1
|
Liu X, Lu J, Wang Z, Zhuang L, Jiang G, Shen T, Ma J, Zheng S. Efficacy and Safety of Aerosol Inhalation of Colistin Sulfate for the Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infection in the Peri-Operative Period of Liver Transplantation: A Single-Center Retrospective Study. Surg Infect (Larchmt) 2024. [PMID: 39723457 DOI: 10.1089/sur.2024.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Objective: This study intended to evaluate the clinical efficacy and safety of colistin sulfate aerosol inhalation in combination with ceftazidime-avibactam for the treatment of pulmonary carbapenem-resistant Klebsiella pneumoniae (CRKP) infection during the peri-operative period of liver transplantation. Materials and Methods: A retrospective analysis was designed to investigate 52 patients who developed pulmonary CRKP infection after liver transplantation between December 1, 2019, and November 30, 2022. On the basis of whether they received colistin sulfate aerosol inhalation, the patients were divided into the treatment group (n = 29) and the control group (n = 23). The baseline information, infection status, CRKP enzyme type, inflammatory markers, liver and kidney function, and prognosis were compared and analyzed. Results: There were no significant differences in patient characteristics, infection status, and drug resistance enzyme type between the treatment group (treated with colistin sulfate aerosol inhalation and ceftazidime and avibactam sodium for injection) and the control group (treated with ceftazidime and avibactam sodium for injection alone). Colistin sulfate aerosol inhalation treatment reduced concentrations of inflammatory markers, with post-treatment white blood cell count, procalcitonin, and C-reactive protein significantly lower than pre-treatment levels (p < 0.05). Except for C-reactive protein at 14 days (p = 0.032), the two groups had no significant differences in other indicators. There were no significant differences in alanine aminotransferase, aspartate aminotransferase, total bilirubin, and glomerular filtration rate after treatment, indicating no discernible alteration in liver and kidney function. In addition, the treatment group took a significantly shorter time to normalize body temperature compared with the control group (p = 0.025), but there were no significant differences in the cure with no colonization rate and all-cause mortality rate between the two groups. Conclusions: The combination of colistin sulfate aerosol inhalation and ceftazidime and avibactam sodium for injection is effective in treating pulmonary CRKP infection during the peri-operative period of liver transplantation. It does not impose an additional burden on liver and kidney function, providing a new treatment option for this type of infection.
Collapse
Affiliation(s)
- Xiangyan Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, P.R. China
| | - Jianfang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, P.R. China
| | - Zhuoyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, P.R. China
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, P.R. China
| | - Guoping Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, P.R. China
| | - Tian Shen
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, P.R. China
| | - Jincheng Ma
- Department of Intensive Care Unit, Shulan (Hangzhou) Hospital, Hangzhou, P.R. China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, P.R. China
| |
Collapse
|
2
|
Jørgensen JS, Laulund Siebert AS, Ciofu O, Høiby N, Moser C, Franzyk H. Synergistic combinations of novel polymyxins and rifampicin with improved eradication of colistin-resistant Pseudomonas aeruginosa biofilms. Biofilm 2024; 8:100224. [PMID: 39445123 PMCID: PMC11497480 DOI: 10.1016/j.bioflm.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background Increased prevalence of antimicrobial resistance coupled with a lack of new antibiotics against Gram-negative bacteria emphasize the imperative for novel therapeutic strategies. Colistin-resistant Pseudomonas aeruginosa constitutes a challenge, where conventional treatment options lack efficacy, in particular for biofilm-associated infections. Previously, synergy of colistin with other antibiotics was explored as an avenue for the treatment of colistin-resistant infections, and recently we reported our efforts towards colistin analogs capable of combating planktonic colistin-resistant strains. Aims The aim of the present study was to investigate whether analogs of polymyxin B with improved potency in wild-type and moderate resistant Gram-negative pathogens would retain similarly increased activity in highly colistin-resistant clinical P. aeruginosa isolates (in planktonic and biofilm growth) when applied alone and in combination with rifampicin. Materials and methods In this in vitro study, we tested three analogs of polymyxin B prepared by solid-phase peptide synthesis. Antimicrobial susceptibility testing was performed by measurement of minimum inhibitory concentrations via the broth microdilution method. Interactions between two antimicrobials was quantified in a checkerboard broth microdilution assay by calculating the fractional inhibitory concentration index for each combination. For testing of antibiofilm activity a previously described model with alginate beads encapsulating a biofilm culture was applied. The minimum biofilm eradication concentrations (MBECs) were evaluated, and the fractional biofilm eradication concentration indices were calculated. Three recently identified colistin analogs (CEP932, CEP936 and CEP938) were tested against three isogenic pairs of colistin-susceptible and colistin-resistant P. aeruginosa clinical isolates as well as the reference strain PAO1. Results For bacteria in planktonic growth CEP938 retained almost full potency in all three resistant isolates, while exhibiting similar activity as colistin in susceptible isolates. Against biofilms CEP938 was slightly more potent against PAO1 as compared to colistin, while also retaining activity against a biofilm of the colistin-resistant strain 41,782/98. Next, synergy between CEP938 and the antibiotic rifampicin was explored. Interestingly, CEP938 did not exhibit synergy with rifampicin in planktonic cultures. Importantly, for colistin-resistant biofilms the CEP938-rifampicin combination demonstrated activity superior to that found for the colistin-rifampicin combination. Conclusions The present study showed in vitro efficacy of CEP938 against both colistin-susceptible and colistin-resistant P. aeruginosa biofilms as well as an ability of CEP938 to synergize with rifampicin in biofilm eradication.
Collapse
Affiliation(s)
- Johan Storm Jørgensen
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen Ø, Denmark
| | - Anne Sofie Laulund Siebert
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 24.1, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 24.1, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 24.1, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Henrik Franzyk
- Center for Peptide-Based Antibiotics, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Tong R, Zou X, Shi X, Zhang X, Li X, Liu S, Duan X, Han B, Wang H, Zhang R, Sun L, Kong Y, Zhang F, Ma M, Ding X, Sun T. Intravenous combined with aerosolised polymyxins vs intravenous polymyxins monotherapy for ventilator-associated pneumonia: A systematic review and meta-analysis. Int J Antimicrob Agents 2024; 64:107357. [PMID: 39389385 DOI: 10.1016/j.ijantimicag.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Polymyxins were applied via different administration routes to treat ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). The potential benefits of aerosolised polymyxins as adjunctive treatment for patients are contradictory. This review assessed the safety and efficacy of intravenous (IV) combined with aerosolised polymyxins vs IV polymyxins monotherapy in patients with VAP caused by CR-GNB. Two reviewers independently evaluated and extracted data from PubMed, Embase, Cochrane library and Web of Science. The primary outcome was all-cause mortality and secondary outcomes included clinical cure rate, clinical improvement rate, microbiological eradication rate and nephrotoxicity. Differences for dichotomous outcomes were expressed as odds ratios (ORs) with 95% confidence intervals (CIs). Eleven eligible studies were included. The results showed that compared with IV polymyxins monotherapy, IV plus aerosolised polymyxins therapy significantly reduced all-cause mortality rate (OR = 0.75, 95% CI 0.57-0.99, P = 0.045) and improved clinical improvement rate (OR = 1.62, 95% CI 1.02-2.60, P = 0.043) and microbial eradication rate (OR = 2.07, 95% CI 1.40-3.05, P = 0.000). However, there were no significant differences in terms of clinical cure rate (OR = 1.59, 95% CI 0.96-2.63, P = 0.072) and nephrotoxicity (OR = 1.14, 95% CI 0.80-1.63, P = 0.467) for IV plus aerosolised polymyxins therapy. Subgroup analysis revealed that the clinical improvement rate was significantly improved in case-control studies. Aerosolised polymyxins may be a useful adjunct to IV polymyxins for patients with CR-GNB VAP.
Collapse
Affiliation(s)
- Ran Tong
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Xinlei Zou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xinge Shi
- Xinyang Central Hospital, Xinyang 464000, China.
| | - Xiaojuan Zhang
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Xiang Li
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Shaohua Liu
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Xiaoguang Duan
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Bin Han
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Haixu Wang
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Ruifang Zhang
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Limin Sun
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Yu Kong
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Fen Zhang
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Mingyu Ma
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Xianfei Ding
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| | - Tongwen Sun
- General Intensive Care Unit, Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Critical Care Medicine, Henan Key Laboratory of Critical Care Medicine, Henan Key Laboratory of Sepsis in Health Commission, Zhengzhou Key Laboratory of Sepsis, Henan Sepsis Diagnosis and Treatment Center, Zhengzhou 450052, China.
| |
Collapse
|
4
|
Stella J, Abdelaal MAME, Kamal MAM, Shehu K, Alhayek A, Haupenthal J, Hirsch AK, Schneider M. Spray drying of a zinc complexing agent for inhalation therapy of pulmonary fibrosis. Eur J Pharm Sci 2024; 202:106891. [PMID: 39233259 DOI: 10.1016/j.ejps.2024.106891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Pulmonary fibrosis, a disabling lung disease, results from the fibrotic transformation of lung tissue. This fibrotic transformation leads to a deterioration of lung capacity, resulting in significant respiratory distress and a reduction in overall quality of life. Currently, the frontline treatment of pulmonary fibrosis remains limited, focusing primarily on symptom relief and slowing disease progression. Bacterial infections with Pseudomonas aeruginosa are contributing to a severe progression of idiopathic pulmonary fibrosis. Phytic acid, a natural chelator of zinc, which is essential for the activation of metalloproteinase enzymes involved in pulmonary fibrosis, shows potential inhibition of LasB, a virulence factor in P. aeruginosa, and mammalian metalloproteases (MMPs). In addition, phytic acid has anti-inflammatory properties believed to result from its ability to capture free radicals, inhibit certain inflammatory enzymes and proteins, and reduce the production of inflammatory cytokines, key signaling molecules that promote inflammation. To achieve higher local concentrations in the deep lung, phytic acid was spray dried into an inhalable powder. Challenges due to its hygroscopic and low melting (25 °C) nature were mitigated by converting it to sodium phytate to improve crystallinity and powder characteristics. The addition of leucine improved aerodynamic properties and reduced agglomeration, while mannitol served as carrier matrix. Size variation was achieved by modifying process parameters and were evaluated by tools such as the Next Generation Impactor (NGI), light diffraction methods, and scanning electron microscopy (SEM). An inhibition assay for human MMP-1 (collagenase-1) and MMP-2 (gelatinase A) allowed estimation of the biological effect on tissue remodeling enzymes. The activity was also assessed with respect to inhibition of bacterial LasB. The formulated phytic acid demonstrated an IC50 of 109.7 µg/mL for LasB with viabilities > 80 % up to 188 µg/mL on A549 cells. Therefore, inhalation therapy with phytic acid-based powder shows promise as a treatment for early-stage Pseudomonas-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin Stella
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbrücken 66123, Germany
| | | | - Mohamed Ashraf Mostafa Kamal
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8 1, Saarbrücken 66123, Germany
| | - Kristela Shehu
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbrücken 66123, Germany; INM - Leibniz Institute for New Materials, Saarbrücken 66123, Germany
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8 1, Saarbrücken 66123, Germany
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8 1, Saarbrücken 66123, Germany
| | - Anna K Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8 1, Saarbrücken 66123, Germany; Department of Pharmacy, Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, Saarbrücken 66123, Germany.
| |
Collapse
|
5
|
Høiby N, Moser C, Ciofu O. Pseudomonas aeruginosa in the Frontline of the Greatest Challenge of Biofilm Infection-Its Tolerance to Antibiotics. Microorganisms 2024; 12:2115. [PMID: 39597505 PMCID: PMC11596597 DOI: 10.3390/microorganisms12112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
P. aeruginosa biofilms are aggregates of bacteria surrounded by a self-produced matrix which binds to some antibiotics such as aminoglycosides. P. aeruginosa biofilms are tolerant to antibiotics. The treatment of biofilm infections leads to a recurrence of symptoms after finishing antibiotic treatment, although the initial clinical response to the treatment is frequently favorable. There is a concentration gradient of oxygen and nutrients from the surface to the center of biofilms. Surface-located bacteria are multiplying and metabolizing, whereas deeper located bacteria are dormant and tolerant to most antibiotics. Colistin kills dormant bacteria, and combination therapy with colistin and antibiotics which kills multiplying bacteria is efficient in vitro. Some antibiotics such as imipenem induce additional production of the biofilm matrix and of chromosomal beta-lactamase in biofilms. Biofilms present a third Pharmacokinetic/Pharmacodynamic (PK/PD) micro-compartment (first: blood, second: tissue, third: biofilm) which must be taken into consideration when calculations try to predict the antibiotic concentrations in biofilms and thereby the probability of target attainment (PTA) for killing the biofilm. Treating biofilms with hyperbaric oxygen to wake up the dormant cells, destruction of the biofilm matrix, and the use of bacteriophage therapy in combination with antibiotics are promising possibilities which have shown proof of concept in in vitro experiments and in animal experiments.
Collapse
Affiliation(s)
- Niels Høiby
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Claus Moser
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Oana Ciofu
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
| |
Collapse
|
6
|
Teney C, Poupelin JC, Briot T, Le Bouar M, Fevre C, Brosset S, Martin O, Valour F, Roussel-Gaillard T, Leboucher G, Ader F, Lukaszewicz AC, Ferry T. Phage Therapy in a Burn Patient Colonized with Extensively Drug-Resistant Pseudomonas aeruginosa Responsible for Relapsing Ventilator-Associated Pneumonia and Bacteriemia. Viruses 2024; 16:1080. [PMID: 39066242 PMCID: PMC11281479 DOI: 10.3390/v16071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa is one of the main causes of healthcare-associated infection in Europe that increases patient morbidity and mortality. Multi-resistant pathogens are a major public health issue in burn centers. Mortality increases when the initial antibiotic treatment is inappropriate, especially if the patient is infected with P. aeruginosa strains that are resistant to many antibiotics. Phage therapy is an emerging option to treat severe P. aeruginosa infections. It involves using natural viruses called bacteriophages, which have the ability to infect, replicate, and, theoretically, destroy the P. aeruginosa population in an infected patient. We report here the case of a severely burned patient who experienced relapsing ventilator-associated pneumonia associated with skin graft infection and bacteremia due to extensively drug-resistant P. aeruginosa. The patient was successfully treated with personalized nebulized and intravenous phage therapy in combination with immunostimulation (interferon-γ) and last-resort antimicrobial therapy (imipenem-relebactam).
Collapse
Affiliation(s)
- Cécile Teney
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Jean-Charles Poupelin
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Thomas Briot
- Pharmacie de Centre Hospitalier Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (T.B.); (G.L.)
| | - Myrtille Le Bouar
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
| | - Cindy Fevre
- Phaxiam Therapeutics, 60 Avenue Rockefeller, Bâtiment Bioserra, 69008 Lyon, France;
| | - Sophie Brosset
- Service de Chirurgie Plastique et Reconstructrice, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Olivier Martin
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Florent Valour
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
| | - Tiphaine Roussel-Gaillard
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France;
| | - Gilles Leboucher
- Pharmacie de Centre Hospitalier Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (T.B.); (G.L.)
| | - Florence Ader
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
| | - Anne-Claire Lukaszewicz
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Tristan Ferry
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
- Education and Clinical Officer of the ESCMID Study Group for Non-Traditional Antibacterial Therapy (ESGNTA), 4051 Basel, Switzerland
| |
Collapse
|
7
|
Talwar D, Prajapat D, Talwar S, Talwar D. Retrospective Observational Study to Assess Safety and Tolerability of Nebulized Colistin for the Treatment of Patients With Pneumonia in Real-World Settings in Respiratory ICU. Cureus 2024; 16:e54652. [PMID: 38524091 PMCID: PMC10959766 DOI: 10.7759/cureus.54652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
INTRODUCTION Colistin is used to treat hospital-acquired pneumonia and ventilator-associated pneumonia. However, direct drug deposition at the site of infection may improve its efficacy and reduce systemic exposure. The aim of this study was to assess the safety and tolerability of nebulized colistin among Indian patients diagnosed with pneumonia caused by multidrug-resistant gram-negative bacilli in real-world settings. METHODOLOGY We retrospectively reviewed the medical records of patients treated with nebulized colistin for pneumonia. We assessed the adverse events and relevant abnormal laboratory findings of nebulized colistin therapy. RESULTS All enrolled patients (N=30, males: 22, females: 8; average age: 71.06 years) were treated for 13.36 days. Almost 80% of patients had a history of shortness of breath, which was a major symptom when they were admitted to the hospital. The patients were administered nebulized colistin for an average of six days (8 hours per day). The most common dosing schedule was 1 million international units (MIU)/8 hours. No serious adverse event was observed, and only one patient died while on the treatment but the death was not related to colistin treatment. The average sequential organ failure assessment score for all patients was 6.5. CONCLUSION Our study demonstrated the efficient clinical utility and well-tolerated safety profile of nebulized colistin in the treatment of patients with pneumonia. Neurotoxicity and nephrotoxicity were not reported. Since a significant percentage of patients were with chronic respiratory diseases, our study further indicates the safety and effectiveness of nebulized colistin in chronic obstructive pulmonary disease (COPD) patients too.
Collapse
Affiliation(s)
- Deepak Talwar
- Pulmonary, Sleep, and Critical Care Medicine, Metro Centre for Respiratory Diseases, Noida, IND
| | - Deepak Prajapat
- Pulmonary and Critical Care Medicine, Metro Centre for Respiratory Diseases, Noida, IND
| | - Surbhi Talwar
- Nephrology, University Hospitals Coventry and Warwickshire (UHCW), Coventry, GBR
| | - Dhruv Talwar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences (Deemed to be University), Wardha, IND
| |
Collapse
|
8
|
Chibabhai V, Bekker A, Black M, Demopoulos D, Dramowski A, du Plessis NM, Lorente VPF, Nana T, Rabie H, Reubenson G, Thomas R. Appropriate use of colistin in neonates, infants and children: Interim guidance. S Afr J Infect Dis 2023; 38:555. [PMID: 38223435 PMCID: PMC10784269 DOI: 10.4102/sajid.v38i1.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 01/16/2024] Open
Affiliation(s)
- Vindana Chibabhai
- Division of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Microbiology, National Health Laboratory Service, Johannesburg, South Africa
| | - Adrie Bekker
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marianne Black
- Division of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Microbiology, Lancet Laboratories, Johannesburg, South Africa
| | - Despina Demopoulos
- Department of Paediatrics, Donald Gordon Medical Centre, Johannesburg, South Africa
| | - Angela Dramowski
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicolette M. du Plessis
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veshni Pillay-Fuentes Lorente
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Trusha Nana
- Division of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Microbiology, Lancet Laboratories, Johannesburg, South Africa
| | - Helena Rabie
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gary Reubenson
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Reenu Thomas
- Department of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Christ Hani Baragwanath Academic Hospital, Johannesburg, South Africa
| |
Collapse
|
9
|
Maan L, Anand N, Yadav G, Mishra M, Gupta MK. The Efficacy and Safety of Intravenous Colistin Plus Aerosolized Colistin Versus Intravenous Colistin Alone in Critically Ill Trauma Patients With Multi-Drug Resistant Gram-Negative Bacilli Infection. Cureus 2023; 15:e49314. [PMID: 38143689 PMCID: PMC10748797 DOI: 10.7759/cureus.49314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND AND AIM Gram-negative bacteria (GNB) with potential multiple drug resistance (MDR) have emerged as a major group of organisms causing ventilator-associated pneumonia (VAP). Higher concentrations are deposited directly in the lungs when antibiotics are given via inhalation, minimizing systemic side effects. This study aims to compare the efficacy and safety of intravenous plus aerosolized colistin versus intravenous (IV) colistin alone in critically ill trauma patients who reported MDR-GNB infection on endotracheal aspirate culture. METHODS A hundred patients were recruited in the Intensive Care Unit, Trauma Centre, Institute of Medical Sciences, Banaras Hindu University, Varanasi, and randomly assigned to the control (n=50) group, which received IV colistin plus aerosolized colistin and the intervention group (n = 50), which received IV colistin alone. Changes in total leucocyte count (TLC), renal function test (RFT), endotracheal aspirate culture, 24-hour urine output, length of ICU stay, and 28-day ICU mortality were investigated. RESULTS Patients receiving intravenous plus nebulized colistin therapy had a better outcome compared to IV colistin alone in terms of faster eradication of MDR-GNB infection. A rise in serum urea and creatinine levels was seen in both groups, which were significantly higher, along with a decrease in urine output in the group receiving intravenous colistin alone. No significant difference was observed in serum sodium and potassium levels in the RFT protocol, length of ICU stay, or 28-day ICU mortality. CONCLUSION Intravenous nebulized colistin could be considered a better alternative therapy for VAP caused by multi-drug-resistant Gram-negative bacteria in the ICU in terms of faster microbiological cure and lesser nephrotoxicity.
Collapse
Affiliation(s)
- Loveleen Maan
- Anaesthesiology and Critical Care, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Neelesh Anand
- Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varansi, IND
| | - Ghanshyam Yadav
- Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Manjaree Mishra
- Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | | |
Collapse
|
10
|
Shi R, Fu Y, Gan Y, Wu D, Zhou S, Huang M. Use of polymyxin B with different administration methods in the critically ill patients with ventilation associated pneumonia: a single-center experience. Front Pharmacol 2023; 14:1222044. [PMID: 37719858 PMCID: PMC10502420 DOI: 10.3389/fphar.2023.1222044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Whether nebulized polymyxin B should be used as an adjunctive therapy or substitution strategy to intravenous polymyxin B for the treatment of ventilator-associated pneumonia (VAP) remains controversial. This study's aim is to evaluate the efficacy and safety of different administration ways of polymyxin B in the treatment of ventilator-associated pneumonia caused by extensively drug-resistant Gram-negative bacteria(XDR-GNB). Methods: This retrospective cohort study enrolled ventilator-associated pneumonia patients caused by XDR-GNB treated with polymyxin B in the intensive care unit. Patients were categorized by the administration methods as intravenous (IV) group, inhaled (IH) group, and the intravenous combined with inhaled (IV + IH) group. Microbiological outcome and clinical outcome were compared in each group. The side effects were also explored. Results: A total of 111 patients were enrolled and there was no difference in demographic and clinical characteristics among the three groups. In terms of efficacy, clinical cure or improvement was achieved in 21 patients (55.3%) in the intravenous group, 19 patients (50%) in the IH group, and 20 patients (57.1%) in IV + IH group (p = 0.815). All three groups showed high success rates in microbiological eradication, as 29 patients with negative cultures after medication in inhaled group. Among all the patients who had negative bacterial cultures after polymyxin B, the inhaled group had significantly shorter clearance time than the intravenous group (p = 0.002), but with no significant difference in 28-day mortality. Compared with intravenous group, a trend towards a lower risk of acute kidney injury was observed in inhaled group (p = 0.025). Conclusion: From the perspective of minimal systemic renal toxicity, nebulized polymyxin B as a substitution strategy to intravenous polymyxin B for the treatment of ventilator-associated pneumonia caused by XDR-GNB is feasible.
Collapse
Affiliation(s)
- Rupeng Shi
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanyuan Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yujing Gan
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danying Wu
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suming Zhou
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Huang
- Department of Geriatric ICU, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Armengol E, Kragh KN, Tolker-Nielsen T, Sierra JM, Higazy D, Ciofu O, Viñas M, Høiby N. Colistin Enhances Rifampicin's Antimicrobial Action in Colistin-Resistant Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 2023; 67:e0164122. [PMID: 36856424 PMCID: PMC10112245 DOI: 10.1128/aac.01641-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa infections has urged the need to find new strategies, such as the use of combinations of antibiotics. Among these, the combination of colistin with other antibiotics has been studied. Here, the action of combinations of colistin and rifampicin on both planktonic and sessile cells of colistin-resistant P. aeruginosa was studied. Dynamic biofilms were formed and treated with such a combination, resulting in an active killing effect of both colistin-resistant and colistin-susceptible P. aeruginosa in biofilms. The results suggest that the action of colistin on the outer membrane facilitates rifampicin penetration, regardless of the colistin-resistant phenotype. Based on these in vitro data, we propose a colistin-rifampicin combination as a promising treatment for infections caused by colistin-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Eva Armengol
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Josep M. Sierra
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Doaa Higazy
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Medical School and IDIBELL, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Niels Høiby
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
Collalto D, Fortuna A, Visca P, Imperi F, Rampioni G, Leoni L. Synergistic Activity of Colistin in Combination with Clofoctol against Colistin Resistant Gram-Negative Pathogens. Microbiol Spectr 2023; 11:e0427522. [PMID: 36802038 PMCID: PMC10100712 DOI: 10.1128/spectrum.04275-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Colistin is a bactericidal antibiotic identified decades ago which is active against a number of Gram-negative pathogens. After early elimination from clinical use due to toxicity issues, colistin has been reintroduced as a last-resort treatment for antibiotic-resistant Gram-negative infections lacking other therapeutic options. Inevitably, colistin resistance has emerged among clinical isolates, making the development of colistin adjuvants extremely beneficial. Clofoctol is a synthetic antibiotic active against Gram-positive bacteria, with low toxicity and high tropism for the airways. Interestingly, clofoctol has been found to have multiple biological activities and has been proposed for the treatment of several obstructive lung diseases, including asthma, lung cancer, and SARS-CoV-2 infection. In this study, the activity of clofoctol as a colistin adjuvant was investigated in Gram-negative lung pathogens that are critical for the high prevalence of multidrug-resistant isolates, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Clofoctol potentiated the bactericidal effect of colistin in all tested strains and reduced colistin MICs below the susceptibility breakpoint in nearly all colistin-resistant strains. Overall, this observation supports the development of inhaled clofoctol-colistin formulations for the treatment of difficult-to-treat airway infections caused by Gram-negative pathogens. IMPORTANCE Colistin is used as a last-resort antibiotic against extensively drug-resistant Gram-negative pathogens. However, colistin resistance is on the rise. Clofoctol is an antibiotic used against Gram-positive bacteria, with low toxicity and high penetration and storage in the airways. Here, a strong synergistic activity of the colistin-clofoctol combination against colistin-resistant Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii isolates is reported, supporting the development of clofoctol-colistin formulations for the therapy of difficult-to-treat airways infections caused by these Gram-negative pathogens.
Collapse
Affiliation(s)
| | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
13
|
Balalaeva MA, Selivanova LV, Dymova OV, Bazarov DV, Chernova EV, Lukina MV, Eremenko AA. A Clinical Case of Effective Treatment of Pneumonia Caused by Polyresistant Strains with the Use of Inhalation Colistimethate Sodium. MESSENGER OF ANESTHESIOLOGY AND RESUSCITATION 2022. [DOI: 10.21292/2078-5658-2022-19-6-72-77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- M. A. Balalaeva
- Russian Surgery Research Center Named after B. V. Petrovsky; Sechenov First Moscow State Medical University (Sechenov University)
| | | | - O. V. Dymova
- Russian Surgery Research Center Named after B. V. Petrovsky
| | - D. V. Bazarov
- Russian Surgery Research Center Named after B. V. Petrovsky
| | - E. V. Chernova
- Russian Surgery Research Center Named after B. V. Petrovsky
| | - M. V. Lukina
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A. A. Eremenko
- Russian Surgery Research Center Named after B. V. Petrovsky
| |
Collapse
|
14
|
de la Rosa-Carrillo D, Suárez-Cuartín G, Golpe R, Máiz Carro L, Martinez-Garcia MA. Inhaled Colistimethate Sodium in the Management of Patients with Bronchiectasis Infected by Pseudomonas aeruginosa: A Narrative Review of Current Evidence. Infect Drug Resist 2022; 15:7271-7292. [PMID: 36540105 PMCID: PMC9759979 DOI: 10.2147/idr.s318173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
International guidelines on the treatment of bronchiectasis indicate that the use of inhaled antibiotics is effective, especially in symptomatic chronic bronchial infection (CBI) due to Pseudomonas aeruginosa (PA). To date, however, no such treatment has been approved by regulatory agencies. Of the inhaled antibiotics on the market, colistimethate sodium (colistin) is one of the most used in many countries, either in its nebulized presentation or as dry powder. Among the characteristics of this antibiotic, it is worth noting that its main target is the lipopolysaccharide in the outer membrane of the cell wall of gram-negative bacteria and that it has a low rate of resistance to PA (<1%). Most observational studies have shown that the use of colistin in patients with bronchiectasis and CBI due to PA results in a decrease in both the number and severity of exacerbations, an improvement in quality of life, a decrease in sputum volume and purulence, and a high rate of PA eradication, although there are no clear differences with respect to other inhaled antibiotics. However, the lack of randomized clinical trials (RCT) with positive results for its main variable (exacerbations) in an intention-to-treat analysis has prevented its approval by regulatory agencies as a formal indication for use in bronchiectasis. The PROMIS program, made up of two RCT with identical methodology, is currently underway. The first of these RCT (already concluded) has demonstrated a clearly positive effect on the group randomized to colistin in its main variable (number of annual exacerbations), while the results of the second are still pending. This review presents exhaustive information on the pharmacological and microbiological characteristics of colistin, the results of the studies carried out to date, and the future challenges associated with this treatment.
Collapse
Affiliation(s)
| | - Guillermo Suárez-Cuartín
- Respiratory Department, Hospital de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Rafael Golpe
- Respiratory Department, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Luis Máiz Carro
- Respiratory Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Miguel Angel Martinez-Garcia
- CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
- Respiratory Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
15
|
Dissolution and Absorption of Inhaled Drug Particles in the Lungs. Pharmaceutics 2022; 14:pharmaceutics14122667. [PMID: 36559160 PMCID: PMC9781681 DOI: 10.3390/pharmaceutics14122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dry powder inhalation therapy has been effective in treating localized lung diseases such asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and lung infections. In vitro characterization of dry powder formulations includes the determination of physicochemical nature and aerosol performance of powder particles. The relationship between particle properties (size, shape, surface morphology, porosity, solid state nature, and surface hydrophobicity) and aerosol performance of an inhalable dry powder formulation has been well established. However, unlike oral formulations, there is no standard dissolution method for evaluating the dissolution behavior of the inhalable dry powder particles in the lungs. This review focuses on various dissolution systems and absorption models, which have been developed to evaluate dry powder formulations. It covers a summary of airway epithelium, hurdles to developing an in vitro dissolution method for the inhaled dry powder particles, fine particle dose collection methods, various in vitro dissolution testing methods developed for dry powder particles, and models commonly used to study absorption of inhaled drug.
Collapse
|
16
|
Kyriakoudi A, Pontikis K, Valsami G, Avgeropoulou S, Neroutsos E, Christodoulou E, Moraitou E, Markantonis SL, Dokoumetzidis A, Rello J, Koutsoukou A. Pharmacokinetic Characteristics of Nebulized Colistimethate Sodium Using Two Different Types of Nebulizers in Critically Ill Patients with Ventilator-Associated Respiratory Infections. Antibiotics (Basel) 2022; 11:1528. [PMID: 36358184 PMCID: PMC9686516 DOI: 10.3390/antibiotics11111528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 05/25/2024] Open
Abstract
Background: Rising antimicrobial resistance has led to a revived interest in inhaled colistin treatment in the critically ill patient with ventilator-associated respiratory infection (VARI). Nebulization via vibrating mesh nebulizers (VMNs) is considered the current standard-of-care, yet the use of generic jet nebulizers (JNs) is more widespread. Few data exist on the intrapulmonary pharmacokinetics of colistin when administered through VMNs, while there is a complete paucity regarding the use of JNs. Methods: In this study, 18 VARI patients who received 2 million international units of inhaled colistimethate sodium (CMS) through a VMN were pharmacokinetically compared with six VARI patients who received the same drug dose through a JN, in the absence of systemic CMS administration. Results: Surprisingly, VMN and JN led to comparable formed colistin exposures in the epithelial lining fluid (ELF) (median (IQR) AUC0-24: 86.2 (46.0-185.9) mg/L∙h with VMN and 91.5 (78.1-110.3) mg/L∙h with JN). The maximum ELF concentration was 10.4 (4.7-22.6) mg/L and 7.4 (6.2-10.3) mg/L, respectively. Conclusions: Based on our results, JN might be considered a viable alternative to the theoretically superior VMN. Therapeutic drug monitoring in the ELF can be advised due to the observed low exposure, high variability, and appreciable systemic absorption.
Collapse
Affiliation(s)
- Anna Kyriakoudi
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Stavrina Avgeropoulou
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Efthymios Neroutsos
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eirini Christodoulou
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eleni Moraitou
- Microbiology Department, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| | - Sophia L. Markantonis
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Aristides Dokoumetzidis
- Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece
| | - Jordi Rello
- Clinical Research in Pneumonia (CRIPS), Vall d’Hebron Institute of Research, 08035 Barcelona, Spain
- Clinical Research, CHU Nîmes, 30900 Nîmes, France
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonology, Medical School, National & Kapodistrian University of Athens, General Hospital for the Diseases of the Chest “I Sotiria”, 11527 Athens, Greece
| |
Collapse
|
17
|
Alginate oligosaccharides enhance diffusion and activity of colistin in a mucin-rich environment. Sci Rep 2022; 12:4986. [PMID: 35322119 PMCID: PMC8943044 DOI: 10.1038/s41598-022-08927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
In a number of chronic respiratory diseases e.g. cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), the production of viscous mucin reduces pulmonary function and represents an effective barrier to diffusion of inhaled therapies e.g. antibiotics. Here, a 2-compartment Transwell model was developed to study impaired diffusion of the antibiotic colistin across an artificial sputum (AS) matrix/medium and to quantify its antimicrobial activity against Pseudomonas aeruginosa NH57388A biofilms (alone and in combination with mucolytic therapy). High-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) revealed that the presence of AS medium significantly reduced the rate of colistin diffusion (> 85% at 48 h; p < 0.05). Addition of alginate oligosaccharide (OligoG CF-5/20) significantly improved colistin diffusion by 3.7 times through mucin-rich AS medium (at 48 h; p < 0.05). Increased diffusion of colistin with OligoG CF-5/20 was shown (using confocal laser scanning microscopy and COMSTAT image analysis) to be associated with significantly increased bacterial killing (p < 0.05). These data support the use of this model to study drug and small molecule delivery across clinically-relevant diffusion barriers. The findings indicate the significant loss of colistin and reduced effectiveness that occurs with mucin binding, and support the use of mucolytics to improve antimicrobial efficacy and lower antibiotic exposure.
Collapse
|
18
|
Ekkelenkamp MB, Díez-Aguilar M, Tunney MM, Elborn JS, Fluit AC, Cantón R. Establishing antimicrobial susceptibility testing methods and clinical breakpoints for inhaled antibiotic therapy. Open Forum Infect Dis 2022; 9:ofac082. [PMID: 35265731 PMCID: PMC8900927 DOI: 10.1093/ofid/ofac082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/05/2022] Open
Abstract
Inhaled antibiotics are a common and valuable therapy for patients suffering from chronic lung infection, with this particularly well demonstrated for patients with cystic fibrosis. However, in vitro tests to predict patient response to inhaled antibiotic therapy are currently lacking. There are indications that antimicrobial susceptibility testing (AST) may have a role in guidance of therapy, but which tests would correlate best still needs to be researched in clinical studies or animal models. Applying the principles of European Committee on Antimicrobial Susceptibility Testing methodology, the analysis of relevant and reliable data correlating different AST tests to patients’ outcomes may yield clinical breakpoints for susceptibility, but these data are currently unavailable. At present, we believe that it is unlikely that standard determination of minimum inhibitory concentration will prove the best predictor.
Collapse
Affiliation(s)
- Miquel B Ekkelenkamp
- University Medical Center Utrecht, Department of Medical Microbiology, Utrecht, The Netherlands
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Servicio de Microbiología y Parasitología, Hospital Universitario La Princesa, Madrid, Spain
| | - Michael M Tunney
- Queen’s University Belfast, Department of Pulmonology, Belfast, United Kingdom
| | - J Stuart Elborn
- Queen’s University Belfast, Department of Pulmonology, Belfast, United Kingdom
| | - Ad C Fluit
- University Medical Center Utrecht, Department of Medical Microbiology, Utrecht, The Netherlands
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
19
|
Yuan H, Yu S, Chai G, Liu J, Zhou Q(T. An LC-MS/MS method for simultaneous analysis of the cystic fibrosis therapeutic drugs colistin, ivacaftor and ciprofloxacin. J Pharm Anal 2021; 11:732-738. [PMID: 35028178 PMCID: PMC8740159 DOI: 10.1016/j.jpha.2021.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
Inhaled antibiotics such as colistin and ciprofloxacin are increasingly used to treat bacterial lung infections in cystic fibrosis patients. In this study, we established and validated a new HPLC-MS/MS method that could simultaneously detect drug concentrations of ciprofloxacin, colistin and ivacaftor in rat plasma, human epithelial cell lysate, cell culture medium, and drug transport media. An aliquot of 200 μL drug-containing rat plasma or cell culture medium was treated with 600 μL of extraction solution (acetonitrile containing 0.1% formic acid and 0.2% trifluoroacetic acid (TFA)). The addition of 0.2% TFA helped to break the drug-protein bonds. Moreover, the addition of 0.1% formic acid to the transport medium and cell lysate samples could significantly improve the response and reproducibility. After vortexing and centrifuging, the sample components were analyzed by HPLC-MS/MS. The multiple reaction monitoring mode was used to detect the following transitions: 585.5-101.1 (colistin A), 578.5-101.1 (colistin B), 393.2-337.2 (ivacaftor), 332.2-314.2 (ciprofloxacin), 602.3-101.1 (polymyxin B1 as internal standard (IS)) and 595.4-101.1 (polymyxin B2 as IS). The running time of a single sample was only 6 min, making this a time-efficient method. Linear correlations were found for colistin A at 0.029-5.82 μg/mL, colistin B at 0.016-3.14 μg/mL, ivacaftor at 0.05-10.0 μg/mL, and ciprofloxacin at 0.043-8.58 μg/mL. Accuracy, precision, and stability of the method were within the acceptable range. This method would be highly useful for research on cytotoxicity, animal pharmacokinetics, and in vitro drug delivery.
Collapse
Affiliation(s)
- Huiya Yuan
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Shihui Yu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Guihong Chai
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Junting Liu
- School of Forensic Medicine, China Medical University, Shenyang, 110122, China
- Corresponding author.
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Corresponding author.;
| |
Collapse
|
20
|
Van den Bossche S, De Broe E, Coenye T, Van Braeckel E, Crabbé A. The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 2021; 30:30/161/210055. [PMID: 34526313 DOI: 10.1183/16000617.0055-2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic airway colonisation by Pseudomonas aeruginosa, a hallmark of cystic fibrosis (CF) lung disease, is associated with increased morbidity and mortality and despite aggressive antibiotic treatment, P. aeruginosa is able to persist in CF airways. In vitro antibiotic susceptibility assays are poor predictors of antibiotic efficacy to treat respiratory tract infections in the CF patient population and the selection of the antibiotic(s) is often made on an empirical base. In the current review, we discuss the factors that are responsible for the discrepancies between antibiotic activity in vitro and clinical efficacy in vivo We describe how the CF lung microenvironment, shaped by host factors (such as iron, mucus, immune mediators and oxygen availability) and the microbiota, influences antibiotic activity and varies widely between patients. A better understanding of the CF microenvironment and population diversity may thus help improve in vitro antibiotic susceptibility testing and clinical decision making, in turn increasing the success rate of antibiotic treatment.
Collapse
Affiliation(s)
| | - Emma De Broe
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Dept of Respiratory Medicine, Cystic Fibrosis Reference Centre, Ghent University Hospital, Ghent, Belgium.,Dept of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Polymyxin-Induced Metabolic Perturbations in Human Lung Epithelial Cells. Antimicrob Agents Chemother 2021; 65:e0083521. [PMID: 34228550 DOI: 10.1128/aac.00835-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhaled polymyxins are associated with toxicity in human lung epithelial cells that involves multiple apoptotic pathways. However, the mechanism of polymyxin-induced pulmonary toxicity remains unclear. This study aims to investigate polymyxin-induced metabolomic perturbations in human lung epithelial A549 cells. A549 cells were treated with 0.5 or 1.0 mM polymyxin B or colistin for 1, 4, and 24 h. Cellular metabolites were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and significantly perturbed metabolites (log2 fold change [log2FC] ≥ 1; false-discovery rate [FDR] ≤ 0.2) and key pathways were identified relative to untreated control samples. At 1 and 4 h, very few significant changes in metabolites were observed relative to the untreated control cells. At 24 h, taurine (log2FC = -1.34 ± 0.64) and hypotaurine (log2FC = -1.20 ± 0.27) were significantly decreased by 1.0 mM polymyxin B. The reduced form of glutathione (GSH) was significantly depleted by 1.0 mM polymyxin B at 24 h (log2FC = -1.80 ± 0.42). Conversely, oxidized glutathione (GSSG) was significantly increased by 1.0 mM both polymyxin B (log2FC = 1.38 ± 0.13 at 4 h and 2.09 ± 0.20 at 24 h) and colistin (log2FC = 1.33 ± 0.24 at 24 h). l-Carnitine was significantly decreased by 1.0 mM of both polymyxins at 24 h, as were several key metabolites involved in biosynthesis and degradation of choline and ethanolamine (log2FC ≤ -1); several phosphatidylserines were also increased (log2FC ≥ 1). Polymyxins perturbed key metabolic pathways that maintain cellular redox balance, mitochondrial β-oxidation, and membrane lipid biogenesis. These mechanistic findings may assist in developing new pharmacokinetic/pharmacodynamic strategies to attenuate the pulmonary toxicities of inhaled polymyxins and in the discovery of new-generation polymyxins.
Collapse
|
22
|
Aerosolized plus intravenous colistin vs intravenous colistin alone for the treatment of nosocomial pneumonia due to multidrug-resistant Gram-negative bacteria: A retrospective cohort study. Int J Infect Dis 2021; 108:406-412. [PMID: 34111542 DOI: 10.1016/j.ijid.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To compare the effectiveness and safety of aerosolized (AER) plus intravenous (IV) colistin with IV colistin alone in patients with nosocomial pneumonia (NP) due to multidrug-resistant (MDR) Gram-negative bacteria. METHODS This was a retrospective cohort study of adults with NP who received IV colistin alone or in combination with AER colistin. The primary endpoint was clinical cure at end of therapy. Secondary endpoints included microbiological eradication, in-hospital mortality and nephrotoxicity. RESULTS In total, 135 patients were included in this study: 65 patients received AER plus IV colistin and 70 patients received IV colistin alone. Baseline characteristics were similar between the two groups. Clinical cure was achieved in 42 (65%) patients who received AER plus IV colistin and 26 (37%) patients who received IV colistin alone (P = 0.01). Among a total of 88 patients who were microbiologically evaluable, 27 (42%) patients who received AER plus IV colistin and 12 (17%) patients who received IV colistin alone attained favourable microbiological outcomes (P = 0.022). In-hospital mortality (43% vs 59%, P = 0.072) was higher in patients who received IV colistin alone, but the difference was not significant. Renal injury occurred in 31% of patients who received AER plus IV colistin and in 41% of patients who received IV colistin alone (P = 0.198). CONCLUSION AER colistin can be considered as salvage therapy as an adjunct to IV administration for the treatment of patients with NP due to MDR Gram-negative pathogens.
Collapse
|
23
|
Pharmacokinetic and Pharmacodynamic Optimization of Antibiotic Therapy in Cystic Fibrosis Patients: Current Evidences, Gaps in Knowledge and Future Directions. Clin Pharmacokinet 2021; 60:409-445. [PMID: 33486720 DOI: 10.1007/s40262-020-00981-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Antibiotic therapy is one of the main treatments for cystic fibrosis (CF). It aims to eradicate bacteria during early infection, calms down the inflammatory process, and leads to symptom resolution of pulmonary exacerbations. CF can modify both the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of antibiotics, therefore specific PK/PD endpoints should be determined in the context of CF. Currently available data suggest that optimal PK/PD targets cannot be attained in sputum with intravenous aminoglycosides. Continuous infusion appears preferable for β-lactam antibiotics, but optimal concentrations in sputum are unlikely to be reached, with some possible exceptions such as meropenem and ceftolozane. Usual doses are likely suboptimal for fluoroquinolones and linezolid, whereas daily doses of 45-60 mg/kg and 200 mg could be convenient for vancomycin and doxycycline, respectively. Weekly azithromycin doses of 22-30 mg/kg could also be appropriate for its anti-inflammatory effect. The difficulty with achieving optimal concentrations supports the use of combined treatments and the inhaled administration route, as very high local concentrations, concomitantly with low systemic exposure, can be obtained with the inhaled route for aminoglycosides, colistin, and fluoroquinolones, thus minimizing the risk of toxicity.
Collapse
|
24
|
Liquid Chromatography Mass Spectrometry Detection of Antibiotic Agents in Sputum from Persons with Cystic Fibrosis. Antimicrob Agents Chemother 2021; 65:AAC.00927-20. [PMID: 33139284 DOI: 10.1128/aac.00927-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/12/2020] [Indexed: 11/20/2022] Open
Abstract
Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.
Collapse
|
25
|
Díez-Aguilar M, Hernández-García M, Morosini MI, Fluit A, Tunney MM, Huertas N, del Campo R, Obrecht D, Bernardini F, Ekkelenkamp M, Cantón R. Murepavadin antimicrobial activity against and resistance development in cystic fibrosis Pseudomonas aeruginosa isolates. J Antimicrob Chemother 2020; 76:984-992. [DOI: 10.1093/jac/dkaa529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Murepavadin, a novel peptidomimetic antibiotic, is being developed as an inhalation therapy for treatment of Pseudomonas aeruginosa respiratory infection in people with cystic fibrosis (CF). It blocks the activity of the LptD protein in P. aeruginosa causing outer membrane alterations.
Objectives
To determine the in vitro activity of murepavadin against CF P. aeruginosa isolates and to investigate potential mechanisms of resistance.
Methods
MIC values were determined by both broth microdilution and agar dilution and results compared. The effect of artificial sputum and lung surfactant on in vitro activity was also measured. Spontaneous mutation frequency was estimated. Bactericidal activity was investigated using time–kill assays. Resistant mutants were studied by WGS.
Results
The murepavadin MIC50 was 0.125 versus 4 mg/L and the MIC90 was 2 versus 32 mg/L by broth microdilution and agar dilution, respectively. Essential agreement was >90% when determining in vitro activity with artificial sputum or lung surfactant. It was bactericidal at a concentration of 32 mg/L against 95.4% of the strains within 1–5 h. Murepavadin MICs were 2–9 two-fold dilutions higher for the mutant derivatives (0.5 to >16 mg/L) than for the parental strains. Second-step mutants were obtained for the PAO mutS reference strain with an 8×MIC increase. WGS showed mutations in genes involved in LPS biosynthesis (lpxL1, lpxL2, bamA2, lptD, lpxT and msbA).
Conclusions
Murepavadin characteristics, such as its specific activity against P. aeruginosa, its unique mechanism of action and its strong antimicrobial activity, encourage the further clinical evaluation of this drug.
Collapse
Affiliation(s)
- María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - María-Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Ad Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Natalia Huertas
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | | | | | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| |
Collapse
|
26
|
Lin YW, Aye SM, Rao G, Zhou QT, Chan HK, Li J. Treatment of infections caused by Gram-negative pathogens: current status on the pharmacokinetics/pharmacodynamics of parenteral and inhaled polymyxins in patients. Int J Antimicrob Agents 2020; 56:106199. [PMID: 33075510 PMCID: PMC7723449 DOI: 10.1016/j.ijantimicag.2020.106199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/05/2020] [Accepted: 10/11/2020] [Indexed: 01/12/2023]
Abstract
Polymyxins are increasingly used as a last resort for the treatment of infections caused by multidrug-resistant Gram-negative bacteria in patients. Over the last decade, significant progress has been made in understanding the pharmacokinetics/pharmacodynamics/toxicodynamics (PK/PD/TD) of parenteral and inhaled polymyxins. This mini-review provides an overview of polymyxin chemistry, different dose definitions, and the latest research on their clinical use, toxicities, and PK/PD after intravenous and inhalation administration. Optimising the PK/PD/TD of polymyxins in patients is critical to maximise their efficacy while minimising toxicities and the emergence of resistance.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Su Mon Aye
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Gauri Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 1047907, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Faculty of Medicine and Health, Sydney, NSW 2006, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
27
|
Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:1171-1180. [PMID: 33253080 PMCID: PMC7819359 DOI: 10.1099/mic.0.000995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vivo biofilms cause recalcitrant infections with extensive and unpredictable antibiotic tolerance. Here, we demonstrate increased tolerance of colistin by Pseudomonas aeruginosa when grown in medium that mimics cystic fibrosis (CF) sputum versus standard medium in in vitro biofilm assays, and drastically increased tolerance when grown in an ex vivo CF model versus the in vitro assay. We used colistin conjugated to the fluorescent dye BODIPY to assess the penetration of the antibiotic into ex vivo biofilms and showed that poor penetration partly explains the high doses of drug necessary to kill bacteria in these biofilms. The ability of antibiotics to penetrate the biofilm matrix is key to their clinical success, but hard to measure. Our results demonstrate both the importance of reduced entry into the matrix in in vivo-like biofilm, and the tractability of using a fluorescent tag and benchtop fluorimeter to assess antibiotic entry into biofilms. This method could be a relatively quick, cheap and useful addition to diagnostic and drug development pipelines, allowing the assessment of drug entry into biofilms, in in vivo-like conditions, prior to more detailed tests of biofilm killing.
Collapse
Affiliation(s)
- Esther Sweeney
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
28
|
Hussain K, Salat MS, Ambreen G, Mughal A, Idrees S, Sohail M, Iqbal J. Intravenous vs intravenous plus aerosolized colistin for treatment of ventilator-associated pneumonia - a matched case-control study in neonates. Expert Opin Drug Saf 2020; 19:1641-1649. [PMID: 32892635 DOI: 10.1080/14740338.2020.1819980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recently intravenous (IV) and aerosolized (ASZ) colistin have been used for treating ventilator-associated pneumonia (VAP) due to colistin susceptible multidrug-resistant Gram-negative bacteria (MDR-GNB). Colistin has limited lung penetration. We compared the efficacy and safety of IV-alone versus IV+ASZ-colistin for treating VAP in neonates. METHODS This retrospective matched case-control study was performed at NICU of the Aga Khan University Hospital, Pakistan between January 2015 and December 2018. Sixteen neonates with MDR-GNB associated VAP received IV-ASZ-colistin and were matched for date of birth, gestational age, birth weight, Apgar score, antenatal steroid history, disease severity, and duration of mechanical ventilation with 16 control neonates who received IV-colistin alone. RESULTS Both groups had similar MDR-GNB isolates and Acinetobacter baumannii (78%) was the most common pathogen. No colistin-resistant strain was isolated. Duration of IV-colistin and concomitant antibiotics use was significantly (p < 0.05) shorter in the IV-ASZ-colistin group. Significantly (p < 0.05) higher clinical cure and microbial eradication, along with lower ventilatory requirements, mortality rate, and colistin induced nephrotoxicity and electrolyte imbalance was observed in the IV-ASZ-colistin group. CONCLUSIONS With better lung penetration, ASZ-colistin offers effective and safe microbiological and clinical benefits as adjunctive or alternate treatment of VAP due to colistin susceptible MDR-GNB in neonates.
Collapse
Affiliation(s)
- Kashif Hussain
- Department of Pharmacy, Aga Khan University Hospital , Karachi, Pakistan
| | | | - Gul Ambreen
- Department of Pharmacy, Aga Khan University Hospital , Karachi, Pakistan
| | - Ambreen Mughal
- Department of Pharmacy, Aga Khan University Hospital , Karachi, Pakistan
| | - Sidra Idrees
- Department of Paediatrics & Child Health, Aga Khan University , Karachi, Pakistan
| | - Mehreen Sohail
- Department of Pharmacy, Aga Khan University Hospital , Karachi, Pakistan
| | - Javaid Iqbal
- Department of Paediatrics & Child Health, Aga Khan University , Karachi, Pakistan
| |
Collapse
|
29
|
Zabidi MS, Abu Bakar R, Musa N, Wan Yusuf WN. Analytical methodologies for measuring colistin levels in pharmacokinetic studies. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1783291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mohd Shafie Zabidi
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ruzilawati Abu Bakar
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurfadhlina Musa
- Human Genome Centre, School of Medical Sciences, Health Campus Universiti Sains Malaysia, Kelantan, Malaysia
| | - Wan Nazirah Wan Yusuf
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
30
|
Matar KM, Al-Refai B. Quantification of Colistin in Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Application to a Pharmacokinetic Study. Sci Rep 2020; 10:8198. [PMID: 32424292 PMCID: PMC7234998 DOI: 10.1038/s41598-020-65041-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Colistin is a polymixin antibiotic (polymixin E) that is produced by Bacillus colistinus bacteria. The aim of the present study was to develop and validate a method to quantify colistin levels in plasma using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique and then apply it in experimental animals (rats) to investigate the pharmacokinetic profile of colistin in this species. Polymyxin B was used as an internal standard (IS) and the quantitation was carried out using ESI + interface and employing multiple reaction monitoring (MRM) mode. A mobile phase consisting of acetonitrile:water:formic acid (30:70:0.1%; v/v/v) was employed and Zorbax eclipse plus C18 (1.8 µm, 2.1 mm i.d. x 50 mm) was the optimal column for this method and utilized at a flow rate of 0.2 mL/min. The full scan mass spectra of precursor/product ions of colistin A were at m/z 585.5 > 100.8, for colistin B at m/z 578.8 > 101 and for the IS at m/z 602.8 > 101. The lower limit of quantification (LLOQ) was 0.5 µg/mL. The method demonstrated acceptable intra-run and inter-run precision and accuracy for both colistin A and colistin B. Colistin was stable when assessed for long-term stability, freeze-thaw stability and autosampler stability. However, it was not stable when stored at room temperature. The matrix effect evaluation showed minimal or no effect. Incurred sample reanalysis findings were within acceptable ranges (<20% of the nominal concentration). The pharmacokinetic parameters of colistin were investigated in rats using the present method. The developed method for colistin demonstrates that it is rapid, sensitive, specific, accurate, precise, and reliable.
Collapse
Affiliation(s)
- Kamal M Matar
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait, Kuwait.
| | - Batool Al-Refai
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
31
|
Magréault S, Mankikian J, Marchand S, Diot P, Couet W, Flament T, Grégoire N. Pharmacokinetics of colistin after nebulization or intravenous administration of colistin methanesulphonate (Colimycin®) to cystic fibrosis patients. J Cyst Fibros 2020; 19:421-426. [DOI: 10.1016/j.jcf.2019.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 07/12/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
|
32
|
Wu DW, Wang SW, Chang YF, Tsai JH. Effective pharmacotherapy for lung abscess in a patient with alcoholism. Respir Med Case Rep 2020; 30:101061. [PMID: 32373455 PMCID: PMC7193124 DOI: 10.1016/j.rmcr.2020.101061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, 807, Kaohsiung, Taiwan
| | - Song-Wei Wang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Fan Chang
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Hsiu Tsai
- Department of Psychiatry, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan.,Environmental and Occupation Medicine, (Taiwan) National Health Research Institute and Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
33
|
The Iron-chelator, N,N'-bis (2-hydroxybenzyl) Ethylenediamine-N,N'-Diacetic acid is an Effective Colistin Adjunct against Clinical Strains of Biofilm-Dwelling Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9040144. [PMID: 32230813 PMCID: PMC7235823 DOI: 10.3390/antibiotics9040144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Targeting the iron requirement of Pseudomonas aeruginosa may be an effective adjunctive for conventional antibiotic treatment against biofilm-dwelling P. aeruginosa. We, therefore, assessed the anti-biofilm activity of N,N’-bis (2-hydroxybenzyl) ethylenediamine-N,N’-diacetic acid (HBED), which is a synthetic hexadentate iron chelator. The effect of HBED was studied using short-term (microtitre plate) and longer-term (flow-cell) biofilm models, under aerobic, anaerobic, and microaerobic (flow-cell) conditions and in combination with the polymyxin antibiotic colistimethate sodium (colistin). HBED was assessed against strains of P. aeruginosa from patients with cystic fibrosis and the reference strain PAO1. HBED inhibited growth and biofilm formation of all clinical strains under aerobic and anaerobic conditions, but inhibitory effects against PAO1 were predominantly exerted under anaerobic conditions. PA605, which is a clinical strain with a robust biofilm-forming phenotype, was selected for flow-cell studies. HBED significantly reduced biomass and surface coverage of PA605, and, combined with colistin, HBED significantly enhanced the microcolony killing effects of colistin to result in almost complete removal of the biofilm. HBED combined with colistin is highly effective in vitro against biofilms formed by clinical strains of P. aeruginosa.
Collapse
|
34
|
McKinzie CJ, Chen L, Ehlert K, Grisso AG, Linafelter A, Lubsch L, O'Brien CE, Pan AC, Wright BA, Elson EC. Off-label use of intravenous antimicrobials for inhalation in patients with cystic fibrosis. Pediatr Pulmonol 2019; 54 Suppl 3:S27-S45. [PMID: 31715085 DOI: 10.1002/ppul.24511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/19/2019] [Indexed: 11/12/2022]
Abstract
Management of infections in patients with cystic fibrosis (CF) presents challenges for healthcare providers, including the eradication of initial acquisition, treatment of acute exacerbations, and chronic infection with suppressive therapy. Inhaled antimicrobial therapy for infections in patients with CF has been used in these capacities, often in an effort to achieve optimal concentrations in sputum for antimicrobial efficacy while mitigating potential toxicities associated with systemic therapy. Unfortunately, there are few commercially available products formulated for inhalation, resulting in the off-label use of other formulations, such as intravenous products, administered via nebulization. This review aims to examine the evidence supporting the efficacy of these off-label formulations for management of acute and chronic infections associated with CF, as well as adverse effects associated with their use.
Collapse
Affiliation(s)
- Cameron J McKinzie
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina
| | - Lori Chen
- Department of Pharmacy, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kim Ehlert
- Department of Pharmacy, Fairview Health Services, Minneapolis, Minnesota
| | - Alison G Grisso
- Department of Pharmacy, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Alaina Linafelter
- Department of Pharmacy, Children's Mercy Kansas City, Kansas City, Missouri
| | - Lisa Lubsch
- Department of Pharmacy, Practice, Southern Illinois University Edwardsville School of Pharmacy, Edwardsville, Missouri.,Department of Pharmacy, Cardinal Glennon Children's Hospital, St Louis, Missouri
| | - Catherine E O'Brien
- Department of Pharmacy Practice, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, Arkansas
| | - Alice C Pan
- Department of Pharmacy, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Brittany A Wright
- Department of Pharmaceutical Care, University of Iowa Health Care, Iowa City, Iowa
| | - E Claire Elson
- Department of Pharmacy, Children's Mercy Kansas City, Kansas City, Missouri
| |
Collapse
|
35
|
Liu CY, Ko HK, Fink JB, Wan GH, Huang CC, Chen YC, Lin HL. Size Distribution of Colistin Delivery by Different Type Nebulizers and Concentrations During Mechanical Ventilation. Pharmaceutics 2019; 11:pharmaceutics11090459. [PMID: 31491870 PMCID: PMC6781281 DOI: 10.3390/pharmaceutics11090459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 02/02/2023] Open
Abstract
Although aerosol delivery through mechanical ventilators has been used to administer various medications, little is known of administration with colistin. This in vitro evaluation aimed to evaluate size distribution of colistin delivery by different types of nebulizers and concentrations during mechanical ventilation. Colistin methanesulfonate (colistin) for injection was dissolved in 6 mL of distilled water to produce a low concentration (L; 156 mg) and a high concentration (H; 312 mg). A dose volume of 6 mL was placed in a vibrating mesh nebulizer (VMN) and a jet nebulizer (JN). The inhaled mass (mean ± SD) of the VMN-L (53.80 ± 14.79 mg) was greater than both the JN-L (19.82 ± 3.34 mg, P = 0.001) and JN-H (31.72 ± 4.48 mg, P = 0.017). The nebulization time of the VMN-L (42.35 ± 2.30 min) was two times longer than the JN-L (21.12 ± 0.8 min) or JN-H (21.65 ± 0.42 min; P < 0.001). The mass median aerodynamic distal to the endotracheal tube was within a similar range at 2.03 to 2.26 μm (P = 0.434), independent of neb or formulation concentration. In conclusion, the VMN-L yields greater inhaled mass than the JN with either concentration. Therefore, a standard nominal dose of colistin results in a higher delivered dose during mechanical ventilation with a VMN compared with a JN and may be considered the preferred device. If JN must be used, multiple doses of low concentration colistin may compensate for poor delivery performance.
Collapse
Affiliation(s)
- Ching-Yi Liu
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Respiratory therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Hsin-Kuo Ko
- Division of Respiratory therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| | | | - Gwo-Hwa Wan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61301, Taiwan.
- Department of Obstetrics and Gynaecology, Chang Gung Memorial Hospital-Linko, Taoyuan 33301, Taiwan.
| | - Chung-Chi Huang
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Thoracic Medicine, Chang Gung Memorial Hospital-Linko, Taoyuan 33301, Taiwan.
| | - Yu-Chun Chen
- Division of Respiratory therapy, Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Hui-Ling Lin
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Respiratory Therapy, Chang Gung University of Science and Technology, Chiayi 61301, Taiwan.
- Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi 61301, Taiwan.
| |
Collapse
|
36
|
|
37
|
Can Nebulised Colistin Therapy Improve Outcomes in Critically Ill Children with Multi-Drug Resistant Gram-Negative Bacterial Pneumonia? Antibiotics (Basel) 2019; 8:antibiotics8020040. [PMID: 30979085 PMCID: PMC6627821 DOI: 10.3390/antibiotics8020040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
In the past decade, multidrug-resistant (MDR) gram-negative bacteria have become a major problem, especially for patients in intensive care units. Recently, colistin became the last resort therapy for MDR gram-negative bacteria infections. However, nebulised colistin use was limited to adult patients. Thus, we investigated the efficacy and safety of nebulised colistin treatment against MDR microorganisms in the paediatric intensive care unit (PICU). Data of all patients admitted for various critical illnesses (January 2016 to January 2019) were reviewed. Differences between groups (with and without a history of nebulised colistin) were compared. Of 330 patients, 23 (6.97%) used nebulised colistin. Significant relationships were found between nebulised colistin usage and several prognostic factors (inotropic drug use (p = 0.009), non-invasive mechanical ventilation (p ≤ 0.001), duration in PICU (p ≤ 0.001), and C-reactive protein level (p = 0.003)). The most common microorganism in tracheal aspirate and sputum cultures was Pseudomonas aeruginosa (13 patients). The most common underlying diagnosis was cystic fibrosis, noted in 6 patients. No serious nephrotoxicity and neurotoxicity occurred. This study showed that colistin can be safely used directly in the airway of critically ill children. However, nebulised colistin use did not have a positive effect on mortality and prognosis.
Collapse
|
38
|
Sorli L, Luque S, Li J, Rodríguez E, Campillo N, Fernandez X, Soldado J, Domingo I, Montero M, Grau S, Horcajada JP. Colistin Use in Patients with Chronic Kidney Disease: Are We Underdosing Patients? Molecules 2019; 24:molecules24030530. [PMID: 30717123 PMCID: PMC6384574 DOI: 10.3390/molecules24030530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 01/08/2023] Open
Abstract
Colistin is administered as its inactive prodrug colistimethate (CMS). Selection of an individualized CMS dose for each patient is difficult due to its narrow therapeutic window, especially in patients with chronic kidney disease (CKD). Our aim was to analyze CMS use in patients with CKD. Secondary objectives were to assess the safety and efficacy of CMS in this special population. In this prospective observational cohort study of CMS-treated CKD patients, CKD was defined as the presence of a glomerular filtration rate (GFR) < 60 mL/min/m2 for more than 3 months. The administered doses of CMS were compared with those recently published in the literature. Worsened CKD at the end of treatment (EOT) was evaluated with the RIFLE (Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease) criteria. Colistin plasma concentrations (Css) were measured using high-performance liquid chromatography. Fifty-nine patients were included. Thirty-six (61.2%) were male. The median age was 76 (45–95) years and baseline GFR was 36.6 ± 13.6. The daily mean CMS dosage used was compared with recently recommended doses (3.36 vs. 6.07; p < 0.001). Mean Css was 0.9 (0.2–2.9) mg/L, and Css was <2 mg/L in 50 patients (83.3%). Clinical cure was achieved in 43 (72.9%) patients. Worsened renal function at EOT was present in 20 (33.9%) patients and was reversible in 10 (52.6%). The CMS dosages used in this cohort were almost half those currently recommended. The mean achieved Css were under the recommended target of 2 mg/dL. Despite this, clinical cure rate was high. In this patient cohort, the incidence of nephrotoxicity was similar to those found in other recent studies performed in the general population and was reversible in 52.6%. These results suggest that CMS is safe and effective in patients with CKD and may encourage physicians to adjust dosage regimens to recent recommendations in order to optimize CMS treatments.
Collapse
Affiliation(s)
- Luisa Sorli
- Infectious Diseases Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
| | - Sonia Luque
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, 3800 Victoria, Australia.
| | - Eva Rodríguez
- Nephrology Department, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB). CEXS-Universitat Pompeu Fabra, 08003, 08003 Barcelona, Spain.
| | - Nuria Campillo
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Xenia Fernandez
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Jade Soldado
- Infectious Diseases Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
| | - Ignacio Domingo
- Infectious Diseases Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
| | - Milagro Montero
- Infectious Diseases Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
| | - Santiago Grau
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
- Pharmacy Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Juan P Horcajada
- Infectious Diseases Department, Hospital del Mar, Infectious Pathology and Antimicrobial Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, 08003 Barcelona, Spain.
- Spanish Network for Research in Infectious Diseases (REIPI RD 16/0016/0015), Instituto de Salud Carlos III, 28001 Madrid, Spain.
| |
Collapse
|
39
|
Lora-Tamayo J, Murillo O, Ariza J. Clinical Use of Colistin in Biofilm-Associated Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:181-195. [PMID: 31364079 DOI: 10.1007/978-3-030-16373-0_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biofilm is an adaptive bacterial strategy whereby microorganisms become encased in a complex glycoproteic matrix. The low concentration of oxygen and nutrients in this environment leads to heterogeneous phenotypic changes in the bacteria, with antimicrobial tolerance being of paramount importance. As with other antibiotics, the activity of colistin is impaired by biofilm-embedded bacteria. Therefore, the recommendation for administering high doses in combination with a second drug, indicated for planktonic infections, remains valid in this setting. Notably, colistin has activity against metabolically inactive biofilm-embedded cells located in the inner layers of the biofilm structure. This is opposite and complementary to the activity of other antimicrobials that are able to kill metabolically active cells in the outer layers of the biofilm. Several experimental models have shown a higher activity of colistin when used in combination with other agents, and have reported that this can avoid the emergence of colistin-resistant subpopulations. Most experience of colistin in biofilm-associated infections comes from patients with cystic fibrosis, where the use of nebulized colistin allows high concentrations to reach the site of the infection. However, limited clinical experience is available in other scenarios, such as osteoarticular infections or device-related central nervous system infections caused by multi-drug resistant microorganisms. In the latter scenario, the use of intraventricular or intrathecal colistin also permits high local concentrations and good clinical results. Overall, the efficacy of intravenous colistin seems to be poor, but its association with a second antimicrobial significantly increases the response rate. Given its activity against inner bioflm-embedded cells, its possible role in combination with other antibiotics, beyond last-line therapy situations, should be further explored.
Collapse
Affiliation(s)
- Jaime Lora-Tamayo
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Oscar Murillo
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Javier Ariza
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| |
Collapse
|
40
|
Fenker DE, McDaniel CT, Panmanee W, Panos RJ, Sorscher EJ, Sabusap C, Clancy JP, Hassett DJ. A Comparison between Two Pathophysiologically Different yet Microbiologically Similar Lung Diseases: Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. INTERNATIONAL JOURNAL OF RESPIRATORY AND PULMONARY MEDICINE 2018; 5:098. [PMID: 30627668 PMCID: PMC6322854 DOI: 10.23937/2378-3516/1410098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are chronic pulmonary diseases that affect ~70,000 and 251 million individuals worldwide, respectively. Although these two diseases have distinctly different pathophysiologies, both cause chronic respiratory insufficiency that erodes quality of life and causes significant morbidity and eventually death. In both CF and COPD, the respiratory microbiome plays a major contributing role in disease progression and morbidity. Pulmonary pathogens can differ dramatically during various stages of each disease and frequently cause acute worsening of lung function due to disease exacerbation. Despite some similarities, outcome and timing/type of exacerbation can also be quite different between CF and COPD. Given these clinical distinctions, both patients and physicians should be aware of emerging therapeutic options currently being offered or in development for the treatment of lung infections in individuals with CF and COPD. Although interventions are available that prolong life and mitigate morbidity, neither disorder is curable. Both acute and chronic pulmonary infections contribute to an inexorable downward course and may trigger exacerbations, culminating in loss of lung function or respiratory failure. Knowledge of the pulmonary pathogens causing these infections, their clinical presentation, consequences, and management are, therefore, critical. In this review, we compare and contrast CF and COPD, including underlying causes, general outcomes, features of the lung microbiome, and potential treatment strategies.
Collapse
Affiliation(s)
- Daniel E Fenker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Cameron T McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ralph J Panos
- Department of Medicine, Cincinnati VA Medical Center, Cincinnati, USA
| | | | | | - John P Clancy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
41
|
Risk factors of colistin safety according to administration routes: Intravenous and aerosolized colistin. PLoS One 2018; 13:e0207588. [PMID: 30462703 PMCID: PMC6248982 DOI: 10.1371/journal.pone.0207588] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/03/2018] [Indexed: 11/19/2022] Open
Abstract
Background Nephrotoxicity of intravenous (IV) colistin has impeded its clinical use; aerosolized (AS) colistin may be an alternative, but safety data are lacking. Therefore, this study aimed to evaluate the incidence of acute kidney injury (AKI) and risk factors associated with IV and AS colistin administration. Methods A retrospective study was performed in a tertiary referral hospital. Data were collected before and after colistin administration between October 2012 and April 2016. Exclusion criteria were as follows: age less than 18 years, previous colistin administration, concurrent use of IV and AS colistin, dialysis before colistin use, and colistin use for less than 3 days. We compared AKI incidence following administration of IV versus AS colistin and analyzed risk factors for colistin-associated nephrotoxicity. Results A total of 464 patients were enrolled (n = 311, IV group; n = 153, AS group). Incidence of AKI was significantly higher in the IV group (IV vs AS, 20.26% vs 7.84%, p-value < 0.001). Duration of colistin use (OR 1.033, 95% CI 1.009–1.058, p-value 0.008) and presence of chronic kidney disease (OR 2.710, 95% CI 1.348–5.448, p-value 0.005) were associated with nephrotoxicity. There were no significant risk factors associated with AS colistin. Conclusions Although AS colistin was not associated with any significant risk factors for nephrotoxicity, duration of colistin use and baseline kidney function may affect AS colistin-associated nephrotoxicity.
Collapse
|
42
|
Kukut Hatipoglu M, Hickey AJ, Garcia-Contreras L. Pharmacokinetics and pharmacodynamics of high doses of inhaled dry powder drugs. Int J Pharm 2018; 549:306-316. [PMID: 30077761 DOI: 10.1016/j.ijpharm.2018.07.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/17/2018] [Accepted: 07/22/2018] [Indexed: 12/13/2022]
Abstract
For many years, administration of drugs by inhalation has been the mainstay treatment for obstructive respiratory disorders such as asthma and chronic obstructive pulmonary disease. Antibiotics and other drugs have been administered for decades as aerosols to treat other pulmonary disease in a clinical setting, but it was until the early 1980's that colistin was formally marketed as a solution for nebulization in Europe (Colomycin, Pharmax, Bexley). The solubility of other drugs and the size of the dose required to achieve therapeutic concentrations at the site of action, made treatment times long and difficult to be performed at home. High dose dry powder delivery is a potentially effective way to deliver low potency drugs such as antibiotics. There are three major barriers to achieving the desired pharmacodynamic effect with these compounds: aerosol delivery, lung deposition and clearance. The powder formulation and device technology influence aerosol generation and may influence the size of the dose that can be achieved by inhalation in one puff. The site of deposition in the lungs is dictated by mechanisms of deposition which are influenced by the aerosol properties, particularly aerodynamic particle size distribution and the anatomy and physiology of the lungs. Finally, mechanisms of clearance dictate the local and systemic disposition of the drug, which in turn affects its pharmacokinetics and ultimately the pharmacodynamic effect and efficacy of treatment. Each of these factors will be considered and the implications for antimicrobial agent delivery as a high dose delivery example will be given.
Collapse
Affiliation(s)
- Manolya Kukut Hatipoglu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
43
|
Regan KH, Hill AT. Risk of Development of Resistance in Patients with Non-Cystic Fibrosis Bronchiectasis Treated with Inhaled Antibiotics. CURRENT PULMONOLOGY REPORTS 2018; 7:63-71. [PMID: 30148049 PMCID: PMC6096916 DOI: 10.1007/s13665-018-0202-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of Review Bronchiectasis is a debilitating chronic lung disease characterised by recurrent bacterial infection and colonisation with significant associated morbidity and mortality. To date, there are few licenced treatments, and the mainstay of clinical management is prompt antibiotic therapy for exacerbations and regular airway clearance. Inhaled antibiotics are a potential long-term treatment for those with recurrent exacerbations, and represent an obvious advantage over other routes of administration as they achieve high concentrations at the site of infection whilst minimising systemic side effects. The main caveat to such treatment is the development of antimicrobial resistance due to altered selection pressures. Recent Findings Numerous studies of various inhaled antimicrobials have demonstrated favourable safety and efficacy profiles for bronchiectasis patients with chronic infection, which are supportive of their use in clinical practice. Summary There is no convincing evidence of treatment-emergent pathogens or pathogens developing resistance to the inhaled antibiotic therapy.
Collapse
Affiliation(s)
- Kate H. Regan
- The Queen’s Medical Research Institute, University of Edinburgh/MRC Centre for Inflammation Research, Edinburgh, UK
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Adam T. Hill
- The Queen’s Medical Research Institute, University of Edinburgh/MRC Centre for Inflammation Research, Edinburgh, UK
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Poulakou G, Matthaiou DK, Nicolau DP, Siakallis G, Dimopoulos G. Inhaled Antimicrobials for Ventilator-Associated Pneumonia: Practical Aspects. Drugs 2018; 77:1399-1412. [PMID: 28741229 DOI: 10.1007/s40265-017-0787-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Positive experience with inhaled antibiotics in pulmonary infections of patients with cystic fibrosis has paved the way for their utilization in mechanically ventilated, critically ill patients with lower respiratory tract infections. A successful antibiotic delivery depends upon the size of the generated particle and the elimination of drug impaction in the large airways and the ventilator circuit. Generated droplet size is mainly affected by the type of the nebulizer employed. Currently, jet, ultrasonic, and vibrating mesh nebulizers are marketed; the latter can deliver optimal antibiotic particle size. Promising novel drug-device combinations are able to release drug concentrations of 25- to 300-fold the minimum inhibitory concentration of the targeted pathogens into the pulmonary alveoli. The most important practical steps of nebulization include pre-assessment and preparation of the patient (suctioning, sedation, possible bronchodilation, adjustment of necessary ventilator settings); adherence to the procedure (drug preparation, avoidance of unnecessary tubing connections, interruption of heated humidification, removal of heat-moisture exchanger); inspection of the procedure (check for residual in drug chamber, change of expiratory filter, return sedation, and ventilator settings to previous status); and surveillance of the patient for adverse events (close monitoring of the patient and particularly of peak airway pressure and bronchoconstriction). Practical aspects of nebulization are very important to ensure optimal drug delivery and safe procedure for the patient. Therefore, the development of an operational checklist is a priority for every department adopting this modality.
Collapse
Affiliation(s)
- Garyphallia Poulakou
- Fourth Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, 1 Rimini St, 12462, Athens, Greece.
| | - Dimitrios K Matthaiou
- Department of Critical Care, University Hospital Attikon, Faculty of Medicine, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, 06102, USA
| | - Georgios Siakallis
- Fourth Department of Internal Medicine and Infectious Diseases Unit, Athens National and Kapodistrian University, Medical School, Attikon University General Hospital of Athens, 1 Rimini St, 12462, Athens, Greece
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, Faculty of Medicine, National and Kapodistrian University of Athens, 1 Rimini St, Haidari, 12462, Athens, Greece
| |
Collapse
|
45
|
Zinne N, Krueger M, Hoeltig D, Tuemmler B, Boyle EC, Biancosino C, Hoeffler K, Braubach P, Rajab TK, Ciubotaru A, Rohde J, Waldmann KH, Haverich A. Treatment of infected lungs by ex vivo perfusion with high dose antibiotics and autotransplantation: A pilot study in pigs. PLoS One 2018; 13:e0193168. [PMID: 29505574 PMCID: PMC5837087 DOI: 10.1371/journal.pone.0193168] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/06/2018] [Indexed: 11/30/2022] Open
Abstract
The emergence of multi-drug resistant bacteria threatens to end the era of antibiotics. Drug resistant bacteria have evolved mechanisms to overcome antibiotics at therapeutic doses and further dose increases are not possible due to systemic toxicity. Here we present a pilot study of ex vivo lung perfusion (EVLP) with high dose antibiotic therapy followed by autotransplantation as a new therapy of last resort for otherwise incurable multidrug resistant lung infections. Severe Pseudomonas aeruginosa pneumonia was induced in the lower left lungs (LLL) of 18 Mini-Lewe pigs. Animals in the control group (n = 6) did not receive colistin. Animals in the conventional treatment group (n = 6) received intravenous application of 2 mg/kg body weight colistin daily. Animals in the EVLP group (n = 6) had their LLL explanted and perfused ex vivo with a perfusion solution containing 200 μg/ml colistin. After two hours of ex vivo treatment, autotransplantation of the LLL was performed. All animals were followed for 4 days following the initiation of treatment. In the control and conventional treatment groups, the infection-related mortality rate after five days was 66.7%. In the EVLP group, there was one infection-related mortality and one procedure-related mortality, for an overall mortality rate of 33.3%. Moreover, the clinical symptoms of infection were less severe in the EVLP group than the other groups. Ex vivo lung perfusion with very high dose antibiotics presents a new therapeutic option of last resort for otherwise incurable multidrug resistant pneumonia without toxic side effects on other organs.
Collapse
Affiliation(s)
- Norman Zinne
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
- * E-mail:
| | - Marcus Krueger
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Doris Hoeltig
- Clinic for Swine, Small Ruminants, Forensic Medicine, and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Burkhard Tuemmler
- Clinic for Paediatric Pneumology, Allergology, and Neonatology, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Lower Saxony, Germany
| | - Erin C. Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Christian Biancosino
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Klaus Hoeffler
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Peter Braubach
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Lower Saxony, Germany
- Institute for Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Taufiek K. Rajab
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anatol Ciubotaru
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Judith Rohde
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine, Small Ruminants, Forensic Medicine, and Ambulatory Service, University of Veterinary Medicine Hannover, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Lower Saxony, Germany
| |
Collapse
|
46
|
Mechanism-Based Pharmacokinetic/Pharmacodynamic Modeling of Aerosolized Colistin in a Mouse Lung Infection Model. Antimicrob Agents Chemother 2018; 62:AAC.01965-17. [PMID: 29263069 DOI: 10.1128/aac.01965-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/13/2017] [Indexed: 12/24/2022] Open
Abstract
Optimized dosage regimens of aerosolized colistin (as colistin methanesulfonate [CMS]) are urgently required to maximize bacterial killing against multidrug-resistant Gram-negative bacteria while minimizing toxicity. This study aimed to develop a mechanism-based pharmacokinetic (PK)/pharmacodynamic (PD) model (MBM) for aerosolized colistin based upon PK/PD data in neutropenic infected mice and to perform a deterministic simulation with the PK of aerosolized colistin (as CMS) in critically ill patients. In vivo time-kill experiments were carried out with three different strains of Pseudomonas aeruginosa An MBM was developed in S-ADAPT and evaluated by assessing its ability to predict the PK/PD index associated with efficacy in mice. A deterministic simulation with human PK data was undertaken to predict the efficacy of current dosage regimens of aerosolized colistin in critically ill patients. In the final MBM, the total bacterial population for each isolate consisted of colistin-susceptible and -resistant subpopulations. The antimicrobial efficacy of aerosolized colistin was best described by a sigmoidal Emax model whereby colistin enhanced the rate of bacterial death. Deterministic simulation with human PK data predicted that an inhalational dosage regimen of 60 mg colistin base activity (CBA) every 12 h is needed to achieve a ≥2-log10 bacterial reduction (as the number of CFU per lung) in critically ill patients at 24 h after commencement of inhaled therapy. In conclusion, the developed MBM is a useful tool for optimizing inhalational dosage regimens of colistin. Clinical studies are warranted to validate and refine our MBM for aerosolized colistin.
Collapse
|
47
|
Pulmonary Pharmacokinetics of Colistin following Administration of Dry Powder Aerosols in Rats. Antimicrob Agents Chemother 2017; 61:AAC.00973-17. [PMID: 28807905 DOI: 10.1128/aac.00973-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/06/2017] [Indexed: 01/05/2023] Open
Abstract
Colistin has been administered via nebulization for the treatment of respiratory tract infections. Recently, dry powder inhalation (DPI) has attracted increasing attention. The current study aimed to investigate the pharmacokinetics (PK) of colistin in epithelial lining fluid (ELF) and plasma following DPI and intravenous (i.v.) administration in healthy Sprague-Dawley rats. Rats were given colistin as DPI intratracheally (0.66 and 1.32 mg base/kg of body weight) or i.v. injection (0.66 mg base/kg). Histopathological examination of lung tissue was performed at 24 h. Colistin concentrations in both ELF and plasma were quantified, and a population PK model was developed and compared to a previously published PK model of nebulized colistin in rats. A two-compartment structural model was developed to describe the PK of colistin in both ELF and plasma following pulmonary or i.v. administration. The model-estimated clearance from the central plasma compartment was 0.271 liter/h/kg (standard error [SE] = 2.51%). The transfer of colistin from the ELF compartment to the plasma compartment was best described by a first-order rate constant (clearance of colistin from the ELF compartment to the plasma compartment = 4.03 × 10-4 liter/h/kg, SE = 15%). DPI appeared to have a higher rate of absorption (time to the maximum concentration in plasma after administration of colistin by DPI, ≤10 min) than nebulization (time to the maximum concentration in plasma after administration of colistin by nebulization, 20 to 30 min), but the systemic bioavailabilities by the two routes of administration were similar (∼46.5%, SE = 8.43%). Histopathological examination revealed no significant differences in inflammation in lung tissues between the two treatments. Our findings suggest that colistin DPI is a promising alternative to nebulization considering the similar PK and safety profiles of the two forms of administration. The PK and histopathological information obtained is critical for the development of optimal aerosolized colistin regimens with activity against lung infections caused by Gram-negative bacteria.
Collapse
|
48
|
Urinary Concentrations of Colistimethate and Formed Colistin after Intravenous Administration in Patients with Multidrug-Resistant Gram-Negative Bacterial Infections. Antimicrob Agents Chemother 2017; 61:AAC.02595-16. [PMID: 28559275 DOI: 10.1128/aac.02595-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/13/2017] [Indexed: 11/20/2022] Open
Abstract
Limited information is available on the urinary excretion of colistin in infected patients. This study aimed to investigate the pharmacokinetics of colistimethate sodium (CMS) and formed colistin in urine in patients with multidrug-resistant (MDR) Gram-negative bacterial infections. A pharmacokinetic study was conducted on 12 patients diagnosed with an infection caused by an extremely drug-resistant (XDR) P. aeruginosa strain and treated with intravenous CMS. Fresh urine samples were collected at 2-h intervals, and blood samples were collected predose (Cmin ss) and at the end of the CMS infusion (Cmax ss) for measurement of concentrations of CMS and formed colistin using high-performance liquid chromatography (HPLC). CMS urinary recovery was determined as the summed amount of CMS and formed colistin recovered in urine for each 2-h interval divided by the CMS dose. There were 12 enrolled patients, 9 of whom were male (75%). Data [median (range)] were as follows: age, 65.5 (37 to 86) years; colistimethate urinary recovery 0 to 6 h, 42.6% (2.9% to 72.8%); range of concentrations of colistin in urine, <0.1 to 95.4 mg/liter; Cmin ss and Cmax ss of colistin in plasma, 0.9 (<0.2 to 1.4) and 0.9 (<0.2 to 1.4) mg/liter, respectively. In 6/12 (50%) patients, more than 40% of the CMS dose was recovered in the urine within the first 6 h after CMS administration. This study demonstrated rapid urinary excretion of CMS in patients within the first 6 h after intravenous administration. In all but one patient, the concentrations of formed colistin in urine were above the MIC for the most predominant isolate of P. aeruginosa in our hospital. Future studies are warranted for optimizing CMS dosage regimens in urinary tract infection (UTI) patients.
Collapse
|
49
|
Aerosolized Polymyxin B for Treatment of Respiratory Tract Infections: Determination of Pharmacokinetic-Pharmacodynamic Indices for Aerosolized Polymyxin B against Pseudomonas aeruginosa in a Mouse Lung Infection Model. Antimicrob Agents Chemother 2017; 61:AAC.00211-17. [PMID: 28559256 DOI: 10.1128/aac.00211-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/20/2017] [Indexed: 01/24/2023] Open
Abstract
Pulmonary administration of polymyxins is increasingly used for the treatment of respiratory tract infections caused by multidrug-resistant Gram-negative bacteria, such as those in patients with cystic fibrosis. However, there is a lack of pharmacokinetics (PK), pharmacodynamics (PD), and toxicity data of aerosolized polymyxin B to inform rational dosage selection. The PK and PD of polymyxin B following pulmonary and intravenous dosing were examined in neutropenic infected mice, and the data were analyzed by a population PK model. Dose fractionation study was performed for total daily doses between 2.06 and 24.8 mg base/kg of weight against Pseudomonas aeruginosa ATCC 27853, PAO1, and FADDI-PA022 (MIC of 1 mg/liter for all three strains). Histopathological examination of the lung was undertaken at 24 h posttreatment in both healthy and neutropenic infected mice. A two-compartment PK model was required for both epithelial lining fluid (ELF) and plasma drug exposure. The model consisted of central and peripheral compartments and was described by bidirectional first-order distribution clearance. The ratio of the area under the curve to the MIC (AUC/MIC) was the most predictive PK/PD index to describe the antimicrobial efficacy of aerosolized polymyxin B in treating lung infections in mice (R2 of 0.70 to 0.88 for ELF and 0.70 to 0.87 for plasma). The AUC/MIC targets associated with bacteriostasis against the three P. aeruginosa strains were 1,326 to 1,506 in ELF and 3.14 to 4.03 in plasma. Histopathological results showed that polymyxin B aerosols significantly reduced lung inflammation and preserved lung epithelial integrity. This study highlights the advantageous PK/PD characteristics of pulmonary delivery of polymyxin B over intravenous administration in achieving high drug exposure in ELF.
Collapse
|
50
|
Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical Pharmacokinetics and Pharmacodynamics of Colistin. Clin Pharmacokinet 2017; 56:1441-1460. [DOI: 10.1007/s40262-017-0561-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|