1
|
Nguyen TA, Chen RH, Hawkins BA, Hibbs DE, Kim HY, Wheate NJ, Groundwater PW, Stocker SL, Alffenaar JWC. Can we Predict Drug Excretion into Saliva? A Systematic Review and Analysis of Physicochemical Properties. Clin Pharmacokinet 2024; 63:1067-1087. [PMID: 39008243 PMCID: PMC11343830 DOI: 10.1007/s40262-024-01398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Saliva is a patient-friendly matrix for therapeutic drug monitoring (TDM) but is infrequently used in routine care. This is due to the uncertainty of saliva-based TDM results to inform dosing. This study aimed to retrieve data on saliva-plasma concentration and subsequently determine the physicochemical properties that influence the excretion of drugs into saliva to increase the foundational knowledge underpinning saliva-based TDM. METHODS Medline, Web of Science and Embase (1974-2023) were searched for human clinical studies, which determined drug pharmacokinetics in both saliva and plasma. Studies with at least ten subjects and five paired saliva-plasma concentrations per subject were included. For each study, the ratio of the area under the concentration-time curve between saliva and plasma was determined to assess excretion into saliva. Physicochemical properties of each drug (e.g. pKa, lipophilicity, molecular weight, polar surface area, rotatable bonds and fraction of drug unbound to plasma proteins) were obtained from PubChem and Drugbank. Drugs were categorised by their ionisability, after which saliva-to-plasma ratios were predicted with adjustment for protein binding and physiological pH via the Henderson-Hasselbalch equation. Spearman correlation analyses were performed for each drug category to identify factors predicting saliva excretion (α = 5%). Study quality was assessed by the risk of bias in non-randomised studies of interventions tool. RESULTS Overall, 42 studies including 40 drugs (anti-psychotics, anti-microbials, immunosuppressants, anti-thrombotic, anti-cancer and cardiac drugs) were included. The median saliva-to-plasma ratios were similar for drugs in the amphoteric (0.59), basic (0.43) and acidic (0.41) groups and lowest for drugs in the neutral group (0.21). Higher excretion of acidic drugs (n = 5) into saliva was associated with lower ionisation and protein binding (correlation between predicted versus observed saliva-to-plasma ratios: R2 = 0.85, p = 0.02). For basic drugs (n = 21), pKa predicted saliva excretion (Spearman correlation coefficient: R = 0.53, p = 0.02). For amphoteric drugs (n = 10), hydrogen bond donor (R = - 0.76, p = 0.01) and polar surface area (R = - 0.69, p = 0.02) were predictors. For neutral drugs (n = 10), protein binding (R = 0.84, p = 0.004), lipophilicity (R = - 0.65, p = 0.04) and hydrogen bond donor count (R = - 0.68, p = 0.03) were predictors. Drugs considered potentially suitable for saliva-based TDM are phenytoin, tacrolimus, voriconazole and lamotrigine. The studies had a low-to-moderate risk of bias. CONCLUSIONS Many commonly used drugs are excreted into saliva, which can be partly predicted by a drug's ionisation state, protein binding, lipophilicity, hydrogen bond donor count and polar surface area. The contribution of drug transporters and physiological factors to the excretion needs to be evaluated. Continued research on drugs potentially suitable for saliva-based TDM will aid in adopting this person-centred TDM approach to improve patient outcomes.
Collapse
Affiliation(s)
- Thi A Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia.
- Westmead Hospital, Sydney, NSW, Australia.
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.
| | - Ricky H Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Department of Pharmacy, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Bryson A Hawkins
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Department of Biology, Antimicrobial Discovery Centre, Northeastern University, Boston, MA, USA
| | - David E Hibbs
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
| | - Hannah Y Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| | - Nial J Wheate
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Paul W Groundwater
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
| | - Sophie L Stocker
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Sydney, NSW, Australia
- Sydney Musculoskeletal Health, The University of Sydney, Sydney, NSW, Australia
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
2
|
Davies Forsman L, Kim HY, Nguyen TA, Alffenaar JWC. Salivary Therapeutic Drug Monitoring of Antimicrobial Therapy: Feasible or Futile? Clin Pharmacokinet 2024; 63:269-278. [PMID: 38300489 PMCID: PMC10954910 DOI: 10.1007/s40262-024-01346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Personalised drug dosing through therapeutic drug monitoring (TDM) is important to maximise efficacy and to minimise toxicity. Hurdles preventing broad implementation of TDM in routine care include the need of sophisticated equipment and highly trained staff, high costs and lack of timely results. Salivary TDM is a non-invasive, patient-friendly alternative to blood sampling, which has the potential to overcome barriers with traditional TDM. A mobile UV spectrophotometer may provide a simple solution for analysing drug concentrations in saliva samples. Salivary TDM utilising point-of-care tests can support personalised dosing in various settings including low-resource as well as remote settings. In this opinion paper, we describe how hurdles of implementing traditional TDM may be mitigated by salivary TDM with new strategies for patient-friendly point-of-care testing.
Collapse
Affiliation(s)
- Lina Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Solna, Sweden
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- Westmead Hospital, Sydney, Australia
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia
- Westmead Hospital, Sydney, Australia
| | - Thi Anh Nguyen
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia
- Westmead Hospital, Sydney, Australia
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Building A15, Science Road, Sydney, NSW, 2006, Australia.
- The University of Sydney Infectious Diseases Institute (Sydney ID), Sydney, Australia.
- Westmead Hospital, Sydney, Australia.
| |
Collapse
|
3
|
du Cros P, Greig J, Alffenaar JWC, Cross GB, Cousins C, Berry C, Khan U, Phillips PPJ, Velásquez GE, Furin J, Spigelman M, Denholm JT, Thi SS, Tiberi S, Huang GKL, Marks GB, Turkova A, Guglielmetti L, Chew KL, Nguyen HT, Ong CWM, Brigden G, Singh KP, Motta I, Lange C, Seddon JA, Nyang'wa BT, Maug AKJ, Gler MT, Dooley KE, Quelapio M, Tsogt B, Menzies D, Cox V, Upton CM, Skrahina A, McKenna L, Horsburgh CR, Dheda K, Marais BJ. Standards for clinical trials for treating TB. Int J Tuberc Lung Dis 2023; 27:885-898. [PMID: 38042969 PMCID: PMC10719894 DOI: 10.5588/ijtld.23.0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND: The value, speed of completion and robustness of the evidence generated by TB treatment trials could be improved by implementing standards for best practice.METHODS: A global panel of experts participated in a Delphi process, using a 7-point Likert scale to score and revise draft standards until consensus was reached.RESULTS: Eleven standards were defined: Standard 1, high quality data on TB regimens are essential to inform clinical and programmatic management; Standard 2, the research questions addressed by TB trials should be relevant to affected communities, who should be included in all trial stages; Standard 3, trials should make every effort to be as inclusive as possible; Standard 4, the most efficient trial designs should be considered to improve the evidence base as quickly and cost effectively as possible, without compromising quality; Standard 5, trial governance should be in line with accepted good clinical practice; Standard 6, trials should investigate and report strategies that promote optimal engagement in care; Standard 7, where possible, TB trials should include pharmacokinetic and pharmacodynamic components; Standard 8, outcomes should include frequency of disease recurrence and post-treatment sequelae; Standard 9, TB trials should aim to harmonise key outcomes and data structures across studies; Standard 10, TB trials should include biobanking; Standard 11, treatment trials should invest in capacity strengthening of local trial and TB programme staff.CONCLUSION: These standards should improve the efficiency and effectiveness of evidence generation, as well as the translation of research into policy and practice.
Collapse
Affiliation(s)
- P du Cros
- Burnet Institute, Melbourne, VIC, Monash Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - J Greig
- Burnet Institute, Melbourne, VIC, Médecins Sans Frontières (MSF), Manson Unit, London, UK
| | - J-W C Alffenaar
- Sydney Infectious Diseases Institute (Sydney ID), and, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Westmead Hospital, Sydney, NSW
| | - G B Cross
- Burnet Institute, Melbourne, VIC, Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - C Cousins
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - C Berry
- Médecins Sans Frontières (MSF), Manson Unit, London, UK
| | - U Khan
- Interactive Research and Development Global, Singapore City, Singapore
| | - P P J Phillips
- UCSF Center for Tuberculosis, Division of Pulmonary and Critical Care Medicine, and
| | - G E Velásquez
- UCSF Center for Tuberculosis, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, CA
| | - J Furin
- Harvard Medical School, Department of Global Health and Social Medicine, Boston, MA
| | - M Spigelman
- Global Alliance for TB Drug Development, New York, NY, USA
| | - J T Denholm
- Victorian Tuberculosis Program, Melbourne Health, Melbourne, VIC, Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - S S Thi
- Eswatini National TB Control Program, Mbabane, Kingdom of Eswatini
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, GlaxoSmithKline, London, UK
| | - G K L Huang
- Burnet Institute, Melbourne, VIC, Northern Health Infectious Diseases, Northern Health, Melbourne, VIC
| | - G B Marks
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - A Turkova
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | - L Guglielmetti
- Médecins Sans Frontières (MSF), Paris, Sorbonne Université, Institut national de la santé et de la recherche médicale, Unité 1135, Centre d'Immunologie et des Maladies Infectieuses, Paris, Assistance Publique Hôpitaux de Paris (APHP), Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries, Paris, France
| | - K L Chew
- Department of Laboratory Medicine, National University Hospital, Singapore City, Singapore
| | - H T Nguyen
- Research Department, Friends for International TB Relief, Ha Noi, Vietnam
| | - C W M Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, National University of Singapore, Singapore City, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore City, Institute of Healthcare Innovation & Technology, National University of Singapore, Singapore City, Singapore
| | - G Brigden
- The Global Fund, Geneva, Switzerland
| | - K P Singh
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia, Victorian Infectious Disease Unit, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | | | - C Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, German Center for Infection Research (DZIF), TTU-TB, Borstel, Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - J A Seddon
- Department of Infectious Disease, Imperial College London, London, UK, Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - B-T Nyang'wa
- Public Health Department, Operational Center Amsterdam (OCA), MSF, Amsterdam, The Netherlands
| | - A K J Maug
- Damien Foundation Bangladesh, Dhaka, Bangladesh
| | - M T Gler
- De La Salle Medical and Health Sciences Institute, Dasmariñas, the Philippines
| | - K E Dooley
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Quelapio
- Tropical Disease Foundation, Makati City, Manila, the Philippines, KNCV Tuberculosis Foundation, The Hague, The Netherlands
| | - B Tsogt
- Mongolian Anti-TB Coalition, Ulaanbaatar, Mongolia
| | - D Menzies
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute & McGill International TB Centre, Montreal, QC, Canada
| | - V Cox
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town
| | - C M Upton
- TASK Applied Science, Cape Town, South Africa
| | - A Skrahina
- The Republican Scientific and Practical Center for Pulmonology and TB, Minsk, Belarus
| | - L McKenna
- Treatment Action Group, New York, NY
| | - C R Horsburgh
- Departments of Global Health, Epidemiology, Biostatistics and Medicine, Schools of Public Health and Medicine, Boston University, Boston MA, USA
| | - K Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - B J Marais
- Sydney Infectious Diseases Institute (Sydney ID), and, The Children's Hospital at Westmead, Sydney, NSW, WHO Collaborating Centre in Tuberculosis, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Rao PS, Modi N, Nguyen NTT, Vu DH, Xie YL, Gandhi M, Gerona R, Metcalfe J, Heysell SK, Alffenaar JWC. Alternative Methods for Therapeutic Drug Monitoring and Dose Adjustment of Tuberculosis Treatment in Clinical Settings: A Systematic Review. Clin Pharmacokinet 2023; 62:375-398. [PMID: 36869170 PMCID: PMC10042915 DOI: 10.1007/s40262-023-01220-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Quantifying exposure to drugs for personalized dose adjustment is of critical importance in patients with tuberculosis who may be at risk of treatment failure or toxicity due to individual variability in pharmacokinetics. Traditionally, serum or plasma samples have been used for drug monitoring, which only poses collection and logistical challenges in high-tuberculosis burden/low-resourced areas. Less invasive and lower cost tests using alternative biomatrices other than serum or plasma may improve the feasibility of therapeutic drug monitoring. METHODS A systematic review was conducted to include studies reporting anti-tuberculosis drug concentration measurements in dried blood spots, urine, saliva, and hair. Reports were screened to include study design, population, analytical methods, relevant pharmacokinetic parameters, and risk of bias. RESULTS A total of 75 reports encompassing all four biomatrices were included. Dried blood spots reduced the sample volume requirement and cut shipping costs whereas simpler laboratory methods to test the presence of drug in urine can allow point-of-care testing in high-burden settings. Minimal pre-processing requirements with saliva samples may further increase acceptability for laboratory staff. Multi-analyte panels have been tested in hair with the capacity to test a wide range of drugs and some of their metabolites. CONCLUSIONS Reported data were mostly from small-scale studies and alternative biomatrices need to be qualified in large and diverse populations for the demonstration of feasibility in operational settings. High-quality interventional studies will improve the uptake of alternative biomatrices in guidelines and accelerate implementation in programmatic tuberculosis treatment.
Collapse
Affiliation(s)
- Prakruti S Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Nisha Modi
- Global TB Institute and Department of Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Nam-Tien Tran Nguyen
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Dinh Hoa Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Yingda L Xie
- Global TB Institute and Department of Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Monica Gandhi
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Roy Gerona
- Maternal-Fetal Medicine Division, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - John Metcalfe
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, CA, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jan-Willem C Alffenaar
- Pharmacy School, The University of Sydney, Pharmacy Building (A15), Science Road, Sydney, NSW, 2006, Australia.
- The University of Sydney at Westmead Hospital, Sydney, NSW, Australia.
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Alffenaar JWC, de Steenwinkel JEM, Diacon AH, Simonsson USH, Srivastava S, Wicha SG. Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of in vitro, in vivo methodologies and human studies. Front Pharmacol 2022; 13:1063453. [PMID: 36569287 PMCID: PMC9780293 DOI: 10.3389/fphar.2022.1063453] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
Collapse
Affiliation(s)
- Jan-Willem C. Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia,School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Hospital, Sydney, NSW, Australia,*Correspondence: Jan-Willem C. Alffenaar,
| | | | | | | | - Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
6
|
Akkerman OW, Duarte R, Tiberi S, Schaaf HS, Lange C, Alffenaar JWC, Denholm J, Carvalho ACC, Bolhuis MS, Borisov S, Bruchfeld J, Cabibbe AM, Caminero JA, Carvalho I, Chakaya J, Centis R, Dalcomo MP, D Ambrosio L, Dedicoat M, Dheda K, Dooley KE, Furin J, García-García JM, van Hest NAH, de Jong BC, Kurhasani X, Märtson AG, Mpagama S, Torrico MM, Nunes E, Ong CWM, Palmero DJ, Ruslami R, Saktiawati AMI, Semuto C, Silva DR, Singla R, Solovic I, Srivastava S, de Steenwinkel JEM, Story A, Sturkenboom MGG, Tadolini M, Udwadia ZF, Verhage AR, Zellweger JP, Migliori GB. Clinical standards for drug-susceptible pulmonary TB. Int J Tuberc Lung Dis 2022; 26:592-604. [PMID: 35768923 PMCID: PMC9272737 DOI: 10.5588/ijtld.22.0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: The aim of these clinical standards is to provide guidance on 'best practice´ for diagnosis, treatment and management of drug-susceptible pulmonary TB (PTB).METHODS: A panel of 54 global experts in the field of TB care, public health, microbiology, and pharmacology were identified; 46 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all 46 participants.RESULTS: Seven clinical standards were defined: Standard 1, all patients (adult or child) who have symptoms and signs compatible with PTB should undergo investigations to reach a diagnosis; Standard 2, adequate bacteriological tests should be conducted to exclude drug-resistant TB; Standard 3, an appropriate regimen recommended by WHO and national guidelines for the treatment of PTB should be identified; Standard 4, health education and counselling should be provided for each patient starting treatment; Standard 5, treatment monitoring should be conducted to assess adherence, follow patient progress, identify and manage adverse events, and detect development of resistance; Standard 6, a recommended series of patient examinations should be performed at the end of treatment; Standard 7, necessary public health actions should be conducted for each patient. We also identified priorities for future research into PTB.CONCLUSION: These consensus-based clinical standards will help to improve patient care by guiding clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment for PTB.
Collapse
Affiliation(s)
- O W Akkerman
- TB Center Beatrixoord, University Medical Center Groningen, University of Groningen, Haren, the Netherlands, Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R Duarte
- Centro Hospitalar de Vila Nova de Gaia/Espinho; Instituto de Ciencias Biomédicas de Abel Saalazar, Universidade do Porto, Instituto de Saúde Publica da Universidade do Porto, Unidade de Investigação Clínica, ARS Norte, Porto, Portugal
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Division of Infection, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - H S Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany, German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany, Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany, The Global Tuberculosis Program, Texas Children´s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - J Denholm
- Victorian Tuberculosis Program, Melbourne Health, Department of Infectious diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - M S Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Borisov
- Moscow Research and Clinical Center for Tuberculosis Control, Moscow, Russia
| | - J Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden, Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - A M Cabibbe
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - J A Caminero
- Department of Pneumology, University General Hospital of Gran Canaria "Dr Negrin", Las Palmas, Spain, ALOSA (Active Learning over Sanitary Aspects) TB Academy, Spain
| | - I Carvalho
- Pediatric Department, Vila Nova de Gaia Outpatient Tuberculosis Centre, Vila Nova de Gaia Hospital Centre, Vila Nova de Gaia, Portugal
| | - J Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences. Liverpool School of Tropical Medicine, Liverpool, UK
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - M P Dalcomo
- Reference Center Helio Fraga, FIOCRUZ, Brazil
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - K Dheda
- Centre for Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, South African Medical Research Council Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - K E Dooley
- Center for Tuberculosis Research, Johns Hopkins, Baltimore, MD
| | - J Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | | | - N A H van Hest
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, Municipal Public Health Service Groningen, Groningen, The Netherlands
| | - B C de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - X Kurhasani
- UBT-Higher Education Institution Prishtina, Kosovo
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - S Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzani, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, México City, Mexico
| | - E Nunes
- Department of Pulmonology of Central Hospital of Maputo, Maputo, Mozambique, Faculty of Medicine of Eduardo Mondlane University, Maputo, Mozambique
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, National University of Singapore Institute for Health Innovation & Technology (iHealthtech), Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - D J Palmero
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Research Center for Care and Control of Infectious Disease (RC3iD), Universitas Padjadjaran, Bandung, Indonesia
| | - A M I Saktiawati
- Department of Internal Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - C Semuto
- Research, Innovation and Data Science Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - D R Silva
- Instituto Vaccarezza, Hospital Muñiz, Buenos Aires, Argentina
| | - R Singla
- National Institute of Tuberculosis & Respiratory Diseases, New Delhi, India
| | - I Solovic
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Faculty of Health, Catholic University, Ružomberok, Vyšné Hágy, Slovakia
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA
| | - J E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - A Story
- Institute of Epidemiology and Healthcare, University College London, London, UK, Find and Treat, University College Hospitals NHS Foundation Trust, London, UK
| | - M G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - A R Verhage
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J P Zellweger
- TB Competence Center, Swiss Lung Association, Berne, Switzerland
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
7
|
Alffenaar JWC, Stocker SL, Forsman LD, Garcia-Prats A, Heysell SK, Aarnoutse RE, Akkerman OW, Aleksa A, van Altena R, de Oñata WA, Bhavani PK, Van't Boveneind-Vrubleuskaya N, Carvalho ACC, Centis R, Chakaya JM, Cirillo DM, Cho JG, D Ambrosio L, Dalcolmo MP, Denti P, Dheda K, Fox GJ, Hesseling AC, Kim HY, Köser CU, Marais BJ, Margineanu I, Märtson AG, Torrico MM, Nataprawira HM, Ong CWM, Otto-Knapp R, Peloquin CA, Silva DR, Ruslami R, Santoso P, Savic RM, Singla R, Svensson EM, Skrahina A, van Soolingen D, Srivastava S, Tadolini M, Tiberi S, Thomas TA, Udwadia ZF, Vu DH, Zhang W, Mpagama SG, Schön T, Migliori GB. Clinical standards for the dosing and management of TB drugs. Int J Tuberc Lung Dis 2022; 26:483-499. [PMID: 35650702 PMCID: PMC9165737 DOI: 10.5588/ijtld.22.0188] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice´ for dosing and management of TB drugs.METHODS: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.RESULTS: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.CONCLUSION: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
Collapse
Affiliation(s)
- J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - S L Stocker
- School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Department of Clinical Pharmacology and Toxicology, St Vincent´s Hospital, Sydney, NSW, Australia, St Vincent´s Clinical Campus, University of NSW, Kensington, NSW, Australia
| | - L Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Sweden, Department of Infectious Diseases Karolinska University Hospital, Solna, Sweden
| | - A Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa, Department of Pediatrics, University of Wisconsin, Madison, WI
| | - S K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - R E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - O W Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands, University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, Haren, The Netherlands
| | - A Aleksa
- Educational Institution "Grodno State Medical University", Grodno, Belarus
| | - R van Altena
- Asian Harm Reduction Network (AHRN) and Medical Action Myanmar (MAM) in Yangon, Myanmar
| | - W Arrazola de Oñata
- Belgian Scientific Institute for Public Health (Belgian Lung and Tuberculosis Association), Brussels, Belgium
| | - P K Bhavani
- Indian Council of Medical Research-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - N Van't Boveneind-Vrubleuskaya
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Department of Public Health TB Control, Metropolitan Public Health Services, The Hague, The Netherlands
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - J M Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J G Cho
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M P Dalcolmo
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - P Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - K Dheda
- Centre for Lung Infection and Immunity, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, University of Cape Town Lung Institute & South African MRC Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G J Fox
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - H Y Kim
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - C U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - B J Marais
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Department of Infectious Diseases and Microbiology, The Children´s Hospital at Westmead, Westmead, NSW, Australia
| | - I Margineanu
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico
| | - H M Nataprawira
- Division of Paediatric Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - R Otto-Knapp
- German Central Committee against Tuberculosis (DZK), Berlin, Germany
| | - C A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - D R Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - R M Savic
- Department of Bioengineering and Therapeutic Sciences, Division of Pulmonary and Critical Care Medicine, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - R Singla
- Department of TB & Respiratory Diseases, National Institute of TB & Respiratory Diseases, New Delhi, India
| | - E M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - A Skrahina
- The Republican Research and Practical Centre for Pulmonology and TB, Minsk, Belarus
| | - D van Soolingen
- National Institute for Public Health and the Environment, TB Reference Laboratory (RIVM), Bilthoven, The Netherlands
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - T A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - D H Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - W Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People´s Republic of China
| | - S G Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - T Schön
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden, Institute of Biomedical and Clinical Sciences, Division of Infection and Inflammation, Linköping University, Linköping, Sweden, Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| |
Collapse
|
8
|
Wieduwilt F, Grünewald J, Ctistis G, Lenth C, Perl T, Wackerbarth H. Exploration of an Alarm Sensor to Detect Infusion Failure Administered by Syringe Pumps. Diagnostics (Basel) 2022; 12:diagnostics12040936. [PMID: 35453984 PMCID: PMC9032832 DOI: 10.3390/diagnostics12040936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023] Open
Abstract
Incorrect medication administration causes millions of undesirable complications worldwide every year. The problem is severe and there are many control systems in the market, yet the exact molecular composition of the solution is not monitored. Here, we propose an alarm sensor based on UV-Vis spectroscopy and refractometry. Both methods are non-invasive and non-destructive as they utilize visible light for the analysis. Moreover, they can be used for on-site or point-of-care diagnosis. UV-Vis-spectrometer detect the absorption of light caused by an electronic transition in an atom or molecule. In contrast a refractometer measures the extent of light refraction as part of a refractive index of transparent substances. Both methods can be used for quantification of dissolved analytes in transparent substances. We show that a sensor combining both methods is capable to discern most standard medications that are used in intensive care medicine. Furthermore, an integration of the alarm sensor in already existing monitoring systems is possible.
Collapse
Affiliation(s)
- Florian Wieduwilt
- Institut für Nanophotonik Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany; (J.G.); (C.L.); (H.W.)
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- Correspondence: (F.W.); (G.C.)
| | - Jasmin Grünewald
- Institut für Nanophotonik Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany; (J.G.); (C.L.); (H.W.)
| | - Georgios Ctistis
- Institut für Nanophotonik Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany; (J.G.); (C.L.); (H.W.)
- Correspondence: (F.W.); (G.C.)
| | - Christoph Lenth
- Institut für Nanophotonik Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany; (J.G.); (C.L.); (H.W.)
| | - Thorsten Perl
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany;
| | - Hainer Wackerbarth
- Institut für Nanophotonik Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany; (J.G.); (C.L.); (H.W.)
| |
Collapse
|
9
|
Kim HY, Byashalira KC, Heysell SK, Märtson AG, Mpagama SG, Rao P, Sturkenboom MG, Alffenaar JWC. Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Ther Drug Monit 2022; 44:3-10. [PMID: 34686647 PMCID: PMC8755585 DOI: 10.1097/ftd.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Marieke G.G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Alffenaar JWC, Marais BJ, Thomas TA. Is a high dose sufficient to achieve high isoniazid exposure in children affected by multidrug-resistant TB? Int J Tuberc Lung Dis 2021; 25:879-880. [PMID: 34686227 PMCID: PMC9811372 DOI: 10.5588/ijtld.21.0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- J-W. C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW, Australia;,Westmead Hospital, Sydney, NSW, Australia;,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - B. J Marais
- Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia;,Children’s Hospital Westmead, Sydney, NSW, Australia
| | - T. A. Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
11
|
Volkov PA, Gusarova NK, Khrapova KO, Telezhkin AA, Albanov AI, Vasilevskiy SF, Trofimov BA. A mechanistic insight into the chemoselectivity of the reaction between 3-phenyl-2-propynenitrile, secondary phosphine oxides and pyridinoids. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Kim HY, Ruiter E, Jongedijk EM, Ak HK, Marais BJ, Pk B, Sawleshwarkar S, Touw DJ, Alffenaar JW. Saliva-based linezolid monitoring on a mobile UV spectrophotometer. J Antimicrob Chemother 2021; 76:1786-1792. [PMID: 33734351 DOI: 10.1093/jac/dkab075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In TB, therapeutic drug monitoring (TDM) is recommended for linezolid; however, implementation is challenging in endemic settings. Non-invasive saliva sampling using a mobile assay would increase the feasibility of TDM. OBJECTIVES To validate a linezolid saliva assay using a mobile UV spectrophotometer. METHODS The saliva assay was developed using NanoPhotometer NP80® and linezolid concentrations were quantified using second-order derivative spectroscopy. Sample preparation involved liquid-liquid extraction of saliva, using saturated sodium chloride and ethyl acetate at 1:1:3 (v/v/v). The assay was validated for accuracy, precision, selectivity, specificity, carry-over, matrix effect, stability and filters. Acceptance criteria were bias and coefficient of variation (CV) <15% for quality control (QC) samples and <20% for the lower limit of quantification (LLOQ). RESULTS Linezolid concentrations correlated with the amplitude between 250 and 270 nm on the second-order derivative spectra. The linezolid calibration curve was linear over the range of 3.0 to 25 mg/L (R2 = 0.99) and the LLOQ was 3.0 mg/L. Accuracy and precision were demonstrated with bias of -7.5% to 2.7% and CV ≤5.6%. The assay met the criteria for selectivity, matrix effect, carry-over, stability (tested up to 3 days) and use of filters (0.22 μM Millex®-GV and Millex®-GP). Specificity was tested with potential co-medications. Interferences from pyrazinamide, levofloxacin, moxifloxacin, rifampicin, abacavir, acetaminophen and trimethoprim were noted; however, with minimal clinical implications on linezolid dosing. CONCLUSIONS We validated a UV spectrophotometric assay using non-invasive saliva sampling for linezolid. The next step is to demonstrate clinical feasibility and value to facilitate programmatic implementation of TDM.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Evelien Ruiter
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,School of Pharmacy, Utrecht University, Utrecht, The Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | | | - Ben J Marais
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, Australia
| | - Bhavani Pk
- National Institute for Research in Tuberculosis, Chennai, India
| | - Shailendra Sawleshwarkar
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.,Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Westmead Hospital, Westmead, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
13
|
Mohamed S, Mvungi HC, Sariko M, Rao P, Mbelele P, Jongedijk EM, van Winkel CAJ, Touw DJ, Stroup S, Alffenaar JWC, Mpagama S, Heysell SK. Levofloxacin pharmacokinetics in saliva as measured by a mobile microvolume UV spectrophotometer among people treated for rifampicin-resistant TB in Tanzania. J Antimicrob Chemother 2021; 76:1547-1552. [PMID: 33675664 PMCID: PMC8120342 DOI: 10.1093/jac/dkab057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Early detection and correction of low fluoroquinolone exposure may improve treatment of MDR-TB. OBJECTIVES To explore a recently developed portable, battery-powered, UV spectrophotometer for measuring levofloxacin in saliva of people treated for MDR-TB. METHODS Patients treated with levofloxacin as part of a regimen for MDR-TB in Northern Tanzania had serum and saliva collected concurrently at 1 and 4 h after 2 weeks of observed levofloxacin administration. Saliva levofloxacin concentrations were quantified in the field via spectrophotometry, while serum was analysed at a regional laboratory using HPLC. A Bayesian population pharmacokinetics model was used to estimate the area under the concentration-time curve (AUC0-24). Subtarget exposures of levofloxacin were defined by serum AUC0-24 <80 mg·h/L. The study was registered at Clinicaltrials.gov with clinical trial identifier NCT04124055. RESULTS Among 45 patients, 11 (25.6%) were women and 16 (37.2%) were living with HIV. Median AUC0-24 in serum was 140 (IQR = 102.4-179.09) mg·h/L and median AUC0-24 in saliva was 97.10 (IQR = 74.80-121.10) mg·h/L. A positive linear correlation was observed with serum and saliva AUC0-24, and a receiver operating characteristic curve constructed to detect serum AUC0-24 below 80 mg·h/L demonstrated excellent prediction [AUC 0.80 (95% CI = 0.62-0.94)]. Utilizing a saliva AUC0-24 cut-off of 91.6 mg·h/L, the assay was 88.9% sensitive and 69.4% specific in detecting subtarget serum AUC0-24 values, including identifying eight of nine patients below target. CONCLUSIONS Portable UV spectrophotometry as a point-of-care screen for subtarget levofloxacin exposure was feasible. Use for triage to other investigation or personalized dosing strategy should be tested in a randomized study.
Collapse
Affiliation(s)
- Sagal Mohamed
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Peter Mbelele
- Kibong'oto Infectious Diseases Hospital, Sanya Juu, Tanzania
| | - Erwin M Jongedijk
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Claudia A J van Winkel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne Stroup
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Westmead Hospital, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | | | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
14
|
Märtson AG, Burch G, Ghimire S, Alffenaar JWC, Peloquin CA. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol 2020; 17:23-39. [PMID: 33040625 DOI: 10.1080/17425255.2021.1836158] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) has been recommended for treatment optimization in tuberculosis (TB) but is only is used in certain countries e.g. USA, Germany, the Netherlands, Sweden and Tanzania. Recently, new drugs have emerged and PK studies in TB are continuing, which contributes further evidence for TDM in TB. The aim of this review is to provide an update on drugs used in TB, treatment strategies for these drugs, and TDM to support broader implementation. AREAS COVERED This review describes the different drug classes used for TB, multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), along with their pharmacokinetics, dosing strategies, TDM and sampling strategies. Moreover, the review discusses TDM for patient TB and renal or liver impairment, patients co-infected with HIV or hepatitis, and special patient populations - children and pregnant women. EXPERT OPINION TB treatment has a long history of using 'one size fits all.' This has contributed to treatment failures, treatment relapses, and the selection of drug-resistant isolates. While challenging in resource-limited circumstances, TDM offers the clinician the opportunity to individualize and optimize treatment early in treatment. This approach may help to refine treatment and thereby reduce adverse effects and poor treatment outcomes. Funding, training, and randomized controlled trials are needed to advance the use of TDM for patients with TB.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Gena Burch
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| | - Samiksha Ghimire
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, The Netherlands.,Department of Pharmacy, Westmead Hospital , Sydney, Australia.,Sydney Pharmacy School, The University of Sydney , Sydney, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney , Sydney, Australia
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy and Emerging Pathogens Institute, University of Florida , Gainesville, FL, USA
| |
Collapse
|