T cells compared with control mice (P < 0.05). In addition, B cells increased in the gut and blood of probiotic-treated mice. CONCLUSION Results from the present study data indicated that B. longum Bar33 and L. helveticus Bar13 improve immune function at intestinal and peripheral sites in aging.
Collapse
Affiliation(s)
| | | | | | | | - Rita Rami
- CREA Research Centre for Food and Nutrition, Rome, Italy
| | - Paola Carnevali
- R&D Advanced Research Microbiology, Barilla G&R f.lli SpA, Parma, Italy
| | | | - Alessandro Pinto
- Sapienza University, Department of Experimental Medicine, Rome, Italy
| | - AnnaMaria Giusti
- Sapienza University, Department of Experimental Medicine, Rome, Italy
| | - Elena Mengheri
- CREA Research Centre for Food and Nutrition, Rome, Italy
| |
Collapse
|
8
|
Fernandes C, Wanderley CWS, Silva CMS, Muniz HA, Teixeira MA, Souza NRP, Cândido AGF, Falcão RB, Souza MHLP, Almeida PRC, Câmara LMC, Lima-Júnior RCP. Role of regulatory T cells in irinotecan-induced intestinal mucositis. Eur J Pharm Sci 2018; 115:158-166. [PMID: 29307857 DOI: 10.1016/j.ejps.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Intestinal mucositis (IM) is a common side effect of irinotecan-based chemotherapy. The involvement of inflammatory mediators, such as TNF-α, IL1-β, IL-18 and IL-33, has been demonstrated. However, the role of adaptive immune system cells, whose activation is partially regulated by these cytokines, is yet unknown. Thus, we investigated the role of regulatory T cells (Tregs) in irinotecan-induced IM. C57BL/6 mice were injected with saline or irinotecan (75mgkg-1, i.p.), once a day for 4days, and euthanized at day 1, 3, 5 or 7 following the first dose of irinotecan. For Treg depletion, the mice were pretreated with a low single dose of cyclophosphamide (100mgkg-1, i.p). Intestinal lamina propria lymphocytes were harvested and purified by Percoll gradient. Treg and Th17 cells were identified by flow cytometry. Blood leukocyte count was obtained and ileum samples were collected for histopathological analysis and myeloperoxidase assay. IM caused an accumulation of Tregs and Th17 cells over time. Treg depletion exacerbated intestinal damage, diarrhea, neutrophil infiltration and animal mortality, despite a reduction in Th17 cell number. The frequency of other Th cells increased and was positively correlated with neutrophil infiltration. Tregs showed a negative correlation with neutrophils and the frequency of non-regulatory Th cells. In conclusion, Tregs are important in the control of intestinal damage induced by irinotecan, and their depletion showed a deleterious effect on IM. Activation of these cells appears to be a compensatory mechanism for intestinal inflammation.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | | | | | - Heitor Amorim Muniz
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Maraiza Alves Teixeira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | - Renata Brito Falcão
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | | | | |
Collapse
|
9
|
Sales DS, Ito JT, Zanchetta IA, Annoni R, Aun MV, Ferraz LFS, Cervilha DAB, Negri E, Mauad T, Martins MA, Lopes FDTQS. Regulatory T-Cell Distribution within Lung Compartments in COPD. COPD 2017; 14:533-542. [PMID: 28745532 DOI: 10.1080/15412555.2017.1346069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The importance of the adaptive immune response, specifically the role of regulatory T (Treg) cells in controlling the obstruction progression in smokers, has been highlighted. To quantify the adaptive immune cells in different lung compartments, we used lung tissues from 21 never-smokers without lung disease, 22 current and/or ex-smokers without lung disease (NOS) and 13 current and/or ex-smokers with chronic obstructive pulmonary disease (COPD) for histological analysis. We observed increased T, B, IL-17 and BAFF+ cells in small and large airways of COPD individuals; however, in the NOS, we only observed increase in T and IL-17+ cells only in small airways. A decrease in the density of Treg+, TGF-β+ and IL-10+ in small and large airways was observed only in COPD individuals. In the lymphoid tissues, Treg, T,B-cells and BAFF+ cells were also increased in COPD; however, changes in Treg inhibitory associated cytokines were not observed in this compartment. Therefore, our results suggest that difference in Treg+ cell distributions in lung compartments and the decrease in TGF-β+ and IL-10+ cells in the airways may lead to the obstruction in smokers.
Collapse
Affiliation(s)
- Davi S Sales
- a Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Juliana T Ito
- a Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Ivy A Zanchetta
- a Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Raquel Annoni
- b Department of Pathology, School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Marcelo V Aun
- c Clinical Immunology and Allergy Division, School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Luiz Fernando S Ferraz
- b Department of Pathology, School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Daniela A B Cervilha
- a Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Elnara Negri
- d Department of Medicine, Laboratory of Cell Biology (LIM-59), School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Thais Mauad
- b Department of Pathology, School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Mílton A Martins
- a Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Fernanda D T Q S Lopes
- a Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
10
|
Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy 2017; 72:682-690. [PMID: 27864967 DOI: 10.1111/all.13089] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Under homeostatic conditions, as well as in various diseases, leukocyte migration is a crucial issue for the immune system that is mainly organized through the activation of bone marrow-derived cells in various tissues. Immune cell trafficking is orchestrated by a family of small proteins called chemokines. Leukocytes express cell-surface receptors that bind to chemokines and trigger transendothelial migration. Most allergic diseases, such as asthma, rhinitis, food allergies, and atopic dermatitis, are generally classified by the tissue rather than the type of inflammation, making the chemokine/chemokine receptor system a key point of the immune response. Moreover, because small antagonists can easily block such receptors, various molecules have been developed to suppress the recruitment of immune cells during allergic reactions, representing potential new drugs for allergies. We review the chemokines and chemokine receptors that are important in asthma, food allergies, and atopic dermatitis and their respectively developed antagonists.
Collapse
Affiliation(s)
- L. Castan
- INRA; UR1268 BIA; Nantes France
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- Université de Nantes; Nantes France
| | - A. Magnan
- INSERM; UMR1087; lnstitut du thorax; Nantes France
- CNRS; UMR6291; Nantes France
- CHU de Nantes; Service de Pneumologie; Institut du thorax; Nantes France
| | | |
Collapse
|
11
|
Siede J, Fröhlich A, Datsi A, Hegazy AN, Varga DV, Holecska V, Saito H, Nakae S, Löhning M. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release. PLoS One 2016; 11:e0161507. [PMID: 27548066 PMCID: PMC4993514 DOI: 10.1371/journal.pone.0161507] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022] Open
Abstract
Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 –especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2− Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies.
Collapse
Affiliation(s)
- Julia Siede
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Anja Fröhlich
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Angeliki Datsi
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ahmed N. Hegazy
- Translational Gastroenterology Unit, Nuffield Department of Clinical Medicine, Experimental Medicine Division, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, United Kingdom
| | - Domonkos V. Varga
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Vivien Holecska
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|
12
|
Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin Transl Immunology 2016; 5:e60. [PMID: 26900473 PMCID: PMC4735066 DOI: 10.1038/cti.2015.47] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.
Collapse
|
13
|
Prophylactic Interleukin-2 Treatment Prevents Fetal Gut Inflammation and Injury in an Ovine Model of Chorioamnionitis. Inflamm Bowel Dis 2015; 21:2026-38. [PMID: 26002542 DOI: 10.1097/mib.0000000000000455] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Chorioamnionitis results from an infection of the fetal membranes and is associated with fetal adverse outcomes notably in the intestine. Using a translational ovine model, we showed that intra-amniotic exposure to inflammatory stimuli decreased the regulatory/effector T (Treg/Teff) cell balance in the gut, which was accompanied by intestinal inflammation and mucosal injury. We thus aimed to augment the Treg/Teff cell ratio in the fetal gut by prophylactic IL-2 treatment and evaluate whether it is sufficient to prevent chorioamnionitis-induced intestinal inflammation and mucosal injury. METHODS Fetal sheep (122 d of gestation) were intra-amniotically exposed to lipopolysaccharide for 2 or 7 days with or without prophylactic IL-2 treatment (4 d). We evaluated the infiltration of inflammatory cells in the ileum and mesenteric lymph nodes. Cytokine gene expression was analyzed in fetal ileum and the inflammatory changes were correlated with gut wall integrity. RESULTS IL-2 administration preferentially increased intestinal Treg cells and thus the Treg/Teff cell ratio. Prophylactic IL-2 treatment reduced the lipopolysaccharide-induced influx of neutrophils and CD3(+) T cells and decreased the messenger RNA levels of proinflammatory cytokines including IL-6 and IL-17 in the fetal ileum. Importantly, prophylactic IL-2 treatment prevented mucosal damage without inducing fetal adverse treatment outcomes. CONCLUSIONS Our data show that prophylactic IL-2 treatment prevents fetal intestinal inflammation and mucosal injury in the context of experimental chorioamnionitis. Modulation of the Treg/Teff cell balance may contribute to the protective effects of IL-2.
Collapse
|
14
|
Cao S, Feehley TJ, Nagler CR. The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Lett 2014; 588:4258-66. [PMID: 24791655 PMCID: PMC4216641 DOI: 10.1016/j.febslet.2014.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 12/23/2022]
Abstract
The prevalence of life-threatening anaphylactic responses to food is rising at an alarming rate. The emerging role of the gut microbiota in regulating food allergen sensitization may help explain this trend. The mechanisms by which commensal bacteria influence sensitization to dietary antigens are only beginning to be explored. We have found that a population of mucosa-associated commensal anaerobes prevents food allergen sensitization by promoting an IL-22-dependent barrier protective immune response that limits the access of food allergens to the systemic circulation. This early response is followed by an adaptive immune response mediated in part by an expansion of Foxp3(+) Tregs that fortifies the tolerogenic milieu needed to maintain non-responsiveness to food. Bacterial metabolites, such as short-chain fatty acids, may contribute to the process through their ability to promote Foxp3(+) Treg differentiation. This work suggests that environmentally induced alterations of the gut microbiota offset the regulatory signals conferred by protective bacterial species to promote aberrant responses to food. Our research presents exciting new possibilities for preventing and treating food allergies based on interventions that modulate the composition of the gut microbiota.
Collapse
Affiliation(s)
- Severine Cao
- Department of Pathology and Committee on Immunology, The University of Chicago, 924 East 57th Street, JFK R120, Chicago, IL 60637, United States
| | - Taylor J Feehley
- Department of Pathology and Committee on Immunology, The University of Chicago, 924 East 57th Street, JFK R120, Chicago, IL 60637, United States
| | - Cathryn R Nagler
- Department of Pathology and Committee on Immunology, The University of Chicago, 924 East 57th Street, JFK R120, Chicago, IL 60637, United States.
| |
Collapse
|
15
|
Liu Y, Tran DQ, Fatheree NY, Marc Rhoads J. Lactobacillus reuteri DSM 17938 differentially modulates effector memory T cells and Foxp3+ regulatory T cells in a mouse model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G177-86. [PMID: 24852566 PMCID: PMC4101683 DOI: 10.1152/ajpgi.00038.2014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory disease with evidence of increased production of proinflammatory cytokines in the intestinal mucosa. Lactobacillus reuteri DSM 17938 (LR17938) has been shown to have anti-inflammatory activities in an experimental model of NEC. Activated effector lymphocyte recruitment to sites of inflammation requires the sequential engagement of adhesion molecules such as CD44. The phenotype of CD44(+)CD45RB(lo) separates T effector/memory (Tem) cells from naive (CD44(-)CD45RB(hi)) cells. It is unknown whether these Tem cells participate in the inflammation associated with NEC and can be altered by LR17938. NEC was induced in 8- to 10-day-old C57BL/6J mice by gavage feeding with formula and exposure to hypoxia and cold stress for 4 days. Survival curves and histological scores were analyzed. Lymphocytes isolated from mesenteric lymph nodes and ileum were labeled for CD4, CD44, CD45RB, intracellular Foxp3, and Helios and subsequently analyzed by flow cytometry. LR17938 decreased mortality and the incidence and severity of NEC. The percentage of Tem cells in the ileum and mesenteric lymph nodes was increased in NEC but decreased by LR17938. Conversely, the percentage of CD4(+)Foxp3(+) regulatory T (Treg) cells in the intestine decreased during NEC and was restored to normal by LR17938. The majority of the Treg cells preserved by LR17938 were Helios+ subsets, possibly of thymic origin. In conclusion, LR17938 may represent a useful treatment to prevent NEC. The mechanism of protection by LR17938 involves modulation of the balance between Tem and Treg cells. These T cell subsets might be potential biomarkers and therapeutic targets during intestinal inflammation.
Collapse
Affiliation(s)
- Yuying Liu
- 1Division of Gastroenterology, Department of Pediatrics, University of Texas Health Science Center at Houston Medical School, Houston, Texas; ,3Pediatric Research Center, University of Texas Health Science Center at Houston Medical School, Houston, Texas
| | - Dat Q. Tran
- 2Division of Allergy/Immunology/Rheumatology, Department of Pediatrics, University of Texas Health Science Center at Houston Medical School, Houston, Texas; and ,3Pediatric Research Center, University of Texas Health Science Center at Houston Medical School, Houston, Texas
| | - Nicole Y. Fatheree
- 1Division of Gastroenterology, Department of Pediatrics, University of Texas Health Science Center at Houston Medical School, Houston, Texas;
| | - J. Marc Rhoads
- 1Division of Gastroenterology, Department of Pediatrics, University of Texas Health Science Center at Houston Medical School, Houston, Texas; ,3Pediatric Research Center, University of Texas Health Science Center at Houston Medical School, Houston, Texas
| |
Collapse
|
16
|
Kemgang TS, Kapila S, Shanmugam VP, Kapila R. Cross-talk between probiotic lactobacilli and host immune system. J Appl Microbiol 2014; 117:303-19. [PMID: 24738909 DOI: 10.1111/jam.12521] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/14/2022]
Abstract
The mechanism by which probiotic lactobacilli affect the immune system is strain specific. As the immune system is a multicompartmental system, each strain has its way to interact with it and induce a visible and quantifiable effect. This review summarizes the interplay existing between the host immune system and probiotic lactobacilli, that is, with emphasis on lactobacilli as a prototype probiotic genus. Several aspects including the bacterial-host cross-talk with the mucosal and systemic immune system are presented, as well as short sections on the competing effect towards pathogenic bacteria and their uses as delivery vehicle for antigens.
Collapse
Affiliation(s)
- T S Kemgang
- Department of Animal Biochemistry, National Dairy Research Institute, Karnal, Haryana, India; Department of Food Science/Nutrition, National School of AgroIndustrial Sciences, University of Ngaoundere, Ngaoundere, Adamaoua, Cameroon
| | | | | | | |
Collapse
|