1
|
Nie Z, Zhai F, Zhang H, Zheng H, Pei J. The multiple roles of viral 3D pol protein in picornavirus infections. Virulence 2024; 15:2333562. [PMID: 38622757 PMCID: PMC11020597 DOI: 10.1080/21505594.2024.2333562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.
Collapse
Affiliation(s)
- Zhenyu Nie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Fengge Zhai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Han Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
2
|
Wei Y, Liu H, Hu D, He Q, Yao C, Li H, Hu K, Wang J. Recent Advances in Enterovirus A71 Infection and Antiviral Agents. J Transl Med 2024; 104:100298. [PMID: 38008182 DOI: 10.1016/j.labinv.2023.100298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.
Collapse
Affiliation(s)
- Yanhong Wei
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Huihui Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Da Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Qun He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Chenguang Yao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China
| | - Kanghong Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, China.
| | - Jun Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Arya R, Prashar V, Kumar M. Identification and characterization of aurintricarboxylic acid as a potential inhibitor of SARS-CoV-2 PLpro. Int J Biol Macromol 2023; 230:123347. [PMID: 36682650 PMCID: PMC9851725 DOI: 10.1016/j.ijbiomac.2023.123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
As the global health crisis due to evolution of mutations in SARS-CoV-2 continues, it is important to develop several effective antivirals to control the disease. Targeting papain-like protease (PLpro) of SARS-CoV-2 for drug development is a promising strategy due to its dual role in promoting viral replication and dysregulating host immune responses. Here, we screened a library of compounds to find potential inhibitors of PLpro. We find aurintricarboxylic acid (ATA) inhibits PLpro with Ki and IC50 values of 16 μM and 30 μM, respectively. The binding of ATA to PLpro was further characterized using isothermal titration calorimetry, differential scanning fluorimetry, dynamic light scattering and circular dichroism spectrometry. In vitro assays showed the antiviral potential of ATA with IC50 of 50 μM. In vivo efficacy was studied in Syrian hamsters and the results are being discussed.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Vishal Prashar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Mukesh Kumar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Peterson CJ, Hurst BL, Evans WJ, Van Wettere AJ, Gibson SA, Smee DF, Tarbet EB. Human IVIG treatment in a neurological disease model for Enterovirus A71 infection in 28-day-old AG129 mice. Virology 2023; 580:62-72. [PMID: 36780728 DOI: 10.1016/j.virol.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Enterovirus A71 can cause serious neurological disease in young children. Animal models for EV-A71 are needed to evaluate potential antiviral therapies. Existing models have limitations, including lack of lethality or crucial disease signs. Here we report the development of an EV-A71 model in 28-day-old mice. Virus was serially passaged until it produced consistent lethality and rear-limb paralysis. Onset of disease occurred between days 6-9 post-infection, with mortality following weight loss and neurological signs on days 9-14. In addition, a single administration of human intravenous immunoglobulin at doses of 200, 400 and 800 mg/kg at 4h post-infection was evaluated in the model. Protection from weight loss, neurological signs, and mortality (between 50 and 89%) were observed at doses of 400 mg/kg or greater. Based on these results, IVIG was selected for use as a positive control in this acute model, and suggest that IVIG is a potential therapeutic for EV-A71 infections.
Collapse
Affiliation(s)
- Christopher J Peterson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA; Carilion Clinic-Virginia Tech Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA
| | - W Joseph Evans
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA
| | - Arnaud J Van Wettere
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA; Utah Veterinary Diagnostic Laboratory, Department of Animal, Dairy, and Veterinary Sciences, 950 East 1400 North, Utah State University, Logan, UT, 84341, USA
| | - Scott A Gibson
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA
| | - Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA
| | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT, 84322, USA; Department of Animal, Dairy, and Veterinary Sciences, Utah State University, 5600 Old Main Hill, Logan, UT, 84322, USA; Utah Veterinary Diagnostic Laboratory, Department of Animal, Dairy, and Veterinary Sciences, 950 East 1400 North, Utah State University, Logan, UT, 84341, USA.
| |
Collapse
|
5
|
Drug Repurposing for Therapeutic Discovery against Human Metapneumovirus Infection. Antimicrob Agents Chemother 2022; 66:e0100822. [PMID: 36094205 PMCID: PMC9578393 DOI: 10.1128/aac.01008-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human metapneumovirus (HMPV) is recognized as an important cause of pneumonia in infants, in the elderly, and in immunocompromised individuals worldwide. The absence of an antiviral treatment or vaccine strategy against HMPV infection creates a high burden on the global health care system. Drug repurposing has become increasingly attractive for the treatment of emerging and endemic diseases as it requires less research and development costs than traditional drug discovery. In this study, we developed an in vitro medium-throughput screening assay that allows for the identification of novel anti-HMPV drugs candidates. Out of ~2,400 compounds, we identified 11 candidates with a dose-dependent inhibitory activity against HMPV infection. Additionally, we further described the mode of action of five anti-HMPV candidates with low in vitro cytotoxicity. Two entry inhibitors, Evans Blue and aurintricarboxylic acid, and three post-entry inhibitors, mycophenolic acid, mycophenolate mofetil, and 2,3,4-trihydroxybenzaldehyde, were identified. Among them, the mycophenolic acid series displayed the highest levels of inhibition, due to the blockade of intracellular guanosine synthesis. Importantly, MPA has significant potential for drug repurposing as inhibitory levels are achieved below the approved human oral dose. Our drug-repurposing strategy proved to be useful for the rapid discovery of novel hit candidates to treat HMPV infection and provide promising novel templates for drug design.
Collapse
|
6
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
7
|
Liu M, Xu B, Ma Y, Shang L, Ye S, Wang Y. Reversible covalent inhibitors suppress enterovirus 71 infection by targeting the 3C protease. Antiviral Res 2021; 192:105102. [PMID: 34082057 DOI: 10.1016/j.antiviral.2021.105102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
As one of the principal etiological agents of hand, foot, and mouth disease (HFMD), enterovirus 71 (EV71) is associated with severe neurological complications or fatal diseases, while without effective medications thus far. Here we applied dually activated Michael acceptor to develop a series of reversible covalent compounds for EV71 3C protease (3Cpro), a promising antiviral drug target that plays an essential role during viral replication by cleaving the precursor polyprotein, inhibiting host protein synthesis, and evading innate immunity. Among them, cyanoacrylate and Boc-protected cyanoarylamide derivatives (SLQ-4 and SLQ-5) showed effective antiviral activity against EV71. The two inhibitors exhibited broad antiviral effects, acting on RD, 293T, and Vero cell lines, as well as on EV71 A, B, C, CVA16, and CVB3 viral strains. We further determined the binding pockets between the two inhibitors and 3Cpro based on docking studies. These results, together with our previous studies, provide evidence to elucidate the mechanism of action of these two reversible covalent inhibitors and contribute to the development of clinically effective medicines to treat EV71 infections.
Collapse
Affiliation(s)
- Meijun Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Binghong Xu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yuying Ma
- College of Pharmacy, Nankai University, Tianjin, 300350, China; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Luqing Shang
- College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Yaxin Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
8
|
Fernandes de Oliveira LM, Steindorff M, Darisipudi MN, Mrochen DM, Trübe P, Bröker BM, Brönstrup M, Tegge W, Holtfreter S. Discovery of Staphylococcus aureus Adhesion Inhibitors by Automated Imaging and Their Characterization in a Mouse Model of Persistent Nasal Colonization. Microorganisms 2021; 9:microorganisms9030631. [PMID: 33803564 PMCID: PMC8002927 DOI: 10.3390/microorganisms9030631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/26/2023] Open
Abstract
Due to increasing mupirocin resistance, alternatives for Staphylococcus aureus nasal decolonization are urgently needed. Adhesion inhibitors are promising new preventive agents that may be less prone to induce resistance, as they do not interfere with the viability of S. aureus and therefore exert less selection pressure. We identified promising adhesion inhibitors by screening a library of 4208 compounds for their capacity to inhibit S. aureus adhesion to A-549 epithelial cells in vitro in a novel automated, imaging-based assay. The assay quantified DAPI-stained nuclei of the host cell; attached bacteria were stained with an anti-teichoic acid antibody. The most promising candidate, aurintricarboxylic acid (ATA), was evaluated in a novel persistent S. aureus nasal colonization model using a mouse-adapted S. aureus strain. Colonized mice were treated intranasally over 7 days with ATA using a wide dose range (0.5–10%). Mupirocin completely eliminated the bacteria from the nose within three days of treatment. In contrast, even high concentrations of ATA failed to eradicate the bacteria. To conclude, our imaging-based assay and the persistent colonization model provide excellent tools to identify and validate new drug candidates against S. aureus nasal colonization. However, our first tested candidate ATA failed to induce S. aureus decolonization.
Collapse
Affiliation(s)
- Liliane Maria Fernandes de Oliveira
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Marina Steindorff
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
| | - Murthy N. Darisipudi
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Daniel M. Mrochen
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Patricia Trübe
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Barbara M. Bröker
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
| | - Werner Tegge
- Helmholtz Centre for Infection Research, Department of Chemical Biology, 38124 Braunschweig, Germany (M.B.)
- Correspondence: (W.T.); (S.H.)
| | - Silva Holtfreter
- Institute of Immunology and Transfusion Medicine, Department of Immunology, University Medicine Greifswald, 17475 Greifswald, Germany; (L.M.F.d.O.); (M.N.D.); (D.M.M.); (P.T.); (B.M.B.)
- Correspondence: (W.T.); (S.H.)
| |
Collapse
|
9
|
Wo X, Yuan Y, Xu Y, Chen Y, Wang Y, Zhao S, Lin L, Zhong X, Wang Y, Zhong Z, Zhao W. TAR DNA-Binding Protein 43 is Cleaved by the Protease 3C of Enterovirus A71. Virol Sin 2021; 36:95-103. [PMID: 32696397 PMCID: PMC7973337 DOI: 10.1007/s12250-020-00262-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Enterovirus A71 (EV-A71) is one of the etiological pathogens leading to hand, foot, and mouth disease (HFMD), which can cause severe neurological complications. The neuropathogenesis of EV-A71 infection is not well understood. The mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). However, whether TDP-43 was impacted by EV-A71 infection is unknown. This study demonstrated that TDP-43 was cleaved during EV-A71 infection. The cleavage of TDP-43 requires EV-A71 replication rather than the activated caspases due to viral infection. TDP-43 is cleaved by viral protease 3C between the residues 331Q and 332S, while mutated TDP-43 (Q331A) was not cleaved. In addition, mutated 3C which lacks the protease activity failed to induce TDP-43 cleavage. We also found that TDP-43 was translocated from the nucleus to the cytoplasm, and the mislocalization of TDP-43 was induced by viral protease 2A rather than 3C. Taken together, we demonstrated that TDP-43 was cleaved by viral protease and translocated to the cytoplasm during EV-A71 infection, implicating the possible involvement of TDP-43 in the pathogenesis of EV-A71infection.
Collapse
Affiliation(s)
- Xiaoman Wo
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yuan
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yong Xu
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
10
|
Alonso C, Utrilla-Trigo S, Calvo-Pinilla E, Jiménez-Cabello L, Ortego J, Nogales A. Inhibition of Orbivirus Replication by Aurintricarboxylic Acid. Int J Mol Sci 2020; 21:ijms21197294. [PMID: 33023235 PMCID: PMC7582255 DOI: 10.3390/ijms21197294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Bluetongue virus (BTV) and African horse sickness virus (AHSV) are vector-borne viruses belonging to the Orbivirus genus, which are transmitted between hosts primarily by biting midges of the genus Culicoides. With recent BTV and AHSV outbreaks causing epidemics and important economy losses, there is a pressing need for efficacious drugs to treat and control the spread of these infections. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antiviral activity. Here, we evaluated ATA as a potential antiviral compound against Orbivirus infections in both mammalian and insect cells. Notably, ATA was able to prevent the replication of BTV and AHSV in both cell types in a time- and concentration-dependent manner. In addition, we evaluated the effect of ATA in vivo using a mouse model of infection. ATA did not protect mice against a lethal challenge with BTV or AHSV, most probably due to the in vivo effect of ATA on immune system regulation. Overall, these results demonstrate that ATA has inhibitory activity against Orbivirus replication in vitro, but further in vivo analysis will be required before considering it as a potential therapy for future clinical evaluation.
Collapse
|
11
|
Abstract
Enterovirus D68 (EV-D68) is an RNA virus that causes respiratory illnesses mainly in children. In severe cases, it can lead to neurological complications such as acute flaccid myelitis (AFM). EV-D68 belongs to the enterovirus genera of the Picornaviridae family, which also includes many other significant human pathogens such as poliovirus, enterovirus A71, and rhinovirus. There are currently no vaccines or antivirals against EV-D68. In this review, we present the current understanding of the link between EV-D68 and AFM, the mechanism of viral replication, and recent progress in developing EV-D68 antivirals by targeting various viral proteins and host factors that are essential for viral replication. The future directions of EV-D68 antiviral drug discovery and the criteria for drugs to reach clinical trials are also discussed.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Rami Musharrafieh
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, USA, 85721
| |
Collapse
|
12
|
Laajala M, Reshamwala D, Marjomäki V. Therapeutic targets for enterovirus infections. Expert Opin Ther Targets 2020; 24:745-757. [DOI: 10.1080/14728222.2020.1784141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mira Laajala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
13
|
The Pyrimidine Analog FNC Potently Inhibits the Replication of Multiple Enteroviruses. J Virol 2020; 94:JVI.00204-20. [PMID: 32075935 PMCID: PMC7163137 DOI: 10.1128/jvi.00204-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human enteroviruses (EVs), including coxsackieviruses, the numbered enteroviruses, and echoviruses, cause a wide range of diseases, such as hand, foot, and mouth disease (HFMD), encephalitis, myocarditis, acute flaccid myelitis (AFM), pneumonia, and bronchiolitis. Therefore, broad-spectrum anti-EV drugs are urgently needed to treat EV infection. Here, we demonstrate that FNC (2'-deoxy-2'-β-fluoro-4'-azidocytidine), a small nucleoside analog inhibitor that has been demonstrated to be a potent inhibitor of HIV and entered into a clinical phase II trial in China, potently inhibits the viral replication of a multitude of EVs, including enterovirus 71 (EV71), coxsackievirus A16 (CA16), CA6, EVD68, and coxsackievirus B3 (CVB3), at the nanomolar level. The antiviral mechanism of FNC involves mainly positive- and negative-strand RNA synthesis inhibition by targeting and competitively inhibiting the activity of EV71 viral RNA-dependent RNA polymerase (3Dpol), as demonstrated through quantitative real-time reverse transcription-PCR (RT-qPCR), in vitro 3Dpol activity, and isothermal titration calorimetry (ITC) experiments. We further demonstrated that FNC treatment every 2 days with 1 mg/kg of body weight in EV71 and CA16 infection neonatal mouse models successfully protected mice from lethal challenge with EV71 and CA16 viruses and reduced the viral load in various tissues. These findings provide important information for the clinical development of FNC as a broad-spectrum inhibitor of human EV pathogens.IMPORTANCE Human enterovirus (EV) pathogens cause various contagious diseases such as hand, foot, and mouth disease, encephalitis, myocarditis, acute flaccid myelitis, pneumonia, and bronchiolitis, which have become serious health threats. However, except for the EV71 vaccine on the market, there are no effective strategies to prevent and treat other EV pathogen infections. Therefore, broad-spectrum anti-EV drugs are urgently needed. In this study, we demonstrated that FNC, a small nucleoside analog inhibitor that has been demonstrated to be a potent inhibitor of HIV and entered into a clinical phase II trial in China, potently inhibits the viral replication of a multitude of EVs at the nanomolar level. Further investigation revealed that FNC inhibits positive- and negative-strand RNA synthesis of EVs by interacting and interfering with the activity of EV71 viral RNA-dependent RNA polymerase (3Dpol). Our findings demonstrate for the first time that FNC is an effective broad-spectrum inhibitor for human EV pathogens.
Collapse
|
14
|
Lin JY, Kung YA, Shih SR. Antivirals and vaccines for Enterovirus A71. J Biomed Sci 2019; 26:65. [PMID: 31481071 PMCID: PMC6720414 DOI: 10.1186/s12929-019-0560-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
Enterovirus A71 (EV-A71) is an important emerging virus posing a threat to children under five years old. EV-A71 infection in infants or young children can cause hand-foot-and-mouth disease, herpangina, or severe neurological complications. However, there are still no effective antivirals for treatment of these infections. In this review, we summarize the antiviral compounds developed to date based on various targets of the EV-A71 life cycle. Moreover, development of a vaccine would be the most effective approach to prevent EV-A71 infection. Therefore, we also summarize the development and clinical progress of various candidate EV-A71 vaccines, including inactivated whole virus, recombinant VP1 protein, synthetic peptides, viral-like particles, and live attenuated vaccines.
Collapse
Affiliation(s)
- Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
15
|
Becker JC, Tollefson SJ, Weaver D, Williams JV. A medium-throughput screen for inhibitors of human metapneumovirus. Antivir Chem Chemother 2019; 27:2040206619830197. [PMID: 30759993 PMCID: PMC6376503 DOI: 10.1177/2040206619830197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Human metapneumovirus, a paramyxovirus discovered in 2001, is a major cause of lower respiratory infection in adults and children worldwide. There are no licensed vaccines or drugs for human metapneumovirus. We developed a fluorescent, cell-based medium-throughput screening assay for human metapneumovirus that captures inhibitors of all stages of the viral lifecycle except budding of progeny virus particles from the cell membrane. We optimized and validated the assay and performed a successful medium-throughput screening. A number of hits were identified, several of which were confirmed to inhibit viral replication in secondary assays. This assay offers potential to discover new antivirals for human metapneumovirus and related respiratory viruses. Compounds discovered using the medium-throughput screening may also provide useful probes of viral biology.
Collapse
Affiliation(s)
- Jennifer C Becker
- 1 Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sharon J Tollefson
- 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Weaver
- 3 Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John V Williams
- 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA.,4 Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Park JG, Ávila-Pérez G, Madere F, Hilimire TA, Nogales A, Almazán F, Martínez-Sobrido L. Potent Inhibition of Zika Virus Replication by Aurintricarboxylic Acid. Front Microbiol 2019; 10:718. [PMID: 31031722 PMCID: PMC6473159 DOI: 10.3389/fmicb.2019.00718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 11/14/2022] Open
Abstract
Zika virus (ZIKV) is one of the recently emerging vector-borne viruses in humans and is responsible for severe congenital abnormalities such as microcephaly in the Western Hemisphere. Currently, only a few vaccine candidates and therapeutic drugs are being developed for the treatment of ZIKV infections, and as of yet none are commercially available. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antimicrobial and antiviral activity. In this study, we evaluated ATA as a potential antiviral drug against ZIKV replication. The antiviral activity of ATA against ZIKV replication in vitro showed median inhibitory concentrations (IC50) of 13.87 ± 1.09 μM and 33.33 ± 1.13 μM in Vero and A549 cells, respectively; without showing any cytotoxic effect in both cell lines (median cytotoxic concentration (CC50) > 1,000 μM). Moreover, ATA protected both cell types from ZIKV-induced cytopathic effect (CPE) and apoptosis in a time- and concentration-dependent manner. In addition, pre-treatment of Vero cells with ATA for up to 72 h also resulted in effective suppression of ZIKV replication with similar IC50. Importantly, the inhibitory effect of ATA on ZIKV infection was effective against strains of the African and Asian/American lineages, indicating that this inhibitory effect was not strain dependent. Overall, these results demonstrate that ATA has potent inhibitory activity against ZIKV replication and may be considered as a potential anti-ZIKV therapy for future clinical evaluation.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ginés Ávila-Pérez
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ferralita Madere
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Thomas A Hilimire
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Aitor Nogales
- Center for Animal Health Research, INIA-CISA, Madrid, Spain
| | - Fernando Almazán
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
17
|
Yuan J, Shen L, Wu J, Zou X, Gu J, Chen J, Mao L. Enterovirus A71 Proteins: Structure and Function. Front Microbiol 2018; 9:286. [PMID: 29515559 PMCID: PMC5826392 DOI: 10.3389/fmicb.2018.00286] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/07/2018] [Indexed: 01/02/2023] Open
Abstract
Enterovirus A71 (EV-A71) infection has grown to become a serious threat to global public health. It is one of the major causes of hand, foot, and mouth disease (HFMD) in infants and young children. EV-A71 can also infect the central nervous system (CNS) and induce diverse neurological complications, such as brainstem encephalitis, aseptic meningitis, and acute flaccid paralysis, or even death. Viral proteins play a crucial role in EV-A71 infection. Many recent studies have discussed the structure and function of EV-A71 proteins, and the findings reported will definitely aid the development of vaccines and therapeutic approaches. This article reviews the progress in the research on the structure and function of EV-A71 proteins. Available literature can provide a basis for studying the pathogenesis of EV-A71 infection in detail.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Clinical Laboratory, Danyang People's Hospital, Jiangsu, China
| | - Li Shen
- Clinical Laboratory, Zhenjiang Center for Disease Control and Prevention, Jiangsu, China
| | - Jing Wu
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinran Zou
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaqi Gu
- Institute of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianguo Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Zhang Y, Han H, Sun L, Qiu H, Lin H, Yu L, Zhu W, Qi J, Yang R, Pang Y, Wang X, Lu G, Yang Y. Antiviral activity of shikonin ester derivative PMM-034 against enterovirus 71 in vitro. ACTA ACUST UNITED AC 2017; 50:e6586. [PMID: 28832767 PMCID: PMC5561812 DOI: 10.1590/1414-431x20176586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022]
Abstract
Human enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease (HFMD), particularly in infants and children below 4 years of age. Shikonin is a bioactive compound with anti-inflammatory, antiviral, and antibacterial activities derived from the roots of the Chinese medicinal herb Lithospermum erythrorhizon. This study aimed to examine the antiviral activity of PMM-034, a shikonin ester derivative, against EV71 in rhabdomyosarcoma (RD) cells. Cytotoxicity of PMM-034 on RD cells was determined using WST-1 assay. Dose- and time-dependent effects of PMM-034 on EV71 replication in RD cells were determined using plaque reduction assay. mRNA expression levels of EV71/VP1 and pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) were determined by real-time RT-PCR, and EV71/VP1 and phospho-p65 protein expressions were determined by western blot analysis. PMM-034 exhibited only weak cytotoxicity against RD cells. However, PMM-034 exhibited significant antiviral activity against EV71 in RD cells with 50% inhibitory concentration of 2.31 μg/mL. The VP1 mRNA and protein levels were significantly reduced in cells treated with PMM-034. Furthermore, relative mRNA expression levels of IL-1β, IL-6, IL-8, and TNF-α significantly decreased in the cells treated with PMM-034, while the phospho-p65 protein expression was also significantly lower in the treated cells. These results indicated that PMM-034 suppressed the expressions of pro-inflammatory cytokines in RD cells, exhibiting antiviral activity against EV71, as evidenced by the reduced VP1 mRNA and protein levels in PMM-034-treated cells. Thus, PMM-034 is a promising candidate for further development as an EV71 inhibitor.
Collapse
Affiliation(s)
- Y Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China.,Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - H Han
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| | - L Sun
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - H Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| | - H Lin
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| | - L Yu
- Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - W Zhu
- Suzhou Industrial Park Center for Disease Control and Prevention, Suzhou, China
| | - J Qi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| | - R Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Y Pang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| | - X Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| | - G Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Y Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Gunaseelan S, Chu JJH. Identifying novel antiviral targets against enterovirus 71: where are we? Future Virol 2017. [DOI: 10.2217/fvl-2016-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human enterovirus 71 (HEV71) has been considered as an essential human pathogen, which causes hand, foot and mouth disease in young children. Several HEV71 outbreaks have been observed in many Asia-Pacific countries for the past two decades with significant fatalities. However, there are no competent vaccines or antivirals against HEV71 infection to date. Thus, it is of critical priority to delve into the search for anti-HEV71 agents. Prior to this, there is a need to gain knowledge about the distinct targets of HEV71 that are available and that have been exploited for antiviral therapy. This review aims to provide a better understanding of HEV71 virology and feature potential antivirals for progressive clinical development with respect to their elucidated mechanistic actions.
Collapse
Affiliation(s)
- Saravanan Gunaseelan
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology & Antiviral Strategies, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University Health System, 5 Science Drive 2, National University of Singapore, 117597 Singapore
- Institute of Molecular & Cell Biology, Agency for Science, Technology & Research (A*STAR), 61 Biopolis Drive, Proteos #06–05, Singapore 138673
| |
Collapse
|
20
|
Wang W, Xiao F, Wan P, Pan P, Zhang Y, Liu F, Wu K, Liu Y, Wu J. EV71 3D Protein Binds with NLRP3 and Enhances the Assembly of Inflammasome Complex. PLoS Pathog 2017; 13:e1006123. [PMID: 28060938 PMCID: PMC5245909 DOI: 10.1371/journal.ppat.1006123] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/19/2017] [Accepted: 12/13/2016] [Indexed: 12/18/2022] Open
Abstract
Activation of NLRP3 inflammasome is important for effective host defense against invading pathogen. Together with apoptosis-associated speck-like protein containing CARD domain (ASC), NLRP3 induces the cleavage of caspase-1 to facilitate the maturation of interleukin-1beta (IL-1β), an important pro-inflammatory cytokine. IL-1β subsequently plays critical roles in inflammatory responses by activating immune cells and inducing many secondary pro-inflammatory cytokines. Although the role of NLRP3 inflammasome in immune response is well defined, the mechanism underlying its assembly modulated by pathogen infection remains largely unknown. Here, we identified a novel mechanism by which enterovirus 71 (EV71) facilitates the assembly of NLRP3 inflammasome. Our results show that EV71 induces production and secretion of IL-1β in macrophages and peripheral blood mononuclear cells (PBMCs) through activation of NLRP3 inflammasome. EV71 replication and protein synthesis are required for NLRP3-mediated activation of IL-1β. Interestingly, EV71 3D protein, a RNA-dependent RNA polymerase (RdRp) was found to stimulate the activation of NLRP3 inflammasome, the cleavage of pro-caspase-1, and the release of IL-1β through direct binding to NLRP3. More importantly, 3D interacts with NLRP3 to facilitate the assembly of inflammasome complex by forming a 3D-NLRP3-ASC ring-like structure, resulting in the activation of IL-1β. These findings demonstrate a new role of 3D as an important player in the activation of inflammatory response, and identify a novel mechanism underlying the modulation of inflammasome assembly and function induced by pathogen invasion.
Collapse
Affiliation(s)
- Wenbiao Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Feng Xiao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Pin Wan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Pan Pan
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Yecheng Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JW); (YL)
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JW); (YL)
| |
Collapse
|
21
|
Han Y, Wang L, Cui J, Song Y, Luo Z, Chen J, Xiong Y, Zhang Q, Liu F, Ho W, Liu Y, Wu K, Wu J. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5'UTR RNA. J Cell Sci 2016; 129:4534-4547. [PMID: 27875274 PMCID: PMC5201017 DOI: 10.1242/jcs.193698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/02/2016] [Indexed: 01/03/2023] Open
Abstract
Enterovirus 71 (EV71) possesses a single-stranded positive RNA genome that contains a single open reading frame (ORF) flanked by a 5′ untranslated region (5′UTR) and a polyadenylated 3′UTR. Here, we demonstrated that EV71 activates the production of silent mating type information regulation 2 homolog 1 (SIRT1), a histone deacetylase (HDAC). EV71 further stimulates SIRT1 sumoylation and deacetylase activity, and enhances SIRT1 translocation from the nucleus to the cytoplasm. More interestingly, activated SIRT1 subsequently binds with the EV71 3Dpol protein (a viral RNA-dependent RNA polymerase, RdRp) to repress the acetylation and RdRp activity of 3Dpol, resulting in the attenuation of viral genome replication. Moreover, SIRT1 interacts with the cloverleaf structure of the EV71 RNA 5′UTR to inhibit viral RNA transcription, and binds to the internal ribosome entry site (IRES) of the EV71 5′UTR to attenuate viral RNA translation. Thus, EV71 stimulates SIRT1 production and activity, which in turn represses EV71 genome replication by inhibiting viral polymerase, and attenuates EV71 RNA transcription and translation by interfering with viral RNA. These results uncover a new function of SIRT1 and reveal a new mechanism underlying the regulation of EV71 replication. Summary: EV71 infection is a hazard to children. This study reveals a new mechanism underlying EV71 replication and suggest that SIRT1 could be an agent for the treatment of the viral infection.
Collapse
Affiliation(s)
- Yang Han
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lvyin Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Cui
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Song
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhen Luo
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Junbo Chen
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenzhe Ho
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
Cao Z, Ding Y, Ke Z, Cao L, Li N, Ding G, Wang Z, Xiao W. Luteoloside Acts as 3C Protease Inhibitor of Enterovirus 71 In Vitro. PLoS One 2016; 11:e0148693. [PMID: 26870944 PMCID: PMC4752227 DOI: 10.1371/journal.pone.0148693] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/20/2016] [Indexed: 11/18/2022] Open
Abstract
Luteoloside is a member of the flavonoids family that exhibits several bioactivities including anti-microbial and anti-cancer activities. However, the antiviral activity of luteoloside against enterovirus 71 (EV71) and the potential mechanism(s) responsible for this effect remain unknown. In this study, the antiviral potency of luteoloside against EV71 and its inhibitory effects on 3C protease activity were evaluated. First, we investigated the cytotoxicity of luteoloside against rhabdomyosarcoma (RD) cells, which was the cell line selected for an in vitro infection model. In a subsequent antiviral assay, the cytopathic effect of EV71 was significantly and dose-dependently relieved by the administration of luteoloside (EC50 = 0.43 mM, selection index = 5.3). Using a plaque reduction assay, we administered luteoloside at various time points and found that the compound reduced EV71 viability in RD cells rather than increasing defensive mobilization or viral absorption. Moreover, biochemical studies focused on VP1 (a key structural protein of EV71) mRNA transcript and protein levels also revealed the inhibitory effects of luteoloside on the EV71 viral yield. Finally, we performed inhibition assays using luteoloside to evaluate its effect on recombinant 3C protease activity. Our results demonstrated that luteoloside blocked 3C protease enzymatic activity in a dose-dependent manner (IC50 = 0.36 mM) that was similar to the effect of rutin, which is a well-known C3 protease inhibitor. Collectively, the results from this study indicate that luteoloside can block 3C protease activity and subsequently inhibit EV71 production in vitro.
Collapse
Affiliation(s)
- Zeyu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Yue Ding
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Zhipeng Ke
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Na Li
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Gang Ding
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, Jiangsu, China
| |
Collapse
|
23
|
Discovery of Structurally Diverse Small-Molecule Compounds with Broad Antiviral Activity against Enteroviruses. Antimicrob Agents Chemother 2015; 60:1615-26. [PMID: 26711750 DOI: 10.1128/aac.02646-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023] Open
Abstract
Antiviral drugs do not currently exist for the treatment of enterovirus infections, which are often severe and potentially life-threatening. We conducted high-throughput molecular screening and identified a structurally diverse set of compounds that inhibit the replication of coxsackievirus B3, a commonly encountered enterovirus. These compounds did not interfere with the function of the viral internal ribosome entry site or with the activity of the viral proteases, but they did drastically reduce the synthesis of viral RNA and viral proteins in infected cells. Sequence analysis of compound-resistant mutants suggests that the viral 2C protein is targeted by most of these compounds. These compounds demonstrated antiviral activity against a panel of the most commonly encountered enteroviruses and thus represent potential leads for the development of broad-spectrum anti-enteroviral drugs.
Collapse
|
24
|
Wang L, Wang J, Wang L, Ma S, Liu Y. Anti-Enterovirus 71 Agents of Natural Products. Molecules 2015; 20:16320-33. [PMID: 26370955 PMCID: PMC6331931 DOI: 10.3390/molecules200916320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022] Open
Abstract
This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005–2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded.
Collapse
Affiliation(s)
- Liyan Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China,.
| | - Junfeng Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Lishu Wang
- Jilin Provincial Academy of Chinese Medicine Sciences, Changchun 130021, China.
| | - Shurong Ma
- Endoscopy Center, China-Japan Union Hospital, Jilin University, Changchun 130021, China.
| | - Yonghong Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China.
| |
Collapse
|
25
|
Li X, Liu Y, Wu T, Jin Y, Cheng J, Wan C, Qian W, Xing F, Shi W. The Antiviral Effect of Baicalin on Enterovirus 71 In Vitro. Viruses 2015; 7:4756-71. [PMID: 26295407 PMCID: PMC4576202 DOI: 10.3390/v7082841] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/24/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023] Open
Abstract
Baicalin is a flavonoid compound extracted from Scutellaria roots that has been reported to possess antibacterial, anti-inflammatory, and antiviral activities. However, the antiviral effect of baicalin on enterovirus 71 (EV71) is still unknown. In this study, we found that baicalin showed inhibitory activity on EV71 infection and was independent of direct virucidal or prophylactic effect and inhibitory viral absorption. The expressions of EV71/3D mRNA and polymerase were significantly blocked by baicalin treatment at early stages of EV71 infection. In addition, baicalin could decrease the expressions of FasL and caspase-3, as well as inhibit the apoptosis of EV71-infected human embryonal rhabdomyosarcoma (RD) cells. Altogether, these results indicate that baicalin exhibits potent antiviral effect on EV71 infection, probably through inhibiting EV71/3D polymerase expression and Fas/FasL signaling pathways.
Collapse
Affiliation(s)
- Xiang Li
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
- Department of Clinical Laboratory, the Third Affiliated Hospital of Soochow University, 185 Juqian street, Changzhou, Jiangsu 213003, China.
| | - Yuanyuan Liu
- Department of Endocrinology, Huai'an First Affliated Hospital of Nanjing Medical University, 6 Beijing west road, Huai'an, Jiangsu 223300, China.
| | - Tingting Wu
- Department of Clinical Laboratory, the Fourth People's Hospital of Huai'an, 128 Yanan east road, Huai'an, Jiangsu 223300, China.
| | - Yue Jin
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Jianpin Cheng
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Changbiao Wan
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Weihe Qian
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Fei Xing
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, 62 Huaihai south road, Huai'an, Jiangsu 223300, China.
| | - Weifeng Shi
- Department of Clinical Laboratory, the Third Affiliated Hospital of Soochow University, 185 Juqian street, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
26
|
van der Linden L, Wolthers KC, van Kuppeveld FJM. Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses 2015; 7:4529-62. [PMID: 26266417 PMCID: PMC4576193 DOI: 10.3390/v7082832] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.
Collapse
Affiliation(s)
- Lonneke van der Linden
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Katja C Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht 3584 CL, The Netherlands.
| |
Collapse
|
27
|
Tiwari A, Gade CR, Dixit M, Sharma NK. Methylene Salicylicacidyl Hexamer (MSH) Has DNAse Activity. Appl Biochem Biotechnol 2015; 176:1791-800. [PMID: 26077682 DOI: 10.1007/s12010-015-1678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/25/2015] [Indexed: 11/29/2022]
Abstract
Salicylic acid and formaldehyde form heterogenous methyl/methylene salicylicacidyl oligomers and polymers in presence of sulfuric acid (H2SO4) and sodium nitrite (NaNO2). One of the oligomers as aurintricarboxylic acid (ATA), methelene bridged salicylic acid trimer, has been identified and explored in biochemical research, which is a potent inhibitor of many biological processes. A very few reports are also available on dimer, trimer, and tetramer of methelene bridged salicylic acids from same reaction mixture. Herein, we report the isolation and biochemical screening of partial purified low-molecular component as methylene salicylicacidyl hexamer (MSH) from the above reaction mixture. The interaction of methylene salicylicacidyl oligomer with DNA was studied by agarose and polyacrylamide gel electrophoresis, which suggest that methylene salicylicacidyl oligomer has DNAse activity. So far, no such significant reports are available on low-molecular oligomer of methelene bridged salicylic acids. In further, we also attempted to investigate the nature of nuclease activity, which clearly indicates DNA exonuclease type of activity. Further studies are needed to establish the mechanism of actions.
Collapse
Affiliation(s)
- Ankit Tiwari
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 751005, India
| | | | | | | |
Collapse
|
28
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
29
|
Enterovirus 71 Proteins 2A and 3D Antagonize the Antiviral Activity of Gamma Interferon via Signaling Attenuation. J Virol 2015; 89:7028-37. [PMID: 25926657 DOI: 10.1128/jvi.00205-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) infection causes severe mortality involving multiple possible mechanisms, including cytokine storm, brain stem encephalitis, and fulminant pulmonary edema. Gamma interferon (IFN-γ) may confer anti-EV71 activity; however, the claim that disease severity is highly correlated to an increase in IFN-γ is controversial and would indicate an immune escape initiated by EV71. This study, investigating the role of IFN-γ in EV71 infection using a murine model, showed that IFN-γ was elevated. Moreover, IFN-γ receptor-deficient mice showed higher mortality rates and more severe disease progression with slower viral clearance than wild-type mice. In vitro results showed that IFN-γ pretreatment reduced EV71 yield, whereas EV71 infection caused IFN-γ resistance with attenuated IFN-γ signaling in IFN regulatory factor 1 (IRF1) gene transactivation. To study the immunoediting ability of EV71 proteins in IFN-γ signaling, 11 viral proteins were stably expressed in cells without cytotoxicity; however, viral proteins 2A and 3D blocked IFN-γ-induced IRF1 transactivation following a loss of signal transducer and activator of transcription 1 (STAT1) nuclear translocation. Viral 3D attenuated IFN-γ signaling accompanied by a STAT1 decrease without interfering with IFN-γ receptor expression. Restoration of STAT1 or blocking 3D activity was able to rescue IFN-γ signaling. Interestingly, viral 2A attenuated IFN-γ signaling using another mechanism by reducing the serine phosphorylation of STAT1 following the inactivation of extracellular signal-regulated kinase without affecting STAT1 expression. These results demonstrate the anti-EV71 ability of IFN-γ and the immunoediting ability by EV71 2A and 3D, which attenuate IFN-γ signaling through different mechanisms. IMPORTANCE Immunosurveillance by gamma interferon (IFN-γ) may confer anti-enterovirus 71 (anti-EV71) activity; however, the claim that disease severity is highly correlated to an increase in IFN-γ is controversial and would indicate an immune escape initiated by EV71. IFN-γ receptor-deficient mice showed higher mortality and more severe disease progression, indicating the anti-EV71 property of IFN-γ. However, EV71 infection caused cellular insusceptibility in response to IFN-γ stimulation. We used an in vitro system with viral protein expression to explore the novel IFN-γ inhibitory properties of the EV71 2A and 3D proteins through the different mechanisms. According to this study, targeting either 2A or 3D pharmacologically and/or genetically may sustain a cellular susceptibility in response to IFN-γ, particularly for IFN-γ-mediated anti-EV71 activity.
Collapse
|
30
|
Li JP, Liao Y, Zhang Y, Wang JJ, Wang LC, Feng K, Li QH, Liu LD. Experimental infection of tree shrews (Tupaia belangeri) with Coxsackie virus A16. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:485-91. [PMID: 25465084 DOI: 10.13918/j.issn.2095-8137.2014.6.485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Coxsackie virus A16 (CA16) is commonly recognized as one of the main human pathogens of hand-foot-mouth disease (HFMD). The clinical manifestations of HFMD include vesicles of hand, foot and mouth in young children and severe inflammatory CNS lesions. In this study, experimentally CA16 infected tree shrews (Tupaia belangeri) were used to investigate CA16 pathogenesis. The results showed that both the body temperature and the percentages of blood neutrophilic granulocytes / monocytes of CA16 infected tree shrews increased at 4-7 days post infection. Dynamic distributions of CA16 in different tissues and stools were found at different infection stages. Moreover, the pathological changes in CNS and other organs were also observed. These findings indicate that tree shrews can be used as a viable animal model to study CA16 infection.
Collapse
Affiliation(s)
- Jian-Ping Li
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Jing-Jing Wang
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Li-Chun Wang
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Kai Feng
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Qi-Han Li
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China.
| | - Long-Ding Liu
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118,
| |
Collapse
|
31
|
van der Linden L, Vives-Adrián L, Selisko B, Ferrer-Orta C, Liu X, Lanke K, Ulferts R, De Palma AM, Tanchis F, Goris N, Lefebvre D, De Clercq K, Leyssen P, Lacroix C, Pürstinger G, Coutard B, Canard B, Boehr DD, Arnold JJ, Cameron CE, Verdaguer N, Neyts J, van Kuppeveld FJM. The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family. PLoS Pathog 2015; 11:e1004733. [PMID: 25799064 PMCID: PMC4370873 DOI: 10.1371/journal.ppat.1004733] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 02/06/2015] [Indexed: 01/08/2023] Open
Abstract
The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy. Nucleoside-based inhibitors have broad-spectrum activity but often exhibit off-target effects. Most non-nucleoside inhibitors (NNIs) target surface cavities, which are structurally more flexible than the nucleotide-binding pocket, and hence have a more narrow spectrum of activity and are more prone to resistance development. Here, we report a novel NNI, GPC-N114 (2,2'-[(4-chloro-1,2-phenylene)bis(oxy)]bis(5-nitro-benzonitrile)) with broad-spectrum activity against enteroviruses and cardioviruses (another genus in the picornavirus family). Surprisingly, coxsackievirus B3 (CVB3) and poliovirus displayed a high genetic barrier to resistance against GPC-N114. By contrast, EMCV, a cardiovirus, rapidly acquired resistance due to mutations in 3Dpol. In vitro polymerase activity assays showed that GPC-N114 i) inhibited the elongation activity of recombinant CVB3 and EMCV 3Dpol, (ii) had reduced activity against EMCV 3Dpol with the resistance mutations, and (iii) was most efficient in inhibiting 3Dpol when added before the RNA template-primer duplex. Elucidation of a crystal structure of the inhibitor bound to CVB3 3Dpol confirmed the RNA-binding channel as the target for GPC-N114. Docking studies of the compound into the crystal structures of the compound-resistant EMCV 3Dpol mutants suggested that the resistant phenotype is due to subtle changes that interfere with the binding of GPC-N114 but not of the RNA template-primer. In conclusion, this study presents the first NNI that targets the RNA template channel of the picornavirus polymerase and identifies a new pocket that can be used for the design of broad-spectrum inhibitors. Moreover, this study provides important new insight into the plasticity of picornavirus polymerases at the template binding site.
Collapse
Affiliation(s)
- Lonneke van der Linden
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Laia Vives-Adrián
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Barbara Selisko
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Xinran Liu
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Rachel Ulferts
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Armando M. De Palma
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Federica Tanchis
- Abteilung Pharmazeutische Chemie, Institut für Pharmazie, Universität Innsbruck, Innsbruck, Austria
| | | | - David Lefebvre
- Unit of Vesicular and Exotic Diseases, Virology Department, CODA-CERVA, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Kris De Clercq
- Unit of Vesicular and Exotic Diseases, Virology Department, CODA-CERVA, Veterinary and Agrochemical Research Centre, Brussels, Belgium
| | - Pieter Leyssen
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Céline Lacroix
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Gerhard Pürstinger
- Abteilung Pharmazeutische Chemie, Institut für Pharmazie, Universität Innsbruck, Innsbruck, Austria
| | - Bruno Coutard
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - Bruno Canard
- AFMB UMR 7257, Aix-Marseille Université & CNRS, Marseille, France
| | - David D. Boehr
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nuria Verdaguer
- Institut de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Frank J. M. van Kuppeveld
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Development of antiviral agents toward enterovirus 71 infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:1-8. [DOI: 10.1016/j.jmii.2013.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/16/2013] [Indexed: 01/20/2023]
|
33
|
BPR-3P0128 inhibits RNA-dependent RNA polymerase elongation and VPg uridylylation activities of Enterovirus 71. Antiviral Res 2014; 112:18-25. [DOI: 10.1016/j.antiviral.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 11/23/2022]
|
34
|
Hung HC, Shih SR, Chang TY, Fang MY, Hsu JTA. The combination effects of licl and the active leflunomide metabolite, A771726, on viral-induced interleukin 6 production and EV-A71 replication. PLoS One 2014; 9:e111331. [PMID: 25412347 PMCID: PMC4239034 DOI: 10.1371/journal.pone.0111331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/22/2014] [Indexed: 01/29/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3β inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1β) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication.
Collapse
Affiliation(s)
- Hui-Chen Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shin-Ru Shih
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
- Clinical Virology Laboratory, Department of Clinical Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Teng-Yuan Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - John T.-A. Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Lin L, Qin Y, Wu H, Chen Y, Wu S, Si X, Wang H, Wang T, Zhong X, Zhai X, Tong L, Pan B, Zhang F, Zhong Z, Wang Y, Zhao W. Pyrrolidine dithiocarbamate inhibits enterovirus 71 replication by down-regulating ubiquitin-proteasome system. Virus Res 2014; 195:207-16. [PMID: 25456405 DOI: 10.1016/j.virusres.2014.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/25/2014] [Accepted: 10/10/2014] [Indexed: 12/22/2022]
Abstract
Enterovirus 71 (EV71) is the main causative pathogen of hand, foot, and mouth disease (HFMD). The severe neurological complications caused by EV71 infection and the lack of effective therapeutic medicine underline the importance of searching for antiviral substances. Pyrrolidine dithiocarbamate (PDTC), an antioxidant, has been reported to inhibit the replication of coxsackievirus B (CVB) through dysregulating ubiquitin-proteasome system (UPS). In this study, we demonstrated that PDTC exerted potent antiviral effect on EV71. Viral RNA synthesis, viral protein expression, and the production of viral progeny were significantly reduced by the treatment of PDTC in Vero cells infected with EV71. Similar to the previous report about the inhibitory effect of PDTC on UPS, we found that PDTC treatment led to decreased levels of polyubiquitinated proteins in EV71-infected cells. The inhibitory effect of PDTC on UPS was further confirmed by the increased accumulation of cell cycle regulatory proteins p21 and p53, which are normally degraded through UPS, while the expression levels of both proteins remained unchanged. We also showed that PDTC had no impact on the activity of proteasome. Thus, we demonstrated that the down-regulation of PDTC on UPS was the result of its inhibition on ubiquitination. More importantly, this study provides evidence that the inhibition on UPS was required for the antiviral activity of PDTC, since MG132, a potent proteasome inhibitor, significantly inhibited the cytopathic effect and viral protein synthesis in EV71-infected cells. We also found that the antioxidant property of PDTC did not contribute to its antiviral effect, since N-acetyl-l-cysteine, a potent antioxidant, could not inhibit viral replication. In addition, CPE and viral protein synthesis were not inhibited in the cells pretreated with PDTC 2h before viral infection and then cultured in the media with no PDTC supplement, while the antioxidant effect of PDTC was retained. PDTC also showed significant inhibition on apoptosis induced by EV71 infection when it was applied at the early stage of viral infection. Our results collectively suggest that PDTC could be a potential anti-EV71 compound which possesses both antiviral and anti-apoptotic capacity.
Collapse
Affiliation(s)
- Lexun Lin
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Ying Qin
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Heng Wu
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Shuo Wu
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xiaoning Si
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Hui Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Tianying Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Xia Zhai
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Lei Tong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Bo Pan
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 196 Xuefu Road, 150086 Harbin, China.
| |
Collapse
|
36
|
Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening. Viruses 2014; 6:2778-95. [PMID: 25036464 PMCID: PMC4113793 DOI: 10.3390/v6072778] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/28/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) is a common pediatric illness mainly caused by infection with enterovirus 71 (EV71) and coxsackievirus A16 (CA16). The frequent HFMD outbreaks have become a serious public health problem. Currently, no vaccine or antiviral drug for EV71/CA16 infections has been approved. In this study, a two-step screening platform consisting of reporter virus-based assays and cell viability‑based assays was developed to identify potential inhibitors of EV71/CA16 infection. Two types of reporter viruses, a pseudovirus containing luciferase-encoding RNA replicons encapsidated by viral capsid proteins and a full-length reporter virus containing enhanced green fluorescent protein, were used for primary screening of 400 highly purified natural compounds. Thereafter, a cell viability-based secondary screen was performed for the identified hits to confirm their antiviral activities. Three compounds (luteolin, galangin, and quercetin) were identified, among which luteolin exhibited the most potent inhibition of viral infection. In the cell viability assay and plaque reduction assay, luteolin showed similar 50% effective concentration (EC50) values of about 10 μM. Luteolin targeted the post-attachment stage of EV71 and CA16 infection by inhibiting viral RNA replication. This study suggests that luteolin may serve as a lead compound to develop potent anti-EV71 and CA16 drugs.
Collapse
|
37
|
Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antiviral Res 2014; 109:30-41. [PMID: 24971492 DOI: 10.1016/j.antiviral.2014.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is a member of genus Enterovirus in Picornaviridae family, which is one of the major causative agents for hand, foot and mouth disease (HFMD), and sometimes associated with severe central nervous system diseases in children. Currently there are no effective therapeutic medicines or vaccines for the disease. In this report, we found that apigenin and luteolin, two flavones that differ only in the number of hydroxyl groups could inhibit EV71-mediated cytopathogenic effect (CPE) and EV71 replication with low cytotoxicity. Both molecules also showed inhibitory effect on the viral polyprotein expression. They prevented EV71-induced cell apoptosis, intracellular reactive oxygen species (ROS) generation and cytokines up-regulation. Time-of-drug addition study demonstrated that apigenin and luteolin acted after viral entry. We examined the effect of apigenin and luteolin on 2A(pro) and 3C(pro) activity, two viral proteases responsible for viral polyprotein processing, and found that they showed less inhibitory activity on 2A(pro) or 3C(pro). Further studies demonstrated that apigenin, but not luteolin could interfere with viral IRES activity. Also, apigenin inhibited EV71-induced c-Jun N-terminal kinase (JNK) activation which is critical for viral replication, in contrast to luteolin that did not. This study demonstrated that apigenin may inhibit EV71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. It also provided evidence that one hydroxyl group difference in the B ring between apigenin and luteolin resulted in the distinct antiviral mechanisms. This study will provide the basis for better drug development and further identification of potential drug targets.
Collapse
Affiliation(s)
- Xiaowen Lv
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China; Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China
| | - Min Qiu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China
| | - Yu Jin
- Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; Nanjing Children's Hospital, Nanjing Medical University, Nanjing, PR China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, PR China; Medical School and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, PR China; State Key Lab of Analytical Chemistry for Life Science, Nanjing University, Nanjing, PR China.
| |
Collapse
|
38
|
Wang J, Zhang T, Du J, Cui S, Yang F, Jin Q. Anti-enterovirus 71 effects of chrysin and its phosphate ester. PLoS One 2014; 9:e89668. [PMID: 24598537 PMCID: PMC3943725 DOI: 10.1371/journal.pone.0089668] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Enterovirus 71 (EV71) can cause severe disease and even lead to death in children, and an effective antiviral drug is currently unavailable. The anti-EV71 effect of chrysin (5,7-dihydroxyflavone), a natural flavonoid commonly found in many plants, was tested in this report. By using the predicting program Autodock 4.0 and an in vitro protease inhibition assay, we found that chrysin could suppress viral 3Cpro activity. Replication of viral RNA and production of viral capsid protein and the infectious virion were strongly inhibited by chrysin, without noticeable cytotoxicity. Cytopathic effects on cells were also prevented. Diisopropyl chrysin-7-yl phosphate (CPI), the phosphate ester for chrysin, was generated through a simplified Atheron-Todd reaction to achieve stronger anti-viral activity. CPI was also able to bind with and inhibit viral 3Cpro activity in vitro. As expected, CPI demonstrated more potent antiviral activity against EV71.
Collapse
Affiliation(s)
- Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ting Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
39
|
Li X, Liu Y, Hou X, Peng H, Zhang L, Jiang Q, Shi M, Ji Y, Wang Y, Shi W. Chlorogenic acid inhibits the replication and viability of enterovirus 71 in vitro. PLoS One 2013; 8:e76007. [PMID: 24098754 PMCID: PMC3786884 DOI: 10.1371/journal.pone.0076007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/16/2013] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71) is an etiology for a number of diseases in humans. Traditional Chinese herbs have been reported to be effective for treating EV71 infection. However, there is no report about the antiviral effects of CHA against EV71. In this study, plaque reduction assay demonstrated that the inhibitory concentration 50% (IC50) of CHA on EV71 replication is 6.3 µg/ml. When both CHA (20 µg/ml) and EV71 were added, or added post-infection at different time points, CHA was able to effectively inhibit EV71 replication between 0 and 10 h. In addition, CHA inhibited EV71 2A transcription and translation in EV71-infected RD cells, but did not affect VP1, 3C, and 3D expression. Furthermore, CHA inhibited secretions of IL-6, TNF-α, IFN-γ and MCP-1 in EV71-infected RD cells. Altogether, these results revealed that CHA may have antiviral properties for treating EV71 infection.
Collapse
Affiliation(s)
- Xiang Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Yuanyuan Liu
- Department of Endocrinology, The the Huai-an First Affliated Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xueling Hou
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Hongjun Peng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Li Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Qingbo Jiang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Mei Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Yun Ji
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Yuyue Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
40
|
Mohamed TMA, Abou-Leisa R, Baudoin F, Stafford N, Neyses L, Cartwright EJ, Oceandy D. Development and characterization of a novel fluorescent indicator protein PMCA4-GCaMP2 in cardiomyocytes. J Mol Cell Cardiol 2013; 63:57-68. [PMID: 23880607 DOI: 10.1016/j.yjmcc.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/04/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
Isoform 4 of the plasma membrane calcium/calmodulin dependent ATPase (PMCA4) has recently emerged as an important regulator of several key pathophysiological processes in the heart, such as contractility and hypertrophy. However, direct monitoring of PMCA4 activity and assessment of calcium dynamics in its vicinity in cardiomyocytes are difficult due to the lack of molecular tools. In this study, we developed novel calcium fluorescent indicators by fusing the GCaMP2 calcium sensor to the N-terminus of PMCA4 to generate the PMCA4-GCaMP2 fusion molecule. We also identified a novel specific inhibitor of PMCA4, which might be useful for studying the role of this molecule in cardiomyocytes and other cell types. Using an adenoviral system we successfully expressed PMCA4-GCaMP2 in both neonatal and adult rat cardiomyocytes. This fusion molecule was correctly targeted to the plasma membrane and co-localised with caveolin-3. It could monitor signal oscillations in electrically stimulated cardiomyocytes. The PMCA4-GCaMP2 generated a higher signal amplitude and faster signal decay rate compared to a mutant inactive PMCA4(mut)GCaMP2 fusion protein, in electrically stimulated neonatal and adult rat cardiomyocytes. A small molecule library screen enabled us to identify a novel selective inhibitor for PMCA4, which we found to reduce signal amplitude of PMCA4-GCaMP2 and prolong the time of signal decay (Tau) to a level comparable with the signal generated by PMCA4(mut)GCaMP2. In addition, PMCA4-GCaMP2 but not the mutant form produced an enhanced signal in response to β-adrenergic stimulation. Together, the PMCA4-GCaMP2 and PMCA4(mut)GCaMP2 demonstrate calcium dynamics in the vicinity of the pump under active or inactive conditions, respectively. In summary, the PMCA4-GCaMP2 together with the novel specific inhibitor provides new means with which to monitor calcium dynamics in the vicinity of a calcium transporter in cardiomyocytes and may become a useful tool to further study the biological functions of PMCA4. In addition, similar approaches could be useful for studying the activity of other calcium transporters during excitation-contraction coupling in the heart.
Collapse
Affiliation(s)
- Tamer M A Mohamed
- Institute of Cardiovascular Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Manchester M13 9PT, UK; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | | | | | | | | | | |
Collapse
|
41
|
Kuo RL, Shih SR. Strategies to develop antivirals against enterovirus 71. Virol J 2013; 10:28. [PMID: 23339605 PMCID: PMC3614426 DOI: 10.1186/1743-422x-10-28] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/02/2013] [Indexed: 01/08/2023] Open
Abstract
Enterovirus 71 (EV71) is an important human pathogen which may cause severe neurological complications and death in children. The virus caused several outbreaks in the Asia-Pacific region during the past two decades and has been considered a significant public health problem in the post-poliovirus eradication era. Unlike poliovirus, there is no effective vaccine or approved antivirals against EV71. To explore anti-EV71 agents therefore is of vital importance. Several strategies have been employed to develop antivirals based on the molecular characteristics of the virus. Among these, some small molecules that were developed against human rhinoviruses and poliovirus are under evaluation. In this review, we discuss the recent development of such small molecules against EV71, known drug resistance and possible solutions to it, and animal models for evaluating the efficacy of these antivirals. Although further investigation is required for clinical applications of the existing candidates, the molecular mechanisms revealed for the inhibition of EV71 replication can be used for designing new molecules against this virus in the future.
Collapse
Affiliation(s)
- Rei-Lin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hua 1st Road, Kwei-Shan, Taoyuan, Taiwan
| | | |
Collapse
|
42
|
Zhang X, Song Z, Qin B, Zhang X, Chen L, Hu Y, Yuan Z. Rupintrivir is a promising candidate for treating severe cases of enterovirus-71 infection: evaluation of antiviral efficacy in a murine infection model. Antiviral Res 2013; 97:264-9. [PMID: 23295352 DOI: 10.1016/j.antiviral.2012.12.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/23/2012] [Accepted: 12/15/2012] [Indexed: 12/17/2022]
Abstract
Enterovirus-71 (EV71) infections can cause life-threatening diseases with neurological symptoms. Currently, no direct targeting antivirals are available to combat severe EV71 infection. Rupintrivir (AG7088) is a compound originally designed for Rhinovirus 3C protease. Previous computational analyses by us and crystallography studies by others suggested that rupintrivir is also a high affinity inhibitor to EV71 3C. Thus, we aimed to further evaluate its anti-EV71 activity in vivo at clinically acceptable doses. It was observed that administration of rupintrivir in suckling mice largely protected them from limb paralysis and dramatically improved survival (38.5% DMSO vs. 90.9% at 0.1mg/kg, p=0.006). Histological, immunohistochemical and quantitative RT-PCR analyses confirmed that rupintrivir profoundly alleviated virus induced necrotizing myositis, suppressed viral RNA and blocked EV71 VP1 expression in various tissues. In conclusion, we established that rupintrivir can strongly contain the spread of EV71 infection in vivo at a clinically acceptable dose (as low as 0.1mg/kg). As its safety has been fully tested in previous clinical trials, rupintrivir is suitable for immediate evaluation of potential benefits in EV71-infected individuals with life-threatening neurological symptoms.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang J, Du J, Wu Z, Jin Q. Quinacrine impairs enterovirus 71 RNA replication by preventing binding of polypyrimidine-tract binding protein with internal ribosome entry sites. PLoS One 2013; 8:e52954. [PMID: 23301007 PMCID: PMC3536785 DOI: 10.1371/journal.pone.0052954] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/21/2012] [Indexed: 02/05/2023] Open
Abstract
Since the 1980s, epidemics of enterovirus 71 (EV71) and other enteroviruses have occurred in Asian countries and regions, causing a wide range of human diseases. No effective therapy is available for the treatment of these infections. Internal ribosome entry sites (IRESs) are indispensable for the initiation of translation in enteroviruses. Several cellular factors, as well as the ribosome, are recruited to the conserved IRES during this process. Quinacrine intercalates into the RNA architecture and inhibits RNA transcription and protein synthesis, and a recent study showed that quinacrine inhibited encephalomyocarditis virus and poliovirus IRES-mediated translation in vitro without disrupting internal cellular IRES. Here, we report that quinacrine was highly active against EV71, protecting cells from EV71 infection. Replication of viral RNA, expression of viral capsid protein, and production of virus were all strongly inhibited by quinacrine. Interaction of the polypyrimidine tract-binding protein (PTB) with the conserved IRES was prevented by quinacrine. Coxsackieviruses and echovirus were also inhibited by quinacrine in cultured cells. These results indicate that quinacrine may serve as a potential protective agent for use in the treatment of patients with chronic enterovirus infection.
Collapse
Affiliation(s)
- Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhiqiang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
44
|
Shang L, Xu M, Yin Z. Antiviral drug discovery for the treatment of enterovirus 71 infections. Antiviral Res 2012; 97:183-94. [PMID: 23261847 DOI: 10.1016/j.antiviral.2012.12.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Enterovirus 71 (EV71) is a small, positive-sense, single-stranded RNA virus in the genus Enterovirus, family Picornavirus. It causes hand, foot and mouth disease in infants and children, which in a small percentage of cases progresses to central nervous system infection, ranging from aseptic meningitis to fatal encephalitis. Sporadic cases of EV71 infection occur throughout the world, but large epidemics have occurred recently in Southeast Asia and China. There are currently no approved vaccines or antiviral therapies for the prevention or treatment of EV71 infection. This paper reviews efforts to develop antiviral therapies against EV71.
Collapse
Affiliation(s)
- Luqing Shang
- College of Pharmacy, Nankai University, Tianjin, PR China
| | | | | |
Collapse
|
45
|
Shi W, Li X, Hou X, Peng H, Jiang Q, Shi M, Ji Y, Liu X, Liu J. Differential apoptosis gene expressions of rhabdomyosarcoma cells in response to enterovirus 71 infection. BMC Infect Dis 2012. [PMID: 23191987 PMCID: PMC3536580 DOI: 10.1186/1471-2334-12-327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Enterovirus 71 (EV71) infection can induce the apoptosis of infected cells. The aim of this study is to explore the effect of EV71 infection on apoptosis mechanisms in virus-infected human rhabdomyosarcoma (RD) cells. Methods The apoptosis of RD cells was examined using annexin V-FITC/PI by flow cytometry and cytokines were detected by ELISA. Cellular RNA was extracted and transcribed to cDNA. PCR array was employed to analyze the expressions of 84 apoptotic genes from EV71-infected RD cells at 8 and 20 h postinfection, respectively. In addition, the expressions of FasL, caspase, AKT2, JNK1/2, c-Jun and NF-κB proteins were detected by western blotting. Results Flow cytometry demonstrated that the apoptosis or death of EV71-infected RD cells was increased by 37.1% with a multiplicity of infection (MOI) of 5 at 20 h postinfection. The production of IL-4, IL-10 and TNF-α was enhanced by the subsequent EV71 infection. PCR array revealed significant changes in the expressions of apoptotic genes. Among 84 genes, 42 genes were down-regulated after EV71 infection at 8 h, whereas 32 genes were up-regulated at 20 h postinfection. Moreover, the ligands of TNF superfamily such as FasL, CD40L and TNF-α were significantly up-regulated and enhanced the expressions of apoptosis-related cysteine peptidases, including caspase-10, -8, -7 and -3. In addition, EV71 infection induces the phosphorylation of AKT2, JNK1/2, c-Jun and NF-κB at 20 h postinfection. Conclusion PCR array for the determination of apoptosis gene expressions is an informative assay in elucidating biological pathways. During the early stage of EV71 infection, the apoptotic process of RD cells is significantly delayed. EV71 infection can also induce the expressions of FasL, TNF-α and CD40L, which contribute to the apoptosis of RD cells.
Collapse
Affiliation(s)
- Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, 213003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee TY, Chen WS, Huang YA, Liu TW, Hwang E, Tseng CP. Application of aurintricarboxylic acid for the adherence of mouse P19 neurons and primary hippocampal neurons to noncoated surface in serum-free culture. Biotechnol Prog 2012; 28:1566-74. [PMID: 23011767 DOI: 10.1002/btpr.1638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/08/2012] [Indexed: 02/01/2023]
Abstract
Dissociated primary neuron culture has been the most widely used model systems for neuroscience research. Most of these primary neurons are cultured on adhesion matrix-coated surface to provide a proper environment for cell anchorage under serum-free conditions. In this study, we provide an alternative technique to promote the adhesions of these neurons using aurintricarboxylic acid (ATA), a nonpeptide compound, without surface manipulations. We first demonstrated that ATA could promote Chinese hamster ovary cell attachment and proliferation in serum-free medium in a dosage-dependent manner. We later showed that ATA significantly enhanced the attachment of the retinoic acid differentiated P19 mouse embryonal carcinoma (P19) neurons, with an optimal concentration around 30 μg/mL. A similar result was seen in primary hippocampal neurons, with an optimal ATA concentration around 15 μg/mL. Further morphological assessments revealed that the average neurite length and neuronal polarization were almost identical to that obtained using a conventional method with poly-L-lysine surface. The advantages of using the ATA treatment technique for immunochemical analysis are discussed.
Collapse
Affiliation(s)
- Tsung-Yih Lee
- Dept. of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
47
|
Santangelo R, Mancuso C, Marchetti S, Di Stasio E, Pani G, Fadda G. Bilirubin: An Endogenous Molecule with Antiviral Activity in vitro. Front Pharmacol 2012; 3:36. [PMID: 22408623 PMCID: PMC3297833 DOI: 10.3389/fphar.2012.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 12/16/2022] Open
Abstract
Bilirubin-IX-alpha (BR) is the final product of heme metabolism through the heme oxygenase/biliverdin reductase (HO/BVR) system. Previous papers reported on the microbicidal effects of the HO by-products biliverdin-IX-alpha, carbon monoxide and iron, through either direct or indirect mechanisms. In this paper the evidence of a virucidal effect of BR against human herpes simplex virus type 1 (HSV-1) and the enterovirus EV71 was provided. Bilirubin-IX-alpha, at concentrations 1–10 μM, close to those found in blood and tissues, significantly reduced HSV-1 and EV71 replication in Hep-2 and Vero cell lines, respectively. Bilirubin-IX-alpha inhibited viral infection of Hep-2 and Vero cells when given 2 h before, concomitantly and 2 h after viral infection. Furthermore, BR retained its antiviral activity even complexed with a saturating concentration of human serum-albumin. Moreover, 10 μM BR increased the formation of nitric oxide and the phosphorylation of c-Jun N-terminal kinase in Vero and Hep-2 cell lines, respectively, thus implying a role of these two pathways in the mechanism of antiviral activity of the bile pigment. In conclusion, these results support the antiviral effect of BR against HSV-1 and enterovirus in vitro, and put the basis for further basic and clinical studies to understand the real role of BR as an endogenous antiviral molecule.
Collapse
Affiliation(s)
- Rosaria Santangelo
- Institute of Microbiology, Catholic University School of Medicine Roma, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Characterization of a monoclonal antibody against the 3D polymerase of enterovirus 71 and its use for the detection of human enterovirus A infection. J Virol Methods 2012; 180:75-83. [DOI: 10.1016/j.jviromet.2011.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 11/21/2022]
|
49
|
Hung HC, Wang HC, Shih SR, Teng IF, Tseng CP, Hsu JTA. Synergistic inhibition of enterovirus 71 replication by interferon and rupintrivir. J Infect Dis 2011; 203:1784-90. [PMID: 21536800 DOI: 10.1093/infdis/jir174] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) can cause severe diseases and even lead to death in children. There is no vaccine or specific antiviral therapy to prevent or cure EV71 infection. Although interferon (IFN)-α has been used in the treatment of several viral infections, we found that IFN-α alone was ineffective in restricting EV71 replication in Vero cells. METHODS Through a bioinformatics analysis, several cellular proteins in the IFN response pathway were identified as susceptible substrates that might be degraded by the EV71-encoded 3C protease (3C(pro)). RESULTS Indeed, IRF9 was shown to be vulnerable to 3C(pro) cleavage, as revealed by enzyme-based and cell-based assays. Thus, the IFN-mediated antiviral mechanism compromised by the viral 3C(pro) in EV71-infected cells may be accountable, at least partially, for that IFN-α cannot inhibit EV71 replication. Because rupintrivir (AG7088) is known to be an effective EV71 inhibitor, we investigated the effects of the combination of rupintrivir and IFN-α on EV71 replication and found that they strongly synergized with each other in inhibiting EV71 replication. CONCLUSIONS Because rupintrivir was shown to be generally tolerable in earlier clinical investigations, it is worth evaluating whether a combination of rupintrivir and IFN-α could be an effective treatment for EV71.
Collapse
Affiliation(s)
- Hui-Chen Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Liu L, Zhao H, Zhang Y, Wang J, Che Y, Dong C, Zhang X, Na R, Shi H, Jiang L, Wang L, Xie Z, Cui P, Xiong X, Liao Y, Zhao S, Gao J, Tang D, Li Q. Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection. Virology 2011; 412:91-100. [PMID: 21262515 DOI: 10.1016/j.virol.2010.12.058] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/30/2010] [Accepted: 12/30/2010] [Indexed: 11/28/2022]
Abstract
Data from limited autopsies of human patients demonstrate that pathological changes in EV71-infected fatal cases are principally characterized by clear inflammatory lesions in different parts of the CNS; nearly identical changes were found in murine, cynomolgus and rhesus monkey studies which provide evidence of using animal models to investigate the mechanisms of EV71 pathogenesis. Our work uses neonatal rhesus monkeys to investigate a possible model of EV71 pathogenesis and concludes that this model could be applied to provide objective indicators which include clinical manifestations, virus dynamic distribution and pathological changes for observation and evaluation in interpreting the complete process of EV71 infection. This induced systemic infection and other collected indicators in neonatal monkeys could be repeated; the transmission appears to involve infecting new monkeys by contact with feces of infected animals. All data presented suggest that the neonatal rhesus monkey model could shed light on EV71 infection process and pathogenesis.
Collapse
Affiliation(s)
- Longding Liu
- Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, 379 Jiaoling Road, Kunming, Yunnan, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|