1
|
de Brito Sousa K, Dos Santos Malavazzi TC, Rodrigues MFSD, Silva T, Andreo L, Deana AM, Nunes FD, Bussadori SK, Mesquita-Ferrari RA, Fernandes KPS. Effects of amber LED on inflammatory and regulatory monocytes and lymphocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112848. [PMID: 38266361 DOI: 10.1016/j.jphotobiol.2024.112848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The primary objective of the present study was to assess the impact of amber LED photobiomodulation (PBM) on human monocytes and lymphocytes that were polarized into proinflammatory and regulatory/reparative phenotypes. Human leukocytes were polarized with LPS or LPS + IL-4 for 2 h and irradiated after 2 and 6 h with amber LED (590 nm). Cell absorbance spectrum and gene and protein expression of IL-1β, IL-6, IL-10, IL-17, TNF-α and IFNγ determined after 24 h. The results showed that irradiation did not significantly alter absorbance of non-polarized monocytes, whereas irradiated polarized monocytes presented reduction in absorbance in 625-850 nm region. Irradiated monocytes polarized with LPS + IL-4 presented reduction in absorbance in 600-725 nm region compared to non-irradiated group. Irradiated non-polarized lymphocytes presented absorbance peaks between 650 and 820 nm not seen in non-irradiated group. No difference was found in absorbance pattern of polarized lymphocytes after irradiation. Irradiation led to reduction in protein synthesis of IL-6 and TNFα in monocytes polarized to proinflammatory phenotype and increase in production of IL-17 in lymphocytes. Irradiation reduced production of IL-10 in monocytes and lymphocytes polarized to immunoregulatory phenotype. In conclusion, amber LED modulates light absorbance and expression of important cytokines in inflammatory/repair processes in monocytes and lymphocytes.
Collapse
Affiliation(s)
- Kaline de Brito Sousa
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Tainá Caroline Dos Santos Malavazzi
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | | | - Tamiris Silva
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Lucas Andreo
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Alessandro Melo Deana
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo (FOUSP), São Paulo, SP 05508-000 Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil; Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, Sao Paulo, SP 01504-001, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil; Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, Sao Paulo, SP 01504-001, Brazil
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil.
| |
Collapse
|
2
|
Coulis G, Jaime D, Guerrero-Juarez C, Kastenschmidt JM, Farahat PK, Nguyen Q, Pervolarakis N, McLinden K, Thurlow L, Movahedi S, Hughes BS, Duarte J, Sorn A, Montoya E, Mozaffar I, Dragan M, Othy S, Joshi T, Hans CP, Kimonis V, MacLean AL, Nie Q, Wallace LM, Harper SQ, Mozaffar T, Hogarth MW, Bhattacharya S, Jaiswal JK, Golann DR, Su Q, Kessenbrock K, Stec M, Spencer MJ, Zamudio JR, Villalta SA. Single-cell and spatial transcriptomics identify a macrophage population associated with skeletal muscle fibrosis. SCIENCE ADVANCES 2023; 9:eadd9984. [PMID: 37418531 PMCID: PMC10328414 DOI: 10.1126/sciadv.add9984] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 (gal-3) and osteopontin (Spp1). Spatial transcriptomics, computational inferences of intercellular communication, and in vitro assays indicated that macrophage-derived Spp1 regulates stromal progenitor differentiation. Gal-3+ macrophages were chronically activated in dystrophic muscle, and adoptive transfer assays showed that the gal-3+ phenotype was the dominant molecular program induced within the dystrophic milieu. Gal-3+ macrophages were also elevated in multiple human myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining their transcriptional programs and reveal Spp1 as a major regulator of macrophage and stromal progenitor interactions.
Collapse
Affiliation(s)
- Gerald Coulis
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Diego Jaime
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | | | - Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Philip K. Farahat
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Quy Nguyen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA USA
| | | | - Katherine McLinden
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Lauren Thurlow
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Saba Movahedi
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Brandon S. Hughes
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Jorge Duarte
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Andrew Sorn
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Elizabeth Montoya
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Izza Mozaffar
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California Irvine, Irvine, CA USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO, USA
| | - Chetan P. Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, MO USA
| | - Virginia Kimonis
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Qing Nie
- Department of Mathematics, Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Lindsay M. Wallace
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Tahseen Mozaffar
- Department of Neurology, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Marshall W. Hogarth
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | - Surajit Bhattacharya
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | - Jyoti K. Jaiswal
- Children’s National Hospital, Research Center for Genetic Medicine, Washington, DC, USA
| | | | - Qi Su
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA USA
| | - Michael Stec
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Melissa J. Spencer
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jesse R. Zamudio
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Ardavín C, Alvarez‐Ladrón N, Ferriz M, Gutiérrez‐González A, Vega‐Pérez A. Mouse Tissue-Resident Peritoneal Macrophages in Homeostasis, Repair, Infection, and Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206617. [PMID: 36658699 PMCID: PMC10104642 DOI: 10.1002/advs.202206617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Large peritoneal macrophages (LPMs) are long-lived, tissue-resident macrophages, formed during embryonic life, developmentally and functionally confined to the peritoneal cavity. LPMs provide the first line of defense against life-threatening pathologies of the peritoneal cavity, such as abdominal sepsis, peritoneal metastatic tumor growth, or peritoneal injuries caused by trauma, or abdominal surgery. Apart from their primary phagocytic function, reminiscent of primitive defense mechanisms sustained by coelomocytes in the coelomic cavity of invertebrates, LPMs fulfill an essential homeostatic function by achieving an efficient clearance of apoptotic, that is crucial for the maintenance of self-tolerance. Research performed over the last few years, in mice, has unveiled the mechanisms by which LPMs fulfill a crucial role in repairing peritoneal injuries and controlling microbial and parasitic infections, reflecting that the GATA6-driven LPM transcriptional program can be modulated by extracellular signals associated with pathological conditions. In contrast, recent experimental evidence supports that peritoneal tumors can subvert LPM metabolism and function, leading to the acquisition of a tumor-promoting potential. The remarkable functional plasticity of LPMs can be nevertheless exploited to revert tumor-induced LPM protumor potential, providing the basis for the development of novel immunotherapeutic approaches against peritoneal tumor metastasis based on macrophage reprogramming.
Collapse
Affiliation(s)
- Carlos Ardavín
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Natalia Alvarez‐Ladrón
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Margarita Ferriz
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | | | - Adrián Vega‐Pérez
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
- Present address:
Sandra and Edward Meyer Cancer CenterWeill Cornell Medicine1300 York AvenueNew YorkNY10065USA
| |
Collapse
|
4
|
Jayakumar P, Laganson A, Deng M. GATA6 + Peritoneal Resident Macrophage: The Immune Custodian in the Peritoneal Cavity. Front Pharmacol 2022; 13:866993. [PMID: 35401237 PMCID: PMC8984154 DOI: 10.3389/fphar.2022.866993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peritoneal resident macrophages (PRMs) have been a prominent topic in the research field of immunology due to their critical roles in immune surveillance in the peritoneal cavity. PRMs initially develop from embryonic progenitor cells and are replenished by bone marrow origin monocytes during inflammation and aging. Furthermore, PRMs have been shown to crosstalk with other cells in the peritoneal cavity to control the immune response during infection, injury, and tumorigenesis. With the advance in genetic studies, GATA-binding factor 6 (GATA6) has been identified as a lineage determining transcription factor of PRMs controlling the phenotypic and functional features of PRMs. Here, we review recent advances in the developmental origin, the phenotypic identity, and functions of PRMs, emphasizing the role of GATA6 in the pathobiology of PRMs in host defense, tissue repairing, and peritoneal tumorigenesis.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Andrea Laganson
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Hauck S, Zager P, Halfter N, Wandel E, Torregrossa M, Kakpenova A, Rother S, Ordieres M, Räthel S, Berg A, Möller S, Schnabelrauch M, Simon JC, Hintze V, Franz S. Collagen/hyaluronan based hydrogels releasing sulfated hyaluronan improve dermal wound healing in diabetic mice via reducing inflammatory macrophage activity. Bioact Mater 2021; 6:4342-4359. [PMID: 33997511 PMCID: PMC8105600 DOI: 10.1016/j.bioactmat.2021.04.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Sustained inflammation associated with dysregulated macrophage activation prevents tissue formation and healing of chronic wounds. Control of inflammation and immune cell functions thus represents a promising approach in the development of advanced therapeutic strategies. Here we describe immunomodulatory hyaluronan/collagen (HA-AC/coll)-based hydrogels containing high-sulfated hyaluronan (sHA) as immunoregulatory component for the modulation of inflammatory macrophage activities in disturbed wound healing. Solute sHA downregulates inflammatory activities of bone marrow-derived and tissue-resident macrophages in vitro. This further affects macrophage-mediated pro-inflammatory activation of skin cells as shown in skin ex-vivo cultures. In a mouse model of acute skin inflammation, intradermal injection of sHA downregulates the inflammatory processes in the skin. This is associated with the promotion of an anti-inflammatory gene signature in skin macrophages indicating a shift of their activation profile. For in vivo translation, we designed HA-AC/coll hydrogels allowing delivery of sHA into wounds over a period of at least one week. Their immunoregulatory capacity was analyzed in a translational experimental approach in skin wounds of diabetic db/db mice, an established model for disturbed wound healing. The sHA-releasing hydrogels improved defective tissue repair with reduced inflammation, augmented pro-regenerative macrophage activation, increased vascularization, and accelerated new tissue formation and wound closure.
Collapse
Affiliation(s)
- Sophia Hauck
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Paula Zager
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Norbert Halfter
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Elke Wandel
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Marta Torregrossa
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Sandra Rother
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Michelle Ordieres
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Susann Räthel
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Albrecht Berg
- Biomaterials Department, INNOVENT e.V. Jena, Germany
| | | | | | - Jan C. Simon
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center for Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology und Allergology, Leipzig University, 04103, Leipzig, Germany
- Corresponding author. University Leipzig, Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Song Y, Liao M, Zhao X, Han H, Dong X, Wang X, Du M, Yan H. Vitreous M2 Macrophage-Derived Microparticles Promote RPE Cell Proliferation and Migration in Traumatic Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34554178 PMCID: PMC8475283 DOI: 10.1167/iovs.62.12.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize vitreous microparticles (MPs) in patients with traumatic proliferative vitreoretinopathy (PVR) and investigate their role in PVR pathogenesis. Methods Vitreous MPs were characterized in patients with traumatic PVR, patients with rhegmatogenous retinal detachment (RRD) complicated with PVR, and control subjects by flow cytometry. The presence of M2 macrophages in epiretinal membranes was measured by immunostaining. Vitreous cytokines were quantified by ELISA assay. For in vitro studies, MPs isolated from THP-1 cell differentiated M1 and M2 macrophages, termed M1-MPs and M2-MPs, were used. The effects and mechanisms of M1-MPs and M2-MPs on RPE cell proliferation, migration, and epithelial to mesenchymal transition were analyzed. Results Vitreous MPs derived from photoreceptors, microglia, and macrophages were significantly increased in patients with traumatic PVR in comparison with control and patients with RRD (PVR), whereas no significance was identified between the two control groups. M2 macrophages were present in epiretinal membranes, and their signature cytokines were markedly elevated in the vitreous of patients with traumatic PVR. Moreover, MPs from M2 macrophages were increased in the vitreous of patients with traumatic PVR. In vitro analyses showed that M2-MPs promoted the proliferation and migration of RPE cells via activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. However, M2-MPs did not induce the expression of fibrotic proteins, including fibronectin, α-smooth muscle actin, and N-cadherin in RPE cells. Conclusions This study demonstrated increased MP shedding in the vitreous of patients with traumatic PVR; specifically, MPs derived from M2 polarized macrophages may contribute to PVR progression by stimulating RPE cell proliferation and migration.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Han
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Rasheed A, Rayner KJ. Macrophage Responses to Environmental Stimuli During Homeostasis and Disease. Endocr Rev 2021; 42:407-435. [PMID: 33523133 PMCID: PMC8284619 DOI: 10.1210/endrev/bnab004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/20/2022]
Abstract
Work over the last 40 years has described macrophages as a heterogeneous population that serve as the frontline surveyors of tissue immunity. As a class, macrophages are found in almost every tissue in the body and as distinct populations within discrete microenvironments in any given tissue. During homeostasis, macrophages protect these tissues by clearing invading foreign bodies and/or mounting immune responses. In addition to varying identities regulated by transcriptional programs shaped by their respective environments, macrophage metabolism serves as an additional regulator to temper responses to extracellular stimuli. The area of research known as "immunometabolism" has been established within the last decade, owing to an increase in studies focusing on the crosstalk between altered metabolism and the regulation of cellular immune processes. From this research, macrophages have emerged as a prime focus of immunometabolic studies, although macrophage metabolism and their immune responses have been studied for centuries. During disease, the metabolic profile of the tissue and/or systemic regulators, such as endocrine factors, become increasingly dysregulated. Owing to these changes, macrophage responses can become skewed to promote further pathophysiologic changes. For instance, during diabetes, obesity, and atherosclerosis, macrophages favor a proinflammatory phenotype; whereas in the tumor microenvironment, macrophages elicit an anti-inflammatory response to enhance tumor growth. Herein we have described how macrophages respond to extracellular cues including inflammatory stimuli, nutrient availability, and endocrine factors that occur during and further promote disease progression.
Collapse
Affiliation(s)
- Adil Rasheed
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katey J Rayner
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Park DD, Chen J, Kudelka MR, Jia N, Haller CA, Kosaraju R, Premji AM, Galizzi M, Nairn AV, Moremen KW, Cummings RD, Chaikof EL. Resident and elicited murine macrophages differ in expression of their glycomes and glycan-binding proteins. Cell Chem Biol 2021; 28:567-582.e4. [PMID: 33378651 PMCID: PMC8052306 DOI: 10.1016/j.chembiol.2020.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
The pleiotropic functions of macrophages in immune defense, tissue repair, and maintenance of tissue homeostasis are supported by the heterogeneity in macrophage sub-populations that differ both in ontogeny and polarization. Although glycans and glycan-binding proteins (GBPs) are integral to macrophage function and may contribute to macrophage diversity, little is known about the factors governing their expression. Here, we provide a resource for characterizing the N-/O-glycomes of various murine peritoneal macrophage sub-populations, demonstrating that glycosylation primarily reflects developmental origin and, to a lesser degree, cellular polarization. Furthermore, comparative analysis of GBP-coding genes in resident and elicited macrophages indicated that GBP expression is consistent with specialized macrophage functions and correlates with specific types of displayed glycans. An integrated, semi-quantitative approach was used to confirm distinct expression patterns of glycans and their binding proteins across different macrophages. The data suggest that regulation of glycan-protein complexes may be central to macrophage residence and recruitment.
Collapse
Affiliation(s)
- Diane D Park
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Nan Jia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Revanth Kosaraju
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alykhan M Premji
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Alison V Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
10
|
Muñoz-Garcia J, Cochonneau D, Télétchéa S, Moranton E, Lanoe D, Brion R, Lézot F, Heymann MF, Heymann D. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics 2021; 11:1568-1593. [PMID: 33408768 PMCID: PMC7778581 DOI: 10.7150/thno.50683] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are specialized cells that control tissue homeostasis. They include non-resident and tissue-resident macrophage populations which are characterized by the expression of particular cell surface markers and the secretion of molecules with a wide range of biological functions. The differentiation and polarization of macrophages relies on specific growth factors and their receptors. Macrophage-colony stimulating factor (CSF-1) and interleukine-34 (IL-34), also known as "twin" cytokines, are part of this regluatory landscape. CSF-1 and IL-34 share a common receptor, the macrophage-colony stimulating factor receptor (CSF-1R), which is activated in a similar way by both factors and turns on identical signaling pathways. However, there is some discrete differential activation leading to specific activities. In this review, we disscuss recent progress in understanding of the role of the twin cytokines in macrophage differentiation, from their interaction with CSF-1R and the activation of signaling pathways, to their implication in macrophage polarization of non-resident and tissue-resident macrophages. A special focus on IL-34, its involvement in pathophsyiological contexts, and its potential as a theranostic target for macrophage therapy will be proposed.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- SATT Ouest Valorisation, Nantes, France
| | - Denis Cochonneau
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | | | - Emilie Moranton
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Didier Lanoe
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Régis Brion
- Université de Nantes, INSERM, U1238, Nantes, France
| | | | | | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Rückerl D, Cook PC. Macrophages assemble! But do they need IL-4R during schistosomiasis? Eur J Immunol 2020; 49:996-1000. [PMID: 31267552 PMCID: PMC6771897 DOI: 10.1002/eji.201948158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Helminth infections are a global health burden in humans and livestock and are considered to be a major evolutionary driver of type 2 immunity (orchestrated by type 2 cytokines, e.g., IL‐4 and IL‐13). Upon infection, helminths cause substantial damage to mucosal tissues as they migrate within the host and elicit crucial protective immune mechanisms. Macrophages, essential innate cells, are known to adopt a specific activation status (termed M(IL‐4)) in type 2 cytokine environments. Yet, the role of these macrophages in mediating protective immune/wound healing responses to helminths is unclear. Furthermore, macrophage subsets can be very heterogenous (linked to their differing cellular origins) and the relative role of these subsets in the context of M(IL‐4) activation to helminth infection is unknown. An article by Rolot et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2019. 49: 1067–1081] uses a variety of transgenic murine strains to revise our understanding of the complexity of how these subsets undergo M(IL‐4) activation and participate in wound healing responses in helminth infection. Here we highlight that consideration of different macrophage subsets in mucosal tissues is essential when evaluating the functional role of M(IL‐4) macrophages.
Collapse
Affiliation(s)
- Dominik Rückerl
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|