1
|
Preetam S, Ghosh A, Mishra R, Pandey A, Roy DS, Rustagi S, Malik S. Electrical stimulation: a novel therapeutic strategy to heal biological wounds. RSC Adv 2024; 14:32142-32173. [PMID: 39399261 PMCID: PMC11467653 DOI: 10.1039/d4ra04258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Electrical stimulation (ES) has emerged as a powerful therapeutic modality for enhancing biological wound healing. This non-invasive technique utilizes low-level electrical currents to promote tissue regeneration and expedite the wound healing process. ES has been shown to accelerate wound closure, reduce inflammation, enhance angiogenesis, and modulate cell migration and proliferation through various mechanisms. The principle goal of wound management is the rapid recovery of the anatomical continuity of the skin, to prevent infections from the external environment and maintain homeostasis conditions inside. ES at the wound site is a compelling strategy for skin wound repair. Several ES applications are described in medical literature like AC, DC, and PC to improve cutaneous perfusion and accelerate wound healing. This review aimed to evaluate the primary factors and provides an overview of the potential benefits and mechanisms of ES in wound healing, and its ability to stimulate cellular responses, promote tissue regeneration, and improve overall healing outcomes. We also shed light on the application of ES which holds excellent promise as an adjunct therapy for various types of wounds, including chronic wounds, diabetic ulcers, and surgical incisions.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Arka Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University Ta. Waghodia Vadodara Gujarat 391760 India
| | - Arunima Pandey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Debanjan Singha Roy
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University 22 Dehradun Uttarakhand India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand Ranchi Jharkhand 834001 India
- Department of Biotechnology, University Center for Research & Development (UCRD) Chandigarh University Ludhiana Highway Mohali 140413 Punjab India
| |
Collapse
|
2
|
El Zein S, Melin MM, Suh GA, Tran NV, Rose PS, Berbari EF. Evaluation and Management of Pelvic Osteomyelitis in Stage IV Pressure Injuries: A Multidisciplinary Collaborative Approach. Clin Infect Dis 2024; 79:e11-e26. [PMID: 39325647 DOI: 10.1093/cid/ciae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 09/28/2024] Open
Abstract
Managing pelvic osteomyelitis (POM) in the setting of stage IV pressure injuries requires multidisciplinary evaluation as well as patient and caregiver engagement and is complicated by the lack of high-evidence data to guide best practices. In this review, we describe our approach to pressure injury and POM evaluation and management through multidisciplinary collaboration and highlight areas of future research that are necessary to enhance patient outcomes, reduce healthcare costs, and improve the quality of life of those affected by POM.
Collapse
Affiliation(s)
- Said El Zein
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew M Melin
- Gonda Vascular Center, Wound Clinic, Mayo Clinic, Rochester, Minnesota, USA
| | - Gina A Suh
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - N V Tran
- Department of Plastic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter S Rose
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Elie F Berbari
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
4
|
Rosciardi V, Bandelli D, Bassu G, Casu I, Baglioni P. Highly biocidal poly(vinyl alcohol)-hydantoin/starch hybrid gels: A "Trojan Horse" for Bacillus subtilis. J Colloid Interface Sci 2024; 657:788-798. [PMID: 38081113 DOI: 10.1016/j.jcis.2023.11.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/02/2024]
Abstract
HYPOTHESIS Poly (vinyl alcohol) (PVA) cryogels can be functionalized with n-Halamines to confer biocidal features useful for their application as wound-dressing tools. Their efficacy can be boosted by stably embedding a polymeric bacterial food source (e.g., starch) in the gel matrix. The bioavailability of the food source lures bacteria inside the gel network via chemotactic mechanisms, promoting their contact with the biocidal functionalities and their consequent inactivation. EXPERIMENTS The synthesis of a novel hydantoin-functionalized PVA (H-PVA-hyd) is proposed. The newly synthesized H-PVA-hyd polymer was introduced in the formulation of H-PVA-based cryogels. To promote the cryogelation of the systems we exploited phase-separation mechanisms employing either a PVA carrying residual acetate groups (L-PVA) or starch as phase-segregating components. The permanence of the biocidal functionality after swelling was investigated via proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) microscopy. The activated H-PVA-hyd cryogels have been tested against bacteria with amylolytic activity (Bacillus subtilis) and the outcomes were analyzed by direct observation via confocal laser scanning microscopy (CLSM). FINDINGS The cryogels containing starch resulted in being the most effective (up to 90% bacterial killing), despite carrying a lower amount of hydantoin groups than their starch-free counterparts, suggesting that their improved efficacy relies on a "Trojan Horse" type of mechanism.
Collapse
Affiliation(s)
- Vanessa Rosciardi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Damiano Bandelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Gavino Bassu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Ilaria Casu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy; CSGI, Center for Colloids and Surface Science, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
5
|
Moemenbellah-Fard MD, Bagheri M, Bonyani M, Sedaghat H, Raz A, Azizi K, Soltani A, Alipour H. Cloning, expression and molecular analysis of recombinant Netrin-A protein of Lucilia sericata Meigen (Diptera: Calliphoridae) larvae. SAGE Open Med 2024; 12:20503121231223607. [PMID: 38292417 PMCID: PMC10826387 DOI: 10.1177/20503121231223607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Objectives Lucilia sericata (Diptera: Calliphoridae) is used in larval therapy for wound healing. Netrin-A is an enzyme secreted from the salivary glands of these larvae, and has a central role in neural regeneration and angiogenesis. This study aimed to produce the recombinant Netrin-A protein from Lucilia sericata larvae by the baculovirus expression vector system in the Sf9 insect cell line. Methods The coding sequence of Netrin-A was cloned, amplified in the pTG19 vector, and then cloned in the pFastBac HTA vector. It was then transformed into DH10Bac, and the recombinant Bacmid was subsequently transfected into Sf9 cells. The recombinant Netrin-A was purified by Ni-NTA agarose. The evaluation was done using SDS-PAGE and western blot, respectively. Finally, its concentration was calculated with the Bradford assay. Results The molecular weight of this protein was 52 kDa with 404 amino acids. The signal peptide was located between amino acids 24 and 25. The concentration of Netrin-A was calculated to be 48.8 μg/ml. It reaffirmed the characterized gene codes of Lucilia sericata Netrin-A in a previous study. Conclusions The generation of recombinant Netrin-A could be used in larval therapy, and as a biomarker in certain diseases. The netrin-A of Lucilia sericata was unprecedentedly cloned and expressed in a eukaryotic cell line. Given that this larva is FDA-approved, and non-pathogenic, it conduces to research on the development of maggot therapy in future.
Collapse
Affiliation(s)
- Mohammad Djafar Moemenbellah-Fard
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Bagheri
- Student Research Committee, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Bonyani
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Sedaghat
- Department of Chemistry, Faculty of Sciences, Persian Gulf University, Bushehr, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Kourosh Azizi
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abouzar Soltani
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Biology and Control of Disease Vectors, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Ramalingam S, Chandrasekar MJN, Krishnan GGN, Nanjan MJ. Plant-based Natural Products as inhibitors for Efflux Pumps to Reverse Multidrug Resistance in Staphylococcus aureus: A Mini Review. Mini Rev Med Chem 2024; 24:272-288. [PMID: 37038687 DOI: 10.2174/1389557523666230406092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 04/12/2023]
Abstract
Wounds provide a favourable site for microbial infection. Wound infection makes the healing more complex and does not proceed in an orchestrated manner leading to the chronic wound. Clinically infected wounds require proper antimicrobial therapy. Broad-spectrum antibiotics are usually prescribed first before going to targeted therapy. The current conventional mode of therapy mainly depends on the use of antibiotics topically or systemically. Repeated and prolonged use of antibiotics, however, leads to multidrug resistance. Staphylococcus aureus is the most common multidrugresistant microorganism found in wounds. It effectively colonizes the wound and produces many toxins, thereby reducing the host immune response and causing recurrent infection, thus making the wound more complex. The overexpression of efflux pumps is one of the major reasons for the emergence of multidrug resistance. Inhibition of efflux pumps is, therefore, a potential strategy to reverse this resistance. The effective therapy to overcome this antibiotic resistance is to use combination therapy, namely the combination of an inhibitor, and a non-antibiotic compound with an antibiotic for their dual function. Many synthetic efflux pump inhibitors to treat wound infections are still under clinical trials. In this connection, several investigations have been carried out on plant-based natural products as multidrug resistance-modifying agents as they are believed to be safe, inexpensive and suitable for chronic wound infections.
Collapse
Affiliation(s)
- Shalini Ramalingam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India
| | - Moola Joghee Nanjan Chandrasekar
- School of Life Sciences, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Mysuru Road, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Ganesh G N Krishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, 643001, India
| | | |
Collapse
|
7
|
Edwards G, Carter A, Wallis C, Hayward G, Moore A. Identifying infection in chronic wounds in a community setting: A systematic review of diagnostic test accuracy studies. J Adv Nurs 2024; 80:73-83. [PMID: 37574778 DOI: 10.1111/jan.15822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/05/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023]
Abstract
AIM To determine the diagnostic accuracy of different methods currently available to identify infection in chronic wounds applicable to adult patients in a community setting. DESIGN Systematic review of diagnostic test accuracy studies. REVIEW METHODS Two authors independently completed screening, data extraction and quality and bias assessments (QUADAS2). Eligible studies compared a method (index test) for detecting infection (diagnosis of interest) with microscopy and culture of either deep tissue biopsy or wound swab (reference test) in adult patients with wounds of >4 weeks duration (participants). The results were synthesized narratively. DATA SOURCES We systematically searched CINAHL, Embase and Medline from 2011 to April 2022. RESULTS Four studies were included, all recruiting from secondary care wound clinics. Two studies assessed the diagnostic accuracy of Moleculight i:X, a bacterial fluorescence imaging device against deep tissue biopsy culture. One study assessed the diagnostic accuracy of the elevation of various enzymes detected in wound fluid against wound swab microscopy of culture. One study assessed the diagnostic accuracy of bacterial protease activity against wound swab microscopy and culture. Sensitivities of these methods ranged from 50 to 75% and specificities from 47 to 100%. CONCLUSION Only a small number of studies were included in this systematic review due to our strict inclusion criteria. We have not identified any methods for diagnosing infection in chronic wounds with either a sufficient quality of evidence to recommend their use in community settings at present. Further research is needed to develop and evaluate appropriate diagnostics for this purpose. IMPACT This study highlights the paucity of research into wound diagnostics in a community setting and should prompt further research in this area. Accurate diagnostic tests have the potential to improve community-based wound care by optimizing antibiotic use and potentially improving healing time. REPORTING METHOD PRISMA-DTA checklist. PATIENT OR PUBLIC CONTRIBUTION The PPI group for the NIHR Community Healthcare MIC were supportive of this topic of work.
Collapse
Affiliation(s)
- George Edwards
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK
| | - Adam Carter
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK
| | - Chloe Wallis
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK
| | - Gail Hayward
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK
| | - Abigail Moore
- Nuffield Department of Primary Care Health Sciences, Radcliffe Observatory Quarter, Oxford, UK
| |
Collapse
|
8
|
Iruela Sánchez M, García-Sierra R, Medrano-Jiménez R, Bonachela-Mompart D, Maella-Rius N, Soria-Martín E, Isnard-Blanchar M, Torán-Monserrat P. Use of Infrared Thermometry to Observe Temperature Variation Associated with the Healing Process in Wounds and Ulcers: TIHUAP Cohort Study Protocol. Healthcare (Basel) 2023; 11:1750. [PMID: 37372868 DOI: 10.3390/healthcare11121750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
We are interested in observing how temperature differences between the wound bed and perilesional skin are related to the healing process in primary care patients with wounds. Multisite prospective cohort study with one-year follow-up in the Metropolitan North area of Barcelona. Recruitment of patients over 18 years with an open wound will take place from January 2023 to September 2023. Temperature checks will be conducted on a weekly basis at control visits and wound care. The following variables will be measured: Percentage reduction of wound area over time, thermal index, the Kundin Wound Gauge, and the Resvech 2.0 Scale. The temperature will be measured weekly using a handheld thermometer and mesh grid to frame the temperature points. The healing trajectory will also be monitored on a monthly basis via photographic imaging, the Resvech Scale, calculation of wound size, percentage reduction of wound area over time, and thermal index for one year of follow-up or until the wound is cured. This study may represent a turning point for its introduction into primary care. Early diagnosis of wound complications would facilitate treatment decision-making for healthcare professionals, thus improving the management of resources related to chronic wounds.
Collapse
Affiliation(s)
- Mercè Iruela Sánchez
- Direcció Atenció Primària Metropolitana Nord, Institut Català de la Salut, 08204 Sabadell, Spain
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), 08007 Barcelona, Spain
- Grup D'experts en Ferides, Institut Català de la Salut GEICS, 08007 Barcelona, Spain
| | - Rosa García-Sierra
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), 08007 Barcelona, Spain
- Research Institut, Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP JGol), 08303 Mataró, Spain
- Nursing Department, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Primary Care Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | | | - Diana Bonachela-Mompart
- Direcció Atenció Primària Metropolitana Nord, Institut Català de la Salut, 08204 Sabadell, Spain
| | - Natalia Maella-Rius
- Direcció Atenció Primària Metropolitana Nord, Institut Català de la Salut, 08204 Sabadell, Spain
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), 08007 Barcelona, Spain
| | - Esther Soria-Martín
- Direcció Atenció Primària Metropolitana Nord, Institut Català de la Salut, 08204 Sabadell, Spain
| | - Mar Isnard-Blanchar
- Direcció Atenció Primària Metropolitana Nord, Institut Català de la Salut, 08204 Sabadell, Spain
| | - Pere Torán-Monserrat
- Multidisciplinary Research Group in Health and Society (GREMSAS) (2021-SGR-0148), 08007 Barcelona, Spain
- Research Institut, Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP JGol), 08303 Mataró, Spain
- Primary Care Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Department of Medicine, Faculty of Medicine, Universitat de Girona, 17004 Girona, Spain
| |
Collapse
|
9
|
Öhnstedt E, Vågesjö E, Fasth A, Lofton Tomenius H, Dahg P, Jönsson S, Tyagi N, Åström M, Myktybekova Z, Ringstad L, Jorvid M, Frank P, Hedén P, Roos S, Phillipson M. Engineered bacteria to accelerate wound healing: an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial. EClinicalMedicine 2023; 60:102014. [PMID: 37251631 PMCID: PMC10220316 DOI: 10.1016/j.eclinm.2023.102014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Background Impaired wound healing is a growing medical problem and very few approved drugs with documented clinical efficacy are available. CXCL12-expressing lactic acid bacteria, Limosilactobacillus reuteri (ILP100-Topical), has been demonstrated to accelerate wound healing in controlled preclinical models. In this first-in-human study, the primary objective was to determine safety and tolerability of the drug candidate ILP100-Topical, while secondary objectives included assessments of clinical and biologic effects on wound healing by traditionally accepted methods and explorative and traceable assessments. Methods SITU-SAFE is an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial (EudraCT 2019-000680-24) consisting of a single (SAD) and a multiple ascending dose (MAD) part of three dose cohorts each. The study was performed at the Phase 1 Unit, Uppsala University Hospital, Uppsala, Sweden. Data in this article were collected between Sep 20th, 2019 and Oct 20th 2021. In total 240 wounds were induced on the upper arms in 36 healthy volunteers. SAD: 12 participants, 4 wounds (2/arm), MAD: 24 participants, 8 wounds (4/arm). Wounds in each participant were randomised to treatment with placebo/saline or ILP100-Topical. Findings In all individuals and doses, ILP100-Topical was safe and well-tolerated with no systemic exposure. A combined cohort analysis showed a significantly larger proportion of healed wounds (p = 0.020) on Day 32 by multi-dosing of ILP100-Topical when compared to saline/placebo (76% (73/96) and 59% (57/96) healed wounds, respectively). In addition, time to first registered healing was shortened by 6 days on average, and by 10 days at highest dose. ILP100-Topical increased the density of CXCL12+ cells in the wounds and local wound blood perfusion. Interpretation The favourable safety profile and observed effects on wound healing support continued clinical development of ILP100-Topical for the treatment of complicated wounds in patients. Funding Ilya Pharma AB (Sponsor), H2020 SME Instrument Phase II (#804438), Knut and Alice Wallenberg foundation.
Collapse
Affiliation(s)
- Emelie Öhnstedt
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
- Uppsala University, Department of Medical Cell Biology, 751 23 Uppsala, Sweden
| | - Evelina Vågesjö
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
- Uppsala University, Department of Medical Cell Biology, 751 23 Uppsala, Sweden
| | - Andreas Fasth
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | | | - Pia Dahg
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Sofia Jönsson
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Nisha Tyagi
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala BioCenter, 750 07 Uppsala, Sweden
| | - Mikael Åström
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | | | - Lovisa Ringstad
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Margareth Jorvid
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Peter Frank
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Per Hedén
- Sofiahemmet, Valhallavägen 91, 114 86 Stockholm, Sweden
| | - Stefan Roos
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala BioCenter, 750 07 Uppsala, Sweden
| | - Mia Phillipson
- Uppsala University, Department of Medical Cell Biology, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
10
|
Ili P, Sari F. Egg yolk oil accelerates wound healing in streptozotocin induced diabetic rats. Biotech Histochem 2023; 98:94-111. [PMID: 36040350 DOI: 10.1080/10520295.2022.2115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impaired diabetic wound healing causes foot ulcers. We investigated egg yolk oil for skin wound healing in streptozotocin (STZ) induced diabetic rats. Rats were allocated into three groups of six. Group 1, nondiabetic control group, was treated topically with 2% fusidic acid ointment. Group 2, STZ diabetic control, was treated topically with 2% fusidic acid ointment. Group 3, STZ diabetic group, was treated topically with egg yolk oil. Three days after STZ injection, two full thickness excisional skin wounds were created on the back of each animal. Wound diameter was measured for 14 days and wound contraction was calculated. Re-epithelization time also was determined. Three rats from each group were sacrificed on experimental day 7 and the remaining rats on day 14. Wound samples were examined using hematoxylin and eosin, periodic acid-Schiff, Masson's trichrome, Taenzer-Unna orcein and toluidine blue staining. Expression of endoglin (CD105), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) were investigated using immunohistochemistry. Egg yolk oil increased the proliferation of epithelial cells and angiogenesis, and stimulated collagen deposition in the lesion area. Egg yolk oil increased CD105, EGF and VEGF expression in blood vessels, and EGF and VEGF expression in epidermis of the lesions. The predominant fatty acids in egg yolk oil are oleic, palmitic and linoleic, which likely were responsible for the beneficial effects of egg yolk oil on diabetic wound healing. Egg yolk oil appears to be a promising therapeutic agent for healing of diabetic wounds.
Collapse
Affiliation(s)
- Pinar Ili
- Department of Medical Services and Techniques, Denizli Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Fikret Sari
- Department of Plant and Animal Production, Tavas Vocational School, Pamukkale University, Denizli, Turkey
| |
Collapse
|
11
|
The Therapeutic Wound Healing Bioactivities of Various Medicinal Plants. Life (Basel) 2023; 13:life13020317. [PMID: 36836674 PMCID: PMC9960863 DOI: 10.3390/life13020317] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The skin serves as the body's first line of defense, guarding against mechanical, chemical, and thermal damage to the interior organs. It includes a highly developed immune response that serves as a barrier against pathogenic infections. Wound healing is a dynamic process underpinned by numerous cellular activities, including homeostasis, inflammation, proliferation, and remodeling, that require proper harmonious integration to effectively repair the damaged tissue. Following cutaneous damage, microorganisms can quickly enter the tissues beneath the skin, which can result in chronic wounds and fatal infections. Natural phytomedicines that possess considerable pharmacological properties have been widely and effectively employed forwound treatment and infection prevention. Since ancient times, phytotherapy has been able to efficiently treat cutaneous wounds, reduce the onset of infections, and minimize the usage of antibiotics that cause critical antibiotic resistance. There are a remarkable number of wound-healing botanicals that have been widely used in the Northern Hemisphere, including Achiella millefolium, Aloe vera, Althaea officinalis, Calendula officinalis, Matricaria chamomilla, Curcuma longa, Eucalyptus, Jojoba, plantain, pine, green tea, pomegranate, and Inula. This review addresses the most often used medicinal plants from the Northern Hemisphere that facilitate the treatment of wounds, and also suggests viable natural alternatives that can be used in the field of wound care.
Collapse
|
12
|
Fang W, Yang L, Chen Y, Hu Q. Bioinspired multifunctional injectable hydrogel for hemostasis and infected wound management. Acta Biomater 2023; 161:50-66. [PMID: 36640951 DOI: 10.1016/j.actbio.2023.01.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/08/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Routine wound management faces significant challenges including rebleeding and bacterial infection that affect millions of people each year. However, conventional wound dressings (e.g., gauze, bandage) are limited to simply cover the injured surfaces and rarely show special functionality to promote the wound recovery. Currently, injectable hydrogels have been widely designed as multifunctional wound dressings to manage the hemostatic and wound healing process. Nevertheless, the integration of multiple functions through simple composition and easy construction is still difficult and hardly achieved. Herein, we reported a bioinspired multifunctional injectable hydrogel (CQCS@gel) consisted of only two components, catechol-functionalized quaternized chitosan (CQCS) and dibenzaldehyde-terminated poly(ethylene glycol) (DB-PEG2000). The building blocks endowed CQCS@gel with tissue-adhesive, antibacterial, antioxidant, self-healing and pH-responsive properties. Based on the in vivo hemostatic study, quick hemostasis for acute tissue injuries such as liver and carotid wounds was realized owing to the rapid gelation rate and strong tissue-adhesiveness of CQCS@gel. Moreover, CQCS@gel remarkably boosted the chronic recovery process of MRSA-infected cutaneous wounds by promoting collagen deposition, hair follicles regeneration and angiogenesis. Overall, this multifunctional injectable hydrogel shows potentials as a universal wound dressing in clinical applications, enabling both hemostasis and infected wound management. STATEMENT OF SIGNIFICANCE: This is the first report showing the multifunctional injectable hydrogel (CQCS@gel) consisted of catechol-functionalized quaternized chitosan and dibenzaldehyde-terminated poly(ethylene glycol). The incorporation of quaternary ammonium groups imparted the CQCS@gel with outstanding contact-active bacterial killing efficiency and the catechol moieties enhanced its tissue adhesive and antioxidant properties. Moreover, the reversible imine crosslinks endowed the CQCS@gel with self-healing and pH-responsive drug release capabilities. These multiple functions were integrated into a single injectable hydrogel system with easy availability and low cost. In vitro and in vivo results showed that the newly designed hydrogel was biocompatible, realized successful sealing hemostasis under multiple bleeding scenarios and enabled accelerated healing of infected skin wounds.
Collapse
Affiliation(s)
- Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling Yang
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Institute of Flexible Electronics Technology of THU, Jiaxing, China
| | - Yihao Chen
- School of Engineering Medicine, Beihang University, Beijing, China.
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
13
|
Role of wound microbiome, strategies of microbiota delivery system and clinical management. Adv Drug Deliv Rev 2023; 192:114671. [PMID: 36538989 DOI: 10.1016/j.addr.2022.114671] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Delayed wound healing is one of the most global public health threats affecting nearly 100 million people each year, particularly the chronic wounds. Many confounding factors such as aging, diabetic disease, medication, peripheral neuropathy, immunocompromises or arterial and venous insufficiency hyperglycaemia are considered to inhibit wound healing. Therapeutic approaches for slow wound healing include anti-infection, debridement and the use of various wound dressings. However, the current clinical outcomes are still unsatisfied. In this review, we discuss the role of skin and wound commensal microbiota in the different healing stages, including inflammation, cell proliferation, re-epithelialization and remodelling phase, followed by multiple immune cell responses to commensal microbiota. Current clinical management in treating surgical wounds and chronic wounds was also reviewed together with potential controlled delivery systems which may be utilized in the future for the topical administration of probiotics and microbiomes. This review aims to introduce advances, novel strategies, and pioneer ideas in regulating the wound microbiome and the design of controlled delivery systems.
Collapse
|
14
|
Caputo WJ, Monterosa P, Beggs D. Antibiotic Misuse in Wound Care: Can Bacterial Localization through Fluorescence Imaging Help? Diagnostics (Basel) 2022; 12:3207. [PMID: 36553214 PMCID: PMC9778012 DOI: 10.3390/diagnostics12123207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Background: Systemic antibiotic use in chronic wounds is alarmingly high worldwide. Between 53% to 71% of patients are prescribed at least one course per chronic wound. Systemic antibiotic use should follow antibiotic stewardship guidelines and ought to be reserved for situations where their use is deemed supported by clinical indications. Unfortunately, in the field of wound care, indiscriminate and often inadequate use of systemic antibiotics is leading to both patient complications and worsening antibiotic resistance rates. Implementing novel tools that help clinicians prevent misuse or objectively determine the true need for systemic antibiotics is essential to reduce prescribing rates. (2) Methods: We present a compendium of available systemic antibiotic prescription rates in chronic wounds. The impact of various strategies used to improve these rates, as well as preliminary data on the impact of implementing fluorescence imaging technology to finesse wound status diagnosis, are presented. (3) Results: Interventions including feedback from wound care surveillance and treatment data registries as well as better diagnostic strategies can ameliorate antibiotic misuse. (4) Conclusions: Interventions that mitigate unnecessary antibiotic use are needed. Effective strategies include those that raise awareness of antibiotic overprescribing and those that enhance diagnosis of infection, such as fluorescence imaging.
Collapse
Affiliation(s)
- Wayne J. Caputo
- Director of the Wound Care Center at Clara Maass Medical Center, Belleville, NJ 07109, USA
| | | | - Donald Beggs
- Infectious Disease, Clara Maass Medical Center, Belleville, NJ 07109, USA
| |
Collapse
|
15
|
Serena TE, Gould L, Ousey K, Kirsner RS. Reliance on Clinical Signs and Symptoms Assessment Leads to Misuse of Antimicrobials: Post hoc Analysis of 350 Chronic Wounds. Adv Wound Care (New Rochelle) 2022; 11:639-649. [PMID: 34714159 PMCID: PMC9527054 DOI: 10.1089/wound.2021.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/09/2021] [Indexed: 01/29/2023] Open
Abstract
Objectives: Bacteria frequently impede wound healing and cause infection. Clinicians rely on clinical signs and symptoms (CSS) to assess for bacteria at the point of care, and inform prescription of antibiotics and other antimicrobials. Yet, robust evidence suggests that CSS has poor sensitivity for detection of problematic bacterial burden and infection, hindering antimicrobial stewardship efforts. This study evaluated CSS-based antimicrobial prescribing practices across 14 wound care centers. Approach: Data were analyzed from the fluorescence assessment and guidance (FLAAG) trial, a study of 350 chronic wounds across 20 clinicians. Clinicians reviewed patient history and assessed for CSS using the International Wound Infection Institute infection checklist. Wounds with >3 criteria or any overwhelming symptom were considered CSS+. Bacterial levels were confirmed with quantitative tissue culture of wound biopsies. Results: Antimicrobials (including dressings, topicals, and systemic antibiotics) were prescribed at a similar rate for wounds identified as CSS+ (75.0%) and CSS- (72.8%, p = 0.76). Antimicrobial dressings, the most frequently prescribed antimicrobial, were prescribed at a similar rate for CSS+ (83.3%) and CSS- (89.5%, p = 0.27) wounds. In 33.3% of patients prescribed systemic antibiotics, no CSS were present. Prescribing patterns did not correlate with bacterial load. Innovation: This study is the first to evaluate antimicrobial prescribing trends in a large, multisite cohort of chronic wound patients. Conclusions: Reliance on CSS to diagnose clinically significant bacterial burden in chronic wounds leads to the haphazard use of antimicrobials. Improved methods of identifying bacterial burden and infection are needed to enhance antimicrobial stewardship efforts in wound care. Clinicaltrials.gov ID. NCT03540004.
Collapse
Affiliation(s)
- Thomas E Serena
- SerenaGroup® Research Foundation, Cambridge, Massachusetts, USA
| | - Lisa Gould
- South Shore Health Department of Surgery (or Brown Alpert Department of Medicine), Weymouth, Massachusetts, USA
| | - Karen Ousey
- School of Human and Health Sciences, University of Huddersfield, West Yorkshire, United Kingdom
| | - Robert S Kirsner
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
16
|
Huang Y, Xiao Z, Cao Y, Gao F, Fu Y, Zou M, Luo X, Jiang Y, Xue Y. Rapid microbiological diagnosis based on 16S rRNA gene sequencing: A comparison of bacterial composition in diabetic foot infections and contralateral intact skin. Front Microbiol 2022; 13:1021955. [PMID: 36274710 PMCID: PMC9582933 DOI: 10.3389/fmicb.2022.1021955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic foot infections (DFIs) represent a frequent complication of diabetes and a major cause of amputations. This study aimed to evaluate the utility of 16S rRNA gene sequencing for the rapid microbiological diagnosis of DFIs and to consistently characterize the microbiome of chronic diabetic foot ulcers (DFUs) and intact skin. Wound samples were collected by ulcer swabbing and tissue biopsy, and paired swabs of intact skin were collected from 10 patients with DFIs (five were moderately infected, and the other five were severely infected). Samples were analyzed by conventional culture and using Personal Genome Machine (PGM) 16S rRNA sequencing technology. The results showed that PGM technology detected significantly more bacterial genera (66.1 vs. 1.5 per wound sample, p < 0.001); more obligate anaerobes (52.5 vs. 0%, p < 0.001) and more polymicrobial infections (100.0 vs. 55.0%, p < 0.01) than conventional cultures. There was no statistically significant difference in bacterial richness, diversity or composition between the wound swabs and tissues (p > 0.05). The bacterial community on intact skin was significantly more diverse than that in DFUs (Chao1 value, p < 0.05; Shannon index value, p < 0.001). Gram-positive bacteria (67.6%) and aerobes (59.2%) were predominant in contralateral intact skin, while Gram-negative bacteria (63.3%) and obligate anaerobes (50.6%) were the most ubiquitous in DFUs. The most differentially abundant taxon in skin was Bacillales, while Bacteroidia was the bacterial taxon most representative of DFUs. Moreover, Fusobacterium (ρ = 0.80, p < 0.01) and Proteus (ρ = 0.78, p < 0.01) were significantly correlated with the duration of DFIs. In conclusion, PGM 16S rRNA sequencing technology could be a potentially useful technique for the rapid microbiological diagnosis of DFIs. Wound swabbing may be sufficient for sampling bacterial pathogens in DFIs compared with biopsy which is an invasive technique. The empirical use of broad-spectrum antibiotics covering Gram-negative obligate anaerobes should be considered for the treatment of moderate or severe DFIs.
Collapse
Affiliation(s)
- Ying Huang
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhizhou Xiao
- Department of Clinical Nutrition, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Cao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Gao
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Fang Gao,
| | - Yingyu Fu
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Yingyu Fu,
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangrong Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Jiang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Borges-Vilches J, Unalan I, Fernández K, Boccaccini AR. Fabrication of Biocompatible Electrospun Poly(ε-caprolactone)/Gelatin Nanofibers Loaded with Pinus radiata Bark Extracts for Wound Healing Applications. Polymers (Basel) 2022; 14:2331. [PMID: 35745907 PMCID: PMC9228265 DOI: 10.3390/polym14122331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, poly(ε-caprolactone) (PCL)/gelatin (GEL) electrospun nanofibers loaded with two different concentrations of Pinus radiata bark extracts (PEs) were fabricated via electrospinning for wound healing applications. The effects of incorporating PE into PCL/GEL electrospun nanofibers were investigated regarding their physicochemical properties and in vitro biocompatibility. All electrospun nanofibers showed smooth, uniform, and bead-free surfaces. Their functional groups were detected by ATR-FTIR spectroscopy, and their total phenol content was measured by a Folin-Ciocalteu assay. With PE addition, the electrospun nanofibers exhibited an increase in their wettability and degradation rates over time and a decrease in their tensile stress values from 20 ± 4 to 8 ± 2 MPa for PCL/GEL and PCL/GEL/0.36%PE samples, respectively. PE was also released from the fibrous mats in a rather controlled fashion. The PCL/GEL/0.18%PE and PCL/GEL/0.36%PE electrospun nanofibers inhibited bacterial activity at around 6 ± 0.1% and 23 ± 0.3% against E. coli and 14 ± 0.1% and 18 ± 0.2% against S. aureus after 24 h incubation, respectively. In vitro cell studies showed that PE-loaded electrospun nanofibers enhanced HaCaT cell growth, attachment, and proliferation, favoring cell migration towards the scratch area in the wound healing assay and allowing a complete wound closure after 72 h treatment. These findings suggested that PE-loaded electrospun nanofibers are promising materials for antibiotic-free dressings for wound healing applications.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile; (J.B.-V.); (K.F.)
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile; (J.B.-V.); (K.F.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
| |
Collapse
|
18
|
Navarro-Jiménez G, Fuentes-Santos C, Moreno-Núñez L, Alfayate-García J, Campelo-Gutierrez C, Sanz-Márquez S, Pérez-Fernández E, Velasco-Arribas M, Hervás-Gómez R, Martín-Segarra O, Losa-García JE. Experience in the use of dalbavancin in diabetic foot infection. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:296-301. [PMID: 35490091 DOI: 10.1016/j.eimce.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To describe the clinical experience with dalbavancin in the treatment of diabetic foot infection in a multidisciplinary unit of a second level hospital. METHODS A retrospective, descriptive study was made with all patients with diabetic foot infection treated with dalbavancin in the Diabetic Foot Unit of Hospital Universitario Fundación Alcorcón, covering the period from September 2016 to December 2019. Demographic parameters and comorbidities, characteristics of the infection and treatment with dalbavancin were recorded. The cure rate is estimated at 90 days after finishing the treatment. RESULTS A total of 23 patients with diabetic foot infection (osteomyelitis) started treatment with dalbavancin, 19 were men and the mean age was 65 years. The microorganisms most frequently isolated for the indication of treatment with dalbavancin were Staphylococcus aureus (11) and Corynebacterium striatum (7). Dalbavancin was used as a second choice therapy in 22 cases, in 11 due to toxicity from other antibiotics. The median duration of treatment was 5 (4-7) weeks; the most frequent dose of dalbavancin (8 patients) was 1000 mg followed by 500 mg weekly for 5 weeks. 3 patients presented mild side effects (nausea and gastrointestinal discomfort). At 90 days after completion of dalbavancin therapy, 87% (20) of the patients were cured (95% CI: 65.2%-94.52%). CONCLUSION Patients with osteomyelitis due to gram-positive microorganisms who received as part of the multidisciplinary antibiotic treatment with dalbavancin, had a high rate of cure with adequate tolerance and few side effects. Dalbavancin offers a safe alternative in treating deep diabetic foot infection.
Collapse
Affiliation(s)
- Gema Navarro-Jiménez
- Servicio de Medicina interna, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain.
| | | | - Leonor Moreno-Núñez
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Jesús Alfayate-García
- Servicio de Cirugía Vascular, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | | | - Sira Sanz-Márquez
- Servicio de Farmacia, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Elia Pérez-Fernández
- Unidad de Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - María Velasco-Arribas
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Rafael Hervás-Gómez
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Oriol Martín-Segarra
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Juan Emilio Losa-García
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| |
Collapse
|
19
|
Belal A, Elanany MA, Raafat M, Hamza HT, Mehany ABM. Calendula officinalis Phytochemicals for the Treatment of Wounds Through Matrix Metalloproteinases-8 and 9 (MMP-8 and MMP-9): In Silico Approach. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221098848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulceration is a common complication of an uncontrolled diabetic regimen and is considered a serious type of wound. Matrix metalloprteinases (MMPs) are the common key enzymes in wound management, overexpression of MMPs can lead to chronic wounds and ulcers. Calendula officinalis extract has established its efficacy in treating wounds in folk medicine. In this research work, we will focus on the chemical constituents of this promising herb and will investigate its abilities to target matrix metalloprteinase-8 (MMP-8) and matrix metalloprteinase-9 (MMP-9) proteins through the usage of computer-aided drug design tools. In the current study, several promising dual inhibitors are identified, such as quercetin, isoquercetin, isorhamnetin, and isorhamnetin 3-O glycoside, they showed to be good inhibitors for both enzyme subtypes with greater docking score energies than RND-336, which has been reported as a selective MMP-9 inhibitor. Binding scores and amino acid interactions in addition to molecular dynamics (MD) will be discussed in detail through this research work.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed A. Elanany
- School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Cairo, Egypt
| | - Mohamed Raafat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hanan Taher Hamza
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science (Girls), Al-Azhar University, Yousef Abbas Str., Nasr City, Cairo, Egypt
| | - Ahmed B. M. Mehany
- Department of Zoology, Faculty of science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
20
|
Li M, Yuan J, Hou Q, Zhao Y, Zhong L, Dai X, Chen H, Fu X. Characterization of the Skin Bacteriome and Histology Changes in Diabetic Pigs. INT J LOW EXTR WOUND 2022:15347346221100887. [PMID: 35548944 DOI: 10.1177/15347346221100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic wound is one of the most common complications that are associated with diabetes. The cutaneous microbiome is known to play essential roles in the regulation of barrier function and protecting against potential assault. Thus, it is necessary to gain a better understanding of the relationship between microbial community and skin structures in unwounded diabetic skin to explore possible preventive strategies. To achieve the same, a pig diabetic model was built in the present study. Further,16S rDNA sequencing was used to characterize the skin bacteriome. It was observed that the pigs showed skin bacteriome similar to humans in the non-diabetes group, while it varied in the case of diabetes. Further, the β-diversity analysis showed that the bacterial community was significantly different under the diabetes group. More species differences were identified between the two groups at genus level. The predictive function analysis also showed the involvement of significantly different pathways of microbial gene function in diabetes. In agreement with this, skin histology analysis also showed signs of reduced epidermal thickness and rete ridges in diabetic skin. Less proliferation of keratinocytes and impaired TJ barrier was also detected. This evidence suggested that pigs might serve as the best surrogate for cutaneous microbiome studies. Altogether, the present study reported that the skin bacteriome and histology changed significantly in unwounded diabetic skin, which provided a theoretical basis for the regulation of disordered skin bacteriome. The findings of the study would assist in the improvement of the skin environment and prevention of skin infection and chronic wounds.
Collapse
Affiliation(s)
- Meirong Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Qian Hou
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Yali Zhao
- Central Laboratory, Trauma Treatment Center, Central Laboratory, 104607Chinese PLA General Hospital, Hainan Hospital, Sanya, China
| | - Lingzhi Zhong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Hua Chen
- Laboratory Animal Center, Medical Innovation Research Division of 104607Chinese PLA General Hospital, Beijing, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences 2019RU051, Beijing, China
| |
Collapse
|
21
|
Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci 2022; 17:353-384. [PMID: 35782328 PMCID: PMC9237601 DOI: 10.1016/j.ajps.2022.01.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial infection and the ever-increasing bacterial resistance have imposed severe threat to human health. And bacterial contamination could significantly menace the wound healing process. Considering the sophisticated wound healing process, novel strategies for skin tissue engineering are focused on the integration of bioactive ingredients, antibacterial agents included, into biomaterials with different morphologies to improve cell behaviors and promote wound healing. However, a comprehensive review on anti-bacterial wound dressing to enhance wound healing has not been reported. In this review, various antibacterial biomaterials as wound dressings will be discussed. Different kinds of antibacterial agents, including antibiotics, nanoparticles (metal and metallic oxides, light-induced antibacterial agents), cationic organic agents, and others, and their recent advances are summarized. Biomaterial selection and fabrication of biomaterials with different structures and forms, including films, hydrogel, electrospun nanofibers, sponge, foam and three-dimension (3D) printed scaffold for skin regeneration, are elaborated discussed. Current challenges and the future perspectives are presented in this multidisciplinary field. We envision that this review will provide a general insight to the elegant design and further refinement of wound dressing.
Collapse
Affiliation(s)
- Yuqing Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yongping Liang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hualei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
22
|
Hussain Z, Thu HE, Rawas-Qalaji M, Naseem M, Khan S, Sohail M. Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Wangoye K, Mwesigye J, Tungotyo M, Twinomujuni Samba S. Chronic wound isolates and their minimum inhibitory concentrations against third generation cephalosporins at a tertiary hospital in Uganda. Sci Rep 2022; 12:1195. [PMID: 35075152 PMCID: PMC8786920 DOI: 10.1038/s41598-021-04722-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Globally, the burden of chronic wound infections is likely to increase due to the rising levels of bacterial resistance to antibiotics. In the United States of America alone, more than 6.5 million chronic wounds with evidence of bacterial infection are diagnosed every year. In addition, the polymicrobial environment in chronic wound infections has been observed from several studies as a risk factor for development of resistance to many antibiotics including the third generation cephalosporins currently used in Mbarara Regional Referral Hospital for treatment of chronic wound infections. Therefore the main objective of this study was to determine the prevalence of chronic wound isolates and their minimum inhibitory concentrations (MIC) against third generation cephalosporins. This study was a cross-sectional descriptive and analytical survey of bacterial isolates from chronic wound infection among 75 study participants admitted in the surgical ward of Mbarara Regional Referral Hospital (MRRH), a tertiary Hospital in Western Uganda. Standard laboratory bacterial culture and identification techniques as well as broth microdilution method were used to isolate, identify pathogens and test for MIC respectively. We found that 69/75 study participants had samples with bacterial growth and the most prevalent pathogens isolated were staphylococcus aureus (40.6%) and Klebsiella spp. (29%). Generally, most isolates were susceptible to cefoperazone + sulbactum 2 g (Sulcef) and ceftriaxone 1 g (Epicephin). The overall prevalence of isolates in chronic wound infection among patients admitted in the surgical ward of MRRH was 92% and the most prevalent isolates were Staphylococcus aureus, Klebsiella species and proteus species respectively. The observed MIC values were higher than the CLSI clinical breakpoint, implying a decreasing trend in susceptibility of chronic wound isolates to third generation cephalosporins.
Collapse
Affiliation(s)
- Khalim Wangoye
- Department of Pharmacy and Pharmacology, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda.
| | - James Mwesigye
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Martin Tungotyo
- Department of Surgery, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| | - Silvano Twinomujuni Samba
- Department of Pharmacy and Pharmacology, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| |
Collapse
|
24
|
Chaudhary N, Aggarwal B, Saini V, Sharma P, Srinivas P, Srivastava A, Bajaj A. Polyaspartate-derived Synthetic Antimicrobial Polymer Enhances Activity of Rifampicin against Multi-drug Resistant Pseudomonas aeruginosa Infections. Biomater Sci 2022; 10:5158-5171. [DOI: 10.1039/d2bm00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infections caused by multi-drug resistant Pseudomonas aeruginosa (P. aeruginosa) face major challenges for treatment due to acquired, adaptive, and intrinsic resistance developed by bacteria due to accumulation of mutations, ability...
Collapse
|
25
|
Mahapatra RD, Jo A, Imani KBC, Chung JW, Yoon J. Effective pH-regulated release of covalently conjugated antibiotics from antibacterial hydrogels. Polym Chem 2022. [DOI: 10.1039/d2py00505k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pH-regulated release of antibiotics is achieved by conjugation with the hydrogel matrix through the reversible imine bond.
Collapse
Affiliation(s)
- Rita Das Mahapatra
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Ara Jo
- Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan, 49267, Republic of Korea
| | - Kusuma Betha Cahaya Imani
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Jin-Woong Chung
- Department of Biomedical Science, Dong-A University, 37 Nakdong-Daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jinhwan Yoon
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
26
|
Antimicrobial Activities of Propolis in Poloxamer Based Topical Gels. Pharmaceutics 2021; 13:pharmaceutics13122021. [PMID: 34959303 PMCID: PMC8706605 DOI: 10.3390/pharmaceutics13122021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Propolis contains a group of compounds with various activities. However, their low solubility is a drawback for the development of pharmaceutical formulations. In this study, poloxamers as a solubilizer and gelling agent were evaluated to develop a topical antimicrobial formulation of propolis. The effects of poloxamer type and concentration on the propolis solubility, release rate, and antimicrobial activities were investigated. Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) were the representative bacteria and fungi, respectively. At 5%, poloxamer 407 (P407) and poloxamer 188 (P188) enhanced the propolis solubility by 2.86 and 2.06 folds, respectively; at 10%, they were 2.81 and 2.59 folds, respectively. The micelle size in the P188 formulation increased in the presence of propolis, whereas there was no change in the P407 formulation. Release rates of propolis decreased with the P188 concentration increase, which was attributed to viscosity increase. Both P188 and P407 formulations showed antimicrobial activity against S. aureus in a time-kill kinetics assay. However, only the P188 formulation reduced the cell's numbers significantly against C. albicans, compared to the control. We speculate that P188 mixed micelles were more effective in releasing free active compounds to exhibit anti-microbial activity compared to the P407 micelles encapsulating the hydrophobic compounds in their cores. Propolis in P188 formulation is proposed as a potential topical antimicrobial agent based on its activity against both S. aureus and C. albicans.
Collapse
|
27
|
|
28
|
Kaya S, Yilmaz DE, Akmayan I, Egri O, Arasoglu T, Derman S. Caffeic Acid Phenethyl Ester Loaded Electrospun Nanofibers for Wound Dressing Application. J Pharm Sci 2021; 111:734-742. [PMID: 34600940 DOI: 10.1016/j.xphs.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Electrospinning is an advantageous method with a wide usage area, which enables the production of materials consisting of nano-thickness fibers. In this study, caffeic acid phenethyl ester (CAPE) molecule was loaded onto the poly(lactic-co-glycolic acid) (PLGA) nanofibers and obtained nanofibers were physicochemically and biologically investigated for the first time in the literature. The existence of CAPE molecules, loaded on PLGA membranes by dropping and spraying methods, was evaluated by a comparative investigation of Fourier-transform infrared (FTIR) spectra and X-Ray diffraction (XRD) patterns. Fiber morphology of the membranes was investigated by scanning electron microscope (SEM). CAPE release and swelling behaviors of the membranes were studied in vitro. The radical scavenging activity of CAPE-loaded wound dressing materials was determined by using an antioxidant assay. The antimicrobial properties of PLGA and CAPE-loaded PLGA membranes were evaluated against S. aureus, P. aeruginosa and C. albicans strains by the time-kill method. The biocompatibility study of the obtained CAPE-loaded fibers conducted on human fibroblast cell line and wound healing promoting effect of the fibers was investigated in vitro scratch assay. The results show that CAPE-loaded PLGA membranes are highly antimicrobial against all strains used in the experiment. Additionally, the results show that they are biocompatible and have wound healing properties on human fibroblasts.
Collapse
Affiliation(s)
- Seçil Kaya
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Istanbul, Turkey
| | - Duygu Elif Yilmaz
- Charité - Universitätsmedizin Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Ilkgül Akmayan
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Ozlem Egri
- Tokat Gaziosmanpasa University, Faculty of Engineering and Natural Sciences, Department of Bioengineering, Tokat, Turkey
| | - Tülin Arasoglu
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Serap Derman
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Istanbul, Turkey.
| |
Collapse
|
29
|
Jørgensen E, Bjarnsholt T, Jacobsen S. Biofilm and Equine Limb Wounds. Animals (Basel) 2021; 11:2825. [PMID: 34679846 PMCID: PMC8532864 DOI: 10.3390/ani11102825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
In chronic wounds in humans, biofilm formation and wound chronicity are linked, as biofilms contribute to chronic inflammation and delayed healing. Biofilms are aggregates of bacteria, and living as biofilms is the default mode of bacterial life; within these aggregates, the bacteria are protected from both antimicrobial substances and the immune response of the host. In horses, delayed healing is more commonly seen in limb wounds than body wounds. Chronic inflammation and hypoxia are the main characteristics of delayed wound healing in equine limbs, and biofilms might also contribute to this healing pattern in horses. However, biofilm formation in equine wounds has been studied to a very limited degree. Biofilms have been detected in equine traumatic wounds, and recent experimental models have shown that biofilms protract the healing of equine limb wounds. Detection of biofilms within wounds necessitates advanced techniques that are not available in routine diagnostic yet. However, infections with biofilm should be suspected in equine limb wounds not healing as expected, as they are in human wounds. Treatment should be based on repeated debridement and application of topical antimicrobial therapy.
Collapse
Affiliation(s)
- Elin Jørgensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark;
- Department of Clinical Microbiology, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark;
| |
Collapse
|
30
|
Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study. Antibiotics (Basel) 2021; 10:antibiotics10101162. [PMID: 34680743 PMCID: PMC8532735 DOI: 10.3390/antibiotics10101162] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The antimicrobial resistance is a topic of global interest in the treatment of wound infections. The goal of this retrospective study was both the identification of the microorganisms responsible for wound infections and the determination of their drug susceptibility pattern. The study was performed from 2017 to 2019 and included 239 patients. Thirty-four species were isolated by culture methods and identified and analysed for their susceptibility patterns to antimicrobials through the Walk Away automated system. The presence of one species was the most frequent condition (75.3%), whereas a co-infection was detected in 24.7% of samples. The most common species were Gram-negative (57.9%), amongst which the most prevalent were Pseudomonas aeruginosa (40.2%), Escherichia coli (20.7%), Proteus mirabilis (11.2%), and Acinetobacter baumannii/haemolyticus (9.5%). Gram-positive bacteria were observed in 36.6%, Staphylococcus aureus (79.4%) being the most predominant species. At least one resistance to antibiotics was detected in 88.2% of isolates, while a multi-drug-resistance versus no less than 6 antimicrobials was detected in 29.2% of isolates. Although multi-drug resistant species and co-infections were observed, those were less frequently observed at the wound site. These conditions make the microorganisms eradication more difficult. The detection of a polymicrobial infection and multi-drug resistant microorganisms followed by a proper therapeutic treatment would lead to the resolution of the infection, promoting wound healing and the limitation of the spread of antibiotic resistance.
Collapse
|
31
|
New Adapted In Vitro Technology to Evaluate Biofilm Formation and Antibiotic Activity Using Live Imaging under Flow Conditions. Diagnostics (Basel) 2021; 11:diagnostics11101746. [PMID: 34679444 PMCID: PMC8535051 DOI: 10.3390/diagnostics11101746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022] Open
Abstract
The polymicrobial nature of biofilms and bacterial interactions inside chronic wounds are keys for the understanding of bacterial cooperation. The aim of this present study was to develop a technique to study and visualize biofilm in live imaging under flow conditions (Bioflux™ 200, Fluxion Biosciences). The BiofluxTM system was adapted using an in vitro chronic wound-like medium (CWM) that mimics the environment encountered in ulcers. Two reference strains of Staphylococcus aureus (Newman) and Pseudomonas aeruginosa (PAO1) were injected in the BiofluxTM during 24 h to 72 h in mono and coculture (ratio 1:1, bacteria added simultaneously) in the CWM vs. a control medium (BHI). The quantification of biofilm formation at each time was evaluated by inverted microscopy. After 72 h, different antibiotics (ceftazidime, imipenem, linezolid, oxacillin and vancomycin) at 1x MIC, 10x MIC and 100x MIC were administrated to the system after an automatic increase of the flow that mimicked a debridement of the wound surface. Biofilm studies highlighted that the two species, alone or associated, constituted a faster and thicker biofilm in the CWM compared to the BHI medium. The effect of antibiotics on mature or “debrided” biofilm indicated that some of the most clinically used antibiotic such as vancomycin or imipenem were not able to disrupt and reduce the biofilm biomass. The use of a life cell imaging with an in vitro CWM represents a promising tool to study bacterial biofilm and investigate microbial cooperation in a chronic wound context.
Collapse
|
32
|
Abstract
Bacterial species and their role in delaying the healing of pressure ulcers (PU) in spinal cord injury (SCI) patients have not been well described. This pilot study aimed to characterise the evolution of the cutaneous microbiota of PU in SCI cohort. Twenty-four patients with SCI from a French neurological rehabilitation centre were prospectively included. PU tissue biopsies were performed at baseline (D0) and 28 days (D28) and analysed using 16S rRNA gene-based sequencing analysis of the V3–V4 region. At D0, if the overall relative abundance of genus highlighted a large proportion of Staphylococcus, Anaerococcus and Finegoldia had a significantly higher relative abundance in wounds that stagnated or worsened in comparison with those improved at D28 (3.74% vs 0.05%; p = 0.015 and 11.02% versus 0.16%; p = 0.023, respectively). At D28, Proteus and Morganella genera were only present in stagnated or worsened wounds with respectively 0.02% (p = 0.003) and 0.01% (p = 0.02). Moreover, Proteus, Morganella, Anaerococcus and Peptoniphilus were associated within the same cluster, co-isolated from biopsies that had a poor evolution. This pathogroup could be a marker of wound degradation and Proteus could represent a promising target in PU management.
Collapse
|
33
|
Liu Z, Liu J, Sun T, Zeng D, Yang C, Wang H, Yang C, Guo J, Wu Q, Chen HJ, Xie X. Integrated Multiplex Sensing Bandage for In Situ Monitoring of Early Infected Wounds. ACS Sens 2021; 6:3112-3124. [PMID: 34347450 DOI: 10.1021/acssensors.1c01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infection, the most common complication of chronic wounds, has placed tremendous burden on patients and society. Existing care strategies could hardly reflect in situ wound status, resulting in overly aggressive or conservative therapeutic options. Multiplexed tracking of wound markers to obtain diagnostic information in a more accurate way is highly promising and in great demand for the emerging development of personalized medicine. Here, an integrated multiplex sensing bandage (MSB) system, including a multiplex sensor array (MSA), a corresponding flexible circuit, and a mobile application, was developed for real-time monitoring of sodium, potassium, calcium, pH, uric acid, and temperature indicators in the wound site to provide a quantitative diagnostic basis. The MSB was optimized for wound-oriented management applications, which exhibits a broad linear response, excellent selectivity, temporal stability, mechanical stability, reproducibility, and reliable signal transmission performance on the aforementioned physiological indicators. The results of in vivo experiments demonstrate that the MSA is capable of real-time monitoring of actual wounds as well as early prediction of infection. The results ultimately point to the potential clinical applicability of the MSB, which might benefit the quantifications of the complexity and diversity of the wound healing process. This work provides a unique strategy that holds promise for broad application in optimizing wound management and even coping with other diseases.
Collapse
Affiliation(s)
- Ziqi Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Junqing Liu
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Tiancheng Sun
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deke Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cheng Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
34
|
Bosque BA, Frampton C, Chaffin AE, Bohn GA, Woo K, DeLeonardis C, Lepow BD, Melin MM, Madu T, Dowling SG, May BCH. Retrospective real-world comparative effectiveness of ovine forestomach matrix and collagen/ORC in the treatment of diabetic foot ulcers. Int Wound J 2021; 19:741-753. [PMID: 34363311 PMCID: PMC9013592 DOI: 10.1111/iwj.13670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
The retrospective pragmatic real‐world data (RWD) study compared the healing outcomes of diabetic foot ulcers (DFUs) treated with either ovine forestomach matrix (OFM) (n = 1150) or collagen/oxidised regenerated cellulose (ORC) (n = 1072) in out‐patient wound care centres. Median time to wound closure was significantly (P = .0015) faster in the OFM group (14.6 ± 0.5 weeks) relative to the collagen/ORC group (16.4 ± 0.7). A sub‐group analysis was performed to understand the relative efficacy in DFUs requiring longer periods of treatment and showed that DFUs treated with OFM healed up to 5.3 weeks faster in these challenging wounds. The percentage of wounds closed at 36 weeks was significantly improved in OFM treated DFUs relative to the collagen/ORC. A Cox proportional hazards analysis showed OFM‐treated wounds had a 18% greater probability of healing versus wounds managed with collagen/ORC, and the probability increased to 21% when the analysis was adjusted for multiple variables. This study represents the first large retrospective RWD analysis comparing OFM and collagen/ORC and supports the clinical efficacy of OFM in the treatment of DFUs.
Collapse
Affiliation(s)
| | - Christopher Frampton
- Department of Psychological Medicine (Christchurch), Otago University, Christchurch, New Zealand
| | - Abigail E Chaffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Gregory A Bohn
- Department of Surgery, Central Michigan University, Tawas City, Michigan, USA
| | - Kevin Woo
- Queen's School of Nursing, Queen's University, Toronto, Ontario, Canada
| | | | - Brian D Lepow
- Division of Vascular Surgery and Endovascular Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - M Mark Melin
- M Health Fairview Wound Healing Institute, South Campus, Department of Vascular Surgery, University of Minnesota, Edina, Minnesota, USA
| | - Tobe Madu
- Tissue Analytics, a Net Health Company, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
35
|
Luo R, Dai J, Zhang J, Li Z. Accelerated Skin Wound Healing by Electrical Stimulation. Adv Healthc Mater 2021; 10:e2100557. [PMID: 33945225 DOI: 10.1002/adhm.202100557] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/06/2021] [Indexed: 01/28/2023]
Abstract
When the integrity of the skin got damaged, an endogenous electric field will be generated in the wound and a series of physiological reactions will be initiated to close the wound. The existence of the endogenous electric field of the wound has a promoting effect on all stages of wound healing. For wounds that cannot heal on their own, the exogenous electric field can assist the treatment. In this review, the effects of exogenous electrical stimulation on wound healing, such as the inflammation phase, blood flow, cell proliferation and migration, and the wound scarring is overviewed. This article also reviews the new electrical stimulation methods that have emerged in recent years, such as small power supplies, nanogenerators (NGs), and other physical, chemical or biological strategies. These new electrical stimulation methods and devices are safe, low-cost, stable, and small in size. The challenge and perspective are discussed for the future trends of the electrical stimulation treatment in accelerating skin wound healing.
Collapse
Affiliation(s)
- Ruizeng Luo
- College of Chemistry and Chemical Engineering Center of Nanoenergy Research Guangxi University Nanning 530004 China
| | - Jieyu Dai
- College of Chemistry and Chemical Engineering Center of Nanoenergy Research Guangxi University Nanning 530004 China
| | - Jiaping Zhang
- Department of Plastic Surgery State Key Laboratory of Trauma, Burns and Combined Injury Southwest Hospital Third Military Medical University (Army Medical University) Chongqing 400038 China
| | - Zhou Li
- College of Chemistry and Chemical Engineering Center of Nanoenergy Research Guangxi University Nanning 530004 China
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro–Nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
36
|
Bernardes BG, Del Gaudio P, Alves P, Costa R, García-Gonzaléz CA, Oliveira AL. Bioaerogels: Promising Nanostructured Materials in Fluid Management, Healing and Regeneration of Wounds. Molecules 2021; 26:3834. [PMID: 34201789 PMCID: PMC8270285 DOI: 10.3390/molecules26133834] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Wounds affect one's quality of life and should be managed on a patient-specific approach, based on the particular healing phase and wound condition. During wound healing, exudate is produced as a natural response towards healing. However, excessive production can be detrimental, representing a challenge for wound management. The design and development of new healing devices and therapeutics with improved performance is a constant demand from the healthcare services. Aerogels can combine high porosity and low density with the adequate fluid interaction and drug loading capacity, to establish hemostasis and promote the healing and regeneration of exudative and chronic wounds. Bio-based aerogels, i.e., those produced from natural polymers, are particularly attractive since they encompass their intrinsic chemical properties and the physical features of their nanostructure. In this work, the emerging research on aerogels for wound treatment is reviewed for the first time. The current scenario and the opportunities provided by aerogels in the form of films, membranes and particles are identified to face current unmet demands in fluid managing and wound healing and regeneration.
Collapse
Affiliation(s)
- Beatriz G. Bernardes
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy;
| | - Paulo Alves
- Center for Interdisciplinary Research in Health, Institute of Health Sciences, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Raquel Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Biochemistry Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Carlos A. García-Gonzaléz
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Faculty of Pharmacy and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
37
|
Huitema L, Phillips T, Alexeev V, Igoucheva O. Immunological mechanisms underlying progression of chronic wounds in recessive dystrophic epidermolysis bullosa. Exp Dermatol 2021; 30:1724-1733. [PMID: 34142388 PMCID: PMC9290674 DOI: 10.1111/exd.14411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
Hereditary epidermolysis bullosa (EB) is a mechanobullous skin fragility disorder characterized by defective epithelial adhesion, leading to mechanical stress‐induced skin blistering. Based on the level of tissue separation within the dermal‐epidermal junction, EB is categorized into simplex (EBS), junctional (JEB), dystrophic (DEB) and Kindler syndrome. There is no cure for EB, and painful chronic cutaneous wounds are one of the major complications in recessive (RDEB) patients. Although RDEB is considered a cutaneous disease, recent data support the underlying systemic immunological defects. Furthermore, chronic wounds are often colonized with pathogenic microbiota, leading to excessive inflammation and altered wound healing. Consequently, patients with RDEB suffer from a painful sensation of chronic, cutaneous itching/burning and an endless battle with bacterial infections. To improve their quality of life and life expectancy, it is important to prevent cutaneous infections, dampen chronic inflammation and stimulate wound healing. A clear scientific understanding of the immunological events underlying the maintenance of chronic poorly healing wounds in RDEB patients is necessary to improve disease management and better understand other wound healing disorders. In this review, we summarize current knowledge of the role of professional phagocytes, such as neutrophils, macrophages and dendritic cells, the role of T‐cell‐mediated immunity in lymphoid organs, and the association of microbiota with poor wound healing in RDEB. We conclude that RDEB patients have an underlying immunity defect that seems to affect antibacterial immunity.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 05/24/2023]
Abstract
Tissue adhesives can form appreciable adhesion with tissues and have found clinical use in a variety of medical settings such as wound closure, surgical sealants, regenerative medicine, and device attachment. The advantages of tissue adhesives include ease of implementation, rapid application, mitigation of tissue damage, and compatibility with minimally invasive procedures. The field of tissue adhesives is rapidly evolving, leading to tissue adhesives with superior mechanical properties and advanced functionality. Such adhesives enable new applications ranging from mobile health to cancer treatment. To provide guidelines for the rational design of tissue adhesives, here, existing strategies for tissue adhesives are synthesized into a multifaceted design, which comprises three design elements: the tissue, the adhesive surface, and the adhesive matrix. The mechanical, chemical, and biological considerations associated with each design element are reviewed. Throughout the report, the limitations of existing tissue adhesives and immediate opportunities for improvement are discussed. The recent progress of tissue adhesives in topical and implantable applications is highlighted, and then future directions toward next-generation tissue adhesives are outlined. The development of tissue adhesives will fuse disciplines and make broad impacts in engineering and medicine.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
39
|
Monedeiro F, Railean-Plugaru V, Monedeiro-Milanowski M, Pomastowski P, Buszewski B. Metabolic Profiling of VOCs Emitted by Bacteria Isolated from Pressure Ulcers and Treated with Different Concentrations of Bio-AgNPs. Int J Mol Sci 2021; 22:4696. [PMID: 33946710 PMCID: PMC8124631 DOI: 10.3390/ijms22094696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL-1. Headspace solid phase microextraction associated to gas chromatography-mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Viorica Railean-Plugaru
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Maciej Monedeiro-Milanowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Bogusław Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
40
|
Böttle K, Vasilev K, Michl TD. Shelf-Life Optimisation of Plasma Polymerised (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOpp) Coatings; A New Possible Approach to Tackle Infections in Chronic Wounds. Antibiotics (Basel) 2021; 10:362. [PMID: 33805469 PMCID: PMC8067075 DOI: 10.3390/antibiotics10040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic wounds fail to heal and are accompanied by an ongoing infection. They cause suffering, shorten lifespans, and their prevalence is increasing. Unfortunately, the medical treatment of chronic wounds has remained unchanged for decades. A novel approach to break the biological vicious cycle is the long-lived radical (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO). TEMPO can be plasma polymerised (TEMPOpp) into thin coatings that have antimicrobial properties. However, due to its radical nature, quenching causes it to lose effectiveness over time. Our aim in this study was to extend the shelf-life of TEMPOpp coatings using various storage conditions: Namely, room temperature (RT), room temperature & vacuum sealed (RTV), freezer temperature & vacuum sealed (FTV). We have analysed the coatings' quality via the surface analytical methods of X-Ray Photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR); finding marked differences among the three storage conditions. Furthermore, we have compared the antimicrobial efficacy of the stored coatings against two major bacterial pathogens, Staphylococcus aureus and Staphylococcus epidermidis, commonly found in chronic wounds. We did so both qualitatively via live/dead staining, as well as quantitatively via (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium (XTT) viability assay for up to 15 weeks in 5 weeks increments. Taken all together, we demonstrate that samples stored under FTV conditions retain the highest antimicrobial activity after 15 weeks and that this finding correlates with the retained concentration of nitroxides.
Collapse
|
41
|
Guan H, Dong W, Lu Y, Jiang M, Zhang D, Aobuliaximu Y, Dong J, Niu Y, Liu Y, Guan B, Tang J, Lu S. Distribution and Antibiotic Resistance Patterns of Pathogenic Bacteria in Patients With Chronic Cutaneous Wounds in China. Front Med (Lausanne) 2021; 8:609584. [PMID: 33816517 PMCID: PMC8010674 DOI: 10.3389/fmed.2021.609584] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Background: To determine the distribution and antimicrobial susceptibility pattern of pathogenic bacteria in patients with chronic cutaneous wounds on a national scale. Methods: A retrospective study was conducted using the data recorded between January 1, 2018 and January1, 2020 in 195 hospitals across China. After screening the data, 815 patients with chronic wounds were finally analyzed. The data collected included information about the patients' general condition and local cutaneous wound assessments, especially microbial culture and antibiotic susceptibility tests. The analyses were performed using SPSS Version 26. Results: The study included 815 patients (290 [35.6%] females; 63 [50-74] years). The most common causes of chronic cutaneous wounds were diabetes (183, 22.5%), infection (178, 21.8%), and pressure (140, 17.2%). Among these, 521(63.9%) samples tested yielded microbial growth, including 70 (13.4%) polymicrobial infection and 451 (86.6%) monomicrobial infection. The positive rate of microbial culture was highest in wound tissue of ulcers caused by infection (87.6%), followed by pressure (77.1%), diabetes (68.3%), and venous diseases (67.7%). Bates-Jensen wound assessment tool (BWAT) scores >25 and wounds that lasted for more than 3 months had a higher positive rate of microbial culture. BWAT scores >25 and wounds in the rump, perineum, and feet were more likely to exhibit polymicrobial infection. A total of 600 strains were isolated, of which 46.2% (277 strains) were Gram-positive bacteria, 51.3% (308 strains) were Gram-negative bacteria, and 2.5% (15 strains) were fungi. The most common bacterial isolates were Staphylococcus aureus (29.2%), Escherichia coli (11.5%), Pseudomonas aeruginosa (11.0%), Proteus mirabilis (8.0%), and Klebsiella pneumoniae (5.8%). The susceptibility tests showed that 116 cultured bacteria were Multidrug resistant (MDR) strains. The resistance rates of S. aureus were 92.0% (161/175) to penicillin, 58.3% (102/175) to erythromycin, and 50.9% (89/175) to clindamycin. Vancomycin was the most effective antibiotic (0% resistance rate) against all Gram-positive bacteria. Besides, the resistance rates of E. coli were 68.1% (47/69) to ampicillin, 68.1% (47/69) to ciprofloxacin, 60.9% (42/69) to levofloxacin. However, all the isolated Gram-negative bacteria showed low resistance rates to tigecycline (3.9%) and amikacin (3.6%). Conclusions: The distribution of bacteria isolated from chronic cutaneous wounds varies with the BWAT scores, causes, duration, and the location of wounds. Multidrug resistance is a serious health issue, and therefore antibiotics used in chronic wounds must be under strict regulation. Our findings may help clinicians in making informed decisions regarding antibiotic therapy.
Collapse
Affiliation(s)
- Haonan Guan
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Dong
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yechen Lu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Minfei Jiang
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Di Zhang
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yakupu Aobuliaximu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiaoyun Dong
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yiwen Niu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yingkai Liu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bingjie Guan
- Department of General Surgery, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiajun Tang
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuliang Lu
- Department of Burn, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China.,Wound Healing Center, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
42
|
Abstract
Human skin functions as a physical, chemical, and immune barrier against the external environment while also providing a protective niche for its resident microbiota, known as the skin microbiome. Cooperation between the microbiota, host skin cells, and the immune system is responsible for maintenance of skin health, and a disruption to this delicate balance, such as by pathogen invasion or a breach in the skin barrier, may lead to impaired skin function. Human skin functions as a physical, chemical, and immune barrier against the external environment while also providing a protective niche for its resident microbiota, known as the skin microbiome. Cooperation between the microbiota, host skin cells, and the immune system is responsible for maintenance of skin health, and a disruption to this delicate balance, such as by pathogen invasion or a breach in the skin barrier, may lead to impaired skin function. In this minireview, we describe the role of the microbiome in microbe, host, and immune interactions under distinct skin states, including homeostasis, tissue repair, and wound infection. Furthermore, we highlight the growing number of diverse microbial metabolites and products that have been identified to mediate these interactions, particularly those involved in host-microbe communication and defensive symbiosis. We also address the contextual pathogenicity exhibited by many skin commensals and provide insight into future directions in the skin microbiome field.
Collapse
|
43
|
Atefyekta S, Blomstrand E, Rajasekharan AK, Svensson S, Trobos M, Hong J, Webster TJ, Thomsen P, Andersson M. Antimicrobial Peptide-Functionalized Mesoporous Hydrogels. ACS Biomater Sci Eng 2021; 7:1693-1702. [PMID: 33719406 PMCID: PMC8153390 DOI: 10.1021/acsbiomaterials.1c00029] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) are seen as a promising replacement to conventional antibiotics for the prevention of skin wound infections. However, due to the short half-life of AMPs in biological environments, such as blood, their use in clinical applications has been limited. The covalent immobilization of AMPs onto suitable substrates is an effective solution to create contact-killing surfaces with increased long-term stability. In this work, an antimicrobial peptide, RRPRPRPRPWWWW-NH2 (RRP9W4N), was covalently attached to amphiphilic and ordered mesoporous Pluronic F127 hydrogels made of cross-linked lyotropic liquid crystals through 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) chemistry. The AMP-hydrogels showed high antibacterial activity against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, methicillin-resistant S. aureus (MRSA), and multidrug-resistant Escherichia coli for up to 24 h. Furthermore, the AMP-hydrogels did not present any toxicity to human fibroblasts. The AMPs retained their antimicrobial activity up to 48 h in human blood serum, which is a significant increase in stability compared to when used in dissolved state. A pilot in vivo rat model showed 10-100× less viable counts of S. aureus on AMP-hydrogels compared with control hydrogels during the first 3 days of infection. Studies performed on human whole blood showed that blood coagulated more readily in the presence of AMP-hydrogels as compared to hydrogels without AMPs, indicating potential hemostatic activity. Overall, the results suggest that the combination of amphiphilic hydrogels with covalently bonded AMPs has potential to be used as antibacterial wound dressing material to reduce infections and promote hemostatic activity as an alternative to antibiotics or other antimicrobial agents, whose use should be restricted.
Collapse
Affiliation(s)
- Saba Atefyekta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Edvin Blomstrand
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Anand K Rajasekharan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sara Svensson
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden
| | - Margarita Trobos
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden.,Center for Antibiotic Resistance Research (CARe), University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Jaan Hong
- Department of Immunology, Genetic and Pathology, Uppsala University, Rudbeck Laboratory C5, 75185 Uppsala, Sweden
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy at University of Gothenburg, Box 412, SE-405 30 Gothenburg, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
44
|
Maillard JY, Kampf G, Cooper R. Antimicrobial stewardship of antiseptics that are pertinent to wounds: the need for a united approach. JAC Antimicrob Resist 2021; 3:dlab027. [PMID: 34223101 PMCID: PMC8209993 DOI: 10.1093/jacamr/dlab027] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long before the nature of infection was recognized, or the significance of biofilms in delayed healing was understood, antimicrobial agents were being used in wound care. In the last 70 years, antibiotics have provided an effective means to control wound infection, but the continued emergence of antibiotic-resistant strains and the documented antibiotic tolerance of biofilms has reduced their effectiveness. A range of wound dressings containing an antimicrobial (antibiotic or non-antibiotic compound) has been developed. Whereas standardized methods for determining the efficacy of non-antibiotic antimicrobials in bacterial suspension tests were developed in the early twentieth century, standardized ways of evaluating the efficacy of antimicrobial dressings against microbial suspensions and biofilms are not available. Resistance to non-antibiotic antimicrobials and cross-resistance with antibiotics has been reported, but consensus on breakpoints is absent and surveillance is impossible. Antimicrobial stewardship is therefore in jeopardy. This review highlights these difficulties and in particular the efficacy of current non-antibiotic antimicrobials used in dressings, their efficacy, and the challenges of translating in vitro efficacy data to the efficacy of dressings in patients. This review calls for a unified approach to developing standardized methods of evaluating antimicrobial dressings that will provide an improved basis for practitioners to make informed choices in wound care.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales, UK
| | - Günter Kampf
- Institute of Hygiene and Environmental Medicine, University of Greifswald, Germany
| | - Rose Cooper
- School of Sport & Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| |
Collapse
|
45
|
Wijesinghe GK, Feiria SB, Maia FC, Oliveira TR, Joia F, Barbosa JP, Boni GC, HÖfling JF. In-vitro Antibacterial and Antibiofilm Activity of Cinnamomum verum Leaf Oil against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. AN ACAD BRAS CIENC 2021; 93:e20201507. [PMID: 33656062 DOI: 10.1590/0001-3765202120201507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Phytomedicines are becoming more popular in treatment of infectious diseases worldwide. Cinnamomum verum essential oil (EO) has been used as a therapeutic alternative for various diseases. This study aimed to evaluate the antibacterial and antibiofilm activity of the C. verum leaf EO against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. Effect of EO vapor on planktonic cells was determined using microatmosphere technique. CLSI M7-A10 method was employed in Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) experiments. Effect of EO on established biofilms was quantified and visualized using XTT and Scanning Electron Microscope (SEM). In-vitro toxicity was evaluated using Human Keratinocytes (HaCaT). Chemical analysis of EO was done using Gas Chromatography- Mass Spectrometry (GC-MS). All tested strains were sensitive to cinnamon oil vapor. EO exhibited 0.5 and 1.0 mg/mL MIC and MBC against all test strains. Minimum Biofilm Inhibitory and Biofilm Eradication Concentrations (MBIC50 and MBEC) were 1.0 and 4.0 mg/mL. SEM indicated cellular shrinkages, cell wall damages, and decreased biofilm densities. Cinnamon oil didn't show any toxicity on HaCaT cell at any concentration tested. Eugenol was the most abundant compound in C. verum oil. C. verum EO shows an antibacterial and antibiofilm activity with minimal toxicity on host.
Collapse
Affiliation(s)
- Gayan K Wijesinghe
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Diagnóstico Oral, Área de Microbiologia e Imunologia, Av. Limeira, 901, Areião, 13414-903 Piracicaba, SP, Brazil
| | - Simone B Feiria
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Diagnóstico Oral, Área de Microbiologia e Imunologia, Av. Limeira, 901, Areião, 13414-903 Piracicaba, SP, Brazil
| | - Flavia C Maia
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Diagnóstico Oral, Área de Microbiologia e Imunologia, Av. Limeira, 901, Areião, 13414-903 Piracicaba, SP, Brazil
| | - ThaÍs R Oliveira
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Diagnóstico Oral, Área de Microbiologia e Imunologia, Av. Limeira, 901, Areião, 13414-903 Piracicaba, SP, Brazil
| | - Felipe Joia
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Diagnóstico Oral, Área de Microbiologia e Imunologia, Av. Limeira, 901, Areião, 13414-903 Piracicaba, SP, Brazil
| | - Janaina P Barbosa
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Diagnóstico Oral, Área de Microbiologia e Imunologia, Av. Limeira, 901, Areião, 13414-903 Piracicaba, SP, Brazil
| | - Giovana C Boni
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Diagnóstico Oral, Área de Microbiologia e Imunologia, Av. Limeira, 901, Areião, 13414-903 Piracicaba, SP, Brazil
| | - JosÉ F HÖfling
- Universidade de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Diagnóstico Oral, Área de Microbiologia e Imunologia, Av. Limeira, 901, Areião, 13414-903 Piracicaba, SP, Brazil
| |
Collapse
|
46
|
Nagasundarapandian S, Cho HS, Prathap S, Kang M, Choi M, Lee Y, Jeon H, Song H, Kim JH, Park C. Cathelicidin ΔPb-CATH4 derived from Python bivittatus accelerates the healing of Staphylococcus aureus-infected wounds in mice. Amino Acids 2021; 53:313-317. [PMID: 33576904 DOI: 10.1007/s00726-021-02948-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
The effects of ΔPb-CATH4, a cathelicidin derived from Python bivittatus, were evaluated against Staphylococcus aureus-infected wounds in mice. These effects were comparable to those of classical antibiotics. ΔPb-CATH4 was resistant to bacterial protease but not to porcine trypsin. A reduction in the level of inflammatory cytokines and an increase in the migration of immune cells was observed in vitro. Thus, ΔPb-CATH4 can promote wound healing by controlling infections including those caused by multidrug-resistant bacteria via its immunomodulatory effects.
Collapse
Affiliation(s)
| | - Hye-Sun Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea
| | - Somasundaram Prathap
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea
| | - Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea
| | - Munjeong Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea
| | - Yunjung Lee
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-dong, Seoul, 05029, Korea.
| |
Collapse
|
47
|
Duan W, Qiao S, Zhuo M, Sun J, Guo M, Xu F, Liu J, Wang T, Guo X, Zhang Y, Gao J, Huang Y, Zhang Z, Cheng P, Ma S, Chen Y. Multifunctional Platforms: Metal-Organic Frameworks for Cutaneous and Cosmetic Treatment. Chem 2021. [DOI: 10.1016/j.chempr.2020.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Thaarup IC, Bjarnsholt T. Current In Vitro Biofilm-Infected Chronic Wound Models for Developing New Treatment Possibilities. Adv Wound Care (New Rochelle) 2021; 10:91-102. [PMID: 32496982 DOI: 10.1089/wound.2020.1176] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Significance: The prevalence of chronic wounds is increasing worldwide. The most recent estimates suggest that up to 2% of the population in the industrialized countries is affected. Recent Advances: During the past few decades, bacterial biofilms have been elucidated as one of the primary reasons why chronic wounds fail to heal. Critical Issues: There is a lack of direct causation and evidence of the role that biofilms play in persistent wounds, which complicates research on new treatment options, since it is still unknown which factors dominate. For this reason, several different in vitro wound models that mimic the biofilm infections observed in chronic wounds and other chronic infections have been created. These different models are, among other purposes, used to test a variety of wound care products. However, chronic wounds are highly complex, and several different factors must be taken into consideration along with the infection, including physiochemical and human-supplemented factors. Furthermore, the limitations of using in vitro models, such as the lack of a responsive immune system should always be given due consideration. Future Directions: Present understandings of all the elements and interactions that take place within chronic wounds are incomplete. As our insight of in vivo chronic wounds continues to expand, so too must the in vitro models used to mimic these infections evolve and adapt to new knowledge.
Collapse
Affiliation(s)
- Ida C. Thaarup
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
49
|
Nag F, Chatterjee G, Ghosh A, De A. Clinico-Etiological Evaluation of Chronic Leg Ulcer in a Tertiary Care Center of Eastern India. Indian J Dermatol 2021; 65:495-499. [PMID: 33487705 PMCID: PMC7810075 DOI: 10.4103/ijd.ijd_62_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: A chronic leg ulcer (CLU) is a significant public health problem. It has various etiologies. Racial, familial, occupational, and social factors may also have an impact on the prevalence of different causes of leg ulcers. Though there are western data on the epidemiology of leg ulcer, similar data are largely unavailable from our part of the world. Aims: We undertook a study in a tertiary care center in eastern India to determine the clinical and etiological pattern of patients with CLU. Materials and Methods: Hundred consecutive patients presenting with CLU, fulfilling the criteria, were included after informed consent. Patients were subjected to proper history taking, clinical examination, routine blood test, and pus for culture and sensitivity test (where needed) along with Ankle Brachial Index (ABI). Results: Among the 100 patients, venous ulcer (34%) was predominant followed by arterial ulcer (14%), mixed arterial and venous ulcer (11%). History of smoking (56%) and obesity (BMI >25) (32%) were the common risk factors in leg ulcer patients. Fifty nine percent of the total CLU were infected and out of this, 86.4% showed growth of microorganisms. Staphylococcus aureus (39%) was the most commonly isolated organism, followed by Pseudomonas aeruginosa (15%). Eleven (24.44%) clinically diagnosed venous ulcer patients showed significantly lower ABI (<0.9) and were diagnosed as mixed ulcer (a venous ulcer with a peripheral arterial disease). Conclusion: Venous ulcer and mixed ulcer are the most common type of CLU.
Collapse
Affiliation(s)
- Falguni Nag
- Department of Dermatology, Purulia Government Medical College, Purulia, West Bengal, India
| | | | - Arghyaprasun Ghosh
- Department of Dermatology, Bankura Sammilani Medical College, Bankura, West Bengal, India
| | - Abhishek De
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| |
Collapse
|
50
|
Navarro-Jiménez G, Fuentes-Santos C, Moreno-Núñez L, Alfayate-García J, Campelo-Gutierrez C, Sanz-Márquez S, Pérez-Fernández E, Velasco-Arribas M, Hervás-Gómez R, Martín-Segarra O, Losa-García JE. Experience in the use of dalbavancin in diabetic foot infection. Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(20)30416-X. [PMID: 33451810 DOI: 10.1016/j.eimc.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To describe the clinical experience with dalbavancin in the treatment of diabetic foot infection in a multidisciplinary unit of a second level hospital. METHODS A retrospective, descriptive study was made with all patients with diabetic foot infection treated with dalbavancin in the Diabetic Foot Unit of Hospital Universitario Fundación Alcorcón, covering the period from September 2016 to December 2019. Demographic parameters and comorbidities, characteristics of the infection and treatment with dalbavancin were recorded. The cure rate was estimated at 90 days after finishing the treatment. RESULTS A total of 23 patients with diabetic foot infection (osteomyelitis) started treatment with dalbavancin, 19 were men and the mean age was 65 years. The microorganisms most frequently isolated for the indication of treatment with dalbavancin were Staphylococcus aureus (11) and Corynebacterium striatum (7). Dalbavancin was used as a second choice therapy in 22 cases, in 11 due to toxicity from other antibiotics. The median duration of treatment was 5 (4-7) weeks; the most frequent dose of dalbavancin (8 patients) was 1000mg followed by 500mg weekly for 5 weeks. 3 patients presented mild side effects (nausea and gastrointestinal discomfort). At 90 days after completion of dalbavancin therapy, 87% (20) of the patients were cured (95% CI: 65.2%-94.52%). CONCLUSION Patients with osteomyelitis due to gram-positive microorganisms who received as part of the multidisciplinary antibiotic treatment with dalbavancin, had a high rate of cure with adequate tolerance and few side effects. Dalbavancin offers a safe alternative in treating deep diabetic foot infection.
Collapse
Affiliation(s)
- Gema Navarro-Jiménez
- Servicio de Medicina Interna, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España.
| | | | - Leonor Moreno-Núñez
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - Jesús Alfayate-García
- Servicio de Cirugía Vascular, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | | | - Sira Sanz-Márquez
- Servicio de Farmacia, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - Elia Pérez-Fernández
- Unidad de Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - María Velasco-Arribas
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - Rafael Hervás-Gómez
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - Oriol Martín-Segarra
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| | - Juan Emilio Losa-García
- Sección de Enfermedades Infecciosas, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, España
| |
Collapse
|