1
|
Marshall HS, Molina JM, Berlaimont V, Mulgirigama A, Sohn WY, Berçot B, Bobde S. Management and prevention of Neisseria meningitidis and Neisseria gonorrhoeae infections in the context of evolving antimicrobial resistance trends. Eur J Clin Microbiol Infect Dis 2025; 44:233-250. [PMID: 39601904 PMCID: PMC11754362 DOI: 10.1007/s10096-024-04968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE To describe the relationships between Neisseria meningitidis (NM) and Neisseria gonorrhoeae (NG) at genetic, population, and individual levels; to review historical trends in antimicrobial resistance (AMR); to review the treatment and preventive landscapes and explore their potential impact on AMR. METHODS A narrative literature search was conducted in PubMed, with searches restricted to 2003-2023 and additional articles included based on expertise. RESULTS NM and NG are closely related bacterial pathogens causing invasive meningococcal disease (IMD) and gonorrhea, respectively. NM can currently be treated with most antibiotics and generally has a wild-type susceptibility profile, whereas NG is increasingly resistant even in the first line of treatment. These pathogens share 80-90% genetic identity and can asymptomatically cohabit the pharynx. While AMR has historically been rare for NM, recent reports show this to be an emerging clinical concern. Extensively drug-resistant NG are reported globally, with data available from 73 countries, and can lead to treatment failure. Importantly, Neisseria commensals within the normal microbiota in the pharynx can act as a genetic reservoir of resistance to extended-spectrum cephalosporins. Novel oral antibiotics are urgently needed to treat a growing threat from antibiotic-resistant NG, recognized as a major global concern to public health by the World Health Organization. Numerous vaccines are available to prevent IMD, but none are approved for gonorrhea. Research to identify suitable candidates is ongoing. CONCLUSION Holistic management of AMR in IMD and gonorrhea should couple judicious use of existing antibiotics, optimization of vaccination programs, and development of novel antibiotics and vaccines.
Collapse
Affiliation(s)
- Helen S Marshall
- Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network and Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Jean-Michel Molina
- Université Paris Cité, INSERM UMR 944, Paris, France
- Department of Infectious Diseases, Saint-Louis and Lariboisière Hospitals, APHP, Paris, France
| | | | | | | | - Béatrice Berçot
- Université Paris Cité, INSERM1137, IAME, Paris, France
- Department of Bacteriology, French National Reference of Bacterial STI, Saint-Louis and Lariboisière Hospitals, APHP, Paris, France
| | | |
Collapse
|
2
|
Farooq A, Rafique A, Han E, Park SM. Global dissemination of the beta-lactam resistance gene blaTEM-1 among pathogenic bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178521. [PMID: 39824112 DOI: 10.1016/j.scitotenv.2025.178521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Antibiotic resistance presents a burgeoning global health crisis, with over 70 % of pathogenic bacteria now exhibiting resistance to at least one antibiotic. This study leverages a vast dataset of 618,853 pathogenic bacterial genomes from the NCBI pathogen detection database, offering comprehensive insights into antibiotic resistance patterns, species-specific profiles, and transmission dynamics of resistant pathogens. We centered our investigation on the beta-lactam resistance gene blaTEM-1, found in 43,339 genomes, revealing its extensive distribution across diverse species and isolation sources. The study unveiled the prevalence of 15 prominent antibiotic resistance genes (ARGs), including those conferring resistance to beta-lactam, aminoglycoside, and tetracycline antibiotics. Distinct resistance patterns were observed between Gram-positive and Gram-negative bacteria, indicating the influence of phylogeny on resistance dissemination. Notably, the blaTEM-1 gene demonstrated substantial prevalence across a wide array of bacterial species (8) and a high number of isolation sources (11). Genetic context analysis revealed associations between blaTEM-1 and mobile genetic elements (MGEs) like transposons and insertion sequences. Additionally, we observed recent horizontal transfer events involving clusters of blaTEM-1 genes and MGEs underscore the potential of MGEs in facilitating the mobilization of ARGs. Our findings underscore the importance of adopting a One Health approach to global genomic pathogen surveillance, aiming to uncover the transmission routes of ARGs and formulate strategies to address the escalating antibiotic resistance crisis.
Collapse
Affiliation(s)
- Adeel Farooq
- Research Institute for Basic Sciences (RIBS), Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Republic of Korea.
| | - Asma Rafique
- Department of Microbiology and Immunology, College of Medicine, Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eunyoung Han
- Department of Biotechnology, College of Applied Life Sciences, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam 50834, Republic of Korea
| | - Soo-Min Park
- Department of Biotechnology, College of Applied Life Sciences, Inje University, 197 Inje-ro, Gimhae, Gyeongsangnam 50834, Republic of Korea
| |
Collapse
|
3
|
Gomes-da-Silva NC, Correa LB, Gonzalez MM, Franca ARS, Alencar LMR, Rosas EC, Ricci-Junior E, Aguiar TKB, Souza PFN, Santos-Oliveira R. Nanoceria Anti-inflammatory and Antimicrobial Nanodrug: Cellular and Molecular Mechanism of Action. Curr Med Chem 2025; 32:1017-1032. [PMID: 38265391 DOI: 10.2174/0109298673285605231229112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Nanoceria is a well-known nanomaterial with various properties, including antioxidant, proangiogenic, and therapeutic effects. Despite its potential, there are still aspects that require further exploration, particularly its anti-inflammatory and antimicrobial activities. METHODS The global demand for novel anti-inflammatory and antimicrobial drugs underscores the significance of understanding nanoceria in both contexts. In this study, we evaluated the effect of nanoceria on macrophage polarization to better understand its anti-inflammatory effects. Additionally, we investigated the mechanism of action of nanoceria against Cryptococcus neoformans (ATCC 32045), Candida parapsilosis (ATCC 22019), Candida krusei (ATCC 6258), and Candida albicans. RESULTS The results demonstrated that nanoceria can polarize macrophages toward an anti-inflammatory profile, revealing the cellular mechanisms involved in the anti-inflammatory response. Concerning the antimicrobial effect, it was observed that nanoceria have a more pronounced impact on Candida parapsilosis, leading to the formation of pronounced pores on the surface of this species. CONCLUSION Finally, biochemical analysis revealed transitory alterations, mainly in liver enzymes. The data support the use of nanoceria as a potential anti-inflammatory and antimicrobial drug and elucidate some of the mechanisms involved, shedding light on the properties of this nanodrug.
Collapse
Affiliation(s)
- Natalia Cristina Gomes-da-Silva
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
| | - Luana Barbosa Correa
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
| | - M MartInez Gonzalez
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
| | - Alefe Roger Silva Franca
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, 65065690, MA, Brazil
| | - Luciana M R Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, 65065690, MA, Brazil
| | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21941900, RJ, Brazil
| | | | - Pedro Filho Noronha Souza
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, 60430-275, CE, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, RJ, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro, 23070200, RJ, Brazil
| |
Collapse
|
4
|
Wang M, Yao Y, Yang Y, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Tian B, Sun D, Zhang L, Yu Y, He Y, Wu Z, Cheng A, Liu M. The characterization of outer membrane vesicles (OMVs) and their role in mediating antibiotic-resistance gene transfer through natural transformation in Riemerella anatipestifer. Poult Sci 2024; 104:104730. [PMID: 39729729 PMCID: PMC11742308 DOI: 10.1016/j.psj.2024.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
Riemerella anatipestifer (R. anatipestifer, RA) is the etiological agent of duck serositis, an acute multisystemic disease in ducks that is globally distributed and causes serious economic losses in the duck industry. Despite exhibiting multidrug resistance, the transmission mechanism of its antibiotic resistance genes (ARGs) remains incompletely identified. To contribute to addressing this gap, in this study, outer membrane vesicles (OMVs) from the RA strain CH-1 were isolated and characterized to investigate their involvement in ARG transfer in RA. Sequencing and data analysis revealed that RA CH-1 OMVs had ∼2.04 Mb genomic size, representing 88.3 % of the RA CH-1 genomic length. Proteomic analysis showed that OMVs contained 577 proteins, representing 27.2 % of the bacterial proteins. Subsequent investigations demonstrated that OMVs from antibiotic-resistant strains transferred ARG fragments and plasmids to the sensitive strain RA ATCC11845, relying on the natural transformation system, and the transformants exhibited corresponding resistance. Overall, OMV-mediated horizontal transfer of ARGs serving as a significant mechanism for acquiring multiple resistance genes in R. anatipestifer.
Collapse
Affiliation(s)
- Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yizhou Yao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanling Yu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Zhang K, Gao J, Lu T, Wang Y, Zhang J, An J, Xu H. Evolution of microbial community and resistance genes in denitrification system under single and combined exposure to benzethonium chloride and methylparaben. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136010. [PMID: 39357349 DOI: 10.1016/j.jhazmat.2024.136010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Benzethonium chloride (BZC) and methylparaben (MeP) are commonly added into cosmetics as preservatives, which are frequently detected in wastewater treatment plants. Different response patterns of denitrification system were proposed under single and combined exposure to BZC and MeP (0, 0.5, 5 mg/L) by evaluating system performance, functional genes, extracellular polymeric substance (EPS), cytotoxicity, microbial community structure and resistance genes (RGs). The inhibition effect of BZC on denitrification system was stronger than MeP, and the co-exposure of BZC and MeP showed synergistic effect, enhancing the inhibition effect of BZC single exposure. BZC and/or MeP could promote the diffusion of RGs in sludge, including intracellular RGs (si-RGs) and extracellular RGs (se-RGs). Moreover, the single exposure of BZC and co-exposure of BZC and MeP increased the dissemination risks of RGs in water (w-RGs). IntI1 and tnpA-04, mobile genetic elements (MGEs), correlated positively with diverse RGs from different fractions. Notably, the spread of RGs through horizontal gene transfer mediated by MGEs and the flow of si-RGs into extracellular and water were observed in this study.
Collapse
Affiliation(s)
- Ke Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Tianyi Lu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxuan Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jinming Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jiawen An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
7
|
Capuozzo M, Zovi A, Langella R, Ottaiano A, Cascella M, Scognamiglio M, Ferrara F. Optimizing Antibiotic Use: Addressing Resistance Through Effective Strategies and Health Policies. Antibiotics (Basel) 2024; 13:1112. [PMID: 39766502 PMCID: PMC11672716 DOI: 10.3390/antibiotics13121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Background: Antimicrobial resistance (AMR) has emerged as a significant challenge to public health, posing a considerable threat to effective disease management on a global scale. The increasing incidence of infections caused by resistant bacteria has led to heightened morbidity and mortality rates, particularly among vulnerable populations. Main text: This review analyzes current strategies and health policies adopted in the European Union (EU) and Italy to manage AMR, presenting an in-depth examination of approaches for containment and mitigation. Factors such as excessive prescriptions, self-medication, and the misuse of antibiotics in livestock contribute to the selection and spread of resistant strains. Furthermore, this review provides a detailed overview of resistance mechanisms, including enzymatic inactivation, reduced permeability, efflux pump activity, and target site protection, with specific examples provided. The review underscores the urgent need to develop new antibiotics and implement diagnostic testing to ensure targeted prescriptions and effectively combat resistant infections. Current estimates indicate that AMR-related infections cause over 60,000 deaths annually in Europe and the United States, with projections suggesting a potential rise to 10 million deaths per year by 2050 if current trends are not reversed. The review also examines existing public health policies in Europe and Italy, focusing on national and regional strategies to combat AMR. These include promoting responsible antibiotic use, improving surveillance systems, and encouraging research and development of new therapeutic options. Conclusions: Finally, the review presents short- and long-term perspectives from the authors, suggesting actionable steps for policymakers and healthcare providers. Ultimately, a coordinated and multidisciplinary approach involving healthcare professionals, policymakers, and the public is essential to mitigate the impact of AMR and ensure the effectiveness of antibiotics for future generations.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Pharmaceutical Department, Asl Napoli 3 Sud, Marittima Street 3, 80056 Ercolano, Italy;
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Roberto Langella
- Italian Society of Hospital Pharmacy (SIFO), SIFO Secretariat of the Lombardy Region, Via Carlo Farini 81, 20159 Milan, Italy;
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Marco Cascella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Manlio Scognamiglio
- Pharmaceutical Department, Asl Salerno, Salvatore Giordano Street 7, 84014 Nocera Inferiore, Italy;
| | - Francesco Ferrara
- Pharmacy Department, Asl Napoli 3 Sud, Dell’amicizia Street 22, 80035 Nola, Italy
| |
Collapse
|
8
|
Goh YX, Anupoju SMB, Nguyen A, Zhang H, Ponder M, Krometis LA, Pruden A, Liao J. Evidence of horizontal gene transfer and environmental selection impacting antibiotic resistance evolution in soil-dwelling Listeria. Nat Commun 2024; 15:10034. [PMID: 39562586 DOI: 10.1038/s41467-024-54459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
Soil is an important reservoir of antibiotic resistance genes (ARGs) and understanding how corresponding environmental changes influence their emergence, evolution, and spread is crucial. The soil-dwelling bacterial genus Listeria, including L. monocytogenes, the causative agent of listeriosis, serves as a key model for establishing this understanding. Here, we characterize ARGs in 594 genomes representing 19 Listeria species that we previously isolated from soils in natural environments across the United States. Among the five putatively functional ARGs identified, lin, which confers resistance to lincomycin, is the most prevalent, followed by mprF, sul, fosX, and norB. ARGs are predominantly found in Listeria sensu stricto species, with those more closely related to L. monocytogenes tending to harbor more ARGs. Notably, phylogenetic and recombination analyses provide evidence of recent horizontal gene transfer (HGT) in all five ARGs within and/or across species, likely mediated by transformation rather than conjugation and transduction. In addition, the richness and genetic divergence of ARGs are associated with environmental conditions, particularly soil properties (e.g., aluminum and magnesium) and surrounding land use patterns (e.g., forest coverage). Collectively, our data suggest that recent HGT and environmental selection play a vital role in the acquisition and diversification of bacterial ARGs in natural environments.
Collapse
Affiliation(s)
- Ying-Xian Goh
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Anthony Nguyen
- Computational Modeling & Data Analytics Program, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hailong Zhang
- Department of Business Information Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Monica Ponder
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Leigh-Anne Krometis
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
9
|
Liu HY, Prentice EL, Webber MA. Mechanisms of antimicrobial resistance in biofilms. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:27. [PMID: 39364333 PMCID: PMC11445061 DOI: 10.1038/s44259-024-00046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Most bacteria in nature exist in aggregated communities known as biofilms, and cells within a biofilm demonstrate major physiological changes compared to their planktonic counterparts. Biofilms are associated with many different types of infections which can have severe impacts on patients. Infections involving a biofilm component are often chronic and highly recalcitrant to antibiotic therapy as a result of intrinsic physical factors including extracellular matrix production, low growth rates, altered antibiotic target production and efficient exchange of resistance genes. This review describes the biofilm lifecycle, phenotypic characteristics of a biofilm, and contribution of matrix and persister cells to biofilms intrinsic tolerance to antimicrobials. We also describe how biofilms can evolve antibiotic resistance and transfer resistance genes within biofilms. Multispecies biofilms and the impacts of various interactions, including cooperation and competition, between species on tolerance to antimicrobials in polymicrobial biofilm communities are also discussed.
Collapse
Affiliation(s)
- Ho Yu Liu
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| | - Emma L Prentice
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
| | - Mark A Webber
- Quadram Institute Biosciences, Norwich Research Park, Norwich, Norfolk NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk NR4 7TJ UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, Norfolk NR4 7UG UK
| |
Collapse
|
10
|
Olsen M, Goldsworthy A, Morgan M, Leggett J, Demaneuf T, Van Der Bruggen N, Singh G, Ghemrawi R, Senok A, Almheiri R, McKirdy S, Alghafri R, Tajouri L. Microbial laden mobile phones from international conference attendees pose potential risks to public health and biosecurity. Infect Dis Health 2024:S2468-0451(24)00067-1. [PMID: 39332981 DOI: 10.1016/j.idh.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
INTRODUCTION Mobile phones, contaminated with pathogenic microorganisms, have the potential to act as "trojan horses". The microbial signatures present on their surfaces most probably vary across different geographical regions. As a result, mobile phones belonging to international conference attendees may serve as a model for global microbial dissemination, posing potential risks to public health and biosecurity. AIM This study aimed to profile the microbes present on mobile phones belonging to delegates attending an international scientific conference through use of metagenomic shotgun DNA sequencing. METHODS Twenty mobile phones, representing ten different geographical zones from around the world, were swabbed and pooled together into ten geographical-specific samples for high definition next-generation DNA sequencing. WONCA council members were invited to participate and provided verbal consent. Following DNA extraction, next generation sequencing, to a depth of approximately 10Gbp per sample, was undertaken on a v1.5 Illumina NovaSeq6000 system. Bioinformatic analysis was performed via the CosmosID platform. RESULTS A total of 2204 microbial hits were accumulated across 20 mobile phones inclusive of 882 bacteria, 1229 viruses, 88 fungi and 5 protozoa. Of particular concern was the identification of 65 distinct antibiotic resistance genes and 86 virulence genes. Plant, animal and human pathogens, including ESKAPE and HACEK bacteria were found on mobile phones. DISCUSSION/CONCLUSION Mobile phones of international attendees are contaminated with many & varied microorganisms. Further research is required to characterize the risks these devices pose for biosecurity and public health. Development of new policies which appropriately address and prevent such risks maybe warranted.
Collapse
Affiliation(s)
- Matthew Olsen
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Adrian Goldsworthy
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia
| | - Mark Morgan
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - John Leggett
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | | | | | - Gobinddeep Singh
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Abiola Senok
- Mohammed Bin Rashed University of Medicine and Health Sciences, Dubai, United Arab Emirates; School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Reem Almheiri
- International Centre for Forensic Sciences, Dubai Police, Dubai, United Arab Emirates
| | - Simon McKirdy
- Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia
| | - Rashed Alghafri
- Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia; International Centre for Forensic Sciences, Dubai Police, Dubai, United Arab Emirates
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia; Dubai Police Scientists Council, Dubai Police, Dubai, United Arab Emirates.
| |
Collapse
|
11
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Yang X, Gan Y, Zhang Y, Liu Z, Geng J, Wang W. Microbial genotoxin-elicited host DNA mutations related to mitochondrial dysfunction, a momentous contributor for colorectal carcinogenesis. mSystems 2024; 9:e0088724. [PMID: 39189772 PMCID: PMC11406885 DOI: 10.1128/msystems.00887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Gut microbe dysbiosis increases repetitive inflammatory responses, leading to an increase in the incidence of colorectal cancer. Recent studies have revealed that specific microbial species directly instigate mutations in the host nucleus DNA, thereby accelerating the progression of colorectal cancer. Given the well-established role of mitochondrial dysfunction in promoting colorectal cancer, it is reasonable to postulate that gut microbes may induce mitochondrial gene mutations, thereby inducing mitochondrial dysfunction. In this review, we focus on gut microbial genotoxins and their known and potential targets in mitochondrial genes. Consequently, we propose that targeted disruption of genotoxin transport pathways may effectively reduce the rate of mitochondrial gene mutations and yield substantial benefits for the prevention of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xue Yang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuting Zhang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
13
|
Bullone M, Bellato A, Robino P, Nebbia P, Morello S, Marchis D, Tarducci A, Ru G. Prevalence and risk factors associated with nasal carriage of methicillin-resistant staphylococci in horses and their caregivers. Vet Res 2024; 55:108. [PMID: 39252070 PMCID: PMC11386249 DOI: 10.1186/s13567-024-01364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/17/2024] [Indexed: 09/11/2024] Open
Abstract
Antimicrobial resistance is a global threat, and pet-associated strains may pose a risk to human health. Equine veterinarians are at high risk of carrying methicillin-resistant staphylococci (MRS), but specific risk factors remain elusive, and few data are available for other personnel involved in the horse industry. The prevalence, characteristics, and risk factors for nasal carriage of MRS in horses and their caregivers were studied in northwestern Italy. Nasal swabs from 110 asymptomatic horses housed at 21 barns and 34 human caregivers were collected. Data on barns, horses, and personnel were acquired through questionnaires. The samples were incubated in selective media, and the bacterial isolates were identified by mass spectrometry. Risk factors were investigated by Poisson regression. MRS were isolated from 33 horses (30%), 11 humans (32.4%) and 3 environmental samples (14.2%). Most isolates were multidrug resistant (MDRS). The prevalence of MRS and MDRS was greater in racehorses and their personnel than in pleasurable and jumping/dressing horses. MRS carriage in caregivers was associated with an increased prevalence of MRS carriage in horses. The frequency of antimicrobial treatments administered in the barn during the last 12 months was a risk factor for MRS carriage in horses [prevalence ratio (PR) 3.97, 95% CI 1.11, 14.13] and caregivers (PR 2.00, 95% CI 1.05, 3.82), whereas a good ventilation index of the horse tabling environment was a protective factor (PR 0.43, 95% CI 0.20, 0.92). Our data reveal relevant interactions occurring between bacterial communities of horses and humans that share the same environment, suggesting that One Health surveillance programs should be implemented.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy.
| | - Alessandro Bellato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Patrizia Robino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Sara Morello
- Feed Hygiene Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Daniela Marchis
- Feed Hygiene Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, 10154, Torino, Italy
| | - Alberto Tarducci
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Giuseppe Ru
- Biostatistics, Epidemiology and Risk Analysis Unit, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 220, 10154, Torino, Italy
| |
Collapse
|
14
|
Zhang P, Hu J, Wu W, Shi W, Jiang Y, Yu Y, Zheng X, Qu T. Evolutionary adaptation of KPC-2-producing Pseudomonas aeruginosa high-risk sequence type 463 in a lung transplant patient. Int J Antimicrob Agents 2024; 64:107279. [PMID: 39069228 DOI: 10.1016/j.ijantimicag.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES KPC-2-producing Pseudomonas aeruginosa high-risk sequence type (ST) 463 is increasingly prevalent in China and poses severe threats to public health. In this study, we aimed to investigate within-host adaptive evolution of this clone during therapy. METHODS Using nine serial respiratory isolates from a post-lung transplantation patient undergoing multiple antibiotic treatments, we conducted genomic, transcriptomic and phenotypic analyses to uncover the adaptive mechanisms of a KPC-2-producing ST463 P. aeruginosa strain. RESULTS The early-course isolates exhibited low-level resistance to ceftazidime/avibactam (CZA), facilitated by the blaKPC-2 gene's presence on both chromosome and plasmid, and its overexpression. Comparative genomic analysis revealed that chromosomal integration of blaKPC-2 resulted from intracellular replicative transposition of the plasmid-derived IS26-blaKPC-2-IS26 composite transposon. As the infection progressed, selective pressures, predominantly from antibiotic interventions and host immune response, led to significant genomic and phenotypic changes. The late-course isolates developed a Δ242-GT-243 deletion in plasmid-encoded blaKPC-2 (blaKPC-14) after sustained CZA exposure, conferring high-level CZA resistance. Increased expression of pili and extracellular polysaccharides boosted biofilm formation. A D143N mutation in the global regulator vfr rendered the strain aflagellate by abrogating the ability of fleQ to positively regulate flagellar gene expression. The enhancement of antibiotic resistance and immune evasion collaboratively facilitated the prolonged survival of ST463 P. aeruginosa within the host. CONCLUSIONS Our findings highlight the remarkable capacity of ST463 P. aeruginosa in adapting to the dynamic host pressures, supporting its persistence and dissemination in healthcare.
Collapse
Affiliation(s)
- Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Hu
- Department of Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenhao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weixiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xia Zheng
- Department of Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Krajewska J, Tyski S, Laudy AE. In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters-A Hit-to-Lead Perspective. Pharmaceuticals (Basel) 2024; 17:1068. [PMID: 39204172 PMCID: PMC11357384 DOI: 10.3390/ph17081068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting studies need to be improved and scaled up. In this review, the following in vitro parameters are presented: frequency of spontaneous mutant selection (FSMS), mutant prevention concentration (MPC), dominant mutant prevention concentration (MPC-D), inferior-mutant prevention concentration (MPC-F), and minimal selective concentration (MSC). The utility of various adaptive laboratory evolution (ALE) approaches (serial transfer, continuous culture, and evolution in spatiotemporal microenvironments) for comparing hits in terms of the level and time required for multistep resistance to emerge is discussed. We also consider how the hit-to-lead stage can benefit from high-throughput ALE setups based on robotic workstations, do-it-yourself (DIY) continuous cultivation systems, microbial evolution and growth arena (MEGA) plates, soft agar gradient evolution (SAGE) plates, microfluidic chips, or microdroplet technology. Finally, approaches for evaluating the fitness of in vitro-generated resistant mutants are presented. This review aims to draw attention to newly emerged ideas on how to improve the in vitro forecasting of the potential of compounds to select for resistance in natural settings.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Environmental Health and Safety, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland;
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology and Laboratory Diagnostic, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
16
|
Alotaibi G. Prevalence, pandemic, preventions and policies to overcome antimicrobial resistance. Saudi J Biol Sci 2024; 31:104032. [PMID: 38854892 PMCID: PMC11157277 DOI: 10.1016/j.sjbs.2024.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern in Asia, and it is essential to understand the prevalence, pandemic, prevention, and policies to overcome it. According to the World Health Organization (WHO), AMR is one of the main causes of death; in 2019, it was linked to 4.95 million fatalities and caused about 1.27 million deaths. A core package of actions has been provided by WHO to help countries prioritize their needs when creating, carrying out, and overseeing national action plans on antimicrobial resistance. Using a people-cantered approach to AMR, the interventions address the needs and obstacles that individuals and patients encounter when trying to obtain healthcare. The people-cantered core package of AMR treatments seeks to improve public and policymakers; awareness and comprehension of AMR by changing the narrative of AMR to emphasize the needs of people and systemic impairments. Additionally, it backs a more comprehensive and programmatic national response to AMR, which emphasizes the value of fair and inexpensive access to high-quality healthcare services for the avoidance, identification, and management of drug-resistant diseases. The report signals increasing resistance to antibiotics in bacterial infections in humans and the need for better data. In conclusion, the prevalence of AMR in Asia is a significant public health concern, and it is crucial to implement policies and interventions to overcome it.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Riyadh 11961, Saudi Arabia
| |
Collapse
|
17
|
Artesani L, Ciociola T, Vismarra A, Bacci C, Conti S, Giovati L. Activity of Synthetic Peptide KP and Its Derivatives against Biofilm-Producing Escherichia coli Strains Resistant to Cephalosporins. Antibiotics (Basel) 2024; 13:683. [PMID: 39199983 PMCID: PMC11350827 DOI: 10.3390/antibiotics13080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Bacterial resistance to β-lactam antibiotics, particularly new generation cephalosporins, is a major public health concern. In Escherichia coli, resistance to these antibiotics is mainly mediated by extended-spectrum β-lactamases (ESBL), which complicates a range of health-threatening infections. These infections may also be biofilm-related, making them more difficult to treat because of the higher tolerance to conventional antibiotics and the host immune response. In this study, we tested as potential new drug candidates against biofilm-forming ESBL-producing E. coli four antimicrobial peptides previously shown to have antifungal properties. The peptides proved to be active in vitro at micromolar concentrations against both sensitive and ESBL-producing E. coli strains, effectively killing planktonic cells and inhibiting biofilm formation. Quantitative fluorescence intensity analysis of three-dimensional reconstructed confocal laser scanning microscopy (CLSM) images of mature biofilm treated with the most active peptide showed significant eradication and a reduction in viable bacteria, while scanning electron microscopy (SEM) revealed gross morphological alterations in treated bacteria. The screening of the investigated peptides for antibacterial and antibiofilm activity led to the selection of a leading candidate to be further studied for developing new antimicrobial drugs as an alternative treatment against microbial infections, primarily associated with biofilms.
Collapse
Affiliation(s)
- Lorenza Artesani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Alice Vismarra
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (A.V.); (C.B.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (A.V.); (C.B.)
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.A.); (T.C.); (S.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
18
|
Moussa J, Gargallo-Viola D, Thomsen LE. A novel high-throughput screening method for identifying compounds that inhibit plasmid conjugation. MethodsX 2024; 12:102740. [PMID: 38737486 PMCID: PMC11087957 DOI: 10.1016/j.mex.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Plasmid conjugation is an important contributing factor to the spread of antibiotic resistance among bacteria, posing a significant global health threat. Our method introduces an innovative high-throughput screening approach to identify compounds that inhibit or reduce conjugation, addressing the need for new strategies against the spread of antimicrobial resistance. Using Escherichia coli strains as donor and recipient, we screened 3500 compounds from a library provided by ABAC Therapeutics. Each 96 -well plate was loaded with 88 different compounds and bacterial cultures. Every plate also included negative and positive controls of conjugation. After an hour, cultures from wells were spotted on agar plates and assessed visually. Compounds that showed a visible effect on conjugation were retested. Six compounds targeting conjugation were found, showing promise for further analysis.
Collapse
Affiliation(s)
- Jennifer Moussa
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | | | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
19
|
Vincent J, Tenore A, Mattei MR, Frunzo L. Modelling Plasmid-Mediated Horizontal Gene Transfer in Biofilms. Bull Math Biol 2024; 86:63. [PMID: 38664322 PMCID: PMC11561024 DOI: 10.1007/s11538-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/27/2024] [Indexed: 05/23/2024]
Abstract
In this study, we present a mathematical model for plasmid spread in a growing biofilm, formulated as a nonlocal system of partial differential equations in a 1-D free boundary domain. Plasmids are mobile genetic elements able to transfer to different phylotypes, posing a global health problem when they carry antibiotic resistance factors. We model gene transfer regulation influenced by nearby potential receptors to account for recipient-sensing. We also introduce a promotion function to account for trace metal effects on conjugation, based on literature data. The model qualitatively matches experimental results, showing that contaminants like toxic metals and antibiotics promote plasmid persistence by favoring plasmid carriers and stimulating conjugation. Even at higher contaminant concentrations inhibiting conjugation, plasmid spread persists by strongly inhibiting plasmid-free cells. The model also replicates higher plasmid density in biofilm's most active regions.
Collapse
Affiliation(s)
- Julien Vincent
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Via Cintia 26, 80126, Monte S. Angelo, Naples, Italy
- Microbial Ecology Laboratory, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Alberto Tenore
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Via Cintia 26, 80126, Monte S. Angelo, Naples, Italy
| | - Maria Rosaria Mattei
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Via Cintia 26, 80126, Monte S. Angelo, Naples, Italy.
| | - Luigi Frunzo
- Department of Mathematics and Applications "Renato Caccioppoli", University of Naples Federico II, Via Cintia 26, 80126, Monte S. Angelo, Naples, Italy
| |
Collapse
|
20
|
Xu JY, Ding J, Du S, Zhu D. Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133333. [PMID: 38147751 DOI: 10.1016/j.jhazmat.2023.133333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment.
Collapse
Affiliation(s)
- Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, People' s Republic of China
| | - Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| |
Collapse
|
21
|
Campos IC, Saraiva MMS, Benevides VP, Ferreira TS, Ferreira VA, Almeida AM, Berchieri Junior A. Low temperatures do not impair the bacterial plasmid conjugation on poultry meat. Braz J Microbiol 2024; 55:711-717. [PMID: 38191970 PMCID: PMC10920582 DOI: 10.1007/s42770-023-01230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine.
Collapse
Affiliation(s)
- Isabella C Campos
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Mauro M S Saraiva
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil.
| | - Valdinete P Benevides
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Taísa S Ferreira
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Viviane A Ferreira
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Adriana M Almeida
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Angelo Berchieri Junior
- Department of Pathology, Reproduction, and One Health from the School of Agriculture and Veterinarian Sciences, Sao Paulo State University (FCAV-Unesp), Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
22
|
Liu GY, Yu D, Fan MM, Zhang X, Jin ZY, Tang C, Liu XF. Antimicrobial resistance crisis: could artificial intelligence be the solution? Mil Med Res 2024; 11:7. [PMID: 38254241 PMCID: PMC10804841 DOI: 10.1186/s40779-024-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance is a global public health threat, and the World Health Organization (WHO) has announced a priority list of the most threatening pathogens against which novel antibiotics need to be developed. The discovery and introduction of novel antibiotics are time-consuming and expensive. According to WHO's report of antibacterial agents in clinical development, only 18 novel antibiotics have been approved since 2014. Therefore, novel antibiotics are critically needed. Artificial intelligence (AI) has been rapidly applied to drug development since its recent technical breakthrough and has dramatically improved the efficiency of the discovery of novel antibiotics. Here, we first summarized recently marketed novel antibiotics, and antibiotic candidates in clinical development. In addition, we systematically reviewed the involvement of AI in antibacterial drug development and utilization, including small molecules, antimicrobial peptides, phage therapy, essential oils, as well as resistance mechanism prediction, and antibiotic stewardship.
Collapse
Affiliation(s)
- Guang-Yu Liu
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dan Yu
- National Key Discipline of Pediatrics Key Laboratory of Major Diseases in Children Ministry of Education, Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Mei-Mei Fan
- Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Key Laboratory of Inflammation and Immunoregulation of Hangzhou, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xu Zhang
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ze-Yu Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christoph Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Xiao-Fen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
23
|
Castañeda-Barba S, Top EM, Stalder T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat Rev Microbiol 2024; 22:18-32. [PMID: 37430173 DOI: 10.1038/s41579-023-00926-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Antimicrobial resistance (AMR) poses a substantial threat to human health. The widespread prevalence of AMR is, in part, due to the horizontal transfer of antibiotic resistance genes (ARGs), typically mediated by plasmids. Many of the plasmid-mediated resistance genes in pathogens originate from environmental, animal or human habitats. Despite evidence that plasmids mobilize ARGs between these habitats, we have a limited understanding of the ecological and evolutionary trajectories that facilitate the emergence of multidrug resistance (MDR) plasmids in clinical pathogens. One Health, a holistic framework, enables exploration of these knowledge gaps. In this Review, we provide an overview of how plasmids drive local and global AMR spread and link different habitats. We explore some of the emerging studies integrating an eco-evolutionary perspective, opening up a discussion about the factors that affect the ecology and evolution of plasmids in complex microbial communities. Specifically, we discuss how the emergence and persistence of MDR plasmids can be affected by varying selective conditions, spatial structure, environmental heterogeneity, temporal variation and coexistence with other members of the microbiome. These factors, along with others yet to be investigated, collectively determine the emergence and transfer of plasmid-mediated AMR within and between habitats at the local and global scale.
Collapse
Affiliation(s)
- Salvador Castañeda-Barba
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, ID, USA
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
- Institute for Modelling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA.
- Institute for Modelling Collaboration and Innovation, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
24
|
Ventero MP, Haro-Moreno JM, Molina-Pardines C, Sánchez-Bautista A, García-Rivera C, Boix V, Merino E, López-Pérez M, Rodríguez JC. Role of Relebactam in the Antibiotic Resistance Acquisition in Pseudomonas aeruginosa: In Vitro Study. Antibiotics (Basel) 2023; 12:1619. [PMID: 37998821 PMCID: PMC10668777 DOI: 10.3390/antibiotics12111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa shows resistance to several antibiotics and often develops such resistance during patient treatment. OBJECTIVE Develop an in vitro model, using clinical isolates of P. aeruginosa, to compare the ability of the imipenem and imipenem/relebactam to generate resistant mutants to imipenem and to other antibiotics. Perform a genotypic analysis to detect how the selective pressure changes their genomes. METHODS The antibiotics resistance was studied by microdilution assays and e-test, and the genotypic study was performed by NGS. RESULTS The isolates acquired resistance to imipenem in an average of 6 days, and to imipenem/relebactam in 12 days (p value = 0.004). After 30 days of exposure, 75% of the isolates reached a MIC > 64 mg/L for imipenem and 37.5% for imipenem/relebactam (p value = 0.077). The 37.5% and the 12.5% imipenem/relebactam mutants developed resistance to piperacillin/tazobactam and ceftazidime, respectively, while the 87.5% and 37.5% of the imipenem mutants showed resistance to these drugs (p value = 0.003, p value = 0.015). The main biological processes altered by the SNPs were the glycosylation pathway, transcriptional regulation, histidine kinase response, porins, and efflux pumps. DISCUSSION The addition of relebactam delays the generation of resistance to imipenem and limits the cross-resistance to other beta-lactams. The clinical relevance of this phenomenon, which has the limitation that it has been performed in vitro, should be evaluated by stewardship programs in clinical practice, as it could be useful in controlling multi-drug resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Maria Paz Ventero
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes, 38000 Grenoble, France
| | - Carmen Molina-Pardines
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| | - Antonia Sánchez-Bautista
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Celia García-Rivera
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
| | - Vicente Boix
- Infectious Diseases Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Esperanza Merino
- Infectious Diseases Unit, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| | - Juan Carlos Rodríguez
- Microbiology Department, Dr. Balmis University General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (M.P.V.); (A.S.-B.); (C.G.-R.); (J.C.R.)
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550 San Juan de Alicante, Spain
| |
Collapse
|
25
|
Gabaldón T. Nothing makes sense in drug resistance except in the light of evolution. Curr Opin Microbiol 2023; 75:102350. [PMID: 37348192 DOI: 10.1016/j.mib.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/24/2023]
Abstract
Our ability to fight infectious diseases is being increasingly compromised due to the emergence and spread of pathogens that become resistant to one or several drugs. This phenomenon is ubiquitous among pathogens and has parallels in cancer treatment. Given the urgency of the problem, there is a need for a paradigm shift in drug therapy toward one in which the objective to prevent the evolution of drug resistance is considered alongside the main objective of eliminating the infection or tumor. Here, I stress the importance of considering an evolutionary perspective to achieve this goal, and review recent advances in this direction, including therapies that exploit the fitness trade-offs of resistance.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| |
Collapse
|
26
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
27
|
Lungu CN, Mangalagiu V, Mangalagiu II, Mehedinti MC. Benzoquinoline Chemical Space: A Helpful Approach in Antibacterial and Anticancer Drug Design. Molecules 2023; 28:molecules28031069. [PMID: 36770739 PMCID: PMC9921191 DOI: 10.3390/molecules28031069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Benzoquinolines are used in many drug design projects as starting molecules subject to derivatization. This computational study aims to characterize e benzoquinone drug space to ease future drug design processes based on these molecules. The drug space is composed of all benzoquinones, which are active on topoisomerase II and ATP synthase. Topological, chemical, and bioactivity spaces are explored using computational methodologies based on virtual screening and scaffold hopping and molecular docking, respectively. Topological space is a geometrical space in which the elements composing it can be defined as a set of neighbors (which satisfy a particular axiom). In such space, a chemical space can be defined as the property space spanned by all possible molecules and chemical compounds adhering to a given set of construction principles and boundary conditions. In this chemical space, the potentially pharmacologically active molecules form the bioactivity space. Results show a poly-morphological chemical space that suggests distinct characteristics. The chemical space is correlated with properties such as steric energy, the number of hydrogen bonds, the presence of halogen atoms, and membrane permeability-related properties. Lastly, novel chemical compounds (such as oxadiazole methybenzamide and floro methylcyclohexane diene) with drug-like potential, active on TOPO II and ATP synthase have been identified.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Department of Surgery, Emergency Country Clinical Hospital, 800010 Galati, Romania
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Department of Morphological and Functional Science, University of Medicine and Pharmacy, Dunarea de Jos, 800017 Galati, Romania
- Correspondence: (C.N.L.); (I.I.M.)
| | - Violeta Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13 Universitatii Str., 720229 Suceava, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Institute of Interdisciplinary Research-CERNESIM Centre, Alexandru Ioan Cuza University of Iasi, 11 Carol I, 700506 Iasi, Romania
- Correspondence: (C.N.L.); (I.I.M.)
| | - Mihaela C. Mehedinti
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
- Department of Morphological and Functional Science, University of Medicine and Pharmacy, Dunarea de Jos, 800017 Galati, Romania
| |
Collapse
|
28
|
Khan MT, Mahmud A, Hasan M, Azim KF, Begum MK, Rolin MH, Akter A, Mondal SI. Proteome Exploration of Legionella pneumophila To Identify Novel Therapeutics: a Hierarchical Subtractive Genomics and Reverse Vaccinology Approach. Microbiol Spectr 2022; 10:e0037322. [PMID: 35863001 PMCID: PMC9430848 DOI: 10.1128/spectrum.00373-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is the causative agent of a severe type of pneumonia (lung infection) called Legionnaires' disease. It is emerging as an antibiotic-resistant strain day by day. Hence, identifying novel drug targets and vaccine candidates is essential to fight against this pathogen. Here, attempts were taken through a subtractive genomics approach on the complete proteome of L. pneumophila to address the challenges of multidrug resistance. A total of 2,930 proteins from L. pneumophila proteome were investigated through diverse subtractive proteomics approaches, e.g., identification of human nonhomologous and pathogen-specific essential proteins, druggability and "anti-target" analysis, subcellular localization prediction, human microbiome nonhomology screening, and protein-protein interaction studies to find out effective drug and vaccine targets. Only three fulfilled these criteria and were proposed as novel drug targets against L. pneumophila. Furthermore, outer membrane protein TolB was identified as a potential vaccine target with a better antigenicity score. Antigenicity and transmembrane topology screening, allergenicity and toxicity assessment, population coverage analysis, and a molecular docking approach were adopted to generate the most potent epitopes. The final vaccine was constructed by the combination of highly immunogenic epitopes, along with suitable adjuvant and linkers. The designed vaccine construct showed higher binding interaction with different major histocompatibility complex (MHC) molecules and human immune TLR-2 receptors with minimum deformability at the molecular level. The present study aids the development of novel therapeutics and vaccine candidates for efficient treatment and prevention of L. pneumophila infections. However, further wet-lab-based phenotypic and genomic investigations and in vivo trials are highly recommended to validate our prediction experimentally. IMPORTANCE Legionella pneumophila is a human pathogen distributed worldwide, causing Legionnaires' disease (LD), a severe form of pneumonia and respiratory tract infection. L. pneumophila is emerging as an antibiotic-resistant strain, and controlling LD is now difficult. Hence, developing novel drugs and vaccines against L. pneumophila is a major research priority. Here, the complete proteome of L. pneumophila was considered for subtractive genomics approaches to address the challenge of antimicrobial resistance. Our subtractive proteomics approach identified three potential drug targets that are promising for future application. Furthermore, a possible vaccine candidate, "outer membrane protein TolB," was proposed using reverse vaccinology analysis. The constructed vaccine candidate showed higher binding interaction with MHC molecules and human immune TLR-2 receptors at the molecular level. Overall, the present study aids in developing novel therapeutics and vaccine candidates for efficient treatment of the infections caused by L. pneumophila.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Musammat Kulsuma Begum
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohimenul Haque Rolin
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Arzuba Akter
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shakhinur Islam Mondal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
29
|
Tao S, Chen H, Li N, Wang T, Liang W. The Spread of Antibiotic Resistance Genes In Vivo Model. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3348695. [PMID: 35898691 PMCID: PMC9314185 DOI: 10.1155/2022/3348695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
Infections caused by antibiotic-resistant bacteria are a major public health threat. The emergence and spread of antibiotic resistance genes (ARGs) in the environment or clinical setting pose a serious threat to human and animal health worldwide. Horizontal gene transfer (HGT) of ARGs is one of the main reasons for the dissemination of antibiotic resistance in vitro and in vivo environments. There is a consensus on the role of mobile genetic elements (MGEs) in the spread of bacterial resistance. Most drug resistance genes are located on plasmids, and the spread of drug resistance genes among microorganisms through plasmid-mediated conjugation transfer is the most common and effective way for the spread of multidrug resistance. Experimental studies of the processes driving the spread of antibiotic resistance have focused on simple in vitro model systems, but the current in vitro protocols might not correctly reflect the HGT of antibiotic resistance genes in realistic conditions. This calls for better models of how resistance genes transfer and disseminate in vivo. The in vivo model can better mimic the situation that occurs in patients, helping study the situation in more detail. This is crucial to develop innovative strategies to curtail the spread of antibiotic resistance genes in the future. This review aims to give an overview of the mechanisms of the spread of antibiotic resistance genes and then demonstrate the spread of antibiotic resistance genes in the in vivo model. Finally, we discuss the challenges in controlling the spread of antibiotic resistance genes and their potential solutions.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tong Wang
- Nanjing Brain Hospital Affiliated Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| |
Collapse
|
30
|
Macromolecular Structure Assembly as a Novel Antibiotic Target. Antibiotics (Basel) 2022; 11:antibiotics11070937. [PMID: 35884191 PMCID: PMC9311618 DOI: 10.3390/antibiotics11070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
This review discusses the inhibition of macromolecular structure formation as a novel and under-investigated drug target. The disruption of cell wall structures by penicillin-binding protein interactions is one potential target. Inhibition of DNA polymerase III assembly by novel drugs is a second target that should be investigated. RNA polymerase protein structural interactions are a third potential target. Finally, disruption of ribosomal subunit biogenesis represents a fourth important target that can be further investigated. Methods to examine these possibilities are discussed.
Collapse
|
31
|
Chen Q, Dharmaraj T, Cai PC, Burgener EB, Haddock NL, Spakowitz AJ, Bollyky PL. Bacteriophage and Bacterial Susceptibility, Resistance, and Tolerance to Antibiotics. Pharmaceutics 2022; 14:1425. [PMID: 35890320 PMCID: PMC9318951 DOI: 10.3390/pharmaceutics14071425] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages, viruses that infect and replicate within bacteria, impact bacterial responses to antibiotics in complex ways. Recent studies using lytic bacteriophages to treat bacterial infections (phage therapy) demonstrate that phages can promote susceptibility to chemical antibiotics and that phage/antibiotic synergy is possible. However, both lytic and lysogenic bacteriophages can contribute to antimicrobial resistance. In particular, some phages mediate the horizontal transfer of antibiotic resistance genes between bacteria via transduction and other mechanisms. In addition, chronic infection filamentous phages can promote antimicrobial tolerance, the ability of bacteria to persist in the face of antibiotics. In particular, filamentous phages serve as structural elements in bacterial biofilms and prevent the penetration of antibiotics. Over time, these contributions to antibiotic tolerance favor the selection of resistance clones. Here, we review recent insights into bacteriophage contributions to antibiotic susceptibility, resistance, and tolerance. We discuss the mechanisms involved in these effects and address their impact on bacterial fitness.
Collapse
Affiliation(s)
- Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Pamela C. Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA;
| | - Elizabeth B. Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Naomi L. Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| | - Andy J. Spakowitz
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; (E.B.B.); (A.J.S.)
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA; (T.D.); (N.L.H.); (P.L.B.)
| |
Collapse
|