1
|
Hara A, Minaga K, Otsuka Y, Masuta Y, Nakamura Y, Kajiyama H, Park AM, Kudo M, Watanabe T. An autopsy case of gas gangrene, massive intravascular hemolysis, and cytokine storm due to Clostridium perfringens type A infection. IDCases 2024; 38:e02085. [PMID: 39435138 PMCID: PMC11492606 DOI: 10.1016/j.idcr.2024.e02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Clostridium perfringens bacteremia is a rare but rapidly fatal condition, especially in patients exhibiting massive intravascular hemolysis (MIH), gas gangrene, and septic shock. Herein, we present an autopsy case of C. perfringens septicemia exhibiting MIH, gas gangrene, and cytokine storm. The patient was an 84-year-old female with a history of biliary reconstruction surgery for congenital biliary dilatation. She developed MIH, elevated inflammatory mediator levels, thrombocytopenia, and coagulopathy. She went into shock within 1 h of the presentation and died within a few hours. Rapid progression was associated with the transformation of liver abscesses into gas-filled abscesses on computed tomography scan, suggesting the rapid outgrowth of gas-producing bacteria. The patient was finally diagnosed with MIH and gas gangrene due to C. perfringens infection based on the presence of this bacterium in the blood and bile. On autopsy, gas gangrene was observed in almost all organs, originating from the bile duct. Polymerase chain reactions targeting C. perfringens toxins identified the isolated bacterium as C. perfringens type A expressing α-toxin (CPA), perfringolysin O (PFO), and collagenase (ColA). Elevated interleukin 6 and tumor necrosis factor-α expression levels were observed in the serum, and such proinflammatory responses were partially mediated by Toll-like receptor 2. This study elucidated the association between the toxin profiles of clinically isolated C. perfringens and the host cytokine responses in the patient.
Collapse
Affiliation(s)
- Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yuko Nakamura
- Department of Pathology, Kindai University Faculty of Medicine, 377–2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hiroshi Kajiyama
- Department of Pathology, Kindai University Faculty of Medicine, 377–2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377–2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
2
|
Hara A, Watanabe T, Minaga K, Yoshikawa T, Kurimoto M, Sekai I, Masuta Y, Takada R, Otsuka Y, Kamata K, Takamura S, Kudo M, Strober W. A positive cytokine/chemokine feedback loop establishes plasmacytoid DC-driven autoimmune pancreatitis in IgG4-related disease. JCI Insight 2024; 9:e167910. [PMID: 39264798 PMCID: PMC11529986 DOI: 10.1172/jci.insight.167910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
The pathogenesis of the murine model of autoimmune pancreatitis associated with IgG4-related disease (AIP/IgG4-RD) induced by administration of polyinosinic-polycytidylic acid (poly[I:C]) is incompletely understood. While it is known that murine and human AIP/IgG4-RD is driven by plasmacytoid dendritic cells (pDCs) producing IFN-α, the origin of these cells and their relation to effector T cells is not known. Here, we show that murine AIP was initiated by TLR3-bearing conventional DCs in the uninflamed pancreas whose activation by the TLR3 ligand poly(I:C) caused IFN-α, CXCL9, and CXCL10 secretion. This, in turn, induced pancreatic recruitment of CXCR3+ T cells and these T cells, via their secretion of CCL25, facilitated migration of pDCs bearing CCR9 into the pancreas. This established a feedback loop anchored by the now dominant pDC production of IFN-α and the continued CXCR3+ T cell facilitation of pDC migration. Remarkably, the interaction between CXCR3+ T cells and pDCs also existed at the functional level since this interaction enhanced the production of CCL25 and IFN-α by CXCR3+ T cells and pDCs, respectively. Evidence presented here that a similar disease mechanism was present in human AIP/IgG4-RD creates new avenues of disease treatment.
Collapse
Affiliation(s)
- Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shiki Takamura
- Laboratory for Immunological Memory, RIKEN IMS Center for Integrative Medical Science, Yokohama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Tsuge S, Fujii H, Tamai M, Tsujiguchi H, Yoshida M, Suzuki N, Takahashi Y, Takeji A, Horita S, Fujisawa Y, Matsunaga T, Zoshima T, Nishioka R, Nuka H, Hara S, Tani Y, Suzuki Y, Ito K, Yamada K, Nakazaki S, Hara A, Kawakami A, Nakamura H, Mizushima I, Iwata Y, Kawano M. Factors related to elevated serum immunoglobulin G4 (IgG4) levels in a Japanese general population. Arthritis Res Ther 2024; 26:156. [PMID: 39242517 PMCID: PMC11378454 DOI: 10.1186/s13075-024-03391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Elevated serum immunoglobulin G4 (IgG4) concentrations are one of the characteristic findings in IgG4-related disease (IgG4-RD). This study investigated the frequency of elevated serum IgG4 levels and associated factors in a general Japanese population. METHODS Serum IgG4 concentrations were measured in 1,201 residents of Ishikawa prefecture who underwent general medical examinations. Factors associated with elevated serum IgG4 concentrations were assessed by logistic regression analysis. Participants with elevated serum IgG4 were subjected to secondary examinations. RESULTS The mean serum IgG4 concentration was 44 mg/dL, with 42 (3.5%) participants having elevated serum IgG4 levels. Age- and sex-adjusted logistic regression analyses showed that male sex, older age, and lower intake of lipids and polyunsaturated fatty acids and higher intake of carbohydrates in daily diet were associated with elevated serum IgG4 concentration. Subgroup analyses in men showed that older age, lower estimated glomerular filtration rates based on serum cystatin C (eGFR-cysC) levels, and higher hemoglobin A1c (HbA1c) levels were associated with elevated serum IgG4 concentration. Analyses in women showed that lower intake of lipids and fatty acids and higher intake of carbohydrates were significantly associated with elevated serum IgG4 concentration. One of the 15 participants who underwent secondary examinations was diagnosed with possible IgG4-related retroperitoneal fibrosis. CONCLUSIONS Elevated serum IgG4 levels in a Japanese general population were significantly associated with older age, male gender, and dietary intake of nutrients, with some of these factors identical to the epidemiological features of IgG4-RD.
Collapse
Affiliation(s)
- Shunsuke Tsuge
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Fujii
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Mami Tamai
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Misaki Yoshida
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Nobuhiro Suzuki
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yoshinori Takahashi
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Akari Takeji
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Shigeto Horita
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yuhei Fujisawa
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takahiro Matsunaga
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takeshi Zoshima
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Ryo Nishioka
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiromi Nuka
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Satoshi Hara
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yukiko Tani
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yasunori Suzuki
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kiyoaki Ito
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Kazunori Yamada
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | | | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ichiro Mizushima
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Mitsuhiro Kawano
- Department of Nephrology and Rheumatology, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
4
|
Omaru N, Otsuka Y, Hara A, Kurimoto M, Okai N, Masuta Y, Masaki S, Kamata K, Minaga K, Honjo H, Arai Y, Yamashita K, Kudo M, Watanabe T. Microbe-associated molecular patterns derived from fungi and bacteria promote IgG4 antibody production in patients with type 1 autoimmune pancreatitis. Cytokine 2024; 183:156748. [PMID: 39241273 DOI: 10.1016/j.cyto.2024.156748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/08/2024]
Abstract
Enhanced IgG4 antibody (Ab) response is a prominent feature of type 1 autoimmune pancreatitis (AIP). Innate immune responses associated with IgG4 Ab production are poorly defined. We have previously reported that peripheral blood mononuclear cells (PBMCs) isolated from patients with type 1 AIP produce large amounts of IgG4 Abs upon stimulation with bacterial cell wall components. In addition, we showed that activation of plasmacytoid dendritic cells producing interferon (IFN)-α, interleukin (IL)-33, and B cell-activating factor (BAFF) upon sensing intestinal bacteria mediates the development of experimental AIP. In this study, we attempted to clarify the role of innate immunity against fungi in inducing enhanced IgG4 Ab responses in type 1 AIP. PBMCs isolated from healthy controls and patients with type 1 AIP were stimulated with a broad range of bacterial and fungal cell wall components. The concentrations of IgG1, IgG4, and cytokines were measured using enzyme-linked immunosorbent assays. Cell wall components derived from bacteria and fungi induced IgG1 and IgG4 Ab production in patients with type 1 AIP. Various types of microbe-associated molecular pattern motifs enhanced IgG4 Ab production in patients with type 1 AIP compared with the limited motifs in healthy controls. The enhanced IgG1 and IgG4 Ab production that followed in response to bacterial and fungal cell wall components was parallel to that of IFN-α, IFN-γ, IL-10, IL-33, and BAFF. In conclusion, cell wall components derived from fungi as well as bacteria promote IgG4 Ab responses in patients with type 1 AIP.
Collapse
Affiliation(s)
- Naoya Omaru
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Sho Masaki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-Ku, Kyoto 606-0045, Japan
| | - Kohei Yamashita
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-Ku, Kyoto 606-0045, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| |
Collapse
|
5
|
Ito S, Higashiyama M, Nishimura H, Tomioka A, Tanemoto R, Nishii S, Mizoguchi A, Akita Y, Okada Y, Kurihara C, Narimatsu K, Komoto S, Tomita K, Hokari R. The Role of Gut Microbiota and Innate Immune Response in an Autoimmune Pancreatitis Model. Pancreas 2024; 53:e617-e626. [PMID: 38696351 DOI: 10.1097/mpa.0000000000002339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
BACKGROUND Although the involvement of intestinal microbiota in innate immunity has been reported recently, the pathogenicity of autoimmune pancreatitis (AIP) remains unclear. This study aimed to investigate whether probiotics ameliorate inflammation in AIP through interactions with innate immunity. MATERIALS AND METHODS The AIP mouse model was generated by intraperitoneal administration of Escherichia coli to C56BL/6 female mice. Alterations in the intestinal microbiota in the AIP group were evaluated using high-throughput sequencing. Peritoneal macrophages (PMs) were collected and cocultured in vitro with Lactobacillus gasseri (LG) or ligands of Toll-like receptors (TLRs). LG was administered intraperitoneally to AIP model mice, and pancreatitis activity was evaluated to examine the ameliorative effects of LG. RESULTS In the AIP model mice, inflammation was significantly induced in the pancreas, and the intestinal microbiota was altered with decreased LG. Antimicrobial treatment suppressed pancreatitis. In vitro, E. coli stimulation increased inflammatory cytokine expression, which was significantly decreased when the LG or TLR7 ligand was cocultured with PMs. Intraperitoneal administration of LG to AIP model mice significantly suppressed pancreatitis. CONCLUSION The mouse model demonstrated the involvement of intestinal microbiota in pancreatitis, and LG administration suppressed pancreatitis, possibly through TLR7 signaling in PMs. LG may be a helpful probiotic for treating AIP.
Collapse
Affiliation(s)
- Suguru Ito
- From the Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gallo C, Dispinzieri G, Zucchini N, Invernizzi P, Massironi S. Autoimmune pancreatitis: Cornerstones and future perspectives. World J Gastroenterol 2024; 30:817-832. [PMID: 38516247 PMCID: PMC10950636 DOI: 10.3748/wjg.v30.i8.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/18/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024] Open
Abstract
Autoimmune pancreatitis (AIP) is an autoimmune subtype of chronic pancreatitis resulting from the aberrant immune response against the pancreas, leading to inflammation and fibrosis. Although AIP is rare, its incidence is increasing and is often misdiagnosed as other pancreatic diseases. AIP is commonly classified into two types. Type 1 AIP (AIP-1) is typically associated with elevated serum immunoglobulin G4 (IgG4) levels and systemic manifestations, while type 2 AIP is typically a more localized form of the disease, and may coexist with other autoimmune disorders, especially inflammatory bowel diseases. Additionally, there is emerging recognition of a third type (type 3 AIP), which refers to immunotherapy-triggered AIP, although this classification is still gaining acceptance in medical literature. The clinical manifestations of AIP mainly include painless jaundice and weight loss. Elevated serum IgG4 levels are particularly characteristic of AIP-1. Diagnosis relies on a combination of clinical, laboratory, radiological, and histological findings, given the similarity of AIP symptoms to other pancreatic disorders. The mainstay of treatment for AIP is steroid therapy, which is effective in most cases. Severe cases might require additional imm-unosuppressive agents. This review aims to summarize the current knowledge of AIP, encompassing its epidemiology, etiology, clinical presentation, diagnosis, and treatment options. We also address the challenges and controversies in diagnosing and treating AIP, such as distinguishing it from pancreatic cancer and managing long-term treatment, highlighting the need for increased awareness and knowledge of this complex disease.
Collapse
Affiliation(s)
- Camilla Gallo
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori; University of Milano-Bicocca, Monza 20900, Italy
| | - Giulia Dispinzieri
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori; University of Milano-Bicocca, Monza 20900, Italy
| | - Nicola Zucchini
- Department of Pathology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori; University of Milano-Bicocca, Monza 20900, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, Fondazione IRCCS San Gerardo dei Tintori; University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
7
|
Li X, Li Y, He C, Zhu Y. Bibliometric analysis of pancreatic diseases and gut microbiota research from 2002 to 2022. Heliyon 2024; 10:e23483. [PMID: 38187305 PMCID: PMC10767372 DOI: 10.1016/j.heliyon.2023.e23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background An increasing number of studies have indicated that pancreatic diseases are associated with the structure of the gut microbiota. We aimed to assess the research hotspots and trends in this field through a quantitative method. Materials and methods Articles related to pancreatic diseases and the gut microbiota published from 2002 to 2022 were retrieved from the Web of Science database. We visualized the countries/regions, institutions, authors, journals, and keywords using VOSviewer and CiteSpace software. The interplay between pancreatic diseases and the gut microbiota was also analysed. Results A total of 129 publications were finally identified. The number of papers increased gradually, and China held the dominant position with respect to publication output. Shanghai Jiao Tong University was the most influential institution. Zeng Yue ranked highest in the number of papers, and Scientific Reports was the most productive journal. The keywords "gut", "bacterial translocation", and "acute pancreatitis" appeared early for the first time, and "gut microbiota", "community", and "diversity" have been increasingly focused on. The predominant pancreatic disease correlated with the gut microbiota was pancreatic inflammatory disease (50.39%). Pancreatic diseases are associated with alterations in the gut microbiota, characterized by a decrease in beneficial bacteria and an increase in harmful bacteria. Conclusion This is the first comprehensive bibliometric analysis of all pancreatic diseases and the gut microbiota. The research on the relationship between them is still in the preliminary stage, and the trend is toward a gradual deepening of the research and precise treatment development. The interaction between the gut microbiota and pancreatic diseases will be of increasing concern in the future.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Otsuka Y, Hara A, Minaga K, Sekai I, Kurimoto M, Masuta Y, Takada R, Yoshikawa T, Kamata K, Kudo M, Watanabe T. Leucine-rich repeat kinase 2 promotes the development of experimental severe acute pancreatitis. Clin Exp Immunol 2023; 214:182-196. [PMID: 37847786 PMCID: PMC10714192 DOI: 10.1093/cei/uxad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/10/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023] Open
Abstract
Translocation of gut bacteria into the pancreas promotes the development of severe acute pancreatitis (SAP). Recent clinical studies have also highlighted the association between fungal infections and SAP. The sensing of gut bacteria by pattern recognition receptors promotes the development of SAP via the production of proinflammatory cytokines; however, the mechanism by which gut fungi mediate SAP remains largely unknown. Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that regulates innate immunity against fungi via Dectin-1 activation. Here, we investigated the role of LRRK2 in SAP development and observed that administration of LRRK2 inhibitors attenuated SAP development. The degree of SAP was greater in Lrrk2 transgenic (Tg) mice than in control mice and was accompanied by an increased production of nuclear factor-kappaB-dependent proinflammatory cytokines. Ablation of the fungal mycobiome by anti-fungal drugs inhibited SAP development in Lrrk2 Tg mice, whereas the degree of SAP was comparable in Lrrk2 Tg mice with or without gut sterilization by a broad range of antibiotics. Pancreatic mononuclear cells from Lrrk2 Tg mice produced large amounts of IL-6 and TNF-α upon stimulation with Dectin-1 ligands, and inhibition of the Dectin-1 pathway by a spleen tyrosine kinase inhibitor protected Lrrk2 Tg mice from SAP. These data indicate that LRRK2 activation is involved in the development of SAP through proinflammatory cytokine responses upon fungal exposure.
Collapse
Affiliation(s)
- Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
9
|
Kersten R, Trampert DC, Herta T, Hubers LM, Maillette de Buy Wenniger LJ, Verheij J, van de Graaf SFJ, Beuers U. IgG4-related cholangitis - a mimicker of fibrosing and malignant cholangiopathies. J Hepatol 2023; 79:1502-1523. [PMID: 37598939 DOI: 10.1016/j.jhep.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
IgG4-related cholangitis (IRC) is the major hepatobiliary manifestation of IgG4-related disease (IgG4-RD), a systemic fibroinflammatory disorder. The pathogenesis of IgG4-RD and IRC is currently viewed as multifactorial, as there is evidence of a genetic predisposition while environmental factors, such as blue-collar work, are major risk factors. Various autoantigens have been described in IgG4-RD, including annexin A11 and laminin 511-E8, proteins which may exert a partially protective function in cholangiocytes by enhancing secretion and barrier function, respectively. For the other recently described autoantigens, galectin-3 and prohibitin 1, a distinct role in cholangiocytes appears less apparent. In relation to these autoantigens, oligoclonal expansions of IgG4+ plasmablasts are present in patients with IRC and disappear upon successful treatment. More recently, specific T-cell subtypes including regulatory T cells, follicular T helper 2 cells, peripheral T helper cells and cytotoxic CD8+ and CD4+ SLAMF7+ T cells have been implicated in the pathogenesis of IgG4-RD. The clinical presentation of IRC often mimics other biliary diseases such as primary sclerosing cholangitis or cholangiocarcinoma, which may lead to inappropriate medical and potentially invalidating surgical interventions. As specific biomarkers are lacking, diagnosis is made according to the HISORt criteria comprising histopathology, imaging, serology, other organ manifestations and response to therapy. Treatment of IRC aims to prevent or alleviate organ damage and to improve symptoms and consists of (i) remission induction, (ii) remission maintenance and (iii) long-term management. Glucocorticosteroids are highly effective for remission induction, after which immunomodulators can be introduced for maintenance of remission as glucocorticosteroid-sparing alternatives. Increased insight into the pathogenesis of IRC will lead to improved diagnosis and novel therapeutic strategies in the future.
Collapse
Affiliation(s)
- Remco Kersten
- Department of Gastroenterology & Hepatology, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - David C Trampert
- Department of Gastroenterology & Hepatology, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Toni Herta
- Department of Gastroenterology & Hepatology, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Lowiek M Hubers
- Department of Gastroenterology & Hepatology, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, the Netherlands
| | - Stan F J van de Graaf
- Department of Gastroenterology & Hepatology, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology & Hepatology, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Fujita S, Honjo H, Takada R, Hara A, Masuta Y, Otsuka Y, Handa K, Minaga K, Tsuji S, Kudo M, Watanabe T. Ulcerative Colitis-associated Spondyloarthritis Successfully Treated with Infliximab in the Absence of Enhanced TNF-α Responses. Intern Med 2023; 62:2493-2497. [PMID: 36575020 PMCID: PMC10518546 DOI: 10.2169/internalmedicine.1182-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
Although concurrent occurrence of spondyloarthritis (SpA) and ulcerative colitis (UC) is sometimes seen, the profiles of cytokines have been poorly understood in UC-associated SpA. We herein report a case of UC-associated SpA successfully treated with infliximab (IFX). Profiles of cytokines in the serum and colonic mucosa were characterized by an enhanced expression of IL-6 but not tumor necrosis factor (TNF)-α. Successful induction of remission by IFX was associated with the downregulation of IL-6 expression but no significant alteration in TNF-α expression. These findings suggest that some cases of UC-associated SpA might be driven by IL-6, and IFX might be effective in cases lacking enhanced TNF-α responses.
Collapse
Affiliation(s)
- Shunsuke Fujita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | - Kohei Handa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | | | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Japan
| |
Collapse
|
11
|
Kamata K, Hara A, Minaga K, Yoshikawa T, Kurimoto M, Sekai I, Okai N, Omaru N, Masuta Y, Otsuka Y, Takada R, Takamura S, Kudo M, Strober W, Watanabe T. Activation of the aryl hydrocarbon receptor inhibits the development of experimental autoimmune pancreatitis through IL-22-mediated signaling pathways. Clin Exp Immunol 2023; 212:uxad040. [PMID: 37166987 PMCID: PMC10243912 DOI: 10.1093/cei/uxad040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor expressed in hematopoietic and non-hematopoietic cells. Activation of the AhR by xenobiotics, microbial metabolites, and natural substances induces immunoregulatory responses. Autoimmune pancreatitis (AIP) is a chronic fibroinflammatory disorder of the pancreas driven by autoimmunity. Although AhR activation generally suppresses pathogenic autoimmune responses, the roles played by the AhR in AIP have been poorly defined. In this study, we examined how AhR activation affected the development of experimental AIP caused by the activation of plasmacytoid dendritic cells producing IFN-α and IL-33. Experimental AIP was induced in MRL/MpJ mice by repeated injections of polyinosinic-polycytidylic acid. Activation of the AhR by indole-3-pyruvic acid and indigo naturalis, which were supplemented in the diet, inhibited the development of experimental AIP, and these effects were independent of the activation of plasmacytoid dendritic cells producing IFN-α and IL-33. Interaction of indole-3-pyruvic acid and indigo naturalis with AhRs robustly augmented the production of IL-22 by pancreatic islet α cells. The blockade of IL-22 signaling pathways completely canceled the beneficial effects of AhR ligands on experimental AIP. Serum IL-22 concentrations were elevated in patients with type 1 AIP after the induction of remission with prednisolone. These data suggest that AhR activation suppresses chronic fibroinflammatory reactions that characterize AIP via IL-22 produced by pancreatic islet α cells.
Collapse
Affiliation(s)
- Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Naoya Omaru
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, Mao Q, Liang Y. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms 2023; 11:1240. [PMID: 37317214 PMCID: PMC10221276 DOI: 10.3390/microorganisms11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.
Collapse
Affiliation(s)
- Yihan Chai
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xuqiu Shen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xu Feng
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| | - Yuelong Liang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| |
Collapse
|
13
|
Yoshikawa T, Minaga K, Hara A, Sekai I, Kurimoto M, Masuta Y, Otsuka Y, Takada R, Kamata K, Park AM, Takamura S, Kudo M, Watanabe T. Disruption of the intestinal barrier exacerbates experimental autoimmune pancreatitis by promoting the translocation of Staphylococcus sciuri into the pancreas. Int Immunol 2022; 34:621-634. [PMID: 36044992 DOI: 10.1093/intimm/dxac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Autoimmune pancreatitis (AIP) and IgG4-related disease (IgG4-RD) are new disease entities characterized by enhanced IgG4 antibody responses and involvement of multiple organs, including the pancreas and salivary glands. Although the immunopathogenesis of AIP and IgG4-RD is poorly understood, we previously reported that intestinal dysbiosis mediates experimental AIP through the activation of IFN-α- and IL-33-producing plasmacytoid dendritic cells (pDCs). Because intestinal dysbiosis is linked to intestinal barrier dysfunction, we explored whether the latter affects the development of AIP and autoimmune sialadenitis in MRL/MpJ mice treated with repeated injections of polyinosinic-polycytidylic acid [poly (I:C)]. Epithelial barrier disruption was induced by the administration of dextran sodium sulfate (DSS) in the drinking water. Mice co-treated with poly (I:C) and DSS, but not those treated with either agent alone, developed severe AIP, but not autoimmune sialadenitis, which was accompanied by the increased accumulation of IFN-α- and IL-33-producing pDCs. Sequencing of 16S ribosomal RNA revealed that Staphylococcus sciuri translocation from the gut to the pancreas was preferentially observed in mice with severe AIP co-treated with DSS and poly (I:C). The degree of experimental AIP, but not of autoimmune sialadenitis, was greater in germ-free mice mono-colonized with S. sciuri and treated with poly (I:C) than in germ-free mice treated with poly (I:C) alone, which was accompanied by the increased accumulation of IFN-α- and IL-33-producing pDCs. Taken together, these data suggest that intestinal barrier dysfunction exacerbates AIP through the activation of pDCs and translocation of S. sciuri into the pancreas.
Collapse
Affiliation(s)
- Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
14
|
Binda C, Gibiino G, Sbrancia M, Coluccio C, Cazzato M, Carloni L, Cucchetti A, Ercolani G, Sambri V, Fabbri C. Microbiota in the Natural History of Pancreatic Cancer: From Predisposition to Therapy. Cancers (Basel) 2022; 15:cancers15010001. [PMID: 36611999 PMCID: PMC9817971 DOI: 10.3390/cancers15010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Early microbiome insights came from gut microbes and their role among intestinal and extraintestinal disease. The latest evidence suggests that the microbiota is a true organ, capable of several interactions throughout the digestive system, attracting specific interest in the biliopancreatic district. Despite advances in diagnostics over the last few decades and improvements in the management of this disease, pancreatic cancer is still a common cause of cancer death. Microbiota can influence the development of precancerous disease predisposing to pancreatic cancer (PC). At the same time, neoplastic tissue shows specific characteristics in terms of diversity and phenotype, determining the short- and long-term prognosis. Considering the above information, a role for microbiota has also been hypothesized in the different phases of the PC approach, providing future revolutionary therapeutic insights. Microbiota-modulating therapies could open new issues in the therapeutic landscape. The aim of this narrative review is to assess the most updated evidence on microbiome in all the steps regarding pancreatic adenocarcinoma, from early development to response to antineoplastic therapy and long-term prognosis.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Correspondence: ; Tel.: +39-3488609557
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Maria Cazzato
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| | - Lorenzo Carloni
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- General and Oncologic Surgery, Morgagni—Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences—DIMEC, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
- Microbiology Unit, Hub Laboratory, AUSL della Romagna, 47121 Cesena, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì-Cesena, Italy
| |
Collapse
|
15
|
High-fat diet aggravates experimental autoimmune pancreatitis through the activation of type I interferon signaling pathways. Biochem Biophys Res Commun 2022; 637:189-195. [DOI: 10.1016/j.bbrc.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
|
16
|
Nista EC, De Lucia SS, Manilla V, Schepis T, Pellegrino A, Ojetti V, Pignataro G, Zileri dal Verme L, Franceschi F, Gasbarrini A, Candelli M. Autoimmune Pancreatitis: From Pathogenesis to Treatment. Int J Mol Sci 2022; 23:ijms232012667. [PMID: 36293522 PMCID: PMC9604056 DOI: 10.3390/ijms232012667] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a rare disease. The diagnosis of AIP is difficult and should be made by a comprehensive evaluation of clinical, radiological, serological, and pathological findings. Two different types of AIP have been identified: autoimmune pancreatitis type 1 (AIP-1), which is considered a pancreatic manifestation of multiorgan disease related to IgG4, and autoimmune pancreatitis type 2 (AIP-2), which is considered a pancreas-specific disease not related to IgG4. Although the pathophysiological conditions seem to differ between type 1 and type 2 pancreatitis, both respond well to steroid medications. In this review, we focused on the pathogenesis of the disease to develop a tool that could facilitate diagnosis and lead to the discovery of new therapeutic strategies to combat autoimmune pancreatitis and its relapses. The standard therapy for AIP is oral administration of corticosteroids. Rituximab (RTX) has also been proposed for induction of remission and maintenance therapy in relapsing AIP-1. In selected patients, immunomodulators such as azathioprine are used to maintain remission. The strength of this review, compared with previous studies, is that it focuses on the clear difference between the two types of autoimmune pancreatitis with a clearly delineated and separate pathogenesis. In addition, the review also considers various therapeutic options, including biologic drugs, such as anti-tumor necrosis factor (TNF) therapy, a well-tolerated and effective second-line therapy for AIP type 2 relapses or steroid dependence. Other biologic therapies are also being explored that could provide a useful therapeutic alternative to corticosteroids and immunosuppressants, which are poorly tolerated due to significant side effects.
Collapse
Affiliation(s)
- Enrico Celestino Nista
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Sofia De Lucia
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Manilla
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Tommaso Schepis
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Pellegrino
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Zileri dal Verme
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Schepis T, De Lucia SS, Nista EC, Manilla V, Pignataro G, Ojetti V, Piccioni A, Gasbarrini A, Franceschi F, Candelli M. Microbiota in Pancreatic Diseases: A Review of the Literature. J Clin Med 2021; 10:jcm10245920. [PMID: 34945216 PMCID: PMC8704740 DOI: 10.3390/jcm10245920] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota is a critical element in the balance between human health and disease. Its impairment, defined as dysbiosis, is associated with gastroenterological and systemic diseases. Pancreatic secretions are involved in the composition and changes of the gut microbiota, and the gut microbiota may colonize the pancreatic parenchyma and be associated with the occurrence of diseases. The gut microbiota and the pancreas influence each other, resulting in a "gut microbiota-pancreas axis". Moreover, the gut microbiota may be involved in pancreatic diseases, both through direct bacterial colonization and an indirect effect of small molecules and toxins derived from dysbiosis. Pancreatic diseases such as acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, and pancreatic cancer are common gastroenterological diseases associated with high morbidity and mortality. The involvement of the microbiota in pancreatic diseases is increasingly recognized. Therefore, modifying the intestinal bacterial flora could have important therapeutic implications on these pathologies. The aim of this study is to review the literature to evaluate the alterations of the gut microbiota in pancreatic diseases, and the role of the microbiota in the treatment of these diseases.
Collapse
Affiliation(s)
- Tommaso Schepis
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Sara S. De Lucia
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Enrico C. Nista
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Vittoria Manilla
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Giulia Pignataro
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Veronica Ojetti
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
- Correspondence: ; Tel.: +39-063-0153-188
| |
Collapse
|
18
|
Wen H, Li Q, Lu N, Su YY, Ma PH, Zhang MX. Intestinal flora and pancreatitis: Present and future. Shijie Huaren Xiaohua Zazhi 2021; 29:1269-1275. [DOI: 10.11569/wcjd.v29.i22.1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of intestinal flora in human health and diseases has attracted more and more attention. At present, there have been some reports on the relationship between intestinal flora and pancreatitis. These reports reveal that intestinal flora plays some important roles in the occurrence and development of pancreatitis. The specific mechanisms of action are unclear, but there is preliminary consensus that intestinal microbiome dysregulation promotes inflammatory changes in the pancreas. This paper summarizes the correlation between intestinal flora and pancreatitis, in order to provide some references and ideas for further research.
Collapse
Affiliation(s)
- Hua Wen
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China,Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Qian Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Ning Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Yuan-Yuan Su
- Xi'an Medical University, Xi'an 710000, Shaanxi Province, China,Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi Province, China
| | - Pei-Han Ma
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ming-Xin Zhang
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
19
|
Kurimoto M, Watanabe T, Kamata K, Minaga K, Kudo M. IL-33 as a Critical Cytokine for Inflammation and Fibrosis in Inflammatory Bowel Diseases and Pancreatitis. Front Physiol 2021; 12:781012. [PMID: 34759844 PMCID: PMC8573230 DOI: 10.3389/fphys.2021.781012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
IL-33 is a pleiotropic cytokine that promotes inflammation and fibrosis. IL-33 is produced by a broad range of cells, including antigen-presenting cells (APCs), epithelial cells, and fibroblasts. IL-33 produced by the innate immune cells has been shown to activate pro-inflammatory T helper type 1 (Th1) and T helper type 2 (Th2) responses. The intestinal barrier and tolerogenic immune responses against commensal microbiota contribute to the maintenance of gut immune homeostasis. Breakdown of tolerogenic responses against commensal microbiota as a result of intestinal barrier dysfunction underlies the immunopathogenesis of inflammatory bowel diseases (IBD) and pancreatitis. Recent studies have provided evidence that IL-33 is an innate immune cytokine that bridges adaptive Th1 and Th2 responses associated with IBD and pancreatitis. In this Mini Review, we discuss the pathogenic roles played by IL-33 in the development of IBD and pancreatitis and consider the potential of this cytokine to be a new therapeutic target.
Collapse
Affiliation(s)
- Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
20
|
Minaga K, Watanabe T, Kudo M. Probiotic-Derived Polyphosphate Prevents Pancreatitis. Dig Dis Sci 2021; 66:3665-3667. [PMID: 33492536 DOI: 10.1007/s10620-020-06809-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
21
|
Kunovsky L, Dite P, Jabandziev P, Dolina J, Vaculova J, Blaho M, Bojkova M, Dvorackova J, Uvirova M, Kala Z, Trna J. Helicobacter pylori infection and other bacteria in pancreatic cancer and autoimmune pancreatitis. World J Gastrointest Oncol 2021; 13:835-844. [PMID: 34457189 PMCID: PMC8371525 DOI: 10.4251/wjgo.v13.i8.835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious agent influencing as much as 50% of the world’s population. It is the causative agent for several diseases, most especially gastric and duodenal peptic ulcer, gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma of the stomach. A number of other, extragastric manifestations also are associated with H. pylori infection. These include neurological disorders, such as Alzheimer’s disease, demyelinating multiple sclerosis and Parkinson’s disease. There is also evidence for a relationship between H. pylori infection and such dermatological diseases as psoriasis and rosacea as well as a connection with infection and open-angle glaucoma. Generally little is known about the relationship between H. pylori infection and diseases of the pancreas. Most evidence about H. pylori and its potential role in the development of pancreatic diseases concerns pancreatic adenocarcinoma and autoimmune forms of chronic pancreatitis. There is data (albeit not fully consistent) indicating modestly increased pancreatic cancer risk in H. pylori-positive patients. The pathogenetic mechanism of this increase is not yet fully elucidated, but several theories have been proposed. Reduction of antral D-cells in H. pylori-positive patients causes a suppression of somatostatin secretion that, in turn, stimulates increased secretin secretion. That stimulates pancreatic growth and thus increases the risk of carcinogenesis. Alternatively, H. pylori, as a part of microbiome dysbiosis and the so-called oncobiome, is proven to be associated with pancreatic adenocarcinoma development via the promotion of cellular proliferation. The role of H. pylori in the inflammation characteristic of autoimmune pancreatitis seems to be explained by a mechanism of molecular mimicry among several proteins (mostly enzymes) of H. pylori and pancreatic tissue. Patients with autoimmune pancreatitis often show positivity for antibodies against H. pylori proteins. H. pylori, as a part of microbiome dysbiosis, also is viewed as a potential trigger of autoimmune inflammation of the pancreas. It is precisely these relationships (and associated equivocal conclusions) that constitute a center of attention among pancreatologists, immunologists and pathologists. In order to obtain clear and valid results, more studies on sufficiently large cohorts of patients are needed. The topic is itself sufficiently significant to draw the interest of clinicians and inspire further systematic research. Next-generation sequencing could play an important role in investigating the microbiome as a potential diagnostic and prognostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Lumir Kunovsky
- Department of Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Petr Dite
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Petr Jabandziev
- Department of Pediatrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 61300, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Jiri Dolina
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Jitka Vaculova
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Martin Blaho
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Martina Bojkova
- Department of Gastroenterology and Internal Medicine, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | - Jana Dvorackova
- Department of Intensive Medicine, Emergency Medicine and Forensic Studies, University Hospital Ostrava, Ostrava 70800, Czech Republic
- Faculty of Medicine, University of Ostrava, Ostrava 70300, Czech Republic
| | | | - Zdenek Kala
- Department of Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
| | - Jan Trna
- Department of Gastroenterology and Internal Medicine, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno 65653, Czech Republic
- Department of Internal Medicine, Hospital Boskovice, Boskovice 68001, Czech Republic
| |
Collapse
|
22
|
Minaga K, Watanabe T, Hara A, Yoshikawa T, Kamata K, Kudo M. Plasmacytoid Dendritic Cells as a New Therapeutic Target for Autoimmune Pancreatitis and IgG4-Related Disease. Front Immunol 2021; 12:713779. [PMID: 34367181 PMCID: PMC8342887 DOI: 10.3389/fimmu.2021.713779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Although plasmacytoid dendritic cells (pDCs) able to produce large amounts of type 1 interferons (IFN-I) play beneficial roles in host defense against viral infections, excessive activation of pDCs, followed by robust production of IFN-I, causes autoimmune disorders including systemic lupus erythematosus (SLE) and psoriasis. Autoimmune pancreatitis (AIP), which is recognized as a pancreatic manifestation of systemic immunoglobulin G4-related disease (IgG4-RD), is a chronic fibroinflammatory disorder driven by autoimmunity. IgG4-RD is a multi-organ autoimmune disorder characterized by elevated serum concentrations of IgG4 antibody and infiltration of IgG4-expressing plasmacytes in the affected organs. Although the immunopathogenesis of IgG4-RD and AIP has been poorly elucidated, recently, we found that activation of pDCs mediates the development of murine experimental AIP and human AIP/IgG4-RD via the production of IFN-I and interleukin-33 (IL-33). Depletion of pDCs or neutralization of signaling pathways mediated by IFN-I and IL-33 efficiently inhibited the development of experimental AIP. Furthermore, enhanced expression of IFN-I and IL-33 was observed in the pancreas and serum of human AIP/IgG4-RD. Thus, AIP and IgG4-RD share their immunopathogenesis with SLE and psoriasis because in all these conditions, IFN-I production by pDCs contributes to the pathogenesis. Because the enhanced production of IFN-I and IL-33 by pDCs promotes chronic inflammation and fibrosis characteristic for AIP and IgG4-RD, neutralization of IFN-I and IL-33 could be a new therapeutic option for these disorders. In this Mini Review, we discuss the pathogenic roles played by the pDC-IFN-I-IL-33 axis and the development of a new treatment targeting this axis in AIP and IgG4-RD.
Collapse
Affiliation(s)
- Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
23
|
Ishikawa R, Kamata K, Hara A, Tanaka H, Okamoto A, Yamazaki T, Nakai A, Omoto S, Minaga K, Yamao K, Takenaka M, Minami Y, Watanabe T, Chiba Y, Chikugo T, Matsumoto I, Takeyama Y, Matsukubo Y, Hyodo T, Kudo M. Utility of contrast-enhanced harmonic endoscopic ultrasonography for predicting the prognosis of pancreatic neuroendocrine neoplasms. Dig Endosc 2021; 33:829-839. [PMID: 33020955 DOI: 10.1111/den.13862] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Pancreatic neuroendocrine neoplasms (PanNENs), including Grade 1 (G1) or G2 tumors, can have a poor prognosis. This study investigated the value of contrast-enhanced harmonic endoscopic ultrasonography (CH-EUS) for predicting the prognosis of PanNENs. METHODS This single-center, retrospective study included 47 consecutive patients who underwent CH-EUS and were diagnosed with PanNEN by surgical resection or EUS-guided fine needle aspiration between December 2011 and February 2016. Patients were divided into aggressive and non-aggressive groups according to the degree of clinical malignancy. CH-EUS was assessed regarding its capacity for diagnosing aggressive PanNEN, the correspondence between contrast patterns and pathological features, and its ability to predict the prognosis of PanNEN. RESULTS There were 19 cases of aggressive PanNEN and 28 cases of non-aggressive PanNEN. The aggressive group included three G1, four G2, three G3 tumors, three mixed neuroendocrine non-neuroendocrine neoplasms, and six neuroendocrine carcinomas. CH-EUS was superior to contrast-enhanced computed tomography for the diagnosis of aggressive PanNEN (P < 0.001): hypo-enhancement on CH-EUS was an indicator of aggressive PanNEN, with sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 94.7%, 100%, 100%, 96.6%, and 97.9%, respectively. Among G1/G2 PanNENs, cases with hypo-enhancement on CH-EUS had a poorer prognosis than those with hyper/iso-enhancement (P = 0.0009). Assessment of 36 resected specimens showed that hypo-enhancement on CH-EUS was associated with smaller and fewer vessels and greater degree of fibrosis. CONCLUSION Contrast-enhanced harmonic endoscopic ultrasonography may be useful for predicting the prognosis of PanNENs.
Collapse
Affiliation(s)
- Rei Ishikawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Hidekazu Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Ayana Okamoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Tomohiro Yamazaki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Atsushi Nakai
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Shunsuke Omoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kentaro Yamao
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Mamoru Takenaka
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takaaki Chikugo
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka, Japan
| | - Ippei Matsumoto
- Departments of, Department of, Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yoshifumfi Takeyama
- Departments of, Department of, Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yuko Matsukubo
- Department of, Radiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoko Hyodo
- Department of, Radiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
24
|
Tan B, Chen MJ, Guo Q, Tang H, Li Y, Jia XM, Xu Y, Zhu L, Wang MZ, Qian JM. Clinical-radiological characteristics and intestinal microbiota in patients with pancreatic immune-related adverse events. Thorac Cancer 2021; 12:1814-1823. [PMID: 33943036 PMCID: PMC8201535 DOI: 10.1111/1759-7714.13990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The pancreatic immune-related adverse event (irAE) is a rare but increasingly occurrence disease with limited knowledge, which was associated with the use of immune checkpoint inhibitors (ICIs). METHODS In this case series study of pancreatic irAE patients, clinical and radiological manifestations are summarized. Baseline and post-treatment fecal microbiota of immune-related acute pancreatitis (irAP) patients were analyzed by the 16 s rDNA amplicon sequencing method. RESULTS A total of six patients were enrolled into the study, and the onset of pancreatic irAEs occurred a median of 105 days after a median of 4.5 cycles with immune checkpoint inhibitors (ICIs). All patients had an effective response to ICIs. Abdominal pain was the main clinical manifestation. Serum amylase (sAMY) and lipase (sLIP) had dynamic changes parallel to clinical severity. Contrast-enhanced computed tomography (CT) did not accurately reveal the level of inflammation. However, magnetic resonance imaging (MRI) was a sensitive imaging method which showed decreased and increased signal intensity of pancreatic parenchyma in T1-weighted fat-saturated and diffusion-weighted imaging, respectively. Glucocorticoids were the main treatment with a rapid initial effect followed by a slow improvement. After reinitiation of ICI therapy, pancreatic irAEs either deteriorated, remained stable or the patient developed severe pancreatic β-cell destruction without irAP recurrence. The baseline microbiota of irAP had low Bacteroidetes/Firmicutes ratio at phylum level, low relative abundance of Alistipes, Bacteroides and high Lachnospiraceae at genus level, compared to levels of pancreatic β-cell destruction and post-treatment of irAP. CONCLUSIONS Pancreatic irAE patients had corresponding abdominal pain and increase in sAMY/sLIP. MRI was found to be an ideal imaging modality. Treatment with glucocorticoids were the main approach. The microbiota showed relative changes at baseline and during treatment.
Collapse
Affiliation(s)
- Bei Tan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Min-Jiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qi Guo
- Department of Gynecology & Obstetrics, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Hao Tang
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yue Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xin-Miao Jia
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Liang Zhu
- Department of Radiology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Meng-Zhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jia-Ming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Yoshikawa T, Watanabe T, Kamata K, Hara A, Minaga K, Kudo M. Intestinal Dysbiosis and Autoimmune Pancreatitis. Front Immunol 2021; 12:621532. [PMID: 33833754 PMCID: PMC8021793 DOI: 10.3389/fimmu.2021.621532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a chronic fibro-inflammatory disorder of the pancreas. Recent clinicopathological analysis revealed that most cases of AIP are pancreatic manifestations of systemic IgG4-related disease (IgG4-RD), a newly established disease characterized by enhanced IgG4 antibody responses and the involvement of multiple organs. Although the immuno-pathogenesis of AIP and IgG4-RD has been poorly defined, we recently showed that activation of plasmacytoid dendritic cells (pDCs) with the ability to produce large amounts of IFN-α and IL-33 mediates chronic fibro-inflammatory responses in experimental and human AIP. Moreover, M2 macrophages producing a large amount of IL-33 play pathogenic roles in the development of human IgG4-RD. Interestingly, recent studies including ours provide evidence that compositional alterations of gut microbiota are associated with the development of human AIP and IgG4-RD. In addition, intestinal dysbiosis plays pathological roles in the development of chronic pancreatic inflammation as dysbiosis mediates the activation of pDCs producing IFN-α and IL-33, thereby causing experimental AIP. In this Mini Review, we focus on compositional alterations of gut microbiota in AIP and IgG4-RD to clarify the mechanisms by which intestinal dysbiosis contributes to the development of these disorders.
Collapse
Affiliation(s)
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University, Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan
| | | | | | | | | |
Collapse
|
26
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
27
|
Pancreatic Diseases and Microbiota: A Literature Review and Future Perspectives. J Clin Med 2020; 9:jcm9113535. [PMID: 33139601 PMCID: PMC7692447 DOI: 10.3390/jcm9113535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota represent an interesting worldwide research area. Several studies confirm that microbiota has a key role in human diseases, both intestinal (such as inflammatory bowel disease, celiac disease, intestinal infectious diseases, irritable bowel syndrome) and extra intestinal disorders (such as autism, multiple sclerosis, rheumatologic diseases). Nowadays, it is possible to manipulate microbiota by administering prebiotics, probiotics or synbiotics, through fecal microbiota transplantation in selected cases. In this scenario, pancreatic disorders might be influenced by gut microbiota and this relationship could be an innovative and inspiring field of research. However, data are still scarce and controversial. Microbiota manipulation could represent an important therapeutic strategy in the pancreatic diseases, in addition to standard therapies. In this review, we analyze current knowledge about correlation between gut microbiota and pancreatic diseases, by discussing on the one hand existing data and on the other hand future possible perspectives.
Collapse
|
28
|
Kamata K, Watanabe T, Minaga K, Hara A, Sekai I, Otsuka Y, Yoshikawa T, Park AM, Kudo M. Gut microbiome alterations in type 1 autoimmune pancreatitis after induction of remission by prednisolone. Clin Exp Immunol 2020; 202:308-320. [PMID: 32880930 DOI: 10.1111/cei.13509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Although increasing evidence demonstrates the association between intestinal dysbiosis and pancreatic diseases such as chronic pancreatitis and pancreatic cancer, it remains largely unknown whether intestinal dysbiosis is involved in the immunopathogenesis of autoimmune pancreatitis (AIP). Recently, we found that intestinal dysbiosis mediates experimental AIP via the activation of plasmacytoid dendritic cells (pDCs), which can produce interferon (IFN)-α and interleukin (IL)-33. However, candidate intestinal bacteria, which promote the development of AIP, have not been identified. Fecal samples were obtained from type 1 AIP patients before and after prednisolone (PSL) treatment and subjected to 16S ribosomal RNA sequencing to evaluate the composition of intestinal bacteria. Induction of remission by PSL was associated with the complete disappearance of Klebsiella species from feces in two of the three analyzed patients with type 1 AIP. To assess the pathogenicity of Klebsiella species, mild experimental AIP was induced in MRL/MpJ mice by repeated injections of 10 μg of polyinosinic-polycytidylic acid [poly(I:C)], in combination with oral administration of heat-killed Klebsiella pneumoniae. The AIP pathology score was significantly higher in MRL/MpJ mice that received both oral administration of heat-killed K. pneumoniae and intraperitoneal injections of poly(I:C) than in those administered either agent alone. Pancreatic accumulation of pDCs capable of producing large amounts of IFN-α and IL-33 was also significantly higher in mice that received both treatments. These data suggest that intestinal colonization by K. pneumoniae may play an intensifying role in the development of type 1 AIP.
Collapse
Affiliation(s)
- K Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - T Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - K Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - A Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - I Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Y Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - T Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - A-M Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - M Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
29
|
Minaga K, Watanabe T, Hara A, Kamata K, Omoto S, Nakai A, Otsuka Y, Sekai I, Yoshikawa T, Yamao K, Takenaka M, Chiba Y, Kudo M. Identification of serum IFN-α and IL-33 as novel biomarkers for type 1 autoimmune pancreatitis and IgG4-related disease. Sci Rep 2020; 10:14879. [PMID: 32938972 PMCID: PMC7495433 DOI: 10.1038/s41598-020-71848-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
IgG4-related disease (IgG4-RD) is a multi-organ autoimmune disease characterized by elevated serum IgG4 concentration. Although serum IgG4 concentration is widely used as a biomarker for IgG4-RD and type 1 autoimmune pancreatitis (AIP), a pancreatic manifestation of IgG4-RD, a significant number of patients have normal serum IgG4 levels, even in the active phase of the disease. Recently, we reported that the development of experimental AIP and human type 1 AIP is associated with increased expression of IFN-α and IL-33 in the pancreas. In this study, we assessed the utility of serum IFN-α and IL-33 levels as biomarkers for type 1 AIP and IgG4-RD. Serum IFN-α and IL-33 concentrations in patients who met the diagnostic criteria for definite type 1 AIP and/or IgG4-RD were significantly higher than in those with chronic pancreatitis or in healthy controls. Strong correlations between serum IFN-α, IL-33, and IgG4 concentrations were observed. Diagnostic performance of serum IFN-α and IL-33 concentrations as markers of type 1 AIP and/or IgG4-RD was comparable to that of serum IgG4 concentration, as calculated by the receiver operating characteristic curve analysis. Induction of remission by prednisolone treatment markedly decreased the serum concentration of these cytokines. We conclude that serum IFN-α and IL-33 concentrations can be useful as biomarkers for type 1 AIP and IgG4-RD.
Collapse
Affiliation(s)
- Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Shunsuke Omoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Atsushi Nakai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kentaro Yamao
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Mamoru Takenaka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
30
|
Hsieh SC, Shen CY, Liao HT, Chen MH, Wu CH, Li KJ, Lu CS, Kuo YM, Tsai HC, Tsai CY, Yu CL. The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-related Disease. Int J Mol Sci 2020; 21:ijms21145082. [PMID: 32708432 PMCID: PMC7404109 DOI: 10.3390/ijms21145082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
IgG4-related disease (IgG4-RD) is a spectrum of complex fibroinflammatory disorder with protean manifestations mimicking malignant neoplasms, infectious or non-infectious inflammatory process. The histopathologic features of IgG4-RD include lymphoplasmacytic infiltration, storiform fibrosis and obliterative phlebitis together with increased in situ infiltration of IgG4 bearing-plasma cells which account for more than 40% of all IgG-producing B cells. IgG4-RD can also be diagnosed based on an elevated serum IgG4 level of more than 110 mg/dL (normal < 86.5 mg/mL in adult) in conjunction with protean clinical manifestations in various organs such as pancreato–hepatobiliary inflammation with/without salivary/lacrimal gland enlargement. In the present review, we briefly discuss the role of genetic predisposition, environmental factors and candidate autoantibodies in the pathogenesis of IgG4-RD. Then, we discuss in detail the immunological paradox of IgG4 antibody, the mechanism of modified Th2 response for IgG4 rather than IgE antibody production and the controversial issues in the allergic reactions of IgG4-RD. Finally, we extensively review the implications of different immune-related cells, cytokines/chemokines/growth factors and Toll-like as well as NOD-like receptors in the pathogenesis of tissue fibro-inflammatory reactions. Our proposals for the future investigations and prospective therapeutic strategies for IgG4-RD are shown in the last part.
Collapse
Affiliation(s)
- Song-Chou Hsieh
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Hung-Cheng Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Tel.: +886-2-28712121 (ext. 3366) (C.-Y.T.); +886-2-23123456 (ext. 65011) (C.-L.Y.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Tel.: +886-2-28712121 (ext. 3366) (C.-Y.T.); +886-2-23123456 (ext. 65011) (C.-L.Y.)
| |
Collapse
|
31
|
Minaga K, Watanabe T, Arai Y, Shiokawa M, Hara A, Yoshikawa T, Kamata K, Yamashita K, Kudo M. Activation of interferon regulatory factor 7 in plasmacytoid dendritic cells promotes experimental autoimmune pancreatitis. J Gastroenterol 2020; 55:565-576. [PMID: 31960143 DOI: 10.1007/s00535-020-01662-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/05/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Excessive type I IFN (IFN-I) production by plasmacytoid dendritic cells (pDCs) promotes autoimmunity. Recently, we reported that a prominent feature of both experimental autoimmune pancreatitis (AIP) and human type 1 AIP is pDC activation followed by enhanced production of IFN-I and IL-33. However, the roles played by interferon regulatory factor 7 (IRF7), a critical transcription factor for IFN-I production in pDCs, in these disorders have not been clarified. METHODS Whole and nuclear extracts were isolated from pancreatic mononuclear cells (PMNCs) from MRL/MpJ mice exhibiting AIP. Expression of phospho-IRF7 and nuclear translocation of IRF7 was examined in these extracts by immunoblotting. Pancreatic expression of IRF7 was assessed by immunofluorescence analysis in experimental AIP. Nuclear translocation of IRF7 upon exposure to neutrophil extracellular traps (NETs) was assessed in peripheral blood pDCs from type 1 AIP patients. Pancreatic IRF7 expression was examined in surgically operated specimens from type 1 AIP patients. RESULTS IRF7 activation was induced in pancreatic pDCs in experimental AIP. siRNA-mediated knockdown of IRF7 expression prevented AIP development, which was accompanied by a marked reduction in both pancreatic accumulation of pDCs and production of IFN-α and IL-33. Notably, in peripheral blood pDCs isolated from patients with type 1 AIP, nuclear translocation of IRF7 was enhanced as compared with the translocation in pDCs from healthy controls. Furthermore, IRF7-expressing pDCs were detected in the pancreas of patients with type 1 AIP. CONCLUSIONS These findings suggest that the IRF7-IFN-I-IL-33 axis activated in pDCs drives pathogenic innate immune responses associated with type 1 AIP.
Collapse
Affiliation(s)
- Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kouhei Yamashita
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|